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Abstract 

This paper presents a theoretical neoclassical growth model with two kinds of capital, and 
technological interdependence among regions. Technological interdependence is assumed to 
operate through spatial externalities caused by disembodied knowledge diffusion between 
technologically similar regions. The transition from theory to econometrics yields a reduced-form 
empirical model that in the spatial econometrics literature is known as spatial Durbin model. 
Technological dependence between regions is formulated by a connectivity matrix that measures 
closeness of regions in a technological space spanned by 120 distinct technological fields. We use a 
system of 158 regions across 14 European countries over the period from 1995 to 2004 to 
empirically test the model. The paper illustrates the importance of an impact-based model 
interpretation, in terms of the LeSage and Pace (2009) approach, to correctly quantify the 
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magnitude of spillover effects that avoid incorrect inferences about the presence or absence of 
significant capital externalities among technologically similar regions. 
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Keywords: Economic growth, augmented Mankiw-Romer-Weil model, disembodied knowledge 

diffusion, technological similarity between regions, spatial econometrics, European regions 
 

 

Introduction 

Neoclassical growth theory traditionally has treated each region as if it were an island onto itself. If 

ever this practice was defensible, surely it is no longer at least in Europe. The increased exchange of 

goods and ideas has fostered an increasing interdependence among regions’ technological fortunes 

and long-term performances. 

 

This paper presents an open-economy extension of the Mankiw-Romer-Weil (henceforth MRW) 

model by explicitly accounting for technological interdependence among the economies. The 

objective of the model is to explain interregional differences in output per worker. Output is 

produced from physical capital, human capital and labour, and used for investments in physical and 

human capital and consumption. The regional economies evolve independently in all respects 

except for technological interdependence. The paper departs from previous work of the author (see 

Fischer 2009) by shifting attention from the geographic to the technological component to the 

knowledge spillover mechanism. 

 

According to this view, the ability of a region to make productive use of another region’s 

knowledge depends on the degree of technological similarity between regions. Technological 

similarity is measured as closeness in technological space spanned by a number of technological 

fields. Every technological field has a somewhat unique set of applications, and researchers in 

similar technological fields interact in professional organizations, and publish in commonly read 

journals. 

 

The remainder of the paper is organized a follows. Section 2 presents the neoclassical growth model 

that accounts for technological interdependence among technologically similar regions. The 

reduced-form of the theoretical model leads to an associated reduced-form empirical model that in 

the spatial econometrics literature is known as spatial Durbin model specification. Section 3 briefly 

describes this model while section 4 outlines the relevant estimation approach.  
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The inherent complexity of the spatial Durbin model specification implies that treating the 

parameter estimates like least-squares parameter estimates is incorrect, as noted by LeSage and 

Fischer (2008). A change in any given explanatory variable in a regional economy affects the 

economy itself (direct impact) and other economies indirectly (indirect or spillover impact). These 

interrelations increase the difficulty of correctly interpreting the resulting estimates. Section 5 

describes LeSage and Pace’s (2009) computational approach to calculating scalar summary 

measures of these impacts. In Section 6, we describe the data and the construction of the 

connectivity matrix that represents the technological closeness between the regions in the sample. 

Section 7 reports the estimation results using a sample of 158 NUTS-2 regions across 14 European 

countries, and illustrates the importance of the estimated impacts to avoid incorrect inferences about 

spatial capital externalities and the degree of interdependence among technologically similar 

regions in particular. Section 8 concludes the paper. 

 

1. Modelling regional growth 

Consider a world consisting of   separate regional economies. These economies are similar in that 

they have the same production possibilities. They differ because of different endowments and 

allocations. The economies evolve independently in all respects except technological 

interdependence.  

 

In each regional economy i, individuals can produce a consumption-capital good that we will term 

output. Total output, 
it

Y , produced at time t is given by a Cobb-Douglas production function 

 

1K H K H

it it it it it
Y A K H Lα α α α− −=  (1) 

 

where 
it

K  is physical capital, 
it

H  human capital, 
it

L  labour employed to produce output, and 
it

A  the 

level of technological knowledge available to this region. 
K

α  and 
H

α  are the output elasticities with 

respect to physical and human capital. Note that there are constant returns to scale in K, H and L. As 

in Mankiw, Romer and Weil (1992) we assume 1
K H

α α+ < , and , 0
K H

α α >  which implies that there 

are decreasing returns to both types of capital. 

 

We now discuss each element of this production function in turn. First, physical and human capital 

are accumulated as described by 
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                                          K

it i it it
K s Y Kδ= −
�

 (2) 

                                         H

it i it it
H s Y Hδ= −
�

 (3) 

 

where the dots over K and H represent the derivatives with respect to time. The variables K

i
s  and 

H

i
s denote the constant, but distinct investment rates for physical and human capital, respectively, 

and 0δ >  is the exogenous, constant rate of depreciation identical for all capital and regions.  

 

Next, aggregate labour employed producing output grows exogenously at the fixed rate 0.
i

n >  

 

                                         .
it i it

L n L=
�

 (4) 

 

The final factor in the production of output is the aggregate level of technological knowledge 
it

A , 

available in region i at time t. We assume1 that 

 

                                     ij

 
T

it t it it jt

j i

A k h A
ρθ φΩ

≠

= ∏  (5) 

 

which views 
it

A  to depend on four terms. The first term, 
t

Ω , is used – as in Mankiw, Romer and 

Weil (1992) – to represent a common knowledge base which is immediately available for use in any 

regional economy. This part of region’s i knowledge stock is exogenous and identical in all regions: 

0 exp( )
t

tΩ Ω µ= , where µ  is its constant rate of growth. 

 

Second, we assume that each region’s aggregate level of knowledge increases with the aggregate 

level of physical capital per worker, /
it it it

k K L= , and with the aggregate level of human capital per 

worker, /
it it it

h H L= . The associated parameters θ  with 0 1θ≤ <  and φ  with 0 1φ≤ <  reflect spatial 

connectivity of 
it

k  and 
it

h  within region i, respectively2.  

 

Finally, we assume non-embodied knowledge diffusion to cause technological progress of region i 

to depend positively on the technological progress of other regions ,j i≠  for 1,..., .j  =  The last term 
                                                           

1 Note that Ertur and Koch (2007) used this same kind of formulation to model technological interdependence in a Solow world of 
countries. 

 
2 We assume that each unit of capital investment increases not only the stock of capital, but also generates externalities which lead to 
knowledge spillovers that increase the level of technology for all firms in the region. 
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on the right hand side of Eq. (5) represents the technological dependence of region i from 

technologically neighbouring regions j which is formalized by means of connectivity terms 
ij

T  that 

measure the closeness of region i to regions j in a technological space spanned by a number of, say 

F, distinct technological fields. These terms are assumed to be non-negative, non-stochastic and 

finite, with the properties 0 1
ij

T≤ ≤ , 0
ij

T =  if ,i j=  and 1
j i ij

T≠ =Σ  for 1, ..., ,i  =  and may be organized 

to form a technological connectivity matrix T, called technological weight matrix. The parameter ρ  

with 0 1ρ≤ <  reflects the degree of technological interdependence in the system of regions. Note 

that regions neighbouring region i are defined as those regions j for which 0
ij

T > . The more 

technologically similar a region i is with region j, the higher 
ij

T is, and the more region i benefits 

from knowledge spilling over from region j. 

 

Resolving Eq. (5) for 
it

A  and replacing the result in the production function (1) written per worker, 

we get 

 

                                            
1

1 ij ijii ii

 
u vu v

it t it it jt jt

j i

y k h k hρ−

≠

= ∏ΩΩΩΩ  (6) 

 

with 

 

                                          
1

1 ( )r r

ii K ii

r

u α θ ρ
∞

=

 
= + + 

 
∑ T  (7) 

                                          
1

( ) for r r

ij ij

r

u i jθ ρ
∞

=

= ≠∑ T  (8) 

                                          
1

1 ( )r r

ii H ii

r

v α φ ρ
∞

=

 
= + + 

 
∑ T  (9) 

                                          
1

( ) for r r

ij ij

r

v i jφ ρ
∞

=

= ≠∑ T  (10) 

 

where /
it it it

y Y L= , and ( )r

ij
T is the (i, j)th element of the  -by-  connectivity matrix T taken to the 

power r, with the matrix T measuring the technological similarity between the   regions3.  

 

                                                           
3 Note that 1

0 0( ) ( ) ( )r r r

r r
ρ ρ ρ− ∞ ∞

= =− = =Σ ΣI T T T , 0
r

r

∞
=Σ T  is row standardized since T is so, 0

r

r

∞
= =Σ T Ω ΩΩ ΩΩ ΩΩ Ω ,  

0 )1/ (1r

r
ρ ρ∞

= = −Σ  if | | 1.ρ <  
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Then we can derive the output per worker of region i at steady state as 

 

1
ln ln ln ln ln ( )

1 1 1 1

ln ln
1 1

1
ln ( ) ln

1 1

K HK H
it t i i i

  
K HK H

ij j ij j

j i j i

  
K H K H

ij j ij jt

j i j i

y s s n g

T s T s

T n g T y

α θ α φ η
Ω δ

η η η η

α α
ρ ρ

η η

α α α α
ρ δ ρ

η η

∗

≠ ≠

∗

≠ ≠

+ +
= + + − + +

− − − −

− − +
− −

+ − −
+ + + +

− −

∑ ∑

∑ ∑
(11) 

 

 

with 
K H

η α α θ φ= + + +  and the balanced growth4 rate [(1 )(1
K

g µ ρ α= − − −  1) ]
H

α θ φ −− − − . If 

0θ φ ρ= = =  the model collapses to the conventional MRW model. It is important to note that Eq. 

(11) is valid only if the regions are at their steady states or if deviations from steady state are 

random. 

 

This growth model has the same qualitative predictions as the MRW model. Equation (11) states 

that a region i will have higher per worker output at a point in time (in the steady state) the higher is 

its own physical capital investment rate (ln )K

i
s , the higher is its own human capital investment rate 

(ln )H

i
s and the lower is its population growth rate ln ( ).

i
n g δ+ +  Per worker output of region i depends 

also on determinants that lie outside MRW’s original theory. Per worker output of a region i at 

steady state is negatively influenced by investment rates for physical and human capital in 

technologically neighbouring regions , for j j i≠ , those identified by 0
ij

T > , and positively influenced 

by their population growth rates. Even if the sign of the coefficients of the investment rates of 

neighbouring regions is negative, each of these investment rates (ln and ln )K H

j j
s s positively influences 

the output per worker in the neighbouring regions at steady state (ln )
jt

y
∗ , which in turn positively 

affects the per worker output of region i at steady state through the technological interdependence 

among the regions [see the last term on the right hand side of Eq. (11)]. 

 

2. Model specification  

It is easy to see that the empirical counterpart of the reduced form of the theoretical model given by 

Eq. (11) can be expressed at a given time (t=0 for simplicity) for region i as follows 

                                                           
4  A balanced growth path is defined as a situation in which (i) per worker physical and human capital grow at the same rate denoted 
by g, (ii) the exogenous part of technology grows at the constant rate µ , and (iii) the population growth rate and the investment 

rates for physical and human capital are constant. 
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0 1 2 3 1

2 3

ln ln ln ln ( ) ln

ln ln ( )

 
K H K

i i i i ij j

j i

   
H

ij j ij j ij j i

j i j i j i

y s s n g T s

T s T n g T y

β β β β δ γ

γ γ δ λ ε

≠

≠ ≠ ≠

= + + + + + +

+ + + + + +

∑

∑ ∑ ∑
 (12) 

 

 

where 1
0 0(1 ) ln

i
η Ω β ε−− = +  for 1, ..., ,i  = with 0β  a constant and 

i
ε  a region-specific shift or shock 

term5. Note that we have the following theoretical constraints between coefficients: 1 2 3 0β β β+ + =  

and 1 2 3 0.γ γ γ+ + =  

 

Rewriting Eq. (12) in matrix form gives  

 

                                 0 
β λ= + + + +y X T X T yι β γ ει β γ ει β γ ει β γ ε  (13) 

 

with 

y  -by-1 vector of observations on the per worker output level for each of the   regions, 

X  -by-Q matrix of observations on the Q non-constant exogenous variables [here Q=3], 

including the vectors of the physical and human capital investment rates and the population growth 

rate for each of the   regions, 

ββββ  Q-by-1 vector of the regression parameters associated with the Q non-constant exogenous 

variables [here: 1 2 3( , , ) 'β β β=ββββ ], 

TX  -by-Q matrix of the Q technologically lagged non-constant exogenous variables, 

γγγγ  Q-by-1 vector of the regression parameters associated with the Q technologically lagged 

non-constant exogenous variables [here: =γγγγ  1 2 3( , , ) 'γ γ γ ], 

T y  -by-1 vector of the dependent technologically lagged variable that contains a linear 

combination of the per worker output levels from technologically neighbouring regions, those 

identified by 0
ij

T > , 

λ  the autoregressive parameter with 1(1 ) ( 1)
K H

λ α α ρ η −= − − − ,  

 
ιιιι   -by-1 vector of ones with the associated scalar parameter 0β , 

εεεε   -by-1 vector of errors assumed to be identically and normally distributed with zero mean: 

2( , )σ0 Ιεεεε �  . 

                                                           
5 The term 

0
ΩΩΩΩ  reflects – as Mankiw, Romer and Weil (1992) emphasize – not just technology, but also idiosyncratic regional 

characteristics such as resource endowments, institutions etc. 
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Note that all variables are in log form. The variables spanned by X represent the determinants that 

are suggested by the MRW model whereas TX represent those that lie outside MRW’s original 

theory, as does Ty  that denotes the technological interdependence between the regions and defines 

the difference to a MRW world of closed regions. 

 

3. Model estimation  

In the spatial econometrics literature, a model specification like Eq. (13) is referred to as a spatial 

Durbin model (SDM). Maximizing the full log-likelihood for this model would involve setting the 

first derivatives with respect to the parameters  2, , and σ λβ γβ γβ γβ γ  equal to zero and simultaneously 

solving these first-order conditions for all the parameters. Equivalent maximum likelihood estimates 

can be found using the log-likelihood function concentrated with respect to the coefficient vector  

0[ , , ]'β=δ β γδ β γδ β γδ β γ  and the noise parameter 2σ  and reducing6 maximum likelihood to a univariate 

optimization problem in the parameter λ  

                      ln ( ) ln | | ln[ ( )]
2 

 
C Sλ λ λ= + − −I TL  (14) 

with 

                      2( ) ( )' ( ) ' 2 ' '
o o o d d d

S λ λ λ λ λ= = − +e e e e e e e e  (15) 

                      ( )
o d

λ λ= −e e e  (16) 

                     
o o
= −e y Zδδδδ  (17) 

                     
d d
= −e Ty Zδδδδ  (18) 

                          1( ' ) '
o

−= Z Z Z yδδδδ  (19) 

                         1( ' ) '
d

−= Z Z Z Tyδδδδ  (20) 

where the notation ( )λe  is used to indicate that this vector depends on values taken by the parameter 

λ , as does the scalar concentrated log-likelihood function value ln ( )λL . [ ]
 

=Z X TXιιιι  and C is a 

constant not involving the parameters. 

 

4. Interpretation of estimated parameters 

The reduced form of the theoretical model in Eq. (11) and the associated empirical model in Eq. 

(12) or Eq. (13) provide very rich own- and cross-partial derivatives that quantify the magnitude of 

direct and indirect (or spatial spillover) effects. A change in a single observation (region) associated 

                                                           
6 Note that the scalar moments ' , '

o o o d
e e e e  and '

d d
e e  and the Q-by-1 vectors 

o
δδδδ and 

d
δδδδ are computed prior to optimization, and so 

given a value for λ , calculating ( )S λ  simply requires weighting three numbers (LeSage and Pace 2009). We used the simplex 
optimization algorithm to solve the univariate optimization problem. 
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with any MRW determinant will affect the region itself (a direct impact) and potentially affect all 

other regions indirectly (an indirect impact). 

 

The non-independent relationship between changes in region j’s physical and human capital 

investment or population growth rates and region i implies that conventional regression 

interpretations of the parameter estimates are wrong, as noted by LeSage and Fischer (2008). We 

use the 2Q summary measures suggested by LeSage and Pace (2009) to measure the direct and 

indirect impacts for each of the three MRW variables. The direct impact is summarized using the 

average impact of a change in the given MRW variable at each of   locations on the dependent 

variable at the same location. The indirect impact that reflects spatial spillovers between 

technologically close regions is summarized by the average impact of a change in the MRW 

variable at each location on the dependent variable at different locations. 

 

Formally, these summary impact measures of impact are defined as follows (see LeSage and Pace 

2009, pp. 36-37): 

(i)The average direct impact. The impact of changes in the ith observation of 
q

X  (the qth column of 

X, q=1, …, Q=3), which we denote by 
iq

X , on ln
i

y  can be summarized by measuring the average 

( )
q ii

S T , which equals 1 ( ( ))
q

 tr S
−

T  where ( )
q ii

S T  is the (i, i)th element of the  -by-  matrix 

 

                                         1( ) ( ) ( )
q   q q

S λ β γ−= − +T I T I T  (21) 

 

 for 1, ..., .q Q=  The diagonal elements of ( )
q

S T  contain the direct impacts so that the average direct 

effect is constructed as an average of the diagonal elements. 

 

(i)The average indirect impact. The indirect effects that arise from changes in all observations 

1, ...,j  =  of an explanatory variable are found as the sum of the off-diagonal elements of row i 

from the matrix ( )
q

S T  given by        Eq. (21). The average indirect impact is constructed as an 

average of the off-diagonal elements, where the off-diagonal row elements are summed up first, and 

then an average of these sums is taken. 

 

Computing these direct and indirect summary impacts requires little additional computational cost. 

The low cost of computation allows simulating the distribution of the impacts to derive inference 

statistics based on the maximum likelihood parameter estimates. 



 

Manfred M. Fisher- Regions, Technological Interdependence and Growth in Europe 

 10

 

5. Data and the technological weight matrix 

The database that will be employed to estimate the model is composed of 158 NUTS-2 regions7, 

over the period 1995-2004. The regions cover 14 European countries including Austria (nine 

regions), Belgium (11 regions), Denmark (one region), Finland (four regions), France (21 regions), 

Germany (40 regions), Italy (18 regions), Luxembourg (one region), the Netherlands (12 regions), 

Norway (seven regions), Portugal (four regions), Spain (15 regions), Sweden (eight regions) and 

Switzerland (seven regions).  

 

We use gross value added, gva, as a proxy for regional output. gva is the net result of output at basic 

prices less intermediate consumption valued at purchasers’ prices, and measured in accordance with 

the European system of accounts 1995. The dependent variable is gva divided by the number of 

workers in 2004. We measure n as the growth rate of the working age population, where working 

age is defined as 15-64 years, and use gross fixed capital formation per worker as a proxy for 

physical capital investment.  

 

There is no clear-cut definition of how human capital should be represented and measured. In this 

study, we use a proxy for the rate of human capital accumulation that measures the percentage of 

the working age population (15 years and older) with higher education as defined by the 

International Standard Classification of Education (ISCED) 1997 classes five and six.   

,
i

n  K

i
s  and H

i
s  are averages for the period 1995-2003. Following standard practice, we assume 

that 0.05g δ+ =  (see among others, Mankiw, Romer and Weil 1992; Temple 1998; Durlauf and 

Johnson 1995; Ertur and Koch 2007; Fingleton and Fischer 2009). The main data source is 

Eurostat’s Regio database. The data for Norway and Switzerland were provided by Statistics 

Norway and the Swiss Office Fédéral de la Statistique, respectively. 

 

The  -by-  technological weight matrix T measures the closeness of regions in a technological 

space spanned by F=120 distinct technology fields, described by the 120 patent classes of the 

                                                           
7  We exclude the Spanish North African territories of Ceuta y Melilla, the Spanish Balearic islands, the Portuguese non-continental 
territories Azores and Madeira, the French Départements d’Outre-Mer Guadaloupe, Martinique, French Guayana and Réunion, 
and, moreover, Åland (Finland), Corse, Sardegna and Sicilia. Since the    NUTS-2 region PT18 (Alentejo) has very minimal patent 
activities, this region has been aggregated with the region PT15 (Algarve) to one region in this study. 
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International Patent Code (IPC) classification system at the second level8. We utilize corporate 

patents9 applied at the European Patent Office (EPO) with an application date in the years 1990-

1995 to define the technological position of a region, in terms of a F-by-1 vector where the fth 

element (f=1, …, F) denotes the share of patents in the fth IPC category. This definition reflects the 

region’s diversity of inventive activities of its firms. A product moment correlation coefficient is 

used to measure the technological proximity between any two regions of the sample10. A high 

correlation indicates similarity and a low correlation dissimilarity. The matrix T was formed by 

using m regions that exhibited the highest correlation coefficients with each region i, for i=1, …,  . 

 

6. Econometric results 

Table 1 presents the estimation results11, the estimated and implied parameters. We consider two 

model specifications. The first three columns of the table present the results based on the 

technological weight matrix with m=10 neighbours, the next three columns those based on the 

technological weight matrix with m=20 neighbours. The point estimates obtained by maximum 

likelihood estimation are given in the first and fourth columns, followed by the corresponding 

standard deviations and the p-values.  These parameter estimates allowed us to calculate the output 

elasticity parameters 
K

α and 
H

α , and the implied value of .ρ  To draw inferences regarding the 

statistical significance of these parameters we calculated measures of dispersion based on 

simulating parameters from the normally distributed parameters 1 2 3 1 2, , , , ,β β β γ γ  2
3 , , and ,γ λ σ εεεε  using 

the estimated means and variance-covariance matrix. The simulated draws were then used in 

computationally efficient formulas to calculate the implied distribution of the output elasticities 
K

α  

and 
H

α , and the parameter .ρ  Diagnostic tests were carried out for heteroskedasticity, using the 

spatial Breusch-Pagan test, and for normality, using the Jarque-Bera test. Performance of the 

models is expressed in terms of conventional statistical measures of goodness of fit, such as the log-

likelihood value divided by  , and the noise variance sigma square. 

 
                                                           

8 The IPC system is an internationally agreed, non-overlapping hierarchical classification system that consists of eight sections (first 
level), 120 classes (second level), 628 subclasses (third level), 6,871 main classes (fourth level), and 57,324 subgroups (fifth level) 
to classify inventions claimed in the patent documents. 

 
9  It is beyond the scope of this paper to discuss all the problems invoked by the use of patents statistics (see Griliches 1990 for a 
discussion). But it should be noted that the range of patentable inventions constitutes only a subset of all R&D outcomes, and that 
patenting is a strategic decision and, thus, not all patentable inventions are actually patented. Therefore, patentability requirements 
and incentives to refrain from patenting limit our approach to measure the technological position of regions based on patent data. 

 
10 This measure is appealing because it allows for a continuous measure of technological distance by a simple transformation. 
 
11 We present only the unrestricted results, since the joint theoretical constraints, 

1 2 3
0β β β+ + =  and 

1 2 3
0,γ γ γ+ + =  implied by 

constant returns are rejected by a likelihood ratio test. 
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Table 1. Estimation results based on a spatial Durbin model specification using a technological 

weight matrix with m=10 and m=20 ‘technological neighbours’ (unrestricted ML estimation, 

 =158) 

 m=10 technological neighbours   m=20 technological neighbours  

 Coefficient Std. dev. p-value  Coefficient Std. dev p-value  

C o n s t a n t 7.002 2.585 p=0.007  3.814 3.480 p=0.273 

1
ln [ ]

K

i
s β  0.605 0.070 p=0.000  0.592 0.070 p=0.000 

2
ln [ ]

H

i
s β  0.062 0.037 p=0.089  0.065 0.038 p=0.084 

3
ln ( 0.05) [ ]

i
n β+  0.312 0.119 p=0.009  0.312 0.120 p=0.010 

1
ln [ ]K

j
s γT  -0.766 0.275 p=0.005  -1.247 0.385 p=0.001 

2
ln [ ]

H

j
s γT  0.130 0.136 p=0.336  0.166 0.188 p=0.377 

3
ln ( 0.05) [ ]

j
n γ+T  0.401 0.404 p=0.321  0.019 0.559 p=0.973 

λ  0.501 0.145 p=0.000  0.499 0.189 p=0.009 

I m p l i e d  α 0.672 0.201 p=0.001  0.793 0.185 p=0.000 

I m p l i e d  α -0.129 0.315 p=0.681  -0.113 0.140 p=0.420 

I m p l i e d  ρ 0.686 0.183 p=0.000  0.956 0.240 p=0.000 

D i a g n o s t i c s        

Heteroskedasticity (Breusch-Pagan)  3.852  p=0.697  8.523  p=0.202 

Normality (Jarque-Bera)  52.227  p=0.001  44.965  p=0.001 

Sigma square 0.0247    0.0250   

Log likelihood/  0.7709    0.7681   

 

          otes: The rates ,K H
s s  and n are averages over the time period 1995-2003; the dependent variable 

relates to 2004; standard deviations and p-values of the implied values of , , and 
K H

α α ρ  are calculated 

using a simulation method (10,000 random draws) 

 

We note that the results do not differ greatly across the two model specifications. In fact, there are 

no statistically significant differences between the corresponding parameter estimates. The 

following aspects of the results are worth noting. First, all the parameter estimates that are 

significant have the predicted signs, with only one exception. The exception is the 3β  parameter 

estimate for population growth that is significant, but has an incorrect sign. The coefficients of 

physical capital and human capital (per worker) accumulation have the predicted signs. The latter, 
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however, is only weakly significant and the effect is lower than expected. This may have different 

explanations. One is to point to the discrepancy between the theoretical variable representing human 

capital in the production function and the proxy used for investments in human capital in the 

empirical model specification. The educational attainment variable is a very partial measure of the 

rate of investment in human capital, and, more important, does not account for regional differences 

in the quality of education. 

 

Second, the elasticity of output with respect to the stock of physical capital, is very close to two-

thirds, the upper bound generally admitted for this parameter. The implied value of 
H

α  is negative, 

but insignificant. 

 

Third, the coefficient ρ , measuring the degree of technological interdependence among regions, is 

very strong. The parameter estimate is 0.69 in the case of m=10 neighbours with a standard 

deviation of 0.18 (p=0.00) and 0.96 in the case of m=20 technological neighbours with a standard 

deviation of 0.24 (p=0.00). This result appears to show the importance of the technological 

interdependence between regions with similar technological profiles, and to provide evidence that 

technological proximity matters in the distribution of regional output in Europe. The implied values 

of θ  and φ , not reported here, are not significant which indicates that local technological networks 

(as those defined within the regions) are not important for the diffusion of disembodied knowledge. 

This result may have different explanations. One is to point to the importance of European and 

national rather than local technological networks of the regions, along which disembodied 

knowledge seems to diffuse between firms. 

 

But as emphasized in Section 5, it is necessary to calculate the direct and indirect effects associated 

with changes in the MRW determinants on regional output to arrive at a correct interpretation of the 

model. Table 2 presents the corresponding impact estimates, along with their associated statistics. A 

comparison of the direct impact estimates in Table 2 and the SDM coefficient estimates in Table 1 

shows that these two sets of estimates are not so dissimilar in magnitude. The direct impact estimate 

of the human capital variable is slightly larger, while that of the physical capital variable is 

somewhat lower than one would infer from the SDM coefficient estimates (unconstrained 

estimation). The difference between these estimates is due to feedback estimates. 
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Since our empirical model is specified by using a log-transformation of both the dependent and 

independent variables the direct impact estimates can be interpreted as elasticities. Based on the 

positive 0.591 estimate for the direct impact estimate of the physical capital determinant and the 

positive 0.067 estimate for the direct impact estimate of the human capital determinant (m=10), we 

would conclude that a ten percent increase in regional physical (human) capital investment would 

result in a 5.9 (0.7) percent increase in regional output, and these increases are statistically 

significant. 

 

Table 2. The spatial Durbin model specification (m=10 and m=20, technological neighbours, 

unrestricted ML estimation): Impact based interpretation of the estimation results 

 m=10 technological neighbours   m=20 technological neighbours 

 Coefficient Std. dev. p-value   Coefficient Std. dev. p-value  

Direct impacts        

ln
K

i
s  0 . 591 0.072 0.000  0.574 0.091 0.000 

ln
H

i
s  0 . 067 0.039 0.081  0.069 0.040 0.088 

ln ( 0.05)
i

n +  0 . 329 0.123 0.007  0.315 0.125 0.012 

Indirect impacts        

ln
K

j
sT  -1.032 2.751 0.708  -2.184 8.873 0.806 

ln
H

j
sT  0 . 368 1.900 0.847  0.470 2.377 0.843 

ln ( 0.05)
j

n +T  1 . 236 3.638 0.734  0.311 5.388 0.954 

Imp l i e d  ρ 0 .706 0.832 0.489  1.394 5.413 0.797 

 

 otes: To obtain the impact estimates we simulated 10,000 instances of y, and estimated the 

parameters for the spatial Durbin model specification via maximum likelihood. Using the set of 

10,000 estimates, we used LeSage and Pace’s (2009) efficient formulas to compute the average 

direct and indirect impacts along with the standard deviation of the 10,000 outcomes. The table 

shows the average over the 10,000 impact estimates along with the associated standard deviations 

and p-values. 

 

The indirect impact estimates are what economists usually refer to as cross-region spillovers. The 

presence or absence of significant spillovers across technologically neighbouring regions depends 

on whether the indirect effects that arise from changing region i’s MRW variables results in 
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statistically significant indirect effects. We emphasize that it would be a mistake to interpret the 

SDM coefficient estimates ( 1, ..., 3)
q

qγ =  as representing cross-region spillover magnitudes. 

 

To see how incorrect this is, consider the difference between the lag coefficient 1γ  for the physical 

capital investment rate from the SDM model (reported in Table 1) and the indirect impact estimate 

calculated from the partial derivatives of the model (reported in Table 2). We see that the SDM 

coefficient associated with the lag variable  ln k

j
sT  is -0.766 (standard deviation: 0.275) and 

statistically significant (p=0.005). The indirect impact is  -1.032, but not significantly different from 

zero, based on the p-value (p=0.708). If we would incorrectly view the SDM coefficient estimate 1γ  

on the lag of ln k

j
s  as reflecting the indirect impact, this would lead to an inference that the physical 

capital variable in technologically neighbouring regions exerts a negative and significant indirect 

impact on regional output. But the true impact estimate points to the absence of physical capital 

spillovers among technologically neighbouring regions. 

 

7. Closing remarks 

In this paper we have suggested an open-economy extension of the Mankiw-Romer-Weil model for 

explaining interregional differences in output per worker. Output is produced from physical capital, 

human capital and labour, and used for investments in physical and human capital, and 

consumption. The regional economies evolve independently in all respects except for technological 

interdependence. Technological interdependence is assumed to work through spatial externalities 

caused by disembodied knowledge diffusion across technologically similar regions. 

 

The theoretical model and the associated reduced-form empirical SDM model both imply a non-

independent relationship between changes in region j’s physical and human capital or population 

growth rates and region i. A correct interpretation of the model parameters, in terms of the LeSage 

and Pace (2009) approach, point to the absence of both physical and human capital externalities 

across technologically similar regions. This result implies that the technological dimension to the 

spillover mechanism does not play a significant role for the diffusion of disembodied knowledge in 

regional growth processes in Europe. 

 

It is important to note, however, that the inferences were made conditional on the specification of 

the technological weight matrix, and the technological space described by 120 patent classes might 

be too crude to appropriately capture capital externalities across technologically similar regions. 



 

Manfred M. Fisher- Regions, Technological Interdependence and Growth in Europe 

 16

Further research appears to be necessary to investigate more deeply the role played by the 

technological dimension of the diffusion process of disembodied knowledge in regional growth 

processes. 
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