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The goal of this work is to check that there are no arbitrage
opportunities in the CBOE market for S&P500 options and to
extract from these options’ quotes the state-price density consistent
with the Merton model. The structure of the article is as follows:
in Section 2 we examine the relations between arbitrages and
Arrow-Debreu prices; in Section 3 we consider two models which
seem to be consistent with the market prices of index options: the
CEV model and the Merton model; finally, in Section 4 we estimate
the state-price density consistent with the Merton-Geske model.
Some conclusions follow. [JEL Classification: G13]
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1. - Introduction

One of the central ideas of economic thought is that prices
contain useful information for economic decisions. According to
Friedrich von Hayek (1945), the role played by the price network
is to aggregate the single elements of information which is fully
distributed, and synthesize them in a single statistic – the price.
The price is what economic agents must know (besides their own
specific information) in order to take correct decisions.

The most elementary prices are the Arrow-Debreu prices, i.e.
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the prices of state-securities (sometimes called state-contingent
claims, pure securities or Arrow-Debreu securities), securities that
pay off one unit of the numéraire if and only if a particular “state
of the world” (or “state of nature”) occurs at some point of time.1

In “nuclear” financial economics, the elementary particles are
represented by Arrow-Debreu securities.2 Even if they were created
in a purely theoretical framework, these securities can be used to
deal with practical applications:3

Given the enormous informational content that Arrow-
Debreu prices possess and the great simplification they
provide for pricing complex state-contingent securities such
as options and other derivatives, it is unfortunate that pure
Arrow-Debreu securities are not yet traded on any organized
exchange.

The wishes expressed in the above quote are now coming true
with the ever growing diffusion of prediction markets (sometimes
called information markets or event markets), i.e. markets where
contracts on specific events are traded. The archetype of these
markets is given by the Iowa Electronic Market (IEM), cited by
Vernon Smith in his Nobel lecture.4

In the IEM, state-securities on electoral events and target rates
of the Federal Reserve are traded. For instance, in the year 2008,
participants were able to place a bet at price PO that would pay
$1 if Barack Obama were elected and $0 if not, or otherwise to
place a bet at price PM that would pay $1 if John McCain were
elected and $0 if not.5

In our example, PO and PM can be referred to as “Arrow-
Debreu (A-D) prices” or state-prices, i.e. prices of A-D securities,
even if this is not strictly correct. Arrow-Debreu securities pay off
$1 only in a single state of the world and $0 in all the remaining
states, while the IEM does not trade securities which would pay
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off only if Obama won, the FED target rate was 1%, the S&P500
was 1,500, etc.

Arrow-Debreu securities are not generally traded, but they are
often embedded in standard securities – from which they may
sometimes be stripped. Therefore, the Arrow-Debreu prices are
determined implicitly by traders to form the prices of securities
traded in capital markets.

One of the most interesting fields of financial economics
concerns the techniques used to extract information from the
prices of securities and derivatives. The market is like a tool that
continuously interrogates millions of people on their subjective
probabilities and risk attitudes to synthesize the poll’s results in
the form of prices. By solving the so-called inverse problem, it is
possible to extract the estimates of these probabilities and
attitudes from market prices.6

In fact, our goal is to extract the Arrow-Debreu prices from
the quotes of S&P500 options listed on the Chicago Board Options
Exchange.

The structure of the article is as follows: in Section 2 we
examine the relations between arbitrages and Arrow-Debreu
prices. This is important because, according to the first
fundamental theorem of financial economics, Arrow-Debreu prices
exist if and only if there are no arbitrage opportunities.7 Therefore,
before estimating Arrow-Debreu prices, it is necessary to check
that the data are arbitrage-free.

In Section 3 we consider two models which seem to be
consistent with the market prices of index options: the constant-
elasticity-of-variance (CEV) model and the Merton model.

Finally, in Section 4 we estimate the parameters of the
Merton-Geske model. Some conclusions follow.
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2. - Arbitrages

2.1 Definition and Examples

The definition of arbitrage given by Philip H. Dybvig and
Stephen A. Ross is as follows:8

arbitrage. An arbitrage opportunity is an investment
strategy that guarantees a positive payoff in some
contingency with no possibility of a negative payoff and
with no net investment. By assumption, it is possible to
run the arbitrage possibility at arbitrary scale; in other
words, an arbitrage opportunity represents a money pump.
A simple example of arbitrage is the opportunity to borrow
and lend costlessly at two different fixed rates of interest.
Such a disparity between the two rates cannot persist:
arbitrageurs will drive the rate together.

Since they are a precious source of income for those who
detect them, it is difficult to discover evidence of arbitrage
opportunities which have actually been exploited. Since these
opportunities sometimes repeat themselves, arbitrageurs avoid
giving information. A rare exception is represented by a clinical
paper by Myron S. Scholes and Mark A. Wolfson, where the
authors describe an arbitrage opportunity they actually exploited:9

Our investment strategy was simple. We discovered that
many companies offered stockholders the right to buy
additional shares at a discount, typically of 5.263% (or
5/95) from extant market prices. To qualify to buy this
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discount stock, one had only to hold at least one share of
company stock in certificate form and sign up to participate
in the discount stock-purchase program. The next step was
to mail in a check for stock periodically. The company then
issued, free of commissions, discount shares that could be
sold in the market within a few weeks. With an investment
of $200,000 we realized a profit of $421,000 (consisting of
$163,800 of net discount income (the sum of all gross
discounts less transaction costs), $182,600 of return on
investment due to a general increase in stock prices, and
$74,600 of abnormal return on investment beyond the net
discount income). This profit is net of brokerage fees,
hedging losses, and other transaction costs. Ninety percent
of our activity occurred over less than two years.
For example, a J.P. Morgan shareholder could buy up to
$5,000 of J.P. Morgan stock each month at a 5.263%
discount. If the shareholder could immediately sell this
stock at no cost, a sure profit of $263.16 would result on
each transaction. We would have preferred J.P. Morgan’s
sending us a check of $263.16 each month to our having
to mail in the check, buy shares, and then sell them at a
later date. In fact, if we could have avoided the transaction
costs incurred in undertaking these tasks, we would have
been satisfied to receive somewhat less. If investment is
undertaken once a month at a discount of 5.263%, the
compound annual return exceeds 85% of the monthly
investment amount.

Another arbitrage has been exploited by Stephen A. Ross:10

I once was involved with a group that specialized in
mortgage arbitrage, buying and selling the obscure and
arcane pieces of mortgage paper stripped and created from
government pass-through mortgages (pools of individual
home mortgages). I recall one such piece – a special type
of “IO” – which, after extensive analysis, we found would
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offer a three-year certain return of 37 percent per year. That
was the good news. The bad news was that such
investments are not scalable, and, in this case, we could
buy only $600,000 worth of it, which, given the high-priced
talent we had employed, barely covered the cost of the
analysis itself. The market found an equilibrium for these
very good deals, where the cost of analyzing and accessing
them, included the rents earned on the human capital
employed, was just about offset by their apparent arbitrage
returns.

2.2 A Numerical Example

Now we will extend an example used by Mark Rubinstein to
give a numerical illustration of the various concepts that
intertwine with arbitrages: present value, subjective probabilities
and risk-neutral probabilities, utility functions and risk-aversion
coefficients, Arrow-Debreu prices (or state-prices), stochastic
discount factors (or the pricing kernel), volatility bounds.

The example concerns the valuation of a homeowner
earthquake insurance policy.11 The policy has a 1-year maturity
and the premium is paid immediately.

The valuation procedure consists of the following steps:
1. to declare the subjective probabilities for the various

possible states of nature (represented by different earthquake
intensities);

2. to choose a utility function (generally a function belonging
to the family of power functions) and to declare the degree of risk
aversion;

3. to determine the risk-adjustment factors to be used to
adjust the subjective probabilities;
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4. to calculate the risk-neutral probabilities as products of the
subjective probabilities and the risk-adjustment factors;

5. to calculate the Arrow-Debreu prices as products of the
risk-neutral probabilities and the discount factor;

6. to derive the insurance policy’s value as the weighted sum
of the Arrow-Debreu prices, with weights equal to the insurance
policy’s payoffs.

In addition, the example allows us to check:
1. the equivalence of the above method and the approach

based on the pricing kernel [a synonym for stochastic discount
factors, defined by the ratio between the Arrow-Debreu prices and
the subjective probabilities];

2. a lower bound for the kernel’s volatility.
It should be stressed that the derivation of risk-adjustment

factors, state prices, etc. from the homeowner’s utility function is
correct only if the homeowner’s utility function is the utility of
the representative investor – the “hypothetical agent who holds
the market portfolio of all assets.”12

Payoffs and Subjective Probabilities

In Table 1 five, mutually exclusive and exhaustive, “states of
nature” have been reported. These states, measured on the Richter
scale, offer a full description of the world’s relevant aspects.
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TABLE 1

EARTHQUAKE INSURANCE POLICY:
PAYOFFS AND SUBJECTIVE PROBABILITIES

Richter Scale Damage Payoff ($) Subjective Probability

0 – 4.9 None 0 0.850

5.0 – 5.4 Slight 750 0.100

5.5 – 5.9 Medium 10,000 0.030

6.0 – 6.9 Severe 25,000 0.015

7.0 – 8.9 Large 50,000 0.005

12 See DYBVIG P.H. - ROSS S.A. (2003, page 620).



The policy’s payoffs, i.e. the amounts, z, payable as
compensation for the damage caused by the earthquake, increase
as a function of the latter’s intensity.

The subjective probabilities, π, are personal degrees of belief
associated by the homeowner with each state. Naturally, for π’s
to be probabilities, they must all be non-negative real numbers
and sum to one.

One might think that the present value of the insurance policy
would be its expected payoff discounted to the present by the one-
year risk-free rate of return, r:

where E is the “expected value” operator.
So if r = 0.05, the value of the insurance policy would be:

However, this approach fails to consider risk aversion.

Utility Function

To take risk aversion into account, one has to calculate the
risk-adjustment factors, f, needed to modify the subjective
probabilities. The procedure is as follows:

1. to determine the marginal utilities of wealth, UW, for each
single state;

2. to calculate the risk-adjustment factors, f, as products of
the marginal utilities and an arbitrary constant c (f ≡ cUW), so that
the sum of probabilities, π*, defined by:

(1)

is equal to one.
By means of this calibration, the π* may be considered as
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For each state of nature, we can calculate the marginal utility
of wealth. We make the hypothesis that the utility function, U(W),
belongs to the family of power functions:

Let’s suppose that the elasticity, γ, is equal to 0.5. Then the
marginal utility of wealth is Wγ -1 = W-0.5. As reported by Table 2,
the marginal utility of $1 increases as wealth diminishes.

As mentioned earlier, the risk-adjustment factors, f, needed to
modify the subjective probabilities, π, were derived by multiplying
the marginal utilities, UW, by an arbitrary constant, c. In order to
drive the sum of probabilities π* ≡ f π to 1, we put:

  
U W

W
( ) =

γ

γ

probabilities. In fact, they are all non-negative (since the marginal
utilities are positive) and sum to one (because of the arbitrary
constant).

To apply this procedure, let’s suppose that the wealth of the
homeowner is $100,000 in the first state of nature, which is the
“rich” state, where he does not suffer any damage caused by
earthquakes (Table 2). In the other states of nature, his wealth
diminishes proportionally to the damage caused by the
earthquakes (supposedly equal to the policy’s payoffs).
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TABLE 2

RISK-ADJUSTMENT FACTORS
AND RISK-NEUTRAL PROBABILITIES

Richter’s
Scale

Payoff
(z)

Subjective
Probability

(π)

Wealth
(W)

Marginal
Utility

(UW = Wγ -1)

Risk-
Adjustment

Factor
(f = c UW)

Risk-Neutral
Probability
(π* = f π)

0 – 4.9 0 0.850 100,000 0.00316 0.9936 0.845

5.0 – 5.4 750 0.100 99,250 0.00317 0.9974 0.100

5.5 – 5.9 10.000 0.030 90,000 0.00333 1.0474 0.031

6.0 – 6.9 25.000 0.015 75,000 0.00365 1.1474 0.017

7.0 – 8.9 50.000 0.005 50,000 0.00447 1.4052 0.007

Note: by hypothesis, the elasticity, γ, of the utility function is equal to 0.5. The arbitrary
constant, c, needed to define the risk-adjustment factors, f, is equal to 314.2194.



(2)

Solving (2) with respect to c gives:

The actual value of the insurance policy can be determined
by using the following formula:

(3)

where E* is the operator “expected value” in a risk-neutral world.
By using the probabilities π*, the value of the insurance policy

is equal to:

The actual value ($1,114.85) of the policy is much higher than
the value ($952.38) we obtained earlier when we did not take into
account the homeowner’s risk aversion.

The effects of risk aversion were absorbed by the probabilities
π*. Therefore, the expected payoff was discounted using the risk-
free interest rate (without making any further adjustment for risk
aversion). This is the reason why the probabilities π* are called
risk-neutral probabilities. It should be stressed that the risk-
neutral probabilities are generally different from the subjective
probabilities.

Arrow-Debreu Prices

The Arrow-Debreu prices (or state-prices), q, are equal to the
product of the risk-neutral probabilities, π*, and the discount
factor, 1/(1 + r):
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(4)

By using the state-prices, the valuation formula (3) for the
insurance policy becomes:

(5)

Given the q’s of Table 3,

 
V qz= ∑
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1
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TABLE 3

ARROW-DEBREU PRICES AND THE PRICING KERNEL

Subjective
Probability

(π)

Risk-Adjustment
Factor

(f)

Risk-Neutral
Probability
(π* = fπ)

Arrow-Debreu
Price

[q = π*/(1 + r)]

Pricing
Kernel

[ϕ = q/π = f/(1 + r)]

0.850 0.9936 0.845 0.80438 0.9463

0.100 0.9974 0.100 0.09499 0.9499

0.030 1.0474 0.031 0.02993 0.9975

0.015 1.1474 0.017 0.01639 1.0927

0.005 1.4052 0.007 0.00669 1.3383

the value of the insurance policy is:

By writing the formula in this way, it is natural to interpret
the q’s as prices of Arrow-Debreu securities which pay $1 only if
a certain state of nature occurs and $0 otherwise.

In particular, it should be noted that:

and that, in our example:
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This equality has a simple economic interpretation: the value
of a portfolio that pays $1 in each and every state is the value of
receiving $1 for certain, or 1/(1 + r). Therefore, although they are
non-negative, the state-prices q are not probabilities because they
do not sum to one (unless, of course, r = 0).

The Pricing Kernel

What we have seen so far can be summarized as follows:
1. using subjective probabilities, π, considers only personal

beliefs;
2. using risk-neutral probabilities, π*, considers the joint

effects of both beliefs and risk aversion;
3. using state-prices, q, simultaneously takes into account

beliefs, risk aversion, and time.
The present value can be calculated in many different ways.

The most frequent formulation is now is based on the pricing
kernel, ϕ.

The pricing kernel, synonymous with stochastic discount
factors, is defined by the ratio between the Arrow-Debreu prices,
q, and the subjective probabilities, π:

(6)

By substituting q = ϕπ in (5), the value of the insurance policy
is:

and, given the values reported in Table 3,

Besides, if π and q in (6) are substituted by (1) and (4), the
pricing kernel, ϕ, can also be represented as the ratio between the
risk-adjustment factor, f, and the riskless return, 1 + r:
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Volatility Bounds

Let ri be the rate of return of the i-th Arrow-Debreu security
(i = 1, 2, …, 5) and E(si) the risk premium or excess rate of return
with respect to the risk-free interest rate. Let s be the vector of
excess returns, si ≡ ri – r:

If there are no arbitrage opportunities, the value of a portfolio
which pays si, i.e. the rate of return ri in exchange for r, must be
null. Therefore:

(7)

where ϕ is the pricing kernel.
Since, by definition, the covariance between ϕ and s is:

equation (7) can be written as:

(8)

so that:
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In order to check whether the lower bound (11) holds for the
data of our numerical example, first of all we have to calculate the
mean and the standard deviation of the pricing kernel (Table 4).

Besides, since – by definition – the absolute value of the
correlation coefficient must be lower than or equal to 1, we have:

(9)

so that:

(10)

Finally, using (10) we can derive the lower bound of Hansen
and Jagannathan (1990) for the volatility, σϕ, of the kernel:13

(11)
  
σ

ϕ
σϕ ≥

E E s
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TABLE 4

PRICING KERNEL AND VOLATILITY BOUND

Payoff
(z)

Subjective
Probability (π)

Pricing Kernel
(ϕ)

Weighted Kernel
(πϕ)

0 0.850 0.9463 0.80438

750 0.100 0.9499 0.09499

10,000 0.030 0.9975 0.02993

25,000 0.015 1.0927 0.01639

50,000 0.005 1.3383 0.00669

Mean 0.95238

Standard deviation 0.03366

Rate
of Return

(ri = z/V - 1)

Excess Rate
of Return

(si = ri - r)

Current
Value si

(s × ϕ × π)

Weighted
Value si
(s × π)

Covariance
between ϕ and s

[Cov(ϕ, s)]

-1.0000 -1.0500 -0.84460 -0.89250 0.00461

-0.3273 -0.3773 -0.03584 -0.03773 0.00006

7.9698 7.9198 0.23701 0.23759 0.01093

21.4245 21.3745 0.35035 0.32062 0.04532

43.8490 43.7990 0.29308 0.21899 0.08481

Mean 0.00000 -0.15302 0.14573

Standard
deviation 4.3880



These two values are, respectively, equal to:

Then, using the following formula, we calculate the rates of
return, ri, of each single element of the policy:

where z is the payoff of the policy and V is its current value.
Next we calculate the excess rates of return si ≡ ri – r and the

expected value E(ϕs) which, as requested by Equation (7), is
actually null.

Then we calculate the mean, E(s), and the standard deviation,
σs, of the excess returns, which are, respectively, equal to:14

The covariance between the pricing kernel, ϕ, and the excess
rates of return, si, is:

Now we can check both (8) and (9):

Besides, since:

 
0 14573 0 03366 4 3880 0 14770. . . .≤ × =
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z
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the volatility bound (11) also holds.

3. - Arrow-Debreu Prices

3.1 State-Price Density (SPD)

The state-price density (SPD), i.e. the density function of
Arrow-Debreu prices, can be estimated from the prices of
marketable securities, as has been suggested by Ross (1976), Banz-
Miller (1978) and Breeden-Litzenberger (1978).15

In the Black-Scholes-Merton model, where it is assumed that
the dynamics followed by the stock price is given by an Itô process
(a geometric Brownian motion), i.e. a stochastic process in
continuous time for a continuous variable, the state-price density
is continuous and the state-securities pay $1 if the state is between
x and x + dx.

Breeden-Litzenberger (1978) proved that the state-price
density is equal to the second derivative of option prices with
respect to the exercise prices.16 It follows that the density function
of state-prices can be estimated by observing the quotes of
butterfly spreads, i.e. the portfolios made up of two long options
with extreme exercise prices and two short options with the same
intermediate exercise price.17

 
0 03366

0 95238 0 15302
4 3880

0 03321.
. | . |

.
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R.H. (1978, page 627, note 7).
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3.2 Volatility Smiles

As is well known, the implied volatilities are the values of σ
which, put in the Black-Scholes-Merton formula, make the
theoretical values of the options equal to their market prices. If
the Black-Scholes-Merton formula is valid, the implied volatilities
should be constant, i.e. they should not change as a function either
of the exercise price or of the options’ maturity. This is not what
actually happens in the options markets.

The actual patterns of volatility surfaces, i.e. the charts which
show the implied volatilities as a function of options’ maturities
and exercise prices, are countless, as are the shapes of volatilities
term structures and volatility smiles, i.e. the charts which show
the implied volatilities as a function, respectively, of maturities
and exercise prices.

The implied volatilities are such important variables for
traders that options are sometimes quoted in terms of implied
volatilities (under the hypothesis that the underlying model is the
Black-Scholes-Merton model), instead of prices. Actually, traders
prefer quoting implied volatilities to quoting option prices because
implied volatilities are more stable and, as a result, their quotes
do not change as frequently.

If there are no arbitrage opportunities, the volatility smile
calculated with reference to the prices of calls must be equal to
the volatility smile calculated with reference to the prices of puts.
Otherwise, the put-call parity would not hold. Therefore, when
traders refer to a certain relationship between implied volatilities
and exercise prices, they do not have to specify which type of
options they are referring to, since the same relationship must
hold for calls and puts.

Generally, at least since 1987, the implied volatilities observed
in the markets of index options have a shape similar to a skew
or a smirk, i.e. a downward-sloping curve as a function of the
exercise price.18
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18 Instead, in the case of currency options, the implied volatility has a
minimum for the at the money options and becomes higher and higher as the



A model which can explain the downward-sloping shape of
index options’ volatility smiles is the constant-elasticity-of-variance
(CEV) model, when the elasticity is negative. This model has been
proposed by Cox (1975).19

Another model consistent with the negative slope of volatility
smiles is the Merton (1974) model, where the dynamics of stock
prices depends on the value of the firm’s assets and the firm’s
leverage.20

If the stock volatilities of the Merton and CEV models are
compared, the two functions appear reasonably similar, even if
their convexity is different (Graph 1).
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options become in the money or out of the money. Therefore, the shape of the
volatility smile is really similar to a “smile”.

19 See COX J.C. (1975).
20 See MERTON R.C. (1974).

GRAPH 1

THE MERTON MODEL VS THE CEV MODEL:
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However, ceteris paribus, one may prefer the Merton model
which, unlike the CEV model, permits an interesting interpretative
key: if the stock price rises then the firm’s debt-equity ratio
decreases and this reduces the volatility of both earnings and stock
prices.

3.3 Compound Options

In the Merton model, a common stock is a call option written
on the firm’s assets. As a consequence, call and put stock options
are compound options (calls on a call or puts on a call). The stock
options can therefore be valued by the Geske formulas (1977).21

If the stock is a call written on the firm’s assets, with exercise
price D and maturity TD, then the value of a European call or put
option, with exercise price K and maturity T, written on the stock
is given by:

(12)

where

M is the cumulative probability in a standardized bivariate
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normal distribution that the first variable is less than a and
the second variable is less than b, when the coefficient of
correlation between the variables is ρ;

V* is the critical value of the firm’s assets (at time T) which
results in the stock price being equal to K. If the value of
the firm’s assets is higher than V*, then the call should be
exercised. Otherwise, it is the put which should be exercised.

Example 3.1

Let V0 = 891.9441, D = 1,000, TD = 5, qV = 0.3%, σV = 2.3%,
r = 5%; K = 100, T = 1, where TD is the debt’s maturity and T is
the maturity of a European call, with exercise price K, written on
a stock issued by the firm (Graph 2).
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GRAPH 2

MERTON-GESKE MODEL: VALUE OF A EUROPEAN CALL

Stock Options (Merton-Geske Model)

Asset value (Vo) 891.9441

Face value of debt (D) 1,000.0000

Time to maturity of debt (TD) 5

Payout rate (qV) 0.30%

Volatility of assets (σV) 2.30%

Risk-free rate (r) 5.00%

Strike price of stock option (K) 100

Time to maturity of stock option (T) 1

Stock value (E0) 100.0000

Dividend yield (qE) 2.68%

Volatility of stock (σE) 20.03%

Value (cc, cp, pc, or pp) 10.6481
call on a call

In this case, the stock value is 100, the dividend yield is 2.68
percent and the stock’s volatility is 20.03 percent. The value of the
stock option (a call on a call) is 10.6481.

To calculate the volatility smile which one would observe in
the market if traders were using the Merton-Geske model, we have
first to determine the theoretical values of call options with
different strikes, as in the following table:
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Strike (K)

Merton-Geske Model Black-Scholes-Merton Model

Theoretical value
(c)

Implied volatility
(σ)

Theoretical value
(c)

Implied volatility
(σ)

50 52.45286 63.08% 49.79878 20.03%

70 33.74898 40.31% 30.95273 20.03%

90 17.09809 27.97% 14.62012 20.03%

100 10.64812 24.78% 8.84756 20.03%

130 1.24236 20.02% 1.24458 20.03%

160 0.03974 17.69% 0.10879 20.03%

200 0.00005 15.73% 0.00291 20.03%

The volatilities implied by the theoretical values are reported
in Graph 3. As can be seen, the volatility smile has the typical
negative slope. On the contrary, the volatility smile would be flat
at the 20.03 percent level if traders were using the Black-Scholes-
Merton model. The implied volatilities of the two models cross at
K = 129.8972.

GRAPH 3

MERTON-GESKE VS BLACK-SCHOLES-MERTON:
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3.4 The Merton Model and Arrow-Debreu Prices

In the Merton model, the state variable is VT. The Arrow-
Debreu prices are defined by the following state-price density:

(13)

where:

and N’ is the density function of a standardized normal variable.
The state-price density (13) for Example 3.1 (when K =

129.8972) is shown in Graph 4.
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GRAPH 4

MERTON MODEL: STATE-PRICE DENSITY

0.0%

0.5%

1.0%

1.5%

2.0%

839 854 870 885 901 916 932 947 963 978 994

V
T

State-Price Density V
0
 = 891.9441

D = 1,000

T
D

 = 5

q
V
 = 0.3%

σ
V
 = 2.3%

r = 5%

E
0
 = 100

K = 129.8972
T = 1



4. - Estimate of the Merton-Geske Model

As mentioned in the last section, the state-price density can
be estimated from the prices of marketable securities. In this
section we present the results of an empirical test serving to
estimate the state-price densities, for various maturities, implied
by the quotes of the S&P 500 index options traded on the Chicago
Board Options Exchange, one of the most efficient markets. The
state-price densities were estimated consistently with the Merton-
Geske model.

4.1 Arbitrage Opportunities

Before estimating the state-price density consistent with the
Merton-Geske model, we made an extensive empirical test, based
on intraday data, to detect arbitrage opportunities. The algorithm
we used, which solves a linear programming problem, was
suggested by Mark Garman.22

Garman calls “hedge portfolios” the portfolios made by long
and short positions on forwards, calls and puts, with the same
maturity, written on the same asset.

Since a long forward is similar to a long call (or a short put)
with a unit probability of exercise and a short forward is similar
to a short call (or a long put) with a unit probability of exercise,
all the elements of the portfolio are called “options”, without any
distinction. The options considered are all European.

The payoff of a hedge portfolio is a piecewise linear function
of the final value of the underlying asset, given the typical shape
of the payoffs of calls, puts, and forwards.

In general, any piecewise linear function with n breakpoints
[K0 (= 0), K1, …, Kn-1] can be disentangled using only two basic
functions, the Heaviside “step function” [so called because of the
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22 See GARMAN M.B. (1976). A revision of Garman’s algorithm, aimed to
improve its efficiency, has been proposed in my B.S. thesis. See BARONE G. (2005,
pages 27-48).



English mathematician Oliver Heaviside (1850-1925)] and the
“ramp function”.

The step function makes it possible to measure the jump of
the piecewise linear function at the breakpoint, while the ramp
function quantifies the slope’s change at that point.

Garman uses six vectors to describe profits (or losses) on the
six basic positions (long call, short call, long put, short put, long
forward, short forward).

Each vector contains four parameters: the first two multiply
the values of the step function at breakpoints K0 = 0 and K1 = K,
while the last two multiply the values of the ramp function at the
same breakpoints.

Garman also defines some surplus variables, whose values are
strictly positive only when the hedge portfolio gives a profit.
Finally, he sets up a linear programming problem where one has
to maximize the sum of surplus variables under the constraint
that the portfolio never generates losses.

In the following two examples we show two arbitrage
opportunities detected by our Garman-based software.

Example 4.1

The first arbitrage opportunity could have been exploited on
April 11, 2007 (11:54 ECT). The following quotes for futures and
options maturing on June 20, 2008, were observed:
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Contract Strike Bid Ask

Futures – 1,493.8 1,495.8

Call 1,000 471.4 474.0

Put 1,000 3.9 4.9

Call 1,600 35.0 37.4

Put 1,600 130.3 132.9

The Garman algorithm detected the following arbitrage
portfolio:



The arbitrage profit is equal to the algebraic sum of inflows
and outflows associated with the five contracts in the portfolio

Obviously, by magnifying the “scale” of the portfolio – for
given prices – the profit would have been a multiple of $0.1174667.

The arbitrage portfolio is riskless: its final value is always null,
whatever the level of the S&P 500 at the contracts’ maturity. This
is shown in the following table.

 

$ $ . $ . $ .

$ .

0 81 866467 0 850967 28 921667

109 819

+ − +
− 77 = $0.1174667
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The absence of risk can also be shown graphically.
In Graph 5, there are five thin lines which show, with some

overlapping, the final value of the contracts included in the
arbitrage portfolio and one thick line, lying on the horizontal axis,
which shows the final value of the whole portfolio. The arbitrage
portfolio is made up of a long futures and a short synthetic
forward, which have the same maturity and the same delivery

Contract Position Quantity Strike Price Inflows
(Outflows)

Futures long 1.000000 – 1,495.8 0.000000

Call short -0.173667 1,000 471.4 81.866467

Put long 0.173667 1,000 4.9 -0.850967

Call short -0.826333 1,600 35.0 28.921667

Put long 0.826333 1,600 132.9 -109.819700

Contract Quantity ST < 1,000 1,000 ≤ ST < 1,600 1,600 ≤ ST

f0 1.000000 ST - 1,495.8 ST - 1,495.8 ST - 1,495.8

-c1 -0.173667 0 -(ST-1,000)×0.173667 -(ST-1,000)×0.173667

p1 0.173667 (1,000-ST)×0.173667 0 0

-c2 -0.826333 0 0 -(ST-1,600)×0.826333

p2 0.826333 (1,600-ST)×0.826333 (1,600-ST)×0.826333 0

Total 0 0 0



price. The short synthetic forward, whose delivery price is equal
to 1,495.8 (= 0.173667 × 1,000 + 0.826333 × 1,600), was
constructed as the weighted average of two synthetic short
forwards, whose delivery prices are equal to 1,000 and 1,600,
respectively.
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Example 4.2

Another arbitrage opportunity could have been exploited on
the same day, at 10:24, when the following quotes for contracts
maturing on December 19, 2008 were observed:

GRAPH 5

FINAL VALUE OF AN ARBITRAGE PORTFOLIO (Example 4.1)
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Contract Face Value
/Strike Bid Ask

Bond 1,000 917.4939 919.0645

Futures – 1,522.8 1,524.8

Call 600 843.6 846.2

Put 600 0.2 0.6

The Garman algorithm detected the following arbitrage
portfolio:



The arbitrage profit is equal to the algebraic sum of inflows
and outflows associated with the four contracts in the portfolio

Obviously, by magnifying the “scale” of the portfolio – for
given prices – the profit would have been a multiple of $0.663369.

The arbitrage portfolio is riskless: its final value is always null,
whatever the level of the S&P 500 at the contracts’ maturity. This
is shown in the following table:

 $ . $ $ . $ . $846 6634 0 846 2 0 2+ − + = 0.663369
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The final value of the arbitrage portfolio and its components
is shown in Graph 6.

The portfolio is made up of a short zero-coupon bond, whose
final value is 922.8, and a long synthetic zero-coupon bond with
the same value (922.8 = 1,522.8 – 600) obtained by going short
on a futures with delivery price of 1,522.8 and long on a synthetic
forward (long call plus short put) with delivery price of 600.

Contract Position Quantity Face
Value/Strike Price Inflows

(Outflows)

Bond short -0.922800 1.000 917.4939 846.663369

Futures short -1.000000 – 1,522.8 0

Call long 1.000000 600 846.2 -846.2

Put short -1.000000 600 0.2 0.2

Contract Quantity ST < 600 600 ≤ ST < 1,000 1,000 ≤ ST

-Z0 -0.922800 -0.922800 × 1,000 -0.922800 × 1,000 -0.922800 × 1,000

-f0 -1.000000 -(ST × 1,522.8) -(ST × 1,522.8) -(ST × 1,522.8)

c 1.000000 0 ST × 600 ST × 600

-p -1.000000 -(600 - ST) 0 0

Total 0 0 0



4.2 Estimation Procedure

In order to estimate the parameters of the Merton-Geske
model, we used the quotes of the S&P500 options listed on the
Chicago Board Options Exchange on April 11, 2007 (12:04 ECT).
At that date there were 442 listed calls and an equal number of
puts. The implied volatilities showed clear smiles. For instance,
the implied volatilities of the deep-in-the money calls maturing on
June 15, 2007, were equal to about 20 percent while the implied
volatilities of the corresponding deep-out-of-the money calls were
equal to 7-8 percent (Graph 7).

After checking that there were no arbitrage opportunities, and
then a fortiori that the put-call parity held, we restricted the
database and used only the calls to estimate the model’s
parameters.

The S&P500 options listed on the CBOE are European options
written on the product of 100 and the index level. On April 11,
2007 (12:04 ECT), the index level was 1,442.9.

There were 14 option maturities: the shortest options matured
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GRAPH 6

FINAL VALUE OF AN ARBITRAGE PORTFOLIO (Example 4.2)
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after 2 days and the longest after 2 years and 8 months. There
were 103 exercise prices, ranging from 600 to 2,000.

In order to estimate the model’s parameters we used the Excel’
Solver to minimize the standard least squares objective function:
the sum of the squared deviations between the theoretical and
actual values of the options.23 Among the options we included the
index, considered as a standard call, with exercise price D and
maturity TD, written on the assets of the S&P500 firms’ basket.

The theoretical value, c, of the calls is given by the Geske
formula (12). The theoretical value, E0, of the index is given by
the standard formula of Black-Scholes-Merton. The risk-free
interest rates for the maturities of options and debt have been
determined in order to have a perfect fit with the prices of 3-
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23 “The routine works well provided that the spreadsheet is structured so that
the parameters being searched for have roughly equal values.” See HULL J.C. (2009,
page 486).

GRAPH 7

CBOE: VOLATILITY SMILE (APRIL 11, 2007)
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month Eurodollar futures simultaneously observed at the Chicago
Mercantile Exchange.24

The parameters to be estimated are:
V0: the current value of assets;
D: the debt’s face value;
TD: the debt’s maturity;
σV: the asset volatility;
qV: the payout ratio of assets.
By-products of the estimation procedure are the theoretical

level (E0) of the S&P500 index, the index dividend yield (qE) and
the index volatility (σE).

First Trial

In our first trial, the problem of minimizing the objective
function was solved by imposing three constraints:

1. the theoretical level of the S&P500 index to be equal to its
actual level (1,442.9);

2. the index dividend yield to be equal to 1.88 percent (the
estimate reported on the site www.indexarb.com);

3. the index volatility to be equal to 15.76 percent (the
volatility implied by the longest at-the-money calls).

We did not find a solution.

Second Trial

In our second trial we imposed the constraint that the debt’s
face value, D, be equal to 1,000, a level comparable with the level
of equity (1,442.9). We also set the debt’s maturity, TD, to 5 years,
to be consistent with the standard used in the credit derivatives
market.

The choice of a 5-year maturity for the debt is supported by
the results obtained by Geske and Zhou (2009) in an extensive
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24 The continuously compounded rates for the maturities of the options
smoothly decrease from the one-day 5.91% to the 32-month 4.95%. The appropriate
rate for the 5-year maturity of the debt is 5.00%. The methodology for perfectly
fitting the 3-month Eurodollar futures prices is shown in my M.S. thesis: see
BARONE G. (2007, pages 112-118).



empirical analysis of the Merton-Geske model.25 These authors
meticulously used each firm’s balance sheet to find exogenous
values for the debt and its duration.26

Instead, our estimates of V0 = 2,351.12, qV = 1.13 percent, σV

= 9.67 percent are based on ad hoc values for both the debt and
its duration (F = 1.000, TD = 5). This is a key point which affects
our results.

The debt’s current value, equal to the difference between the
asset value, V0, and the equity value, E0, was equal to 908.2 (=
2,351.12 – 1,442.9). Therefore, the share of the assets pertaining
to bondholders was equal to the 38.6 (= 908.2 / 2,351.12) percent.

The estimate of qV shows that 1.13 percent of the assets is
used each year to pay the dividends to the shareholders.

The asset volatility, σV, is a measure of the business risk faced
by the corporations. The level of σV, equal to 9.67 percent, is about
2/3 of the risk of a well-diversified financial investment, measured
by the index volatility (15.76 percent).

The standard error, defined as the standard deviation of the
differentials between the actual and theoretical values of the
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25 The cited paper was unknown to me when I wrote the thesis which this
essay is taken from. According to GESKE R. - ZHOU Y. (2009, page 9, text and
footnote 12), the average duration of debt is close to 5 years: «The resultant average
daily duration of aggregate debt in the aggregate balance sheet for the 500 firms
in the S&P index is 4.71 years during the 100 month period in 1996-2004. ... We
also find that the variation in aggregate debt duration is small and bounded
between 4.5 and 5.1 years, respectively. This implies that our stylized model placing
aggregate debt at a specified duration should work well».

26 The nominal value of the firm’s complex debt structure has been
approximated by aggregating different balance-sheet items, classified according to
their maturity. See GESKE R. - ZHOU Y. (2009, page 17): «The balance sheet
information we collect comes from S&P’s annual and quarterly Compustat. This
book value of debt data is categorized as due in years 1 through 5 (Data 44, 91,
92, 93, 94), and greater than 5 (Data 9 minus items 91-94), which we place at 7
years. To these categories we add current liabilities (Data 5), deferred charges (Data
152), accrued expenses (Data 153), short term notes payable, deferred federal,
foreign, and state taxes (Data 206, 269, 270, 271), all payable in year 1. All long-
term debt tied to prime (Data 148) and debentures (Data 82), we place in year 7,
respectively.23 {This follows from Guedes and Opler (JF, v51, 5, 1996), page 1818,
who provide evidence that the mean (of 7,362 issues) duration of long term US
corporate debt is 7 years during the time period 1982-1993.} The debt due on each
day in each quarter of each year for the S&P 500 firms is the sum of the debt
due for all 500 firms for that day in that quarter of that year».



contracts, was equal to 17.7, i.e. 10.5 percent of the average price
of the options (169.4).

Third Trial

To reduce the standard error, in our third trial we eliminated
the three constraints for E0, qV and σV that we mentioned at page
24, while maintaining D = 1,000 and TD = 5. After this, the
standard error fell to 10.5 and the “unconstrained” estimates of
the parameters were as follows: V0 = 2,350.3 (compared with
2,351.12), qV = 1.19 percent (1.13), σV = 7.01 percent (9.67), E0 =
1,435.9 (1,442.9), qE = 1.99 percent (1.88) and σE = 11.48 percent
(15.76).

By decreasing the value and volatility of the assets and
increasing the payout ratio, the algorithm reduced the theoretical
value of the options (thus lowering the standard error) and
brought the average error almost to zero, after it had been negative
in the previous trials (thus signaling that the market was
undervaluing the calls with respect to the model).

However, the errors continued to show a clear pattern, being
positive for the shortest maturities and negative for the longest.
According to the model, the quotes of the shortest-maturity calls
should be lower and those of the longest calls should be higher.

Based on the put-call parity, the market underpricing of the
longest calls entails the overpricing of the corresponding puts. It
therefore seems that the market assigned a higher probability than
the model to the reduction of stock prices for the longest
maturities, consistently with the crash-o-phobia hypothesis of
Rubinstein (1994):

… the Black-Scholes model worked quite well during 1986.
… However, during 1987 this situation began to deteriorate
with percentage errors approximately doubling. 1988
represents a kind of discontinuity in the rate of deterioration,
and each subsequent year shows increased percentage errors
over the previous year. One is tempted to hypothesize that
the stock market crash of October 1987 changed the way
market participants viewed index options. Out-of-the-money
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puts … became valued much more highly, eventually leading
to the 1990 to 1992 (as well as current) situation where low
striking price options had significantly higher implied
volatilities than high striking price options. ... The market’s
pricing of index options since the crash seems to indicate
an increasing “crash-o-phobia,” ... (pages 774-775)

However, we should also consider the possibility that the
quotes for long-maturity options do not signal information, since
their liquidity is quite low. The arbitrage opportunities we detected
support this hypothesis.

4.3 Arrow-Debreu Prices

Finally, by using the formula (13), we estimated the state-price
densities for the 14 maturities of the S&P500 options listed on the
CBOE (Graph 8). Naturally, the flattest density functions refer to
the longest maturities.
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GRAPH 8

MERTON-GESKE MODEL (UNCONSTRAINED ESTIMATES):
STATE-PRICE DENSITIES
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5. - Conclusions

In this work we proposed a two-stage parametric method to
extract information from the quotes of S&P500 options.

In the first stage, the linear-programming algorithm proposed
by Mark Garman has been used to check for the absence of
arbitrage opportunities. In the second stage, we estimated the
parameters of the Merton model by using the Geske formula and
considering the S&P500 index options as compound options (calls
on a call or puts on a call), written on the value of the assets of
the firms included in the S&P500 underlying basket. The estimates
made it possible to calculate the state-price densities for all the
options’ maturities.

The Merton-Geske model, which is consistent with the
hypothesis of an inverse relation between the level of equity prices
and their conditional volatility, allows interesting indications to be
extracted from options’ quotes on the leverage and business risk
of the underlying corporations. Our estimates represent a novelty
for the literature on options, analogously to those reported by
Geske and Zhou (2009) in an extensive empirical analysis which
highlights the key role played by leverage in option pricing.
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