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Abstract

Recent work by Hamilton, Waggoner and Zha (2004) has demonstrated the
importance of identification and normalization in econometric models. In this paper, we
use the popular class of two-state Markov switching models to illustrate the consequences
of alternative identification schemes for empirical analysis of business cycles. A defining
feature of (classical) recessions is that economic activity declines on average. Somewhat
surprisingly however, this property has been ignored in most published work that uses
Markov switching models to study business cycles. We demonstrate that this matters:
inferences from Markov switching models can be dramatically affected by whether or not
average growth in the 'low state' is required to be negative, rather than simply below
trend. Although such a restriction may not be appropriate in all applications, the
difference is crucial if one wants to draw conclusions about 'recessions' based on the
estimated model parameters.
JEL classification: E32, E37, C22
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1 Introduction

What is a business cycle? More specifically, what is a recession? The National Bureau of Economic
Research (NBER) defines a recession as “...a significant decline in economic activity spread across the
economy...”! Alternatively, Lucas (1979) describes a business cycle as “...real output [undergoing]
serially correlated movements about trend...,” so that implicitly, a recession is a period of below-trend
output growth.

This paper demonstrates that this conceptual difference, while seemingly minor, can have major
implications for empirical work. We present examples, using the popular Markov switching class of
models introduced by Hamilton (1989), that show how inference about the model’s fit can be affected
by a fundamental ambiguity regarding the model’s parameters. This ambiguity, in turn, is directly related
to the difference in the nature of ‘recessions’ outlined above.

We think there are good reasons to prefer the NBER definition of recessions, not least because in
most of the examples we present, use of this definition produces what we would consider to be more
‘reasonable’ results. Having said this, our goal in this paper is not to argue the superiority of one
definition over the other. Tn fact, use of the second definition can also produce ‘reasonable’ results.
However, one may need to look closely to find them, and should at least be aware of the phenomena that
we illustrate.

The key to this paper is what (Hamilton, Waggoner & Zha (2004)) term the “identification principle.”
Given a model with likelihood function f (y|8) and parameter vector 8 € R¥, suppose that the two values
01 and 0, are observationally equivalent, so that f(y/61) = f(¥]62) and hence the model is globally
unidentified. Hamilton et al note that if the likelihood surface is continuous in 8, then there are loci along
which the model is locally unidentified as well.> Along these loci, “...the interpretation of parameters is
fundamentally ambiguous and ... the interpretation of parameters necessarily changes,” (Hamilton et al.
(2004, p. 6)). According to Hamilton et al, the identification principle is to use these loci to delineate a
subspace A of R¥, with the property that the model is locally identified at all points € A C R¥.

Waggoner & Zha (2003) provide an illustration of this idea in the context of a simultaneous equations

system of money demand and supply. They show that adoption of standard normalization procedures

'See www.nber.org/cycles/recessions.html; emphases in both this and the next quote are ours.
2That is, at any point 6 along such a locus, any open neighborhood of 6 also contains points that are observationally equivalent

to 6.



developed for analysis of recursive models can lead to ambiguous inference regarding jointly determined
dynamic responses in simultaneous systems. In particular, an exogenous shift in the money supply
curve can lead to bimodal distributions of the response of the equilibrium quantity of money and the
interest rate. The ambiguity arises because the imposed normalization admits regions of the likelihood
surface that represent economically distinct behavioral responses. In their specific example, the distinct
responses are generated by a money supply curve that may slope either upwards or downwards. The
consequences of normalization for impulse responses in structural VARs is discussed by Sims & Zha
(1999).

In this paper, we illustrate how the identification principle may be violated when modelling business
cycles using the Markov switching class of models made popular by Hamilton (1989). These models
are globally unidentified, since a re-labelling of the unobserved states and state-dependent parameters
results in an unchanged likelihood function. Identification is typically achieved by appealing to an order
restriction: growth in ‘expansions’ is higher than in ‘recessions.” Using several examples, we show
that this normalization scheme can confound two distinct interpretations of phrases such as ‘low-growth
regime’ or ‘recession.” Specifically, we show that in some cases the ‘low-growth regime’ that one
estimates could equally well be termed ‘normal growth,” and that some ‘recession’ periods one might
identify are characterized by positive growth in GDP. Both of these interpretations are contrary to what
most researchers have in mind when they seek to model ‘business cycles.” We show how this ambiguity
arises, and how it can be overcome with what we term a ‘business cycle identification;” on average,

output declines during recessions.

1.1 Markov switching models of business cycles

Consider the following two-state Markov switching model:

q)(L)(Ayl _tu(Sl)) =€,é ~ iidN(O762)

where y, is the logarithm of real GDP and u(S,) is the mean of its growth rate Ay, conditional on the
unobserved state vector S;. Specifically, u(S,) switches between high and low growth rates as S, switches

between 0 and 1, with these transitions governed by a first-order Markov process:

H(S1) = o+ Si.- (D



That this model is unidentified is easily seen by considering any given binary sequence S;, say S,
and associated estimates fi, and fi,. Define S, = 1 — S}, fiy = iy + ;. and ji; = —{y;. Then the likelihood
function will take identical values for 6 = (.§, ,ﬂo,ﬂl) and § = (5, ,ﬂo,ﬂl). We therefore need to restrict
the parameters of this model in order to identify the event §; = 1 with the low growth state. One way to

do this is to require

py < 0. @

In using this class of models for analyzing business cycles, one typically wishes to attach economically
meaningful labels to the numerical values of S;, usually ‘expansion’ (S, = 0) or ‘recession’ (S, = 1). We

argue that in such cases, a more appropriate identification scheme is

o+ < 0. 3)

To further appreciate the difference between these restrictions, and to fix notation for the rest of
the paper, define py = pr(S, =0|S,—1 =0) and p. = pr(S, = 1|51 = 1) to be the probabilities of
remaining in the high-growth and low-growth state, respectively. If we correspondingly denote the
mean growth rates in the two states as yy; and gy, then equation (1) implies uy = g and gy = gy + 4.
Equation (3) thus exploits what should be uncontroversial prior information about business cycles:
output declines (on average) during recessions. Notice that equation (2), on the other hand, places no
restrictions on the sign of y;. Also note that both models are identified in the statistical sense, but are
normalized in different ways. We illustrate below several ways in which the different normalizations
can have striking implications for the estimation and interpretation of these models.

Of course one could also work with the symmetric restriction of (2): g > 0, and so restrict y rather
than g, . The important point to note is that all that is being imposed by (2) is the ordering y; < uy-.
Examples of previous work using this identification include Hamilton (1989), Phillips (1991), Albert &
Chib (1993), Filardo & Gordon (1998), Kim & Nelson (19994), and Kaufmann (2000). Our argument
is that this is a necessary but not sufficient condition for identification of business cycles. This point
has been mentioned by Filardo (1994), who tests whether ¢; < 0 and gy > 0. The restriction (3) is also
used by Clements & Krolzig (1998).

The distinction between restrictions (2) and (3) can be related to the difference between “classical



cycles” and “growth cycles” in the business cycle literature.> As pointed out by Harding & Pagan
(2002), for example, fluctuations in the (log) level of economic activity ¥; are properly analyzed using the
(logarithmic) growth rate Ay, = In(¥;/¥;—1). In this context, restriction (3) clearly identifies (classical)
recession periods; the average growth rate of economic activity is negative. Restriction (2) can be
thought of as identifying growth cycle slowdowns, in which the growth rate of activity is below trend,
but may still be positive. As we demonstrate in section 3.1 below, however, this restriction is not in
general sufficient to identify such periods. Specifically, equation (2) does not rule out cases in which
S; = 0 corresponds to periods of extremely fast growth, while S; = 1 represents periods of “normal,” as
well as negative, growth.

It turns out that restriction (3) can be used to identify growth cycles as well as classical cycles,
if we replace Ay, with the demeaned growth rate of economic activity Ay, = Ay, — u,, where p is
the average of Ay, over the full sample. In this case, either (2) or (3)will identify periods of growth
cycle slowdowns. However, now the identification of classical recessions requires a stronger restriction,
namely ug + t; + 4, < 0. In section 3.2, we re-examine the results of Kim & Nelson (1999a) and show
that their analysis confounds classical recessions with growth cycle slowdowns. Of course, one may
well be comfortable treating classical recessions and growth cycle slowdowns as the same sort of event,
and so use the label §; = 1 to apply to either one. While there may be no problem with this from an
economic perspective, we show that this sort of normalization results in a bimodal posterior distribution
for yi; , rendering inference based on posterior means and standard deviations problematic.*

One final point of clarification is necessary. We will use the term ‘recession’ in this paper exclusively
in the classical business cycle sense: to refer to a period when the average growth rate of aggregate
economic activity (GDP in our examples) is negative. We will also use the terms ‘business cycle’ and

‘classical cycle’ synonymously.

3We are grateful to Don Harding for suggesting this interpretation.
4As Harding & Pagan (2002) point out, it is usually necessary to specify a dating rule that maps the latent Markov states S;

into observed business cycle phases such as the NBER chronology. For the most part we will abstract from this issue, except to

note that the examples we present below will also have adverse consequences for any dating rule based on pr (S, = 1|y;).



2 Identification and maximum likelihood estimation

Much of our discussion will be based on Bayesian estimates of the basic model’s parameters obtained
using Gibbs sampling, as described in Kim & Nelson (1999b) and Albert & Chib (1993). However, our
results apply to estimation by maximum likelihood as well. This section briefly describes the identifica-
tion problem in this context.

There are several well-documented difficulties associated with the classical estimation of the pa-
rameters of Markov switching models, and mixture models more generally. As described in Hamilton
(1991), a global maximum of the likelihood function does not exist. Additionally, there are often sev-
eral bounded local maxima which produce quite similar values for the likelihood function, but rather
different parameter estimates. Such characteristics have led several authors such as Goodwin (1993)
and Boldin (1996) to stress the importance of experimenting with a variety of starting values in order to
find the local optimum associated with the largest value for the likelihood function. It is rare, however,
to see explicit discussion in published work of the sensitivity of parameter estimates to starting values.

The preceding point may be illustrated by estimating the model in equations (1)and (1) for the
United Kingdom using quarterly GDP data from March 1960 to December 2001. We experimented
with several different sets of starting values and found two local maxima, the estimates of which are
presented in tables 1 and 2 below.

Notice that these two sets of parameter estimates yield dramatically different interpretations of the
UK ‘business cycle.” Recalling that py represents the probability of remaining in the high growth state
and py, the probability of remaining in the low growth state, the first set of estimates implies that the UK
economy has experienced persistent periods of moderate growth (averaging 0.48 per cent per quarter)
with occasional bursts of very high growth (nearly 4 per cent per quarter). The second parametrization
implies persistent periods of medium growth (y;; = 0.7) with occasional recessions (¢; = —0.9). The
parameter estimates in table 1 achieve a higher value of the likelihood function, but do not seem to
describe what we usually think of as “business cycles.” A researcher confronted with these estimates
might be tempted to conclude (wrongly, we would argue) that the Markov switching model does not
provide a good description of the UK business cycle.

Which set of estimates should we choose? If our main goal is to model the UK business cycle, then

SGoodwin (1993) formalizes a procedure for finding optimal starting values.



as we have argued above, choosing the set with the highest likelihood value is exactly the wrong thing to
do. An alternative strategy in this case is to rely on some sort of subjective assumptions regarding what
the business cycle should look like. For example, Goodwin (1993), which we view as representative
of a large portion of the literature, sees the strength of this particular model of the business cycle as
being that it requires “no prior information regarding the dates of the two growth periods or the size of
the two growth rates.... In particular, note that the low growth rate need not be negative”” © He does
however regard it as important that both py and p; be significantly different from zero. If this is not
the case then “the model is useless for dating turning points in the business cycle because only one state
persists through most of the sample period.” 7 As he finds that it is sometimes the case that the set of
parameter estimates that maximizes the likelihood also produces implausible estimates of py and p;.
Goodwin adopts the ‘quasi-Bayesian’ prior of Hamilton (1991). For seven out of the eight economies
that he analyzes, this procedure results in negative estimates of mean growth in the low growth state.
Italy is the exception, displaying a positive low-state mean growth rate g, , an estimate of py very near
zero and an estimate of p; near one.

Hamilton (1991) formalizes the subjective approach by outlining the use of a quasi-Bayesian prior
as a means of guiding the parameter estimates to the preferred local maximum. This was chosen over
a fully Bayesian approach due to the difficulty of implementing exact Bayesian estimation at the time.®
We believe that computational power and Bayesian technology have now progressed to such levels
that exact Bayesian analysis is now a feasible and attractive alternative.® In particular, fully Bayesian
analysis of Markov switching models has been developed by Albert & Chib (1993), McCulloch & Tsay
(1994), and Kim & Nelson (1999b). Also see Frithwirth-Schnatter (2001) and Scott (2002) for more
recent developments. However, exact Bayesian methods such as Gibbs sampling are also likelihood-
based techniques. In Bayesian analysis, multiple peaks in the likelihood may manifest themselves in the
form of multi-modality in the posterior distributions of parameters. This can render measures such as
posterior means and standard deviations problematic. Goodwin’s anomalous result for Italy is possibly
an example of the estimator converging to the “wrong mode.” However, in a maximum likelthood setting

it is unlikely that this would ever be discovered.

6Goodwin (1993, p. 332)

7Ibid, p.332.

$Hamilton (1991) p. 28.

9See Koop & Potter (1999) for a good discussion of the pros and cons of the Bayesian approach to the estimation of this class

of non-linear models.



3 Why identification matters

In the following sections we present several examples that illustrate the consequences of using the order
restriction or the business cycle restriction for identifying Markov switching models. In all cases, we
present features of Bayesian posterior distributions of various functions of interest. Unless stated other-
wise, our priors for all of these examples are similar to those used in Albert & Chib (1993). Specifically,
the transition probabilities p; and py have beta priors with mean 0.8 and standard deviation 0.16. The
mean parameters y; and yy, and all autoregressive coefficients ¢ have Normal priors centered at zero,

and with large standard deviations. The priors for the variances are proper but diffuse.

3.1 Which model is being fit?

In this sub-section, we show that use of the order restriction (2) can distort inference because it leads
to a superposition of models. In estimating a Markov switching model for UK GDP in Smith and
Summers (2001), we obtained the apparently bizarre result that the posterior mean of the low-growth
‘staying probability’ was greater than that for the high-growth state. Tn fact, our posterior simulator
output implied that about 38% of the time, the low-growth state is more persistent than the high-growth
state (i.e., py < pp). Given what we know about postwar business cycles, this seems strange: we know
that expansions are more persistent than recessions. Why then isn’t p; < py all the time?

To see what’s happening, figure 1 shows the posterior distribution of the ergodic probability that
S;=1,0r (1 —pu)/(2—prL—pu), across 5,000 Gibbs sampling draws. This represents the average
fraction of the sample period that one would expect to be allocated to the low-growth state. According
to the business cycle chronology constructed by the Economic Cycle Research Institute (ECRI), the UK
economy has actually been in recession about 11% of the time since World War II. This value is not
far from the dominant mode in figure 1, while the secondary mode implies that the low-growth state
describes over 90% of the UK data.

Figures 2 and 3 show the distributions of the mean parameters y; and yy,, respectively. Each of these
figures displays 2 pdf’s: one generated under the order restriction (2) and the other under the business
cycle restriction (3). The distributions corresponding to the order restriction suggest that there are two
distinct 2-state models being fit to the data. In one, GDP growth is usually around 1% per quarter, with
rare recessions in which output declines by about 0.5% per quarter; the high-growth state is more per-

sistent than the low-growth state. In the other model, growth is usually around 0.5% per quarter, with



rare ‘booms’ when output grows by about 3% per quarter. Now, the low-growth state is more persis-

tent.!0

Clearly, one’s interpretation of the statement “the economy is in the low-growth state” would be
quite different in these two models. As shown by Hamilton, Waggoner and Zha, averaging the posterior
draws without accounting for this difference involves crossing a locus at which the interpretation of the
state-dependent parameters changes. Hence this is a violation of the ‘identification principle.

On the other hand, the inferences about both y; and yy; are much sharper under (3) than (2). Note
that the posterior for the low-state mean growth rate under (3) is truncated at zero in figure 3. In
particular, the bimodality that is evident in both mean parameters under (2) is resolved when using
(3). This figure illustrates graphically the change in interpretation of the ‘low-growth state” when i,
changes from being negative to being positive: i.e., when the identification principle is violated. From
a statistical point of view the interpretation is arguably the same; in both cases ; is the mean growth
rate in the low-growth state. On the other hand, if one’s primary goal is to model business cycles, then
the ‘low-growth state’ that is identified under (2) does not look very much like what one might expect a
priori. In fact, the dominant mode of y; under the order restriction (0.45% per quarter) is nearly equal
to the mean of UK GDP growth over the whole sample (0.58% per quarter).

An examination of the likelihood surface as a function of y; and gy can help to illustrate these
points. Figure 4 shows the contours of the likelihood surface in y; — y;; space, with the two posterior
modes/local maxima indicated.!! The order restriction, equation (2), rules out the region to the north-
west of the 45-degree line, while the business cycle restriction (3) rules out the region to the north of
the horizontal line at g; = 0. Both modes satisfy the order restriction, but the point labelled ‘ML1" is
ruled out under the business cycle restriction.

Our basic argument is that in moving between points ‘ML1* and ‘ML2,” one crosses a locus that

changes the interpretation of y;, and that the region defined by our business cycle restriction provides

101n fact, the two modes in these figures correspond to the two sets of maximum likelihood estimates in table 1 and 2. The
ease with which marginal posterior distributions can be estimated and graphed from the output of posterior simulators makes
the diagnosis and interpretation of multiple likelihood peaks much more straightforward than in maximum likelihood estimation.
Indeed, we believe that our results provide an additional argument in favor of Bayesian estimation of these models, over and above

those listed by Koop & Potter (1999).
ITo generate this figure, we used a variation of Chib’s (1995) method to integrate out the model parameters other than u; and

1y Specifically, for each of our draws of these two parameters, we generated 500 draws of the other parameters from an auxiliary
Gibbs sampler with gy and gy fixed at the given values, then averaged the 500 likelihood values. The relatively low number of

passes in the auxiliary sampler accounts for the roughness of the contours in the figure.



a more intuitive interpretation. This is despite the fact that this restriction does more than statistically
identify the model, and so could constrain the maximum value of the likelihood. The figure also illus-
trates that if one wants to allow for slow but positive growth in ‘recessions,” one confronts the question
of (literally) where to draw the line. That is, how far above zero should we allow average growth to be
and still call it a ‘low-growth state’?

One possible response to this argument could be that a low-growth state should be defined relative
to trend, as this would be a way of imposing an upper bound on how large y; could be. This restriction
would entail drawing a horizontal line at the average growth rate in figure 4 and ruling out any likelihood
peaks north of that line. Equivalently, one could work with de-trended data and leave the ‘business cycle
restriction’ line at zero. As intuitively plausible as this sounds however, we show in the next sub-section

that it does not provide a wholly satisfactory alternative.

3.2 What is a “recession”?

In this sub-section, we re-examine some of the results in Kim & Nelson (1999a4), in order to demonstrate
the importance of considering the mapping between the estimated Markov-switching model parameters
and the business cycle features that one is ultimately interested in. Kim and Nelson’s paper is primarily
concerned with detecting a possible structural break in the mean and/or volatility of U.S. GDP growth.
We abstract from the question of structural breaks,!? and focus on Kim and Nelson’s baseline results as
reported in table 1 of their paper.

The analysis in Kim & Nelson (1999a) is based on the de-meaned growth rate of U.S. GDP from
1953:11 to 1997:1, with the pre- and post-1973 periods treated separately. Using data for the same period
as Kim and Nelson, and defining . to be the average growth rate over the full sample, we obtained the

following results:

u, = 0.89—0.17D73, C))

where D73 is a dummy variable which is zero before 1973:1 and one thereafter. The z-statistics on the
constant and dummy variable are 7.97 and -1.13, respectively.
Using a Gibbs sampling algorithm similar to Kim and Nelson’s, for the same number of iterations

(10,000 after a burn-in phase of 2,000) and their prior #1, we obtained the results shown in the left-hand

2But see Smith & Summers (2002).



panel of table 3. For comparison, the right-hand panel reproduces the estimates from their table 1.13
The two sets of estimates differ by less than one-third of one posterior standard deviation (either theirs
Or ours).

The posterior distribution of y; is graphed in figure 5, using both Kim and Nelson’s identifying
restriction (¢ > 0, §; = 1 as high-growth state) and equation (3). Both distributions are clearly bimodal,
with peaks at -0.25 and -1.09 per cent per quarter. When combined with the parameter estimates in
equation (4) we obtain modal estimates for g; of 0.64 and -0.20 in the pre-1973 subsample, and 0.47
and -0.37 in the post-1973 subsample. These estimates thus contain elements of both classical recessions
(corresponding to the negative modes of y; ) and growth cycle slowdowns (the positive modes).

It may well be that one would want to consider both growth cycle slowdowns and recessions as
periods of economic weakness, and so model them as the same type of event. In that case, basing
inference on the posterior mean and standard deviation (or maximum likelihood estimate and associated
standard error) would clearly be unsatisfactory in the presence of bimodality such as that displayed
in figure 5. On the other hand, one could argue that economic agents face fundamentally different
circumstances in recessions than they do in times when growth in activity is slow, but positive. In any
event, given that the NBER peak and trough dates pertain to recessions and not growth cycle slowdowns,
it is not clear how to interpret graphs (like figure 1 in Kim & Nelson (19994)) which compare the
smoothed probability of being in the low-growth state with the NBER recession dates. This is because
the estimated regime probabilities are based on two different interpretations of what a ‘low-growth state’
is.

The effects of identifying the low-growth state with recessions can be seen in table 4 and figures 5
and 6. The model’s parameters now have noticeably smaller posterior standard errors, and the resid-
nal variance 6 has also decreased. The average rate of contraction g, is much steeper than either of
the estimates in table 3, while expansions are more subdued.!* The modal value of g, has decreased
slightly to -1.12 compared to the lower value reported above. There is no evidence of multimodality
(see figure 6), although the distribution remains strongly skewed. Finally, figure 7 demonstrates that

the (full-sample) inference about the value of S, is also much sharper. In particular, note that the pre-

130ur Gibbs sampler differs slightly from Kim and Nelson’s in that we draw g, from its truncated Normal posterior distribution

(conditional on ), rather than employing rejection sampling.
14The latter result is due to the fact that we have now included the ‘slowdown’ observations in the high-growth state. We expand

on this point below.
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vious identification (which confounds recessions and growth cycle downturns) produces ‘background’
probabilities of between 10 and 20 per cent. This behavior is also evident in Kim and Nelson’s figure 1.

An alternative to this approach would be to treat recessions, growth cycle slowdowns, and ‘normal’
growth as separate states in a three-state Markov switching model. Because recessions must be preceded
by slowdowns, this model would have a restricted transition probability matrix. Such a model could be

used to shed additional light on the results of Boldin (1996).

4 Implications for Forecasting

As shown by Hamilton (1994), the forecast of y,11 given data through time ¢ is

Eyi+1]8) = E i41]Si41 =0) pr(S,41=0|S)) &)
+E@1lSie1 = 1) pr(Sii1 = 118) (6)

=ty pr(Siv1 = 018) +pppr (S = 1151),

where the transition probabilities of the Markov chain provide estimates of pr (8,41 = 0|S;) for S, =0, 1.
Uncertainty about the current state S; can easily be incorporated by expressing each term in (5) as a

mixture of the two possible values:

E(yi11|S1) = gy [pr < pr(S; = 0ly.) + (1 = pr) x pr (S, = 1|y;)] (7

+u, [(1 = pu) x pr(S: = 0ly) + pr x pr(S; = 1y)].

We have demonstrated that the order restriction alone can cause these predictive densities, E (yi41]S,+1 =
ty and E (y,41]8,01 = 1) = g7, to be bimodal and thus adversely affect the model’s forecasting perfor-
mance. The problem is worse than this however, because this bimodality is a direct consequence of
ambiguity regarding which observations are being assigned to S, = 1. Our two estimates of the average
of pr(S; = 1|y,) for the UK over our sample period are 0.425 and 0.120 for the order and business cy-
cle restrictions, respectively. As a result, inference about the transition probabilities py and py, is also
affected. Figure 8 shows this. Note that while there is still considerable uncertainty in the estimation

of p; with the business cycle normalization, this is indicative of an actual source of uncertainty: we

11



do not have very many observations on recessions, and hence cannot estimate g, precisely. In contrast,
the uncertainty reflected in the distribution of p; under the order restriction incorporates the additional
ambiguity arising from the two interpretations of what a ‘low-growth state’ is.

As k — oo, the long run forecasts of y converge to

EklS)=ES=0)pr(S=0)
+ES=Dpr(§=1)
=y pu+uLpL )]

where py and p; are the ergodic probabilities of the Markov process. The long-run forecasts one
would make for the UK, based on both identification schemes, are shown in figure 10. With the order
restriction, the upward bias due to the second mode in uy shows up clearly; the long run forecast of UK
GDP growth is 2 per cent per quarter. The figure also shows the sample mean of about 0.6 per cent.
The long run forecast obtained using our business cycle restriction is virtually indistinguishable from
the sample mean.

Figure 9 gives another example, showing the distribution of py for Canadian GDP growth from
1960:11 to 2000:1V. In this case, the posterior of py is basically flat between values of 0.25 and 0.85.
Figure 11 shows the two long-run forecasts and the sample mean growth rate for Canada. Again the
implication is clear, though somewhat less striking than in the UK case.

Notice that this information can also be used as a diagnostic tool. Since the Markov switching
process estimated under either identifying restriction is stationary (as long as there are no absorbing
states), the long run forecasts should converge to the sample mean. The forecasts obtained using the

order restriction are clearly unsatisfactory according to this criterion.

5 The effects of the prior

Finally, we briefly discuss the effect of changing the priors on the model parameters under the two
alternative identification schemes. As mentioned above, our priors for all model parameters are proper
but reasonably diffuse. For example, the priors on the transition probabilities are beta distributions with
mean (.8 and standard deviation 0.16, as in Albert & Chib (1993). We illustrate the effect of changing

the priors to ones that are essentially flat, yet still proper.

12



Specifically, we re-estimated the model of sub-section 3.1 using uniform priors on the transition
probabilities and N (0, 10000) priors for the mean and autoregressive parameters.!> We leave the vari-
ance priors unchanged as they are already as diffuse as possible while guaranteeing that their posterior
moments exist. Using these priors means that the posterior means will essentially correspond to the
maximum likelihood estimates.

We present the results of this exercise in figures 12 and 13, in the context of dating recession periods.
Figure 12 shows that in the case of the order restriction, the model with a flat prior becomes useless for
describing business cycles. Under the flat prior, the model parameters are given by the estimates in
table 1, and all but four data points are assigned to the low-growth state. The informative prior is more
successful at identifying recession periods, but the signal provided by pr (S, = 1|yr) is very noisy and
concentrated near 50%.

On the other hand, the model estimated under the business cycle restriction conveys virtually the
same information about recession periods using either prior. The signals are less pronounced with the
flat prior, as one would expect, but even with the flat prior the ‘background’ probability of being in the

low-growth state is nearly always below 10%.

6 Conclusions

This paper has shown how the phenomena reported in Hamilton et al. (2004) can manifest themselves
in the analysis of business cycles using Markov switching models. Basing our identifying restrictions
on commonly used terminology in the business cycle literature, we demonstrate that results from both
maximum likelihood and Bayesian estimation methods can change in important ways. At the very
least, researchers modelling business cycles as fluctuations about trend should be aware of how this
characterization can affect inference.

Although our discussion has been focused on the analysis of business cycles, we believe our results
apply to the use of Markov switching models more generally. Specifically, whenever a researcher has
prior beliefs about how one or more unobserved states in the model should correspond to the observable

phenomena in which she is ultimately interested, that information should be used to identify the model.

130f course, we are also imposing a further prior on y; corresponding to the relevant normalization.
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Table 1: Maximum likelihood estimates, first local maximum

Variable Coefficient  Standard Error
L 0.974 0.012
PH 0.139 0.184
o 0.091 0.047
0, -0.014 0.041
0, 0.259 0.067
0y 0.102 0.053
c’ 0.792 0.030
Uo 3.910 0.161
I -3.421 0.087

log-likelihood -212.5824

Table 2: Maximum likelihood estimates, second local maximum

Variable Coefficient  Standard Error
L 0.700 0.241
PH 0.974 0.017
0, -0.133 0.125
0, 0.003 0.159
0, 0.232 0.102
0y 0.030 0.091
o’ 0.868 0.064
Uo 0.725 0.094
H -1.628 0.778

log-likelihood  -223.6465
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Table 3: Posterior estimates

This paper Kim-Nelson?

mean std. dev. mean std. dev.

o -0.894 0.633 -0.817 0.620
w0230 0203  0.297 0.343

o 0258 0.106  0.258 0.105
o’ 0.768 0.131  0.776 0.136
pL 0704 0.151  0.706 0.161
pu 0.890 0.128  0.840  0.152

2 See table 1 in Kim & Nelson (1999a).

Table 4: Posterior estimates, recession identification

mean std. dev.

o -1.423 0.467
wy  0.194 0.114
¢ 0.228 0.103
o> 0713 0.115
p. 0.656 0.138
py 0945 0.035
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Figure 1: Ergodic probability of high-growth state, UK GDP data, alternative normalizations
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Figure 2: Posterior distributions of low-growth state mean, u; , UK data
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Figure 3: Posterior distributions of high-growth state mean, u;;, UK data
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Figure 4: Likelihood surface, UK GDP data
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Figure 5: Posterior distribution of y; , Kim & Nelson (19994) model
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Figure 6: Posterior distribution of g, alternative identifications, Kim & Nelson (1999a) model
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Figure 7: Smoothed probability of low-growth state, alternative identifications, Kim & Nelson (1999a)
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Figure 9: Ergodic probability of high-growth state, Canadian GDP data, alternative normalizations
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Figure 10: UK GDP growth, sample mean and long run forecasts
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Figure 11: Canadian GDP growth, sample mean and long run forecasts
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Figure 12: Smoothed probabilities of low-growth state, UK GDP data, alternative priors with order

restriction
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Figure 13: Smoothed probabilities of low-growth state, UK GDP data, alternative priors with business

cycle restriction
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