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1 Introduction

“Monetary policy works largely through indirect channels–in particular, by influencing

private-sector expectations and thus long-term interest rates.” Bernanke (2004)

“Financial markets are the channel through which our policyaffects the economy, and asset

prices contain valuable information about investors’ expectations for the course of policy,

economic activity, and inflation, as well as the risks about those expectations.” Kohn (2005)

Bond rates are essential conduits for the transmission of monetary policy. But bond rates contain bond

trader expectations of future policy rates, not recent policy rates. Thus, monetary policy depends on the

policy perceptions of the bond market, and the connection ofthese perceptions to announced or recently

observed policy is not fully understood.

The yield to maturity of a zero coupon bond is the average of forward rates over the maturity of the

bond. If the bond rate is the principal policy transmission channel, what matters for stabilizing policy is that

the bond rate average of the forward rates displays an elastic response to expected inflation. Consequently,

perceived inelastic responses by the policy rate to inflation in the short-run may be counterbalanced by

elastic responses by forward rates in the remaining periodsencompassed by the bond.

Indeed, as noted later, long-run responses of nominal bond rates to inflation appear to have been greater

than unity since the mid-1960s, both for samples before and after 1980. As bond rates contain averages

of expected policy rates, this seems inconsistent with empirical evidence in a number of papers, such as

Clarida, Gali, and Gertler (2000) and Lubik and Schorfheide(2004), that a general feature of US monetary

policy in the 1960s and 1970s was an inelastic response of thepolicy rate with respect to inflation.

One explanation of the different inflation sensitivity of the policy rate and of bond rates may be that

forward rate term premiums are also responsive to macro variables, including inflation. If this is so, term

premiums demanded by traders may compensate for modestly unstable short-run policy.

An additional possible explanation is that bond traders in the 1960s and 1970s expected stable responses

in the longer run. But, at a minimum, the concurrence of inelastic policy rate adjustments and elastic bond

rate responses suggests that the connection between anticipated and recent policy may be more tenuous than

commonly recognized by extrapolations of recently observed policy rate responses.

The central roles of bond rates and the perceptions of bond traders in the transmission of policy are

discussed in remaining sections of the paper. Section 2 examines the recent use of indeterminacy analysis in
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interpretations of US monetary policy during the 1960s and 1970s and indicates that an alternative condition

for determinacy is required if the bond rate is the policy transmission channel. Section 3 demonstrates that

frictions in adjusting real expenditures are essential to the transmission role of bond rates and, consequently,

bond rates play no role in the dynamics of the standard New Keynesian (NK) model. This section also

compares the responsiveness of historical bond rates to macro variables since the mid-1960s. Section 4

briefly sketches a no-arbitrage model of the term structure with term premiums that reflect time-varying

compensation for macroeconomic uncertainty, and extends this theoretical model to allow for the possibility

of horizon-dependent expectations by bond traders. Section 5 presents estimated responses of forward rates

to forecasts of macro variables, and section 6 concludes.

2 Determinate and indeterminate interpretations of the 1970s

Although a number of studies have suggested that US monetarypolicy was an important contributor to

the size and persistence of inflation in the 1970s, there remains considerable disagreement as to the major

flaw in the design of historical policy. This section uses a simple model to illustrate dynamic implications

for inflation of two prominent interpretations of U.S. monetary policy, one suggesting the policy rate was

influenced by erroneous estimates of the natural rate for economic activity and the other indicating the

policy rate did not keep pace with inflation. The model is thenextended to show the dynamic implications

for inflation if the bond rate is the principal conduit of policy.

Orphanides (2003) suggests that U.S. monetary policy in the1970s was consistent with a Taylor rule but

the central bank severely overestimated the trend of potential output, leading to policy rates that were below

those consistent with the Taylor benchmark policy.

The dynamic implications of thisnatural rate error interpretation are equivalent to those of a policy rate

feedback response where the effective inflation target is larger than that originally intended by the central

bank. Suppose, as suggested by Orphanides, the intended policy rate response was generated by the classic

Taylor (1993) rule

rt = ρ̄+ πt + .5(πt − π̄cb) + .5(yt − ȳcb
t ), (1)

wherert denotes the nominal policy rate,ρ̄ is the equilibrium real rate,̄πcb is the intended inflation target,

and ȳcb
t is the central bank perception of the natural rate for outputwhich overstates the true natural rate,

ȳt. The policy rule in equation (1) is equivalent to a policy description where the policy rate responds to the
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output deviation from the true natural rate of output,

rt = ρ̄+ πt + .5(πt − π̄∗t ) + .5(yt − ȳt). (2)

but theeffective inflation target is increased by precisely the overestimateof the output natural rate,

π̄∗t = π̄cb + (ȳcb
t − ȳt).

Because the nominal policy rate response to inflation in the Taylor benchmark rule exceeds unity,

this interpretation implies that the transitional period of rising inflation following the shift in the effective

inflation target is self-terminating. That is, in well-behaved models of the economy with an elastic response

of the policy rate to inflation, the solution for inflation is determinate and will eventually converge to the

new inflation target. Thus, under the natural rate error interpretation, rising inflation in the 1970s is due

to the dynamic transition of inflation from the neighborhoodof the intended inflation target,̄πcb, to the

neighborhood of the effective inflation target,π̄∗t . Ceteris paribus, the dynamic transition of inflation will be

accompanied by positive output “gaps,”yt − ȳt > 0, induced by the inadvertent reductions in real interest

rates.

An alternative interpretation of the 1970s is proposed by Clarida, Gali, Gertler (2000) where the response

of the policy rate is inelastic with respect to expected inflation. Under thispassive policy interpretation,

the economy is vulnerable to self-fulfilling expectations of higher inflation induced by agent forecasts of

inflationary shocks (exogenous sunspots). Unlike the natural rate error interpretation, the sensitivity to

arbitrary sunspots is not self-terminating and will continue as long as the policy response is passive. The

solution for inflation is indeterminate, and there is no mechanism for inflation to remain in the neighborhood

of the central bank target for inflation.

2.1 A model of (in)determinate inflation

A rudimentary model is used to illustrate differences in dynamic behavior under these alternative

interpretations of monetary policy.

ỹt = −aEt(r̃t − π̃t+1) + et,

π̃t = Etπ̃t+1 + bỹt,

r̃t = cEtπ̃t+1, (3)
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wherex̃t denotes the equilibrium deviation of variablext. The first equation in (3) indicates that deviations

in output,ỹt are determined by equilibrium deviations in the one-periodex ante real interest rate,Et{r̃t −

π̃t+1}, and by a stochastic disturbance,et. In the second equation, equilibrium deviations in the inflation

rate,π̃t, are determined by a standard New Keynesian (NK) pricing equation, and the third equation in (3)

describes a forward-looking policy response by equilibrium deviations in the nominal policy rate,r̃t. All

coefficients are positive, and the output equation disturbance is a first-order autoregression,et = γet−1 + ǫt;

thus, there is a single structural i.i.d. shock,ǫ.

Eliminating the policy rate by substituting the third equation of (3) into the first

ỹt = −aEt(c− 1)π̃t+1 + et, (4)

and using this to eliminate output from the second equation in (3), gives a first-order equation for inflation

π̃t = (1 − ab(c− 1))Etπ̃t+1 + bet. (5)

Consistent with the natural rate error conjecture, a determinate solution for inflation will exist if the

policy response lies in the interval1 < c < 1 + 2
ab

.1 Definingµ ≡ 1− ab(c− 1), inflation dynamics in this

rudimentary model are driven solely by the autoregressive demand shock,

π̃t = Et

∞
∑

i=0

µibet+i,

=
bet

1 − γµ
, (6)

and the one-period forecast error of inflation isηt+1 ≡ π̃t+1 − Etπ̃t+1 = bǫt+1

1−γµ
.2

By contrast, consistent with the passive policy conjecture, the empirical estimates of U.S. monetary

policy in Clarida, Gali, Gertler (2000) indicate that policy rate responses to inflation in the 1960s and 1970s

were inelastic,c < 1. In the current example, this impliesµ > 1; consequently, stable solutions to equation

(5) are not unique and can be represented by

π̃t =
1

µ
π̃t−1 −

b

µ
et−1 + ηt, (7)

1Typically, the productab is a small positive fraction. Representative estimates of the product of output and inflation equation
slopes include.014 in Rudebusch and Svensson (1999) and.15 in Rotemberg and Woodford (1999).

2As with standard NK models, there are no intrinsic dynamics associated with equation (5). Thus, a lengthy dynamic transition
to a new equilibrium under the natural error interpretationrequires additional sources of lagged adjustment. If the revision in the
effective inflation target is not known to agents under the natural rate error conjecture, lengthy learning lags can be associated with
statistical analysis of observed inflation, primarily due to the time required for observations of the new policy regime, vid. Kozicki
and Tinsley (2001a).
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The forecast error,ηt, is an arbitrary martingale difference, which may or may notbe correlated with the

structural disturbance. As in Lubik and Schorfeide (2004),the forecast error can be represented as

ηt = mǫt + st, (8)

wherest is an exogenous “sunspot” shock. Thus, in contrast to the solution in (6), rational expectations does

not limit the forecast error,ηt, to be a unique function of the structural shock,ǫt.3

The current period responses to the sunspot shock,st are

∆sπ̃t = st,

∆sr̃t =
c

1 + ab(1 − c)
st,

∆sỹt =
a(1 − c)

1 + ab(1 − c)
st, (9)

where∆sxt ≡ xt(st) − xt(0), and responses are largest for inflation. Similar to the consequences of an

overestimate of the natural rate of output or, equivalentlyan increase in the effective central bank target for

inflation, the contribution of a positive sunspot is to increase both output and inflation.

Thus, neither an inadvertent increase in the central bank target for inflation nor the sunspot interpretation

is alone able to explain the general tendency towards stagflation in the 1970s. The twelve-month moving

average of inflation and the negative of the monthly unemployment “gap” deviation are displayed in Figure 1

for a 1960-1990 sample. Although the positive association between inflation and the negative unemployment

gap is reasonably close in the 1960s, the two series diverge in the 1970s, with inflation continuing to rise

and the negative unemployment gap trending toward or below zero.4

Kozicki and Tinsley (2005a) suggest an alternative interpretation of the 1970s, where U.S. monetary

policy was directed at achieving designated growth rates ofthe narrow money supply. The policy of

money growth targeting is confirmed by transcripts of the Federal Open Market Committee (FOMC) and by

empirical estimates of time-varying responses by policy rates to real-time briefing forecasts.

The historical conduct of money growth rate targeting supports two disparate implications of the natural

rate error and passive policy interpretations of the 1970s.First, as in the natural rate error interpretation,

3Alternative solutions to (5) and the additional degree of freedom introduced under indeterminacy are demonstrated in the
appendix.

4Lubik and Schorfeide (2004) provide posterior estimates for two types of sunspots in a 1960Q1-1979Q2 sample of US data.
In the case of orthogonal sunspots,m = 0, sunspot contributions to the variances of inflation and thenominal policy rate are about
70%, with nearly all of the variance of output attributed to demand shocks. In the case of non-orthogonal sunspots, the sunspot
contributions to the variances of inflation and the nominal interest rate are modest, about 10%.
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intermediate targeting of the money supply in the 1970s induced an increase in the inflation target. Under

money growth targeting, the effective inflation target is determined by the natural rate version of the equation

of exchange

π̄t = ∆m̄t − ∆ȳt + ∆v̄t, (10)

where∆m̄t denotes the FOMC target for money supply growth and∆v̄t is the trend growth of velocity.

As in the natural rate error interpretation, an unexpected reduction in the growth rate of trend output in the

1970s,∆ȳt ↓, induced an increase in the effective inflation target. However, the money growth targeting

policy induced even larger increases in the effective inflation target due to sizeable unexpected positive shifts

in the trend growth of velocity,∆v̄t ↑.

Second, empirical estimates of policy rate responses in Kozicki and Tinsley (2005a) also support the

description of passive monetary policy in the 1970s. As documented in Kozicki and Tinsley (2005a), FOMC

transcripts in the 1970s indicate that the nominal policy rate settings were directed at reversing projected

deviations of money supply growth from target growth rates.However, empirical results indicate that

long-run responses of the policy rate were inelastic with respect to the growth rate of nominal aggregates.

2.2 Inflation determinacy under bond rate transmission

The general presumption in the literature is that evidence of passive monetary policy in the 1960s and 1970s

implies that the central bank and the private sector may havebeen influenced by exogenous inflationary

sunspots. However, if the principal transmission of monetary policy is through the responses of private

sector borrowing rates to the policy rate, then the susceptibility of the economy to sunspots depends on the

perceptions of bond traders regarding the passivity of anticipated policy. Thus, the sunspot interpretation

is based on two untested assumptions: First, that bond traders can infer, in real time, that the central bank

policy is passive.5 And second, that the passivity of monetary policy is expected to persist over lengthy

forecast horizons. With regard to the first assumption, Kozicki and Tinsley (2001a, 2001b) indicate that

the mean lag of adjustment of the perceived inflation target consistent with Treasury bond rates exceeded

5 years in the 1970s and 1980s. In addition, FOMC announcements in the 1970s regarding explicit policy

5In contrast to the regression analysis in Clarida, Gali and Gertler (2000), empirical analysis in Kozicki and Tinsley (2005a) uses
the retrospective advantage of access to the central bank real-time forecasts of explanatory variables. If external observers are not
privy to central bank information, Beyer and Farmer (2004) illustrate that it is not always possible for the observers todiscriminate
between determinate and indeterminate policies.

6



targets were limited to one-year horizons. It is not obviousthat bond traders would extrapolate difficulties

in reaching one-year objectives to policy failure in the long run.

To illustrate the difference in conditions for indeterminacy if the transmission role of the bond rate is

made explicit, we return to the simple model used earlier butreplace the one-period interest rate in the output

equation by a two-period real bond rate.

ỹt = −
a

2
Et(r̃t − π̃t+1 + r̃t+1 − π̃t+2) + et,

π̃t = Etπ̃t+1 + bỹt,

r̃t = c1Etπ̃t+1,

Etr̃t+1 = c2Etπ̃t+2, (11)

The fourth equation represents bond traders’ expectation in t of the policy rate int+1, where the perception

of the future policy response,c2, is not restricted to be identical to the response perceivedin the current

period,c1.

Substituting the first, third and fourth equations in (11) into the second equation gives a second-order

equation for inflation

π̃t = (1 −
ab(c1 − 1)

2
)Etπ̃t+1 −

ab(c2 − 1)

2
Etπ̃t+2 + bet, (12)

The solution for inflation has the form

π̃t = Et{
bet

(1 − λ−1
1 F )(1 − λ−1

2 F )
}, (13)

where the roots of the characteristic equation are determined by6

λ1λ2 =
2

ab(c2 − 1)
,

λ1 + λ2 =
2 − ab(c1 − 1)

ab(c2 − 1)
. (14)

The perceptions of the bond traders must satisfy three conditions for determinacy, vid. Woodford (2003)

λ1λ2 > 1 ⇒ c2 < 1 +
2

ab
,

(1 + λ1)(1 + λ2) > 0 ⇒ c1 < c2 +
4

ab
,

(1 − λ1)(1 − λ2) > 0 ⇒
c1 + c2

2
> 1. (15)

6The roots of the associated companion form system for (12) are derived in the appendix.
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The first two conditions in (15) establish upper bounds for the policy responses and will depend, in general,

on the particular specifications of the model.

The third requirement for determinacy in (15) is not dependent on other model parameters and provides

a lower bound for the average perceived policy rate response. Thus, even if the current period response is

passive,c1 < 1, the average perceived response may satisfy the lower boundrequirement for determinacy.

This is a generalization of the Taylor Principle for one-period interest rates, where the nominal bond rate

response to anticipated inflation over the maturity of the bond should exceed unity.7

The next section examines the theoretical basis of the fundamental assumption that bond rates provide

the principal transmission channel for monetary policy, and presents summary measures of historical bond

rate responses to inflation.

3 The role of bond rates in the transmission of monetary policy

The key to an essential role for the term structure in the transmission of monetary policy is the presence

of real-world frictions or dynamic adjustment costs. The level of the capital stock, and the level of the

associated output or consumption, is determined by the level of bond rates. In a frictionless world, the

choice between consumption today or consumption tomorrow is a function only of the one-period interest

rate, which is equivalent (under risk neutrality) to one-period holding returns to bonds.

By contrast, when expenditure decisions are subject to adjustment frictions, dynamic adjustment of

consumption is a function of the full term structure of interest rates. The next two subsections illustrate

the transmission role of bond rates for two examples of frictions: adjustment costs for investment in capital

goods, and the presence of habit in household utility specifications.

3.1 Bond rates in the demand for quasi-fixed investment

The implication of transactions costs for the policy transmission role of bond rates is illustrated using a

marginal q model of investment.

7Here, as elsewhere in this paper, conditions for determinacy can be extended to include policy responses to equilibrium
deviations in real activity. Strictly speaking, conditions for determinacy are system properties and not just limitedto the inflation
responsiveness of current and anticipated real policy rates, such as models where nominal interest rates may play an important
stabilizing role, vid. Beyer and Farmer (2004). To simplifyexposition, discussion in this paper assumes real variables, such as
output, are responsive only to real interest rates, consistent with responses by households and firms in conventional NKmodels.
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The owner of a depreciable capital asset, with a physical half-life of 1
δs

, chooses the level of capital,Ks,

and rate of investment,Is, to maximize the present value of rents in a competitive market

max

Ks,Is

Et

∞
∑

t=0

βtUc,t(R
k
s,tKs,t − P I

s,tIs,t), (16)

subject to a dynamic constraint on the evolution of installed capital

Ks,t+1 ≤ (1 − δs)Ks,t + Is,t − c(Is,t/Is,t−1)Is,t,

whereβ is the household discount factor,Uc,t is the owner (representative household) marginal utility of

consumption,Rk
s is the real return on a unit of capital,P I

s the relative price of replacement capital,δs is the

rate of depreciation, andc(Is,t/Is,t−1) is the cost of adjustment for investment.

The first-order conditions for optimal capital and investment are, respectively,

0 = Et{β
t+1Uc,t+1R

k
s,t+1 − βtUc,tP

K
s,t + βt+1Uc,t+1P

K
s,t+1(1 − δs)},

0 = Et{−β
tUc,tP

I
s,t + βtUc,tP

K
s,t − βtUc,tP

K
s,tc

′

1(Is,t/Is,t−1)
Is,t
Is,t−1

−βtUc,tP
K
s,tc(Is,t/Is,t−1) + βt+1Uc,t+1P

K
s,t+1c

′

2(Is,t+1/Is,t)

(

Is,t+1

Is,t

)2

}, (17)

wherePK , the Lagrangian multiplier of the equation for the evolution of capital, is the relative price of

installed capital; andc′i(x1/x2) denotes the partial derivative of the adjustment cost function with respect to

the ith argument.

Normalizing the first equation in (17) on the price of installed capital gives

PK
s,t = Et{β

Uc,t+1

Uc,t
(Rk

s,t+1 + (1 − δs)P
K
s,t+1)},

= Et{R
−1
e,t (R

k
s,t+1 + (1 − δs)P

K
s,t+1)},

= Et{
∞
∑

j=1

[
j−1
∏

i=0

R−1
e,t+i](1 − δs)

j−1Rk
t+j}. (18)

The second line in (18) uses an implication of a standard household Euler equation for consumption that the

real rate of interest isR−1
e,t = β

Uc,t+1

Uc,t
. The third line indicates that the return to capital in thenth period

of the forecast horizon,(1 − δs)
n−1Rk

t+n, is discounted by the gross real yield-to-maturity on ann-period

bond.

Log-linearizing the second equation in (17) about equilibria gives a second-order difference equation
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for investment expenditures8

lnĨs,t =
β

1 + β
EtlnĨs,t+1 +

1

1 + β
lnĨs,t−1 +

1

(1 + β)c′′
Etq̃t, (19)

whereqt denotes the log of marginal q or the ratio of the price of installed capital to the price of replacement

capital,exp(qt) =
P K

s,t

P I
s,t

.

By inspection, the eigenvalues of the characteristic equation are(1, 1
β
). Thus, the solution for the level

of investment expenditure

lnĨs,t = lnĨs,t−1 +
1

c′′

∞
∑

i=0

βiEtq̃t+i, (20)

requires forecasts of marginalqt+i, and the associated term structure of interest rates as illustrated in (18),

over the indefinite future.

3.2 Bond rates in NK equations for output

The preceding subsection indicates that the demand for total expenditures, aggregated over goods with

disparate durability and adjustment costs, will be a function of the full term structure of interest rates.

By contrast, the convention in NK models is to include only a single short-term or long-term interest rate

in the output equation.9 This subsection illustrates that the dynamic transmissionrole of interest rates is

significantly altered by introducing habit preferences into the utility function of the representative household.

In the standard NK model, the output equation is based on the household Euler equation for

consumption. An infinitely-lived representative household aims to maximize the present value of utility,

Ut,

max

B,C,N
Et

∞
∑

t=0

βtUt, (21)

subject to the flow budget constraint

Ct+i +Bt+i ≤ wt+iNt+i +Re,t+iBt+i−1.

whereC denotes consumption;B is the stock of real bonds which earn the one-period gross real return,Re;

and household employment,N , is paid the real wage,w.

8As in Christiano, Eichenbaum, and Evans (2005), the level and first derivative of the adjustment cost function,c(.), are zero in
equilibrium.

9The output equation is a explicit function of the one-periodreal interest rate in Rotemberg and Woodford (1999), a four-quarter
average of real interest rates in Rudebusch and Svensson (1999), a two-year real bond rate in Coenen and Wieland (2000), and a
ten-year real rate in Fuhrer and Moore (1995). Estimation ofoutput equations with either a quarterly real funds rate, a 1-year real
bond rate, or a ten-year real bond rate is examined in Fuhrer and Rudebusch (2004).
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Given the additively separable utility function10

U(Ct+i, .) ≡
C1−α

t+i − 1

1 − α
(22)

whereα is the CRRA curvature parameter,α > 0, the first-order conditions for consumption,Ct, and bond

holdings,Bt, are, respectively,

0 = C−α
t − Λt,

0 = −Λt + Et{βRe,t+1Λt+1}, (23)

whereΛ is the Lagrangian multiplier of the budget constraint.

Substituting the first equation into the second equation of (23), imposing the market clearing condition,

Ct = Yt, and taking log deviations from equilibria gives the standard NK output equation, such as developed

in Woodford (2003),

ỹt = Et{ỹt+1 −
1

α
ρ̃t}. (24)

The NK output equation appears to indicate that the relevantinterest rate for current consumption

decisions is the one-period real interest rate,ρt. However, successively eliminating the forward consumption

term indicates that the current level of consumption is a function of the future path of expected equilibrium

deviations in one-period real rates or, approximately, theequilibrium deviation in the expected real

yield-to-maturity on ann-period bond,̃ρn,t.

ỹt = −
1

α
Et

∞
∑

i=0

ρ̃t+i,

≃ −
n

α
Etρ̃n,t. (25)

In both equations (24) and (25), adjustments of current output to perceived equilibrium deviations of

interest rates are instantaneous because there are no frictions or impediments to dynamic adjustments of

real expenditures. In this sense, standard NK output equations are analogous to the present value price of

installed capital, shown earlier in (18). In other words, inthe absence of frictions, just as the neoclassical

q theory provides a theory of capital demand but not a theory ofinvestment, the standard NK output

equation reflects a theory of consumption demand but not a well-defined theory of dynamic adjustment

in real expenditures.

10To abbreviate notation, the remaining arguments of the separable utility function are not shown.
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As an alternative to introducing explicit costs of adjusting the flow of consumption, we consider the

policy transmission role of interest rates in output equations when multiplicative ‘habits” or reference paths

for consumption,Γt, are introduced into household utility,

U(Ct, .) =
(Ct+iΓ

−ν
t )1−α − 1

1 − α
. (26)

In the case of multiplicative exogenous habit, such as “keeping up with the Jones, ” vid. Abel (1990), the

reference level for each household is a function of aggregate consumption. Alternatively, the habit reference

path may be endogenous and refer to the past consumption level of the household, vid. Fuhrer (2000).

Log habit is expressed as a distributed lag of past log consumption,

lnΓt = ν(L)lnCt−1, (27)

whereν(L) is a polynomial in the lag operator,L. The output equation associated with second-order

endogenous habit,ν(L) = ν1 + ν2L, is derived in the appendix. Here, we focus on a one-lag exogenous

habit specification.

For a one-lag exogenous habit specification,Γt = Ct−1, the first-order equation for consumption is

0 = Cα
t C

ν(1−α)
t−1 − Λt, (28)

replacing the first equation in (23). Combining (28) with thesecond equation in (23) and log-linearizing

about equilibria gives the output equation under exogenoushabit

ỹt = (1 − λ)Etỹt+1 + λỹt−1 −
1

α+ ν(α− 1)
Etρ̃t, (29)

whereλ ≡ ν(α−1)
α+ν(α−1) .

By inspection, the two eigenvalues of the characteristic equation are(1, λ
1−λ

). There are two solution

formats: Ifλ > .5, the non-unit root is largest,λ1−λ
> 1, and the solution is

ỹt = ỹt−1 −
1

α+ ν(α− 1)

∞
∑

i=0

(

1 − λ

λ

)i

Etρ̃t+i. (30)

By contrast, ifλ ≤ .5, the unit root is largest,λ
1−λ

≤ 1, and the solution is

ỹt =
λ

1 − λ
ỹt−1 −

1

α

∞
∑

i=0

Etρ̃t+i,

≃
λ

1 − λ
ỹt−1 −

n

α
Etρ̃n,t+i, (31)
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where the last line in (31) provides a transparent example ofthe policy transmission role of then-period

bond rate under habit.

As noted earlier, specifications of interest rates in the output equations of empirical macro models vary

widely, with some models using one-period rates and others using long-term rates. Models with explicit

one-period rates do not necessarily imply that bond rates are unimportant in policy transmission. Linear

Euler equations can always be reformulated as functions of the one-period interest rate, although the implied

dynamic restrictions may not be as straight-forward as those in output equations with explicit bond rates.11

The drawback of formulating output equations as functions of the one-period rate is the usual problem of

asymmetric information. Given that theory indicates forecasts of long-horizon returns in bond markets are

important determinants of private sector expenditures, the information set of bond traders is more pertinent,

if not larger, than that of a macro modeller. Unless the modeller ensures that the averages of forward rates

generated by the model are equivalent to observed bond rates, the model description of policy transmission

will reflect the modeller’s priors regarding long-horizon forecasts, which may differ markedly from the

long-horizon forecasts contained in bond market observations.12

Interestingly, there is almost no empirical literature exploring competing specifications of short-term

and long-term interest rates in output equations. If frictions in adjusting real expenditures are important,

the theoretical examples in this section suggest that long-term ex ante real interest rates should dominate

competing short-term real rate regressors in reduced-formregressions. A sequence of bivariate tests is

reported in Kozicki and Tinsley (2002), where U.S. manufacturing utilization, a proxy for the output gap,

is regressed on competing short-term and long-term ex ante real interest rates over a 1967m1 - 1997m7

sample. The tests confirm that spreads between the long-termand short-term interest rates are statistically

insignificant when regressions are conditioned on the long-term rates and, conversely, long-short spreads

are significant when regressions are conditioned on the short-term interest rates.13

11For example, compare equation (73) to equation (74) in the appendix.

12The sensitivity of long-horizon forecasts to alternative modelling assumptions regarding time-variation in conditional equilibria
is illustrated in Kozicki and Tinsley (2001a, 2001b) and in section 5 below.

13The explanatory role of credit risk premiums in private borrowing rates is also empirically supported in Kozicki and Tinsley
(2002) but ignored in the current paper.
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3.3 The responsiveness of historical bond rates to macro variables

If perceptions of bond traders are an essential link in the transmission of monetary policy then section 2

indicates that the determinacy of policy rests on the sensitivity of nominal bond rates to inflation.

The long-run responses of nominal bond rates to inflation, the level of unemployment, and the difference

of unemployment are reported in Table 1. Inflation is measured by the annualized first-difference of the log

deflator for personal consumption expenditures (pce), and unemployment by the civilian unemployment

rate. The bond rates are the nominal rates on 1-year, 3-year,5-year and 10-year zero-coupon bonds from

McCulloch and Kwon (1993). Regressions are reported for twomonthly samples.

Regressions reported in the bottom panel of Table 1 span the period after the abandonment of

nonborrowed reserves targeting to the end of the FOMC chairmanship of Paul Volcker, 1982m1 - 1987m7.

The results are consistent with bond trader forecasts of aggressive policy responses to inflation. Long-run

mean responses by bond rates to inflation are well above unityfor all maturities. Significant long-run mean

responses are also indicated for the change in unemploymentby 1-year and 3-year bond rates. No mean

responses to the level of unemployment are significant.

The top panel in Table 1 reports on regressions for a 1966-79 sample, ending just prior to the

announcement of the well-known shift in operational policyin October 1979.14 The second column in

the top panel indicates that the mean long-run response to inflation is above unity for bond rates of all

maturities. Perhaps consistent with bond trader perceptions of the emphasis of 1970s central bank policy

on money growth targeting, the mean long-run response to thechange of the unemployment rate is also

significant for all maturities.

As the results of Table 1 are consistent with elastic bond rate responses to inflation in both samples, it

appears that the lower bound condition for determinacy of monetary policy derived in section 2 is satisfied in

the 1960s and 1970s, as well as in the 1980s. However, bond trader perceptions that, on average, monetary

policy was consistent with stable policy responses to inflation appears to contradict the evidence of passive

policy rate responses in the 1960s and 1970s in such studies as Clarida, Gali, and Gertler (2000) and Lubik

and Schorfeide (2004). Possible resolutions of this puzzleare explored in the remaining sections of this

paper.

14The federal funds market was not well-developed prior to 1966, vid. Tinsley et al. (1982) and Fuhrer (1996).
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4 No-arbitrage bond pricing under horizon-dependent perceptions

The lower bound for determinacy of monetary policy derived in section 2 requires that equilibrium deviations

in nominal bond rates should be elastic with respect to equilibrium deviations in expected inflation over the

maturities of the bonds or, equivalently, that equilibriumdeviations in ex ante real interest rates should

respond positively to deviations in expected inflation.

Examples in preceding sections have implicitly assumed that term premiums of bond rates are constant

over time and drop out of equilibrium deviations. An alternative is to allow for term premiums that may

vary systematically with macro variables.

To establish notation, the nominal interest rate on ann-period zero coupon bond is denoted

rn,t =
1

n

n−1
∑

i=0

ft,i,

=
1

n

n−1
∑

i=0

(Etrt,i + ψt,i),

=
1

n

n−1
∑

i=0

Etrt,i + Ψn,t. (32)

The first line of (32) indicates that the nominal bond rate is the average of forward rates,ft,i, over the

lifetime of the bond. The second line shows that the forward rate in theith period of then-period forecast

horizon is equal to the expected policy rate in theith period,Etrt,i, plus a possibly time-varying forward

rate term premium,ψt,i. The last line shows that the term premium of then-period bond rate,Ψt,n, is equal

to the average of the forward rate term premiums.15

As bond rates consist not only of expected policy rate averages but averages of possibly time-varying

forward rate term premiums, one potential explanation of elastic responses of nominal bond rates to inflation

in the 1960s and 1970s is that time-varying term premiums mayoperate as automatic stabilizers, reducing the

effective lower bound required for determinate policy rateresponses. This explanation rests on systematic

positive responses of forward rate term premiums to expected inflation.

The next two subsections sketch a class of no-arbitrage models of bond rate pricing, developed by Duffee

(2002), that provides a tractable formulation of term premium responses to macro determinants of policy

rates, such as inflation.16This model is extended in the remaining subsections to allowfor horizon-dependent

15In the terminology of Shiller (1990),Ψn,t is the rollover term premium.

16Recent examples of empirical estimates of the term structure exploring macro variable determinants of term premiums include
Ang and Piazzesi (2003), Rudebusch and Wu (2004a, 2004b), Ang, Dong, and Piazzesi (2005), Duffee (forthcoming), and
Dewachter and Lyrio (forthcoming(a) and forthcoming(b)).
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expectations.

4.1 Macro variable dynamics

Explicit macro variables are introduced to characterize bond trader perceptions of expected policy rate

responses. Bond traders may also price unobserved variables. Latent factors associated with additional

determinants of bond prices are assumed to be orthogonal to the observed macro factors and irrelevant for

the current analysis.

The dynamics of macro variables are described by a first-order companion form system

Xt = φ+ ΦXt−1 + εt, (33)

where the stochastic driving vector,εt, is denoted by

εt ≡ Σǫt, ǫt ∼ N(0, I).

The X vector contains observations on observable macro determinants of the policy rate, such as

unemployment,u, and inflation,π.17 Each macro variable is partitioned into its perceived equilibrium

attractor or “natural rate,” such as (π̄t, ūt), and deviations from these natural rates.18

πt ≡ π̄t + π̃t,

ut ≡ ūt + ũt, (34)

Variation over time in the natural rate perceptions of bond traders is captured by constant-gain learning

equations,

π̄t = γπ̄πt−1 + (1 − γπ̄)π̄t−1 + επ̄,t,

ūt = γūut−1 + (1 − γū)ūt−1 + εū,t. (35)

Time-variation in the natural rate deviations of inflation and unemployment is captured by a pth-order,

bivariate vector autoregression,

π̃t = a11,1π̃t−1 +
p−1
∑

i=1

a11,i+1∆π̃t−i + a12,1ũt−1 +
p−1
∑

i=1

a12,i+1∆ũt−i + επ̃,t,

ũt = a21,1π̃t−1 +
p−1
∑

i=1

a21,i+1∆π̃t−i + a22,1ũt−1 +
p−1
∑

i=1

a22,i+1∆ũt−i + εũ,t., (36)

17Additional macro determinants might include observable indicators of disturbances in credit markets.

18In a slight abuse of conventional terminology, it is convenient to refer to the central bank target for inflation perceived by bond
traders,̄πt, as the “natural rate” for inflation.
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If the macro system is stable, each macro variable reverts toits natural rate in the long run.

4.2 No-arbitrage bond pricing under invariant policy responses

As noted earlier, elastic responses of U.S. Treasury bond rates to inflation in the 1960s and 1970s seem

difficult to square with evidence from studies indicating the passivity of US monetary policy in those

decades. One possible explanation is that bond term premiums may be sufficiently responsive to inflation to

overcome a modest inelasticity in policy rate responses.

The policy rate in periodt+ h, anticipated by bond traders in periodt, Etrt,h, is assumed to be a linear

function of macro variables anticipated fort+ h,

Etrt,h = δ0 + δ′1EtXt+h. (37)

The vector of response parameters,δ1, is fixed, both over time and over forecast horizons.

In the absence of arbitrage, the price of a multiperiod assetthat does not pay dividends is determined

by the expected product of stochastic discount factors,Mt+i, over the lifetime of the asset. In the case of a

zero-coupon,n-period nominal bond paying $1 at maturity, the current price is

Pn,t = Et{Mt+1Mt+2 . . .Mt+n},

= Et{Mt+1Pn−1,t+1}, (38)

where the last line in (38) follows by the law of iterated expectations.

If investors are risk neutral, the one-period stochastic discount factor reduces to

Mt+1 = exp(−rt), (39)

wherert is the policy rate, known int. However, if investors are risk sensitive, the stochastic discount factor

is

Mt+1 = exp(−rt)ξt+1, (40)

whereξt+1 is the Radon-Nikodym derivative that translates the distribution of the discounted asset price to

a martingale by removing predictable drift due to bond risk premiums.19

In the case of log-normal bond prices, the relevant Radon-Nikodym derivative takes the form

ξt+1(λt) = exp(−λ′tǫt+1 −
1

2
λ′tλt), (41)

19Change of drift under the Girsanov theorem is discussed in Duffie (1996).
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whereλ denotes the vector of market prices of uncertainty associated with the stochastic determinants of

the asset price.20 The vector of market prices is assumed to be the essentially affine formulation suggested

by Duffee (2002),

λt+i = λ0 + λ′1Xt+i. (42)

Given nontrivial risk pricing, the bond traders’ risk-adjusted view of the dynamics of the macro economy

is denoted by

Xt = φ̆+ Φ̆Xt−1 + Σǫ̆t, (43)

which differs from the empirical (aka physical) dynamics in(33). The difference is demonstrated by deriving

the bond price valuation under the risk-neutral probability measure, using the risk-adjusted macro model in

(43).

As in Campbell, Lo and MacKinlay (1997), discrete-time bondprices in this Gaussian affine model of

the term structure can be represented by

Pn,t = exp(−An −B′

nXt). (44)

As noted above, in the absence of arbitrage, the price of ann-maturity bond is determined by

Pn,t = Et(e
−rtξt+1Pn−1,t+1),

= Ern
t (e−rtPn−1,t+1), (45)

where the expectation in the first line of (45) is under the physical probability measure, and the expectation

in the second line is under the risk-neutral probability measure.

Substitute from (44) and (43) into the second line of (45) andtake expectations under the risk-neutral

probability measure to give,

exp(−An −B′

nXt) = exp(−rt −An−1 −B′

n−1(φ̆+ Φ̆Xt) +
1

2
B′

n−1ΣΣ′Bn−1).

Finally, substitute for the policy rate from the perceived policy response equation, (37), and take logs to give

An +B′

nXt = An−1 +B′

n−1(φ̆+ Φ̆Xt) −
1

2
B′

n−1ΣΣ′Bn−1 + δ0 + δ′1Xt. (46)

20If the probability density of the macro shocks,f(ǫt+1), is Gaussian, the translated density is also Gaussian,ξt+1(λt)f(ǫt+1) =
f(ǫt+1 + λt), where the means are shifted byλt.
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Equating constant terms and slope coefficients on both sidesof the equal sign in (46) provides recursions

for the bond pricing coefficients under risk-neutral dynamics

An = An−1 +B′

n−1φ̆−
1

2
B′

n−1ΣΣ′Bn−1 + δ0,

B′

n = B′

n−1Φ̆ + δ′1. (47)

The initial conditions areA1 = δ0 andB′

1 = δ′1.

Alternatively, bond pricing recursions using the physicaldynamics in (33) can be recovered by adjusting

the stochastic disturbances,ǫ. Recall that the effect of the Radon-Nikodym differential in (45) is to shift the

mean of the disturbances,ǫt, by the relevant pricing vector,λt−1. The risk-neutral disturbances from this

density translation are

ǫ̆t = ǫt + λt−1. (48)

Substituting (48) into the empirical macro system (33) and using the essentially affine definition of the

pricing vector,λ, in (42) illustrates the risk-adjusted macro perceptions of the bond traders

Xt = φ+ ΦXt−1 + Σǫt,

= φ+ ΦXt−1 + Σ(ǫ̆t − λt−1),

= (φ− Σλ0) + (Φ − Σλ′1)Xt−1 + Σǫ̆t,

= φ̆+ Φ̆Xt−1 + Σǫ̆t. (49)

Thus, the bond price recursions in (47) can be restated usingthe explicit risk-adjusted parameters of the

empirical macro model, wherĕφ = φ− Σλ0 andΦ̆ = Φ − Σλ′1.

The notation convention is that negative entries ofλ1 contribute towards positive risk premiums.

Consequently, as can be seen in the third line of (49), negative elements inλ1 will increase the sensitivity of

bond rates to variations in the macro variables,Xt.21

21In the absence of an explicit specification of investor utility functions, no theoretical restrictions are imposed on theλ′

1 matrix.
As the dimensions of the pricing matrix can be large, empirical investigations of essentially affine formulations of asset pricing
often impose zero restrictions on elements of theλ′

1 matrix, such as Ang and Piazzesi (2003), Ang, Dong, and Piazzesi (2005), and
Dewachter and Lyrio (forthcoming(a) and forthcoming(b)).Kim and Orphanides (2005) suggest fewer zero restrictions are required
if measurements include both bond rate data and surveys of interest rate forecasts over short and long horizons. Depending on the
structure of theλ1 matrix, term premium variation linked to a variable may not reflect uncertainty in that variable. For example,
supposeΣλ′

1Xt is a2 × 1 vector,
[

s11 s12

s21 s22

][

λ11 λ12

λ21 λ21

] [

x1,t

x2,t

]

=

[

s11λ11 + s12λ21 s11λ12 + s12λ22

s21λ11 + s22λ21 s21λ12 + s22λ22

] [

x1,t

x2,t

]

.

Note that responses of the term premium to movements inx2,t may not be related to the scale of thex2 shock,s22.

19



The adjustments to the slope coefficients ofXt will also alter the dynamics of the risk-adjusted macro

model. To see this, denote the risk-adjusted transition matrix as

Φ̆ = Φ − Σλ′1,

≡ Φ + Φ∗.

If both theΦ andΦ∗ matrices were diagonal, it is easy to see that positive elements ofΦ∗ would increase

the eigenvalues of the matrix sum,Φ̆. Or if the trace ofΦ∗ is positive, the sum of the eigenvalues ofΦ̆ is

increased. Although it is difficult to generalize the dynamic effects of risk pricing for unrestricted matrices,

it can be shown22 that upper bounds for singular values ofΦ̆ are

σi+j−1(Φ̆) ≤ σi(Φ) + σj(Φ
∗), i+ j < q + 1, (50)

whereq denotes the minimum rank of (Φ, Φ∗), andσk(A) denotes the singular values of the matrixA, in

decreasing order,σ1 > σ2 > . . . > σq. For example, wheni = j = 1, the sum of the largest singular values

of Φ andΦ∗ is an upper bound for the largest singular value ofΦ̆.

4.3 Denoting horizon-dependent perceptions

A second potential explanation of elastic bond rate responses to inflation is that bond trader perceptions

of anticipated policy responses may vary over forecast horizons. In other words, even if current policy is

perceived to be insufficiently responsive to inflation, bondtraders may assume that future policy will be

more attentive.

The principal difference in specification is that the coefficients of the perceived policy response may

vary over the forecast horizon,

Etrt,h = δ0,h + δ′1,hEtXt+h, (51)

where (51) replaces the policy rate specification shown earlier in (37).

Again, the dynamics of macro variables are described by a first-order companion form system, but it

will ease notation considerably to include a constant regressor in theX vector,

Xt = ΦXt−1 + Σǫt,

22Horn and Johnson (1991). For a general matrixA, singular values are nonnegative square roots of the nonzero eigenvalues of
A∗A or AA∗. Thus, the inequalities in (50) hold for eigenvalues if the relevant matrices are positive semidefinite.
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This altered notation allows horizon-dependent responsesto be compactly represented as

Etrt,h = δ′h+1EtXt+h, (52)

whereh indexes periods in the forecast horizon,h = 0, . . . ,H.

The pricing kernel is

Mt+i = exp[−δ′iXt+i−1 − λ′t+i−1ǫt+i −
1

2
λ′t+i−1λt+i−1], i = 1, 2, . . . , (53)

and the price of risk is the essentially affine formulation

λt+i = λ0 + λ′1Xt+i.

The nonrecursive formulation of no-arbitrage bond prices is

Pn,t = Et(
n
∏

i=1

Mt+i),

= exp(−An −B′

nXt). (54)

Due to the horizon-dependent structure of the policy rate in(52), the no-arbitrage coefficient sequence,

(Ai, Bi, i = 1, . . . , n), is altered from that shown in (47). The revised structure of bond price coefficients is

illustrated by the following examples.

Under the assumption thatXt is observable int, the price of a one-period bond is

P1,t = EtMt+1,

= Etexp[−δ
′

1Xt −
1

2
λ′tλt − λ′tǫt+1],

= exp[−δ′1Xt −
1

2
λ′tλt +

1

2
V ar([λ0 + λ′1Xt]

′ǫt+1)],

= exp[−δ′1Xt],

= exp[−A1 −B′

1Xt]. (55)

Consequently,

A1 = 0

B1 = δ1

The price of a two-period bond is

P2,t = Et(Mt+1Mt+2),
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= Etexp[−δ
′

1Xt −
1

2
λ′tλt − λ′tǫt+1 − δ′2Xt+1 −

1

2
λ′t+1λt+1 − λ′t+1ǫt+2],

= exp[−δ′1Xt −
1

2
λ′tλt − δ′2ΦXt −

1

2
λ′t+1λt+1

+
1

2
V ar([δ′2Σ + λ′t]ǫt+1 + λ′t+1ǫt+2)],

= exp[
1

2
δ′2ΣΣ′δ2 + δ′2Σλ0 − (δ′1 + δ′2(Φ − Σλ′1))Xt],

= exp[−A2 −B′

2Xt], (56)

where

A2 = A1 −
1

2
δ′2ΣΣ′δ2 − δ′2Σλ0,

B′

2 ≡ B′

1 + δ′2[Φ − Σλ′1]. (57)

Note that the new terms are all functions of the policy responses in the second period of the forecast horizon,

δ2. This pattern persists in future periods.

More general non-recursive expressions forAn andBn in (54) can be derived as follows:

Pn,t = Et exp{−
n
∑

i=1

[δ′iXt+i−1 +
1

2
λ′t+i−1λt+i−1 + λ′t+i−1ǫt+i]},

(iterated expectations) = Et · · · Et+n−1 exp{−
n
∑

i=1

[δ′iXt+i−1 +
1

2
λ′t+i−1λt+i−1 + λ′t+i−1ǫt+i]}

(decrement sum) = Et · · ·Et+n−1 exp{−
n−1
∑

i=1

[δ′iXt+i−1 +
1

2
λ′t+i−1λt+i−1 + λ′t+i−1ǫt+i]

−δ′nXt+n−1 −
1

2
λt+n−1λt+n−1 − λt+n−1ǫt+n}

(conditional Et−n−1) = Et · · ·Et+n−2 exp{−
n−1
∑

i=1

[δ′iXt+i−1 +
1

2
λ′t+i−1λt+i−1 + λ′t+i−1ǫt+i] − δ′nXt+n−1}

(decrement sum) = Et · · ·Et+n−2 exp{−
n−2
∑

i=1

[δ′iXt+i−1 +
1

2
λ′t+i−1λt+i−1 + λ′t+i−1ǫt+i]

−δ′n(ΦXt+n−2 + Σǫt+n−1) − δ′n−1Xt+n−2 −
1

2
λ′t+n−2λt+n−2 − λ′t+n−2ǫt+n−1}

(conditional Et+n−2) = Et · · ·Et+n−3 exp{−
n−2
∑

i=1

[δ′iXt+i−1 +
1

2
λ′t+i−1λt+i−1 + λ′t+i−1ǫt+i]

−(δ′nΦ + δ′n−1)Xt+n−2 −
1

2
λ′t+n−2λt+n−2 +

1

2
V art+n−2[(λ

′

t+n−2 + δ′nΣ)ǫt+n−1]}

= Et · · ·Et+n−3 exp{−
n−2
∑

i=1

[δ′iXt+i−1 +
1

2
λ′t+i−1λt+i−1 + λ′t+i−1ǫt+i]

−(δ′nΦ + δ′n−1)Xt+n−2 +
1

2
δ′nΣΣ′δn + δ′nΣλ0 + δ′nΣλ′1Xt+n−2}
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= Et · · ·Et+n−3 exp{−
n−2
∑

i=1

[δ′iXt+i−1 +
1

2
λ′t+i−1λt+i−1 + λ′t+i−1ǫt+i]

−(δ′n(Φ − Σλ′1) + δ′n−1)Xt+n−2 +
1

2
δ′nΣΣ′δn + δ′nΣλ0}

(decrement sum) = Et · · ·Et+n−3 exp{−
n−3
∑

i=1

[δ′iXt+i−1 +
1

2
λ′t+i−1λt+i−1 + λ′t+i−1ǫt+i]

+
1

2
δ′nΣΣ′δn + δ′nΣλ0

−(δ′n(Φ − Σλ′1) + δ′n−1)Xt+n−2 − δ′n−2Xt+n−3 −
1

2
λ′t+n−3λt+n−3 − λ′t+n−3ǫt+n−2}

(conditional Et+n−3) = Et · · ·Et+n−4 exp{−
n−3
∑

i=1

[δ′iXt+i−1 +
1

2
λ′t+i−1λt+i−1 + λ′t+i−1ǫt+i]

+
1

2
δ′nΣΣ′δn + δ′nΣλ0

−((δ′n(Φ − Σλ′1) + δ′n−1)Φ + δ′n−2)Xt+n−3 −
1

2
λ′t+n−3λt+n−3

+
1

2
V art+n−3[(λ

′

t+n−3 + (δ′n(Φ − Σλ′1) + δ′n−1)Σ)ǫt+n−2]

= Et · · ·Et+n−4 exp{−
n−3
∑

i=1

[δ′iXt+i−1 +
1

2
λ′t+i−1λt+i−1 + λ′t+i−1ǫt+i]

−(δ′n(Φ − Σλ′1)
2 + δ′n−1(Φ − Σλ′1) + δ′n−2)Xt+n−3

+δ′nΣλ0 + (δ′n(Φ − Σλ′1) + δ′n−1)Σλ0

+
1

2
δ′nΣΣ′δn +

1

2
(δ′n(Φ − Σλ′1) + δ′n−1)ΣΣ′(δ′n(Φ − Σλ′1) + δ′n−1)

′}

= . . . . (58)

Thus,

An ≡ −
n
∑

i=2

[(
n
∑

j=i

δ′j(Φ − Σλ′1)
j−i)Σ[Σ′(

n
∑

j=i

1

2
δ′j(Φ − Σλ′1)

j−i)′ + λ0]],

B′

n ≡
n
∑

i=1

δ′i(Φ − Σλ′1)
i−1

= B′

n−1 + δ′n(Φ − Σλ′1)
n−1. (59)

4.4 No-arbitrage formulations of forward rates

The formulations in (59) are particularly convenient for analysis of forward rates. The forward rate,fn−1,

is

ft,n−1 = Etrt,n−1 + ψt,n−1,
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= pn−1,t − pn,t

= An −An−1 + (Bn −Bn−1)
′Xt

= Cn + δ′n(Φ − Σλ′1)
n−1Xt, (60)

where the intercept in the last line of (60) is

Cn ≡ −
n
∑

i=2

[δ′n(Φ − Σλ′1)
n−iΣ[Σ′(

n
∑

j=i

1

2
δ′j(Φ − Σλ′1)

j−i)′ + λ0]

+(
n−1
∑

j=i

δ′j(Φ − Σλ′1)
j−i)ΣΣ′(

1

2
δ′n(Φ − Σλ′1)

n−i)′].

Thus, with horizon-dependent perceptions of policy responses, the effective coefficient vector of theXt

regressors for the forward rate,ft,h−1, is

δ′h(Φ − Σλ′1)
h−1 ≡ δ′h(I − Σλ′1Φ

−1)h−1Φh−1,

permitting exploration of “Taylor rule” regressions for forward rates with possibly horizon-varying

coefficients,δ′h, h = 1, 2, . . .. In the absence of term premiums, the forward rate regression reduces to

ft,h−1 = δ′hΦh−1Xt,

= δ′hEtXt+h−1.

Thus, forward rate term premiums are defined by

ψt,h = Ch+1 + δ′h+1(Φ − Σλ′1)
hXt − δ′h+1Φ

hXt. (61)

Recalling the discussion of the singular values of the risk-adjusted transition matrix in (50), if the effect of

the risk pricing matrix,λ′1, is such that(Φ − Σλ′1)
h is slower to decay thanΦh, the slope contributions of

forward rate term premiums will increase over the forecast horizon withh.23

5 Empirical responses of forward rates

The possibility of time-varying forward rate term premiumsand horizon-dependent expectations of future

policy rate responses suggests that forward rate responsesto expectations of future macro variables may

differ from the current-period policy rate responses estimated by Taylor rules.

This section discusses empirical estimates of forward rateregressions for monthly samples before and

after the major shift in US monetary policy in October 1979.

23The Jordan form of a matrix,A = PΛP−1, impliesAi = PΛiP−1.
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5.1 Forecast model and learning rate assumptions

A direct test of the combined effects of term premium and expected policy rate responses is to

estimate forward rate response equations over different forward horizons. For monthly observations, the

instantaneous forward rates at twelve month intervals in the forecast horizon are represented by

ft,12h = (1 − ρ1)f
∗

t,12h + ρ1ft,12(h−1) + ρ2∆
(k)ft,12(h−1) + at,12h, (62)

where the forward rate associated with the bond trader expectation of the policy rate in the absence of policy

lag adjustments is

f∗t,12h = Et{c0 + c1π̄t + c2π̃
(k̄)
t,12h + c3ũt,12h + c4∆

(k)ut,12h}.

As before,π̄t denotes the bond trader perception in periodt of the central bank target for inflation;̃πt,12h

is the projected deviation of inflation in the12hth month of the forecast horizon;̃ut,12h is the projected

deviation of unemployment from bond trader perceptions of the unemployment natural rate,ūt; and the

superscripts,(k̄) and(k), denotek-period averages andk-period summations, respectively.24 For monthly

data,k = 12.

As the specification in (62) is amenable to direct regression, it is straight-forward to check if estimates

of combined responses, such asc2, are consistent with stable bond rate responses, and if responses vary over

different partitions of the forecast horizon. The regressions reported here do not impose the cross-equation

restrictions implied by no-arbitrage, as derived in section 4, on the forward rate regressions of different

horizons. Consequently, it is not possible to determine what proportions of combined responses are due to

forward rate term premium responses,Σλ′1, or to expected policy rate responses,δh. There is one exception:

under the physical probability measure, the expected response to the perceived inflation target is unity,

c1 = 1. Thus, significant deviations fromc1 = 1 indicate time-variation in forward rate term premiums due

to a time-varying inflation target,̄πt.

Monthly predictions of expected inflation,Etπt,12h, and unemployment,Etut,12h, are generated by a

12th-order VAR in inflation and unemployment, whose format wasshown in (36).

Kozicki and Tinsley (2001a, 2001b) demonstrate that long-horizon predictions from VAR models are

sensitive to specifications regarding the conditional equilibria of state variables. To illustrate differences in

long-horizon forecasts, alternative estimates of ex ante real bond rates for 1-year, 5-year, and 10-year zero

24The k-period summation of the first-difference operator is the k-period difference,∆(k) = ∆+∆L+ . . .+∆Lk−1 = 1−Lk.
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coupon bonds are shown in the three panels of Figure 2, along with the real federal funds rate,ρt. The

multiperiod predictions of inflation used to adjust the nominal bond rates are generated by the alternative

monthly VARs discussed in Kozicki and Tinsley (2001a).

The perceived equilibrium or central bank target for inflation is fixed at the sample mean in the top panel

of Figure 2,π̄. Under this specification, the 5-year and 10-year real bond rates appear to be trending up in

the 1970s. In the middle panel of Figure 2, the perceived conditional equilibrium for inflation,̄πt, is similar

to a Beveridge-Nelson unit root trend and closely tracks recent inflation. Consequently, ex ante real bond

rates in the middle panel are much more volatile than those inthe other two panels and fall sharply below

zero in the first half of the 1970s. Inflation forecasts incorporated in the real rates shown in the bottom panel

of Figure 2 reflect a change-point learning model of shifts inthe conditional equilibrium,̄πt. Here, the ex

ante real rates on 5-year and 10-year bonds appear to be without much of a discernible trend in the 1970s.

For the forward rate regressions reported below, the time-varying perceptions of bond traders for the

central bank target for inflation,̄πt, and the natural rate for unemployment,ūt, are represented by the

constant-gain learning equations shown earlier in (35). Kozicki and Tinsley (2001b) indicate that a monthly

gain ofγπ̄ = .015 provides an average approximation of private sector long-horizon forecasts of inflation

in the 1980s. This benchmark constant-gain proxy for bond trader perceptions of the central bank target for

inflation, π̄t, is shown in Figure 3, along with the 12-month moving averageof pce inflation and the Hoey

real-time survey of 5-10 year predictions of CPI inflation. As pce inflation tends to be somewhat less volatile

than CPI inflation, the proxy is about one percentage point lower in early 1980 but then tracks the survey

closely in the remainder of the 1980s. Reductions in survey predictions of long-horizon inflation and in the

perceived inflation target lag considerably the fall of inflation in the early 1980s.

The same benchmark learning rate is assumed for bond trader perceptions of the natural rate of

unemployment,γū = .015. The associated constant-gain proxy for the natural rate ofunemployment

is shown in Figure 4, along with the historical unemploymentrate and the Congressional Budget Office

(2004) retrospective estimate of the natural rate. As with many real-time estimates of the natural rate of

unemployment, the constant-gain proxy tracks below the retrospective CBO estimate in the 1970s, with an

average underestimation error of about 1.25 percentage points in the first half of the 1970s before the error

sharply diminishes in the remainder of the 1970s.

However, results in Kozicki and Tinsley (2001a, 2005b) indicate that learning rates need not be constant

over time. Faster learning rates are more likely if agents perceive larger forecast errors for observable
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variables and can reduce the real consequences of perception errors in episodes with a time-varying inflation

target. But, faster constant-gain learning rates are inefficient in more tranquil periods, as larger responses to

transient disturbances increase the dispersion of the ergodic distribution of perceived inflation targets about a

fixed central bank target. Given the sensitivity of long-horizon forecasts to the specification of the perceived

central bank target for inflation, as illustrated in Figure 2, we examine the effects of three constant-gain

learning rates. In the case of a fixed inflation target, the learning rate is set to zero,γπ̄ = 0.0, and the

perceived inflation target is set to the sample mean. The benchmark perception of the central bank inflation

target, shown in Figure 3, uses the constant-gain learning rate,γπ̄ = .015, which implies a mean learning

lag of about 5.5 years. Finally, a faster learning rate is also examined for perceptions of the central bank

target for inflation,γπ̄ = .03, with a mean learning lag of about 2.8 years.

5.2 Forward rate regressions

Forward rates at 1-year, 3-year, 5-year and 10-year horizons are shown in Figure 5. Although the forward

rates generally move together, large differences can emerge, such as the spread of about 2.3 percentage

points between the 10-year forward rate and the 1-year forward rate in December 1976. As forward rates

at neighboring horizons tend to move closely, the forward rate regressions are grouped into three horizon

partitions: 1-3 years, 4-6 years, and 7-10 years. This grouping assumes that perceived policy rate responses

do not vary significantly within a partition. Because the term premium responses within a partition are

not likely to be identical, unless they are zero, the regression residuals will be heteroskedastic reflecting

deviations from estimated average responses.

Forward rate regressions for the three partitions are presented in Tables 2a and 2b for a pre-Volcker

sample, 1966 m1 - 1979 m7.25 Emphasis shadings of rows in the tables are judgemental, based in part on

assumptions regarding the reasonableness of the estimatedsigns. In addition to requiring asymptotic t-ratios

of 1.7 or higher, roughly corresponding to p-values less than .10, estimates of positive mean responses to

unemployment or negative mean responses to inflation are notshaded. Although the signs of term premium

responses may be opposite to the signs of expected policy rate responses, it is unlikely the combined response

would overturn the direction of the expected policy rate response.26

25During this interval, the FOMC was chaired by William McChesney Martin, Jr, Arthur Burns, and G. William Miller.

26Buraschi and Jiltsov (2005) report positive term premiums for inflation, with larger premiums for longer maturities. Dewachter
and Lyrio (forthcoming(b)) estimate positive term premiums for inflation that rise with maturity and negligible term premiums for
GDP gaps. Positive term premiums are also estimated for a time-varying central tendency for inflation, similar toπ̄t; these premiums
also rise with maturity and are nearly triple the size of the term premiums for inflation. By contrast, Duffee (forthcoming) presents
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Forecasts of inflation and unemployment regressors for results in Table 2a are generated by a VAR fit

to the 1960-79 sample under the assumption of the benchmark learning rates,γπ̄ = γū = .015. The mean

long-run response to the equilibrium deviation in inflation, π̃t, is statistically insignificant for forward rates

in the 1-3 year partition; is not statistically different from unity for forward rates in the 4-6 year partition;

and is greater than unity for forward rates in the 7-10 year partition. Thus, the pattern of increasing responses

over the forecast horizon is consistent with elastic responses to expected inflation by intermediate-maturity

bond rates in the 1960s and 1970s.

The estimated forward rate responses to the perceived inflation target,π̄, in Table 2a are around one in

the 4-6 year partition but significantly less than unity in the 1-3 year and 7-10 year partitions. Under the

physical probability measure, the expected coefficient of the inflation target is one, so this suggests forward

rate term premiums either did not respond, or moved inversely, to the perceived inflation target during the

1960s and 1970s. Although mean responses to the forecast level or difference of the unemployment rate are

negative, mean responses are not significant in the 1-3 and 4-6 year partitions.

Forward rate responses to expected inflation under alternative learning rates are examined in Table 2b for

the pre-Volcker sample. The pattern of increasing inflationresponses over the forecast horizon is relatively

insensitive to variation in the assumed learning rate. However, determinacy of bond rate responses to

expected inflation is better supported for perceptions of a fixed inflation target,γπ̄ = 0.0, or the time-varying

inflation target generated by the benchmark learning rate,γπ̄ = .015.

Tables 3a and 3b present forward rate regressions for the sample, 1982 m1 - 1987 m7, a period that

encompasses the last six and one-half years of the FOMC chairmanship of Paul Volcker but excludes the

unusual interest rate volatility in 1979-81, during the experiment with nonborrowed reserves as the operating

policy instrument. In Table 3a, the forward rate response toexpected inflation,c2 is not statistically different

from unity in the 1-3 year partition, and greater than unity in the 4-6 year partition, although not significantly

so. The mean inflation response in the 7-10 year partition is greater than unity but the associated p-value is

marginally larger than .10.

As with the earlier sample, forward rates do not appear to consistently respond to forecasts of

unemployment. However, in contrast to results in the pre-Volcker sample, the mean responses to the

evidence of negative term premium responses to inflation in apre-Volcker sample. Note that negative term premium responses to
inflation could conceivably reverse the historical roles ofthe inflation responses by the central bank and bond traders suggested in
section 2. That is, system indeterminacy could occur if an elastic policy rate response to inflation is accompanied by inelastic bond
rate responses to expected inflation.
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perceived inflation target,c1, in Table 3a are significantly greater than unity in the 1-3 year and 4-6 year

partitions. This suggests forward rate term premiums responded positively to the perceived inflation target

in the 1980s.

Forward rate responses to expected inflation in the 1980s under alternative learning rates are examined

in Table 3b. Here, the pattern of increasing responses to expected inflation over the forecast horizon is

statistically supported when the inflation target learningrate is equal to or exceeds the benchmark learning

rate. Positive responses of forward rate term premiums to the perceived inflation target,c1 > 1, are also

indicated for the benchmark learning rate,γπ̄ = .015, and the faster learning rate,γπ̄ = .03.

Although the forward rate regressions provide only rough approximations of combined forward rate

responses to macro variables, two results appear to be common to the pre-Volcker sample and the 1980s

sample. First, forward rate responses to equilibrium deviations in inflation are generally larger at more

distant horizons and often greater than one, consistent with elastic bond rate responses to inflation. Second,

there is little evidence of systematic responses by forwardrates to the level or difference of unemployment.

A notable difference in sample results is that positive responses by forward rate term premiums to a

time-varying inflation target are supported in the 1980s sample but not in the pre-Volcker sample.

6 Concluding remarks

Central bankers propose monetary policies but bond tradersdispose, through expectations of future policy

rates and term premiums that price uncertain outcomes. Thispaper examines several implications of bond

rate transmission of monetary policy.

As discussed in section 2, some interpretations of the GreatInflation have focused on the stability of a

Taylor rule description of the policy rate or on central bankassumptions regarding natural rates. If the bond

rate is the transmission channel for monetary policy, thesepossible shortcomings in policy are not sufficient

to assess the stability of the economy. The section shows that conditions for determinate equilibrium require

a lower bound on bond rate responses to expected inflation.

The bond rate plays no essential dynamic role in models that exclude frictions on dynamic adjustment

of real variables, such as the standard New Keynesian model.Section 3 illustrates the role of bond rates

in dynamic output equations when endogenous or exogenous habits are introduced into household utility

functions. Although dynamic expenditure equations are often formulated as functions only of the one-period
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interest rate, the elimination of market bond rate observations substitutes the information set of the modeller

for the more relevant information set of bond traders in long-horizon forecasts.

It is also noted that nominal bond rate responses to inflationare generally elastic with respect to inflation,

even in the 1960s and 1970s when studies have demonstrated that the policy rate did not keep pace with

inflation. This is puzzling as the forward rates of bond ratescontain bond trader expectations of future

policy rates. One possible explanation is that forward rateterm premiums that price the uncertainty of

expected inflation may operate as automatic stabilizers, reducing the lower bound requirement for expected

policy rate responses. Another possibility is that bond trader expectations are horizon-dependent, so that

longer-run expectations of policy are not cloned replications of current-period policy responses.

To accommodate these possibilities, the essentially affinemodel of no-arbitrage bond pricing is extended

in section 4 to allow for horizon-dependent expectations ofpolicy rate responses.

Forward rate regressions, presented in section 5, provide empirical support for the conjecture that

forward rate responses at more distant horizons display larger long-run responses to equilibrium deviations

in expected inflation. The regressions also suggest forwardrate term premiums responded positively to

perceptions of a time-varying inflation target in the 1980s but not in the 1960s and 1970s. Isolating the

separate contributions of time-varying term premiums and horizon-dependent expectations of future policy

rates will require imposing no-arbitrage cross-equation restrictions on the forward rate regressions.

If horizon-dependent perceptions are confirmed in future work, it would be useful to explore possible

reasons for horizon dependency in expectations. If long-horizon expectations are merely inertial, that inertia

can partially insulate the economy from poor monetary policies, as may have occurred in the 1960s and

1970s, but may also attenuate responses to new monetary policies.
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Appendix

Determinate and indeterminate solutions for equation (5).

The first-order equation

π̃t = µEtπ̃t+1 + bet,

is cast into a first-order companion form

A1yt+1 = A0yt + aeet + aηηt,

wherey′t+1 = [π̃t, Etπ̃t+1],

A1 =

[

1 −µ
1 0

]

, A0 =

[

0 0
0 1

]

, ae =

[

b
0

]

, andaη =

[

0
1

]

.

Using

A−1
1 =

[

0 1
− 1

µ
1
µ

]

,

the reduced form is

yt+1 = B0yt + beet + bηηt, (63)

where

B0 =

[

0 1
0 1

µ

]

, be =

[

0
− b

µ

]

, andbη =

[

1
1
µ

]

.

By inspection, the eigenvalues ofB0 are(0, 1
µ
), and the Jordan decomposition ofB0 is

B0 = PΛP−1,

=

[

1 1
0 1

µ

] [

0
1
µ

] [

1 −µ
0 µ

]

.

Multiplying equation (63) byP−1 expresses the reduced form as an explicit function of the system

eigenvalues,

xt = Λxt−1 + gt + ft, (64)

where

xt =

[

π̃t − µEtπ̃t+1

µEtπ̃t+1

]

, gt =

[

bet
−bet

]

, andft =

[

0
ηt

]

.
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Accounting for the zero elements ofΛ and the two forcing terms,gt andft reduces the two equations in

(64) to

x1,t = g1,t,

x2,t =
1

µ
x2,t−1 + g2,t + f2,t. (65)

case 1:|µ| < 1

In this instance, the second equation in (65) is unstable. The solution of the first equation is

π̃t = bEt

∞
∑

i=0

µiet+i,

=
bet

1 − γµ
,

which impliesEtπ̃t+1 = bγet

1−γµ
. Substituting this solution for expected inflation into thesecond equation of

(65) gives

ηt = µEtπ̃t+1 −Etπ̃t + bet,

=
µbγet
1 − γµ

−
bγbet−1

1 − γµ
+ bet,

=
b(et − γet−1)

1 − γµ
,

=
bǫt

1 − γµ
.

Thus, when the nonzero root,1
µ

is unstable, the inflation solution is unique and requires that rational forecast

errors,ηt, are determined solely by the structural errors,ǫt.

case 2:|µ| > 1

In this instance, the nonzero root,1
µ

, is stable and the second equation in (65) provides a solution for expected

inflation,

Etπ̃t+1 =
1

µ
Et−1π̃t −

b

µ
et + +

1

µ
ηt.

Substituting this solution into the first equation of (65) provides the solution for inflation, equation (7) in the

text,

π̃t =
1

µ
π̃t−1 −

b

µ
et−1 + ηt. (66)

Other than requiring thatηt be a martingale difference, the assumption of rational expectations does not

impose additional restrictions on the forecast errors. In addition to containing an arbitrary exogenous
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(sunspot) shock,st, the forecast error may also be correlated with the structural disturbance,

ηt = mǫt + st.

Thus, the reduced form generates multiple solutions associated with arbitrary sunspots,st. Realizations of

inflation will depend on what mechanisms agents use to coordinate on particular sunspot shocks.27

Eigenvalues of the companion form for equation (12).

The second-order inflation equation

π̃t = (1 −
ab(c1 − 1)

2
)Etπ̃t+1 −

ab(c2 − 1)

2
Etπ̃t+2 + bet,

is restated in the first-order companion form

A1yt+1 = A0yt + aeet + aηηt,

wherey′t+1 = [π̃t+1, Etπ̃t+2],

A1 =

[

0 −ab(c2−1)
2

1 0

]

, A0 =

[

1 − (2−ab(c1−1))
2

0 1

]

, ae =

[

b
0

]

, andaη =

[

0
1

]

.

Using

A−1
1 =

[

0 1
− 2

ab(c2−1) 0

]

,

the reduced form is

yt+1 = B0yt + beet + bηηt,

where

B0 =

[

0 1
− 2

ab(c2−1)
2−ab(c1−1)

ab(c2−1)

]

.

The text equations for the eigenvalues (λ1, λ2) in (14) are provided by the trace and determinant ofB0,

λ1λ2 =
2

ab(c2 − 1)
,

λ1 + λ2 =
2 − ab(c1 − 1)

ab(c2 − 1)
.

27Equation (5) is a scalar example of the NK class of forward-looking rational expectation models. In contrast to Clarida,Gali
and Gertler (2000), who suggest that the 1970s inflation may be explained by sunspot equilibria under passive monetary policy,
Honkapohja and Mitra (2004) indicate that sunspot equilibria generated by NK models with an unstable Taylor rule cannotbe
learned by adaptive regressions.
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Bond rate transmission under second-order endogenous habit (vid. equation (27)).

To illustrate the dynamic adjustments associated with morecomplex specifications of endogenous habit,

consider the case where log habit is a distributed lag of pastlog consumption,

lnΓt = ν(L)lnCt−1, (67)

andν(L) is a polynomial in the lag operator,L.28 For 2nd-order habit,ν(L) = ν1 +ν2L, the utility function

can be written as

U(Ct, .) =
(C1−ν1−ν2

t ( Ct

Ct−1
)ν1( Ct

Ct−1

Ct−1

Ct−2
)ν2)1−α − 1

1 − α
, (68)

which illustrates that the effect of higher-order endogenous habit in concave utility functions is to smooth

higher-order differences in consumption.29

Using the second-order specification of endogenous habit, the first-order condition for consumption is

0 = Cα
t Γ

−(1−α)
t − ν1βC

1−α
t+1 Γ

−(1−α)
t+1 C−1

t − ν2β
2C1−α

t+2 Γ
−(1−α)
t+2 C−1

t − Λt. (69)

Substituting in the definition of endogenous habit and log-linearizing about equilibria gives the linear

Euler equation for output under endogenous habit

ỹt = Et{[a1(L+ βF ) + a2(L
2 + β2F 2)]ỹt − a3λ̃t}, (70)

whereL andF are the lag and lead time series operators, respectively. The coefficients of (70) are identified

by

a1 = d−1v1(α − 1)(1 − v2β); a2 = d−1v2(α− 1); a3 = d−1(1 − v1β − v2β
2), (71)

whered ≡ α+ βv1(v1(α− 1) − 1) + β2v2(v2(α− 1) − 1).

The regressor,̃λt, in the last term of the linearized Euler equation, (70), is the equilibrium deviation of

the log of the Lagrangian multiplier,Λt. Log equilibrium deviations of the second equation in (23) indicate

that

λ̃t = Et{λ̃t+1 + ρ̃t},

= Et

∞
∑

i=0

ρ̃t+i,

≃ nEtρ̃n,t (72)

28To simplify notation, we assume the sum of the polynomial weights in (67) is equal to the exponent of inverse habit in the (26)
description of utility,ν(1) ≡ ν. In contrast to the logarithmic weighted average in (67), originally proposed in Kozicki and Tinsley
(2002), a linear weighted average is suggested in Fuhrer (2000). Corrado and Holly (2004) demonstrate that the linear weighted
average specification can violate desirable properties of utility functions.

29See discussion and earlier references to polynomial characterizations of frictions in Kozicki and Tinsley (2002).
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whereλ̃t is the equilibrium deviation of the log of the Langrange multiplier and ρ̃t is the real one-period

interest rate deviation. For large n, the last line indicates that the infinite forward sum is approximated by

the equilibrium deviation of the expected yield-to-maturity on an n-period bond,̃ρn,t.

Substituting from (72) into the output equation (70), gives

ỹt = Et{[a1(L+ βF ) + a2(L
2 + β2F 2)]ỹt − a3

∞
∑

i=0

ρ̃t+i},

≃ Et{[a1(L+ βF ) + a2(L
2 + β2F 2)]ỹt − na3ρ̃n,t}, (73)

where the second line in (73) is a transparent illustration of the policy transmission role of real rates on

long-maturity bonds in dynamic adjustments of output demand under endogenous habit.

In the absence of habit,ν1 = ν2 = 0. Using the definitions in (71), it is easy to verify that without habit,

the Euler equation coefficients area1 = a2 = 0; a3 = 1
α

, and the last line in (73) reverts to the last line in

(25).

As noted earlier, linear Euler equations can always be reformulated as functions of the one-period

interest rate, although the implied dynamic restrictions may not be as straight-forward as those in output

equations involving bond rates, such as (31) and (73).

To illustrate, substitute the log-linearized equation under endogenous habit (70) into the first line of (72).

The result can be rearranged as

∆ỹt = Et{ỹt+1 − ỹt−1 + a′1(β∆ỹt+2 + ỹt+1 − ỹt−1) + a′2(β
2∆ỹt+3 + ∆ỹt−1) − a′3ρ̃t}, (74)

where the coefficients are rescaled versions of the coefficients defined in (71),

a′1 =
−a1

1 + a1
; a′2 =

−a2

1 + a1
; a′3 =

a3

1 + a1
. (75)

Again, it is straight-forward to verify that the absence of endogenous habit,ν1 = ν2 = 0, implies that the

equation displaying the one-period interest rate, (74), collapses to the standard NK output equation, shown

in (24).
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Table 1: Bond Rate Responsiveness to Macro Variables1.

r∗t,12h = b0 + b1πt−1 + b11(L)∆πt−1 + b2ut−1 + b22(L)∆ut−1.

rt,12h = b3rt−1,12h + b33(L)∆rt−1,12 + (1 − b3)r
∗

t,12h + at,12h.

bond π u ∆u test
rate b1 b2 b22(1) b3 b1 > 1 2

sample: 1966 m1 - 1979 m9

h = 1 1.37 -1.28 -1.94 .880 .77
(2.8) (-2.0) (-3.1) (12)

h = 3 1.06 -.889 -1.44 .864 .58
(3.8) (-2.3) (-3.2) (13)

h = 5 1.05 -.853 -1.15 .864 .58
(3.6) (-2.1) (-3.2) (15)

h = 10 1.12 -.904 -.812 .898 .64
(3.4) (-1.8) (-3.0) (20)

sample: 1982 m1 - 1987 m7

h = 1 1.96 .068 -3.92 .704 .99
(4.9) (.19) (-2.8) (7.8)

h = 3 1.95 .214 -2.97 .757 .96
(3.7) (.50) (-2.1) (10)

h = 5 1.73 .338 -2.42 .774 .87
(2.7) (.71) (-1.5) (11)

h = 10 1.20 .551 -2.42 .795 .60
(1.6) (1.0) (-1.5) (12)

1. bii(L) are 11th-order polynomials in L. Parentheses contain ratios
of coefficients to asymptotic standard errors.

2. p-values.



Table 2a: Forward rate regressions, pre-Volcker 1966 - 1979,
with benchmark learning rates1.

f∗t,12h = Et

{

c0 + c1π̄t + c2π̃
(k̄)
t,12h + c3ũt,12h + c4∆

(k)ut,12h

}

.

ft,12h = ρ1ft,12(h−1) + ρ2∆
(k)ft,12(h−1) + (1 − ρ1)f

∗

t,12h + at,12h.

forward π̄ π̃(k) ũ ∆(k)u
rate c1 c2 c3 c4 ρ1 ρ2

time-varying perceived natural rates,γπ̄ = γū = 0.015

h = 1-3 .588 -.042 – – .513 -.009
(9.2) (-0.4) (16) (-0.2)

.581 -.042 -.023 – .509 -.005
(9.1) (-0.4) (-0.3) (15) (-0.1)

.581 .056 – -.172 .518 -.017
(9.0) (0.3) (-0.6) (16) (-0.4)

h = 4-6 .904 .661 – – .877 .219
(10) (2.5) (38) (2.5)

.861 .375 -.564 – .873 .211
(8.5) (1.5) (-1.5) (39) (2.4)

.860 2.92 – -2.65 .873 .211
(8.4) (1.8) (-1.5) (39) (2.4)

h = 7-10 .796 2.70 – – .967 .877
(25) (3.9) (178) (20)

.813 1.32 -2.86 – .967 .873
(25) (1.8) (-3.7) (179) (20)

.813 13.8 – -13.1 .967 .873
(25) (4.3) (-3.7) (179) (20)

1. Superscript(k̄) denotesk-period averages. For monthly data, k = 12.
Parentheses contain ratios of coefficients to HAC standard errors.
VAR forecast model sample: 1960 m1 - 1979 m7.



Table 2b: Forward rate regressions, pre-Volcker 1966 - 1979,
with alternative learning rates1.

f∗t,12h = Et

{

c0 + c1π̄t + c2π̃
(k̄)
t,12h + c3ũt,12h + c4∆

(k)ut,12h

}

.

ft,12h = ρ1ft,12(h−1) + ρ2∆
(k)ft,12(h−1) + (1 − ρ1)f

∗

t,12h + at,12h.

forward π̄ π̃(k) ũ ∆(k)u
rate c1 c2 c3 c4 ρ1 ρ2

fixed perceived inflation target,γπ̄ = γū = 0.0

h = 1-3 1.0 .320 – – .540 -.037
(5.1) (14) (-0.7)

h = 4-6 1.0 .929 – – .970 .312
(1.8) (54) (3.1)

h = 7-10 1.0 1.59 – – .981 .870
(13) (346) (20)

time-varying perceived inflation target,γπ̄ = γū = 0.015

h = 1-3 .588 -.042 – – .513 -.009
(9.2) (-0.4) (16) (-0.2)

h = 4-6 .904 .661 – – .877 .219
(10) (2.5) (38) (2.5)

h = 7-10 .796 2.70 – – .967 .877
(25) (3.9) (178) (20)

time-varying perceived inflation target,γπ̄ = 0.03; γū = .015

h = 1-3 .499 -.012 – – .503 -.001
(10) (-0.2) (17) (-0.0)

h = 4-6 .670 .422 – – .866 .216
(9.9) (2.1) (36) (2.3)

h = 7-10 .694 1.24 – – .965 .879
(26) (4.0) (164) (20)

1. Superscript(k̄) denotesk-period averages. For monthly data, k = 12.
Parentheses contain ratios of coefficients to HAC standard errors.
VAR forecast model sample: 1960 m1 - 1979 m7.



Table 3a: Forward Rate Regressions, Volcker 1982 - 1987
with benchmark learning rates1.

f∗t,12h = Et

{

c0 + c1π̄t + c2π̃
(k̄)
t,12h + c3ũt,12h + c4∆

(k)ut,12h

}

.

ft,12h = ρ1ft,12(h−1) + ρ2∆
(k)ft,12(h−1) + (1 − ρ1)f

∗

t,12h + at,12h.

forward π̄ π̃(k) ũ ∆(k)u
rate c1 c2 c3 c4 ρ1 ρ2

time-varying perceived natural rates:γπ̄ = γū = 0.015

h = 1-3 3.63 .732 – – 0.574 -.155
(8.4) (2.6) (9.9) (-3.1)

3.62 .731 .007 – .574 -.155
(9.5) (2.8) (0.0) (10) (-3.1)

3.85 .429 – .759 .529 -.120
(9.9) (1.3) (1.9) (9.1) (-2.4)

h = 4-6 3.28 1.12 – – .918 -.232
(3.6) (1.8) (24) (-2.3)

.754 9.18 -20.2 – .955 -.265
(0.2) (1.1) (-1.0) (26) (-2.7)

.226 -1.50 – 13.3 .958 -.268
(0.1) (-0.6) (1.0) (27) (-2.8)

h = 7-10 -.686 6.64 – – .957 .450
(-0.4) (1.6) (60) (5.4)

1.62 -76.1 119 – .942 .485
(2.0) (-2.6) (2.7) (65) (6.4)

2.15 -7.67 – -28.6 .934 .467
(2.7) (-1.9) (-3.2) (60) (6.2)

1. Superscript(k̄) denotesk-period averages. For monthly data, k = 12.
Parentheses contain ratios of coefficients to HAC standard errors.
VAR forecast model sample: 1982 m1 - 1987 m7.



Table 3b: Forward rate regressions, Volcker 1982 - 1987,
with alternative learning rates1.

f∗t,12h = Et

{

c0 + c1π̄t + c2π̃
(k̄)
t,12h + c3ũt,12h + c4∆

(k)ut,12h

}

.

ft,12h = ρ1ft,12(h−1) + ρ2∆
(k)ft,12(h−1) + (1 − ρ1)f

∗

t,12h + at,12h.

forward π̄ π̃(k) ũ ∆(k)u
rate c1 c2 c3 c4 ρ1 ρ2

fixed perceived inflation target,γπ̄ = γū = 0.0

h = 1-3 1.0 4.37 – – .850 -.262
(2.1) (24) (-4.8)

h = 4-6 1.0 75.7 – – .978 -.285
(1.1) (53) (-2.9)

h = 7-10 1.0 36.2 – – .936 .412
(0.9) (80) (4.6)

time-varying perceived inflation target,γπ̄ = γū = 0.015

h = 1-3 3.63 .732 – – .574 -.155
(8.4) (2.6) (9.9) (-3.1)

h = 4-6 3.28 1.12 – – .918 -.232
(3.6) (1.8) (24) (-2.3)

h = 7-10 -.686 6.64 – – .957 .450
(-0.4) (1.6) (60) (5.4)

time-varying perceived inflation target,γπ̄ = 0.03; γū = .015

h = 1-3 2.22 .774 – – .617 -.171
(5.7) (2.3) (10) (-3.3)

h = 4-6 2.04 1.38 – – .933 -.240
(2.8) (1.7) (26) (-2.3)

h = 7-10 1.40 4.01 – – .934 .441
(3.1) (3.2) (61) (5.6)

1. Superscript(k̄) denotesk-period averages. For monthly data, k = 12.
Parentheses contain ratios of coefficients to HAC standard errors.
VAR forecast model sample: 1982 m1 - 1987 m7.



Figure 1: Inflation and the negative of natural rate deviations in unemployment1
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1. Twelve-month moving average of annualized inflation in the deflator for personal consumption
expenditures (pce), and the negative of deviations in the civilian unemployment rate from
the Congressional Budget Office (2004) estimate of the natural rate for unemployment.



Figure 2: Sensitivity of real bond rates to inflation target perceptions1
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1. The central bank target for inflation perceived by bond traders,π̄t, is fixed in the top panel,
difference-stationary in the middle panel, and based on change-point learning in the bottom
panel (see text). Thin dotted line is real federal funds rate; thin solid line is real rate on a 1-year
zero coupon bond (ZCB); thick dotted line is real rate on a 5-year ZCB; and thick solid line is
real rate on a 10-year ZCB.



Figure 3: Perceived central bank target for inflation1
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1. solid line: perceived inflation target with learning gain, γπ̄ = .015 (see text).
dashed: Hoey survey of expected 5-10 year inflation.
dotted: inflation in personal consumption expenditure (pce) deflator, 12-month average.

Figure 4: Perceived natural rate of unemployment1
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1. solid line: perceived natural rate of unemployment with learning gainγū = .015 (see text).
dashed: Congressional Budget Office (2004) estimate of natural rate for unemployment.
dotted: civilian unemployment rate.



Figure 5: Forward interest rates1
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1. thin solid line: 1-year forward rates; thin dotted line: 3-year forward rates; thick dotted line:
5-year forward rates; thick solid line: 10-year forward rates. Forward interest rates from
McCulloch-Kwon (1993).




