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test not only whether a particular variable has predictive content but also 
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1 Introduction

It is well known that in-sample evidence of predictive content of a particular variable – for

example the significance of a t-statistic – frequently does not imply an improvement in fore-

cast accuracy. Often it is the case that a model that excludes that variable provides lower

mean square errors in an out-of-sample exercise. There are many possible reasons for such

to occur, including the presence of unmodeled structural change (Clark and McCracken,

2005) and data-snooping (White, 2000).

Another well-known reason is overfitting, or to be more precise, the absence of enough

data to precisely estimate model parameters prior to forecasting. In fact, this is the primary

motivation for the development of information criteria. One punchline of this literature is

that in many practical situations, estimating additional parameters can raise the forecast

error variance above what might be obtained with a simple model. Such is clearly true

when the additional parameters have population values of zero. But the same can apply

even when the population values of the additional parameters are non–zero, if the additional

explanatory power associated with the additional parameters is low enough. In such cases,

in finite samples the additional parameter estimation noise may raise the forecast error

variance more than including information from additional variables lowers it.

As this discussion suggests, parameter estimation noise creates a forecast accuracy trade-

off. Excluding some variables that truly belong in the model could adversely affect forecast

accuracy. Yet including the variables could raise the forecast error variance if the associated

parameters are estimated sufficiently imprecisely. Surprisingly, however, this well-known

fact is rarely taken into account when examining putative predictive content. In other

words, while the t-statistics that are commonly reported based upon in-sample fit provide

information regarding whether or not the variable has a non-zero signal, it does not necce-

sarily convey whether or not that signal is estimated precisely enough to improve forecast

accuracy relative to a model that excludes it.

Accordingly, this paper presents analytical, Monte Carlo, and empirical evidence on

in-sample tests of predictive content from nested models — for tests that take account of

the bias-variance trade-off described above. These tests are straightforward extensions of

the standard F -, t- and HAC-robust Wald tests for predictability. In applications when

the forecast errors are 1-step ahead and form a conditionally homoskedastic martingale

difference sequence, the F - and HAC-robust Wald tests can be used directly, but with
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critical values taken from the non-central — rather than the more typical central — χ2

distribution. Compared to the usual approach based on standard (central) distributions,

our suggested approach raises the bar for including a predictor in the estimated forecasting

model. In the simplest case where one additional predictor is being considered at a 10

percent significance level, the usual Wald test statistic would be compared against a non–

central χ2 critical value of 5.217 instead of the central χ2 critical value of 2.706 (= 1.6452).

In the same environment, when using the standard t-statistic, critical values can be taken

from standard normal tables after centering the t-statistic based upon the assumed sign of

the relevant coefficient.

In more general environments that allow multi-step forecasts and that have forecast

errors that are conditionally heteroskedastic, we are able to establish a similar result in

the scalar case where there is a single additional predictor in the unrestricted model. We

are unable to establish a comparable result in the non-scalar case when either conditional

heteroskedasticity or serial correlation are present in the model errors. In those cases for

which our theory applies, we are able to establish the asymptotic validity of a novel, simple

bootstrap procedure that approximates the relevant critical values. Our Monte Carlo results

indicate that, in some practical settings, bootstrap inference is more reliable than inference

based on asymptotic critical values (from non-central distributions).

Our results are most closely related to those in Trenkler and Toutenberg (1992). These

authors begin by deriving the difference in mean square forecast error, E(û2
1,T+1 − û2

2,T+1),

between two nested classical normal linear regression models, each estimated by OLS using

data available at time T . They proceed to show that for this difference to be zero, not only

do the additional predictors in the unrestricted model have to have some predictive content

(i.e., not all the additional coefficients are zero), but also the non-centrality parameter from

the associated F -statistic has to equal 1. They conclude that if one wants to construct

an in-sample test of equal out-of-sample forecast accuracy, the standard F -statistic can

be constructed as is typical but critical values need to be taken from a non-central F -

distribution with non-centrality parameter equal to 1 for accurate inference. A related

result is discussed in Toro-Vizcarrondo and Wallace (1968).

Note, however, that this existing result requires strong assumptions on the type of data

being used. The predictors must be strictly exogenous, and the model errors must be

conditionally homoskedastic, serially uncorrelated, and normally distributed. Any one of
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these assumptions precludes application to a wide range of macroeconomic and financial

data. To get around this issue, we provide asymptotically valid results that can be used to

approximate the finite-sample problem. Our analytics are based on models we characterize

as “weakly nested”: the unrestricted model is the true model, but as the sample size grows

large, the DGP converges to the restricted model. This analytic approach captures the

practical reality that, in many instances, the predictive content of some variables of interest

is quite low. Admittedly, by taking this approach, we lose the “exact” finite-sample size

results available from the Trenkler and Toutenberg result. However, we gain applicability

to enviroments that are relevant to most applied research. Our Monte Carlos experiments

suggest that our asymptotic approximation yields accurate inference in many cases.

Another closely related result is discussed in Torous and Valkanov (2000). There the

authors provide analytical evidence on the “right” way to model the signal-to-noise ratio in

a noisy predictive regression: one in which the dependent variable is highly variable and the

conditioning variable has a very low signal. Loosely speaking, they argue that the signal-

to-noise ratio should be modeled as being on the order of T−2a for some a ≥ 0. With this

parameterization in hand they show that if 0 ≤ a < 1/2 we should expect the predictor

to be useful for forecasting in finite samples.1 But if a > 1/2, we should not expect the

predictor to be useful. The case in which a = 1/2 implies that, for the given sample size,

the predictor is on the boundary of predictability. For a range of common predictors used

to forecast monthly excess stock returns, they find that median unbiased estimates of a tend

to lie very close to, or above, 1/2 and hence we should not be surprised that out-of-sample

predictions of excess stock returns tend to do no better or worse than a simple random

walk. In the language of their paper, our analytical results can be interpreted as providing

a formal test for whether or not the predictor is on the boundary of predictability. Our

approach though, is different from theirs – as will become clear in the following section.

The paper proceeds as follows. Section 2 provides theoretical results on in-sample tests

of equal out-of-sample forecast accuracy as well as our suggested bootstrap approach to

constructing critical values. In section 3 we present Monte Carlo evidence on the finite-

sample effectiveness of our proposed testing procedure. Section 4 illustrates the use of the

testing procedures in determining the predictability of stock returns. Section 5 concludes.
1For more detail the reader should reference the Torous and Valkanov paper directly. In this discussion,

we are modifying their notation, and a bit of their interpretation, in order to simplify the comparison of
their results to ours. In particular, we should note that they focus on the case in which the predictor is
highly persistent whereas we restrict attention to predictors that are covariance stationary.
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Proofs are provided in the Appendix.

2 Theory

We begin by laying out the necessary notation and assumptions sufficient for our results. We

then provide an analytical characterization of the bias-variance tradeoff, created by weak

predictability, involved in choosing between restricted and unrestricted forecasts. Given

that tradeoff, we then derive a test of equal predictive ability based on a null hypothesis

under which the competing models yield equally accurate forecasts, in light of the parameter

estimation error associated with estimating the coefficients on the weak predictors.

2.1 Environment

The possibility of weak predictors is modeled using a sequence of linear DGPs of the form

(Assumption 1)

yT,t+τ = x′T,2,tβ2,T + uT,t+τ = x′T,1,tβ1 + x′T,22,t(T
−1/2β22) + vT,t+τ , (1)

ExT,2,tuT,t+τ ≡ EhT,t+τ = 0 for all t = 1, ...T.

Note that we allow the dependent variable yT,t+τ , the predictors xT,2,t and the error term

vT,t+τ to depend upon T , the final forecast origin. We make this explicit in the notation

to emphasize that as the overall sample size is allowed to increase in our asymptotics, this

parameterization affects their marginal distributions.

At the fixed forecast origin T , our forecasting agent observes the sequence {yT,t, x′T,2,t}T
t=1.

Forecasts of the scalar yT,T+τ , τ ≥ 1, are to be generated using a (k × 1, k = k1 + k2) vec-

tor of covariates xT,2,t = (x′T,1,t, x
′
T,22,t)

′ and one of the linear parametric models x′T,i,tβi,

i = 1, 2. The parameters are estimated using OLS (Assumption 2) and hence β̂i,T =

arg minβi

∑T−τ
t=1 (yT,t+τ − x′T,i,tβi

)2, i = 1, 2, for the restricted and unrestricted models, re-

spectively. We denote the loss associated with the τ -step ahead forecast error as û2
T,i,T+τ =

(yT,T+τ − x′T,i,T β̂i,T )2, i = 1, 2, for the restricted and unrestricted models, respectively.

The model residuals, v̂T,i,t+τ , i = 1, 2, t = 1, T − τ , associated with the time T estimated

restricted and unrestricted models are defined similarly.

The following additional notation will be used. Let Hi(T ) = (T−1 ∑T−τ
t=1 xT,i,tvT,t+τ ) =

(T−1 ∑T−τ
t=1 hT,i,t+τ ), Bi(T ) = (T−1 ∑T−τ

t=1 xT,i,tx′T,i,t)
−1, and Bi = limT→∞(ExT,i,tx′T,i,t)

−1

for i = 1, 2. For UT,t = (h′T,2,t+τ , vec(xT,2,tx′T,2,t)
′)′, let V =

∑τ−1
l=−τ+1 Ω11,l, where Ω11,l is
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the upper block-diagonal element of Ωl defined below. We define the selection matrices J =

(Ik1×k1 , 0k1×k2)′ and J2 = (0k2×k1 , Ik2×k2)′ as well as the second moment matrices F2(T ) =

J ′2B2(T )J2 and F2 = limT→∞(ExT,22,tx′T,22,t−ExT,22,tx′T,1,t(ExT,1,tx′T,1,t)
−1ExT,1,tx′T,22,t)

−1.

Finally, let W (1) denote a vector standard Normal random variate and σ̂2
T = T−1 ∑T−τ

t=1 v̂2
T,2,t+τ .

To derive our results, we need two more assumptions (in addition to our assumptions (1

and 2) of a DGP with weak predictability and OLS–estimated linear forecasting models).

Assumption 3: (a) T−1 ∑[rT ]
j=1 UT,jU ′

T,j−l ⇒ rΩl where Ωl = limT→∞ T−1 ∑T
t=1 E(UT,jU ′

T,j−l )

for all l ≥ 0. (b) Ω11,l = 0 all l ≥ τ . (c) supT≥1,s≤T E|UT,s|2q < ∞ for some q > 1. (d)

UT,j − EUT,j = (h′T,2,j+τ , vec(xT,2,jx′T,2,j − ExT,2,jx′T,2,j)
′)′ is a zero mean triangular array

satisfying Theorem 1 of de Jong (1997).

Assumption 4: (a) Let K(x) be a continuous kernel such that for all real scalars x, |K(x)| ≤

1, K(x) = K(−x) and K(0) = 1. (b) For some bandwidth L and constant i ∈ (0, 0.5),

L = O(T i). (c) The number of covariance terms j̄ used to estimate the long-run variance

V defined above satisfies τ − 1 ≤ j̄ <∞.2

Assumption 3 imposes three types of conditions. First, in (a) and (c) we require that

the observables, while not necessarily covariance stationary, are asymptotically mean square

stationary with finite second moments. We do so in order to allow the observables to have

marginal distributions that vary as the weak predictive ability strengthens along with the

sample size but are ‘well-behaved’ enough that, for example, sample averages converge in

probability to the appropriate population means. Second, in (b) we impose the restriction

that the τ -step ahead model errors are MA(τ − 1). We do so in order to emphasize the

role that weak predictors have on forecasting without also introducing other forms of model

misspecification. In (d) we impose the high level assumption that, in particular, hT,2,t+τ sat-

isfies Theorem 1 of De Jong (1997). By doing so we insure (results needed in the Appendix)

that certain scaled sample averages converge in distribution to normal random variates.

Finally, Assumption 4 simply provides primitive conditions under which a nonparametric,

kernel-based estimator V (T ) =
∑j̄

j=−j̄
K(j/M)(T−1∑T−τ

s=1+j v̂T,i,s+τ v̂T,i,s+τ−jxT,2,sx′T,2,s−j)

of the long-run variance matrix V will be consistent

With these assumptions in hand we first lay the groundwork for our tests. As noted

in the introduction, Trenkler and Toutenberg (1992) derive an exact, finite-sample result
2In our Monte Carlo simulations and empirical work we use a Newey and West (1987) kernel with

bandwidth 0 for horizon = 1 and bandwidth 1.5*horizon otherwise.
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relating the non-centrality parameter associated with the F -statistic to the null hypothesis

H0: E(û2
1,T+1 − û2

2,T+1) = 0. However, their result requires classical normal regression

assumptions in order to hold. Our goal is to obtain a similar result but under significantly

weaker assumptions on the data. To simplify our notation, we omit the additional “T”

subscript, associated with the triangular array nature of the observables, unless necessary

to avoid confusion.

2.2 Testing for equal forecast accuracy

We first establish an asymptotic approximation to the expected loss differential, in the

following Proposition.

Proposition 1: Maintain Assumptions 1-3. Then limT→∞ T · E(û2
1,T+τ − û2

2,T+τ ) =

β′22F
−1
2 β22 − tr((−JB1J ′ + B2)V ).

The expected loss differential is comprised of two components. The first, β′22F
−1
2 β22,

captures the marginal increase in mean square error that arises due to the omitted variable

bias when estimating the restricted model. The second, tr((−JB1J ′ + B2)V ), captures

the marginal increase in mean square error that arises due to the imprecise estimation of

the weak predictor in the unrestricted model. The tradeoff between these two components

suggests a test for equal predictive ability that accounts for the weak predictive ability

associated with the additional predictors in the unrestricted model. To see this, note that

if we set this expectation to zero and rearrange terms we obtain

β′22F
−1
2 β22 = tr((−JB1J

′ + B2)V ), (2)

which simply states that the non-centrality parameter associated with the asymptotic dis-

tribution of the standard F -test (essentially the LHS of the equation) takes a particular

value that depends upon the second moments of the data through B1, B2, and V – each

of which is consistently estimable. Note that for conditionally homoskedastic 1-step ahead

forecasts, this restriction simplifies to

β′22F
−1
2 β22 = σ

2
k2 (3)
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With this in mind, we consider whether three commonly used tests of predictive ability

can be used to test the null of equal predictive ability accounting for parameter estimation

error: the standard F -test GC(T ) = T β̂
′
2,T J2(σ̂−2

T F−1
2 (T ))J ′2β̂2,T , its HAC-robust Wald

version GC ′(T ) = T β̂
′
2,T J2(J ′2B2(t)V (T )B2(T )J2)−1J ′2β̂2,T , and the HAC-robust t-test

t(T ) = T 1/2J ′2β̂2,T /(J ′2B2(t)V (T )B2(T )J2)1/2. In this analysis, note that the Spectral De-

composition Theorem implies M = (−F 1/2
2 Ex22,tx′1,tB1, F

1/2
2 )V (−F 1/2

2 Ex22,tx′1,tB1, F
1/2
2 )′ =

DAD′, for a (k2×k2) orthonormal matrix D and diagonal matrix A of eigenvalues associated

with M .

If we define limT→∞Eu2
T,t+1 = σ2 and continue to maintain Assumptions 1-4 we obtain

the following Proposition.

Proposition 2: Maintain Assumptions 1-4. Then GC(T )→d (W (1)−A−1/2D′F−1/2
2 β22)′

× A(W (1)−A−1/2D′F−1/2
2 β22) and GC ′(T )→d χ2(k2,Λ), Λ = β′22(J ′2B2V B2J2)−1β22.

Proposition 2 characterizes the limiting distribution of the standard F -test, as well

as the autocorrelation and (conditional) heteroskedasticity-robust Wald statistic, allowing

for weak predictors. When we allow the model errors to be conditionally heteroskedas-

tic or serially correlated, GC(T ) is asymptotically mixed non-central χ2, while GC ′(T )

is asymptotically non-central χ2. Unfortunately, in both cases, this result is not imme-

diately useful for testing the null limT→∞ T · E(û2
1,T+τ − û2

2,T+τ ) = 0 or, to be precise,

β′22F
−1
2 β22 = tr((−JB1J ′ + B2)V ). The problem is that the null implies a restriction

that we cannot directly impose on either of the limiting distributions. In the former

case, the distribution depends explicitly on each of the separate non-centrality parameters

from the mixture rather than (say) some aggregate of these noncentrality parameters (like

β′22F
−1
2 β22). In the latter case, the non-centrality parameter bears no obvious relationship

with β′22F
−1
2 β22. In the following Corollary we see that under some important special

cases, these distributions are in fact useful for testing the null hypothesis.

Corollary 1: Maintain Assumptions 1-4. (a) Let uT,t+1 be conditionally homoskedastic.

If limT→∞ T ·E(û2
1,T+1 − û2

2,T+1) = 0 then both GC(T ) and GC ′(T )→d χ2(k2, k2). (b) Let

k2 = 1. If limT→∞ T ·E(û2
1,T+τ − û2

2,T+τ ) = 0 then GC(T )→d (tr((−JB1J ′ + B2)V )/σ2) ·

χ2(1, 1) and GC ′(T )→d χ2(1, 1).
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In part (a) of the corollary, when we impose the restriction that the model errors are

conditionally homoskedastic and from 1-step ahead forecasts, both asymptotic distribu-

tions depend explicitly upon β′22F
−1
2 β22 — a quantity whose value is restricted to be

tr((−JB1J ′ + B2)V ) = σ2k2 under the null. Similarly, in part (b) of the corollary, each of

the distributions in Proposition 2 simplify significantly to ones that can easily be used to

provide critical values for asymptotically valid inference.

Accordingly, motivated by the principle of parsimony that often applies in effective fore-

casting, we suggest a non–central testing approach that takes equal predictive ability as

the null hypothesis, and selects the unrestricted model if the test rejects in the positive

tail but otherwise selects the restricted model.3 In particular, when the forecast errors

are 1-step ahead and conditionally homoskedastic we suggest an approach of rejecting (at,

say, the 10% level) the restricted model in favor of the unrestricted if GC(T ) (or GC ′(T ))

is larger than the 90%-ile associated with a χ2(k2, k2) distribution rather than the more

typical central χ2(k2) distribution. Moreover, when β22 is scalar and either the forecast

errors are conditionally heteroskedastic or the forecast horizon is greater than one, we sug-

gest an approach of rejecting the restricted model in favor of the unrestricted if GC ′(T )

(or (σ̂2
T /tr((−JB1(T )J ′+ B2(T ))V (T ))) ·GC(T )) is larger than 5.217 – the 90%-ile associ-

ated with a χ2(1, 1) distribution rather than the more typical value of 2.706 – the 90%-ile

associated with the central χ2(1) distribution.

Critical values and p-values from the noncentral χ2 distribution — while not as common

as its centralized version — are available in many econometric software packages (including

Matlab, Rats, R, and SAS). Another alternative is to directly simulate the critical values

using the formulas provided in sources such as Imhof (1961). While the necessary asymp-

totic critical values are straightforward to obtain or construct, below we also discuss an

alternative, bootstrap-based method for constructing estimates of the critical values. In

finite samples, this bootstrap method may yield more accurate inference.

Although each of the GC(T ) and GC ′(T ) statistics from Proposition 2 are commonly

used to test for predictive ability, perhaps the most common is the simple t-statistic. This

is certainly true when β22 is scalar but particularly true when one is willing to impose
3Depending on what alternatives are of interest, many other non–centrality parameters and model selec-

tion rules could be justified. For example, based on the null of equal predictive ability, which implies the
MSE–minimizing forecast to be a simple average of the restricted and unrestricted forecasts, one might use
the simple average as the default forecast and select the unrestricted forecast if the non–central test rejects.
We considered some such alternatives in our Monte Carlo analysis, but from a forecast accuracy perspective,
none seemed to offer any general advantages over the approaches for which we report results.
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the additional restriction that β22 takes a particular sign, since by doing so there may

be a gain in the power of the test.4 Consider then the autocorrelation and (conditional)

heteroskedasticity robust t-statistic.

Proposition 3: Maintain Assumptions 1-4. Then (a) t(T ) →d N(Λ1/2, 1), where Λ1/2 =

β22(J ′2B2V B2J2)−1/2. (b) If limT→∞ T · E(û2
1,T+τ − û2

2,T+τ ) = 0, t(T )→d N(sign(β22), 1).

Proposition 3 characterizes the limiting distribution of the HAC–robust t-statistic. It

is asymptotically normal with unit variance and non-zero mean that, when squared, gives

us the noncentrality parameter associated with GC ′(T ). While part (a) is unsurprising,

in part (b) we find that regardless of the presence of conditional heteroskedasticity or

autocorrelation in the forecast errors, if we are willing to assume the sign of β22 we can

easily impose the null hypothesis. In particular, part (b) of Proposition 3 implies that

t(T )−sign(β22) is asymptotically standard normal under the null hypothesis. We can then

readily test for equal predictive ability by rejecting the null hypothesis when t(T )−sign(β22)

is sufficiently small (when β22 < 0) or large (when β22 > 0) relative to standard normal

critical values.

We should stress that our proposed tests based on non-central distributions address a

null hypothesis that differs from the usual null hypothesis associated with tests compared

against central distributions. Standard tests pertain to a null hypothesis of β22 = 0, which

implies that, at the population level, the restricted and unrestricted models will be equally

accurate for forecasting. Instead, our tests based on non-central distributions allow β22 to

be non-zero, such that, in a finite sample, forecasts from the restricted and unrestricted

models can be expected to be equally accurate.

Regardless of this non-standard null hypothesis – that limT→∞ T ·E(û2
1,T+τ − û2

2,T+τ ) =

0 – we do expect our tests to have good power against the alternative that limT→∞ T ·

E(û2
1,T+τ − û2

2,T+τ ) > 0. To see this note that both the non–central chi–square and normal

distributions have the monotone likelihood ratio property5 and hence we can conclude

that GC ′(T ), (σ̂2
T /tr((−JB1(T )J ′ + B2(T ))V (T ))) · GC(T ), and t(T ) are (asymptotically)

uniformly most powerful against this alternative.
4The power advantages of such one-sided tests of predictive ability is compared to out-of-sample tests of

predictive ability in Inoue and Kilian (2004).
5See Eaton (2007, pp. 465-470) for a proof using the non-central chi-square distribution and DeGroot

(1984, p. 468) for a proof using the normal distribution.
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2.3 Bootstrap-based critical values with weak predictors

Our new, bootstrap-based method of approximating the asymptotically valid critical val-

ues for pairwise comparisons between nested models is different from parametric methods

previously used in studies such as Kilian (1999). In Kilian’s (1999) application, an ap-

propriately dimensioned VAR was initially estimated by OLS imposing the restriction that

β22 was set to zero and the residuals saved for resampling. The recursive structure of the

VAR was then used to generate a large number of artificial samples, each of which was used

to construct the test statistic. The relevant sample percentile from this large collection of

artificial statistics was then used as the critical value.

However, there are two reasons we should not expect this bootstrap approach to provide

accurate inference in the presence of weak predictors. First, imposing the restriction that

β22 is set to zero implies a null of equal population — not finite-sample — predictive ability.

Second, by creating the artificial samples using the recursive structure of the VAR, we are

imposing the restriction that equal 1-step ahead predictive ability implies equal predictive

ability at longer horizons. Our present framework in no way imposes that restriction. We

take an entirely different approach to imposing the relevant null hypothesis and generate

the artificial samples.

To see the basis of our bootstrap, first note that with a minor rearrangement of terms,

the null hypothesis imposes the restriction δ′J2F
−1
2 J ′2δ = tr((−JB1J ′ + B2)V ) where δ =

(0, β′22)′. While this restriction is infeasible due to the various unknown moments and

parameters, it suggests a closely related, feasible restriction quite similar to that used in

ridge regression. However, instead of imposing the restriction that β′22β22 = c for some

finite constant — as one would in a ridge regression — we instead impose the restriction that

δ′J2F
−1
2 (T )J ′2δ equals tr((−JB1(T )J ′+B2(T ))V (T )). In addition, we estimate δ using the

approximation δ̂ = (0, T 1/2β̃22,t)′ where β̃22,T denotes the restricted least squares estimator

of the parameters associated with the weak predictors satisfying

β̃2,T = (β̃
′
1,T , β̃

′
22,T )′

= arg min
b2

∑T−τ

s=1
(ys+τ − x′2,sb2)2 (4)

s.t. b′2J2F
−1
2 (T )J ′2b2 = tr((−JB1(T )J ′ + B2(T ))V (T ))/T.

For a given sample size, this estimator is equivalent to a ridge regression if the weak predic-

tors are orthonormal. More generally, though, it lies in the class of asymptotic shrinkage

10



estimators discussed in Hansen (2008).

This approach to imposing the null hypothesis is directly comparable to the direct multi-

step forecasting approach we assume is used to construct the forecasts, so the restriction

can vary with the forecast horizon τ . This approach therefore precludes using a VAR and

its recursive structure to generate the artificial samples. Instead we use a variant of the

wild fixed regressor bootstrap developed in Goncalves and Kilian (2007) that accounts for

the direct multi-step nature of the forecasts. Specifically, in our framework the x’s are held

fixed across the artificial samples and the dependent variable is generated using the direct

multi-step equation y∗s+τ = x′2,sβ̃2,T + v̂∗s+τ , s = 1, ..., T − τ , for a suitably chosen artificial

error term v̂∗s+τ designed to capture both the presence of conditional heteroskedasticity and

an assumed MA(τ − 1) serial correlation structure in the τ -step ahead forecasts. Specif-

ically, we construct the artificial samples and bootstrap critical values using the following

algorithm.6

1. (a) For the GC(T ) or GC ′(T ) statistics, construct the parameter vector β̃2,T asso-

ciated with the unrestricted model using the weighted ridge regression from equation (4)

above.

(b) For the t(T ) statistic, do the same but also imposing the restriction that sign(β̃22,T ) =

sign(β22).7

2. Using nonlinear least squares, estimate an MA(τ − 1) model for the OLS residuals

(from the unrestricted model) v̂2,s+τ such that v2,s+τ = ε2,s+τ +θ1ε2,s+τ−1 + ...+θτ−1ε2,s+1.

Let ηs+τ , s = 1, ..., T − τ , denote an i.i.d N(0, 1) sequence of simulated random variables.

Define v̂∗2,s+τ = (ηs+τ ε̂2,s+τ+ θ̂1ηs−1+τ ε̂2,s+τ−1+...+θ̂τ−1ηs+1ε̂2,s+1), s = 1, ..., T−τ . Form

artificial samples of y∗s+τ using the fixed regressor structure y∗s+τ = x′2,sβ̃2,T + v̂∗s+τ .

3. Using the artificial data, construct an estimate of the various test statistics (e.g.,

GC(T ), GC ′(T ), and t(T )) as if this were the original data.
6Our approach to generating artificial samples of multi-step forecast errors builds on a sampling approach

proposed in Hansen (1996). Note also that while we use nonlinear least squares estimates of the MA model
(for computational speed in our Monte Carlo), it would also be valid to use maximum likelihood estimation.

7Straightforward algebra provides a closed form solution for this estimator. If we let λ̂ denote
an estimate of the Lagrange multiplier and C′

12(T ) = J ′B−1
2 (T )J2, we find that it satisfies β̃2,T = 

I λ̂
1+λ̂

B1(T )C12(T )

0 1
1+λ̂

I

!
β̂2,T , where 1

1+λ̂
= ±

r
tr((−JB1(T )J′+B2(T ))V (T ))

(T1/2β̂2,T )′J2F−1
2 (T )J′2(T1/2β̂2,T )

. For the GC(T ) and

GC′(T ) statistics the sign of 1
1+λ̂

is asymptotically irrelevant since the asymptotic distribution only depends

upon ( 1
1+λ̂

)2. For the t(T ) statistic the sign of 1
1+λ̂

matters for the asymptotic distribution. Valid inference

requires using the value of 1
1+λ̂

that implies sign(β̃22,T ) = sign(β22). Note that this implies that the correct

sign of 1
1+λ̂

depends upon the sign of β̂22,T .
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4. Repeat steps 2 and 3 a large number of times: j = 1, ..., N .

5. Reject the null hypothesis, at the α% level, if the test statistic is greater than the

(100− α)%-ile of the empirical distribution of the simulated test statistics.

By using the weighted ridge regression to estimate the model parameters, we are able, in

large samples, to impose the restriction that the implied estimates (T 1/2β̃22,T ) of the local-

to-zero parameters β22 satisfy our approximation to the null hypothesis. This is despite

the fact that the estimates of β22 are not consistent. As we see below, our bootstrap is

asymptotically valid in precisely those cases for which our theory applies despite the fact that

we are unable to consistently estimate the local-to-zero parameters β22. Before providing

the result, we require a modest strengthening of the moment conditions in Assumption 3.

Assumption 3′: (a) T−1 ∑[rT ]
j=1 UT,jU ′

T,j−l ⇒ rΩl where Ωl = limT→∞ T−1 ∑T
t=1 E(UT,jU ′

T,j−l )

for all l ≥ 0. (b) E(ε2,s+τ |ε2,s+τ−j , x2,s−j j ≥ 0) = 0. (c) Let γT = (β′2,T , θ1, ..., θτ−1)′,

γ̂T = (β̂
′
2,T , θ̂1, ..., θ̂τ−1)′, and define the function ε̂2,s+τ = ε̂2,s+τ (γ̂T ) such that ε̂2,s+τ (γT ) =

ε2,s+τ . In an open neighborhood NT around γT , there exists a finite constant c such that

sup1≤s≤T,T≥1 || supγ∈NT
(ε̂2,s+τ (γ),∇ε̂′2,s+τ (γ), xT,2,s)′||4 ≤ c. (d) UT,j − EUT,j = (h′T,2,j+τ ,

vec(xT,2,jx′T,2,j − ExT,2,jx′T,2,j)
′)′ is a zero mean triangular array satisfying Theorem 1 of

de Jong (1997).

Assumption 3′ differs from Assumption 3 in two ways. First, in (b) it emphasizes

the point that the forecast errors, and by implication h2,t+τ , form an MA(τ − 1) pro-

cess. Second, in (c) it bounds the second moments not only of h2,t+τ = (ε2,s+τ +

θ1ε2,s+τ−1 + ...+θτ−1ε2,s+1)x2,s (as in Assumption 3) but also the functions ε̂2,s+τ (γ)xT,2,s,

and ∇ε̂2,s+τ (γ)xT,2,s for all γ in an open neighborhood of γT . These assumptions are

primarily used to show that the bootstrap estimator V ∗(T ), which is a function of the es-

timated errors ε̂2,s+τ , is a consistent estimate of V . Such an assumption is not needed

for showing that V (T ) is a consistent estimate of V since the model residuals v̂2,s+τ are

linear functions of β̂2,T and Assumption 3 already imposes moment conditions on v̂2,s+τ via

moment conditions on h2,s+τ .

Proposition 4: Maintain Assumptions 1, 2, 3′, and 4. (a) Let uT,t+1 be conditionally

homoskedastic. If limT→∞ T ·E(û2
1,T+1 − û2

2,T+1) = 0 then both GC∗(T ) and GC ′∗(T )→d

χ2(k2, k2). (b) Let k2 = 1. If limT→∞ T · E(û2
1,T+τ − û2

2,T+τ ) = 0 then GC∗(T ) →d

(tr((−JB1J ′ + B2)V )/σ2) · χ2(1, 1), GC ′∗(T )→d χ2(1, 1), and t∗(T )→d N(sign(β22), 1).
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In both (a) and (b) of Proposition 4, our fixed-regressor bootstrap provides an asymp-

totically valid method of estimating the critical values associated with the null of equal

finite-sample forecast accuracy. In (a), we require that the forecast errors be 1-step ahead

and conditionally homoskedastic. In (b), we allow serial correlation and conditional het-

eroskedasticity but require that β22 is scalar. While neither case covers the broadest situ-

ation in which β22 is not scalar and the forecast errors exhibit either serial correlation or

conditional heteroskedasticity, these two special cases cover a wide range of empirically rel-

evant applications. Kilian (1999) argues that conditional homoskedasticity is a reasonable

assumption for 1-step ahead forecasts of quarterly macroeconomic variables. Moreover, in

many applications in which a nested model comparison is made (e.g., Goyal and Welch

(2008)) the unrestricted forecasts are made by simply adding one lag of a single predictor

to the baseline restricted model.

What Proposition 4 does not tell us is whether the proposed bootstrap is adequate

for constructing asymptotically valid critical values under the alternative: that the unre-

stricted model will forecast more accurately than the restricted model. Unfortunately,

there are any number of ways to model the case in which limT→∞ T · E(û2
1,T+τ − û2

2,T+τ )

is greater than zero. For example, rather than modeling the weak predictive ability in

Assumption 1 as T−1/2β22 with limT→∞ T · E(û2
1,T+τ − û2

2,T+τ ) = 0, one could model the

predictive content as T−aCβ22 for constants C <∞ and a ∈ (0, 1/2] satisfying limT→∞ T ·

E(û2
1,T+τ − û2

2,T+τ ) > 0. While mathematically elegant, this approach does not allow us to

analyze the most intuitive alternative in which not only limT→∞ T ·E(û2
1,T+τ − û2

2,T+τ ) > 0,

but also J ′2β̂2,T is a consistent estimator of β22 ,= 0. For this situation to hold we need the

additional restriction that a = 0 and hence β22 is no longer interpretable as a local-to-zero

parameter. With this modification (Assumption 1′) in hand, we address the validity of

the bootstrap under the alternative in the following Proposition.

Proposition 5: Maintain Assumptions 1′, 2, 3′, and 4. (a) Let uT,t+1 be conditionally

homoskedastic. If J ′2β̂2,T →p β22 ,= 0 then both GC∗(T ) and GC ′∗(T ) →d χ2(k2, k2). (b)

Let k2 = 1. If J ′2β̂2,T →p β22 ,= 0 then GC∗(T ) →d (tr((−JB1J ′ + B2)V )/σ2) · χ2(1, 1),

GC ′∗(T )→d χ2(1, 1), and t∗(T )→d N(sign(β22), 1).

In Proposition 5 we see that, indeed, the bootstrap-based test is consistent for test-
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ing the null hypothesis limT→∞ T · E(û2
1,T+τ − û2

2,T+τ ) = 0 against the alternative that

J ′2β̂2,T →p β22 ,= 0 (and hence limT→∞ T ·E(û2
1,T+τ − û2

2,T+τ ) > 0). This follows since un-

der this alternative, the data-based statistics GC(T ), GC ′(T ), or t(T ) each diverge, while

the bootstrap-based statistics GC∗(T ), GC ′∗(T ), or t∗(T ) each retain the same asymptotic

distribution they followed under the null.

3 Monte Carlo Evidence

To evaluate the finite-sample performance of the testing methods described above, we use

Monte Carlo simulations of data-generating processes based on finance applications. In these

experiments, the benchmark restricted predictive model for y includes just a constant; the

unrestricted model adds a lag of other variables with potential predictive content. The

general null hypothesis is that the unrestricted model won’t predict yT+τ more accurately

than the restricted model does. This general null, however, can take different specific forms:

either the additional variables in the unrestricted model have no predictive content, in that

their coefficients are 0, such that, in a finite sample, the restricted forecast of yT+τ is more

accurate; or the coefficients are non-zero but small enough that restricted and restricted

models are expected to predict yT+τ equally accurately.

3.1 Monte Carlo design

For all DGPs, we generate data using independent draws of innovations from the normal

distribution and the autoregressive structure of the DGP. We also consider a range of

sample sizes (T ), reflecting those commonly available in applications to (post-war) monthly

financial data: 240, 360, 480, and 600. We consider prediction horizons of τ = 1 and 12

months ahead. The DGPs are based on empirical relationships among excess stock returns

and various predictors (over a sample of 1956 to 2002), taken from the data set of Goyal and

Welch (2008).8 In all cases, our reported results are based on 20,000 Monte Carlo draws

and 999 bootstrap replications.
8We obtained the data from Amit Goyal’s website. For convenience in reporting DGP coefficients, all

variables were multiplied by 100 prior to estimation of the DGP.

14



3.1.1 DGPs

DGP 1 is based on the empirical relationship between excess returns (yt+τ ) and net issuance

of equity (xt = NTIS in Goyal and Welch (2008)):

yt+τ = bxt + vt+τ

vt+τ = εt+τ + θ1εt+τ−1 + · · · + θτ−1εt+1 (5)

xt+τ = 0.95xt+τ−1 + ut+τ

var
(

εt

ut

)
=

(
18.0
0.18 0.14

)
for τ = 1,

(
25.0
0.20 0.14

)
for τ = 12.

In 1-step ahead experiments (τ = 1), the residual in the DGP for yt+τ is serially uncorrelated,

so the MA coefficients θi = 0 ∀ i. In 12-step ahead experiments (τ = 12), the residual in the

DGP for yt+τ follows an MA(11) process, with coefficients declining gradually from θ1 =

0.95 to θ11 = 0.6, taken from empirical estimates of equations corresponding to the DGPs.

Our specification of the 12-step model is based on a 12-month return (computed as a simple

sum of 1-month returns from t + 1 through t + 12).

In DGP 1 experiments, the restricted and unrestricted prediction models take the fol-

lowing forms, respectively:

yt+τ = α0 + v1,t+τ (6)

yt+τ = α0 + α1xt + v2,t+τ (7)

We consider various experiments with different settings of b, the coefficient on xt, which

corresponds to the elements of our theoretical construct β22/
√

T . In one set of simulations

(Table 1), the coefficient is set to 0, such that the restricted model is expected to predict

yT+τ better than the unrestricted model. In others (Table 2), the coefficient is set to a

value that means the models can be expected to be equally accurate for forecasting yT+τ .

For example, with T = 360, we use b = 0.187 (compared to the empirical estimate of 0.23)

at a prediction horizon of 1 month and b = 1.987 (compared to the empirical estimate of

1.81) at a prediction horizon of 12 months. In another set of experiments (Table 3), the

coefficient is set to 0.3 in 1-step experiments and 2.0 in 12-step experiments, such that the

unrestricted forecast is expected to be more accurate than the restricted forecast.

To verify that our parameterizations yield the intended patterns in predictive content, in

unreported results we have checked the average across Monte Carlo draws of the difference

in the squared forecast errors for period T + τ — specifically, the average across draws of
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v̂2
1,T+τ − v̂2

2,T+τ . Consider the example of DGP 1 with τ = 1 and T = 240, for which the

population forecast error variance is 18.0. In the experiment with b = 0, the restricted

model is, on average, more accurate than the restricted: the mean difference in squared

forecast errors is -0.094, with a t-statistic (from the Monte Carlo sample) of -5.05. In the

experiment with b set at 0.229 to make the models forecast equally well, the models are

indeed equally accurate, on average: the mean difference in squared forecast errors is 0.019,

with a t-statistic of 0.78. Finally, in the experiment with b = 0.3, the unrestricted model

forecasts more accurately than the restricted model: the mean difference in squared forecast

errors is 0.086, with a t-statistic of 4.03.

DGP 2 is based on the empirical relationship among excess returns (yt+τ ), net issuance

of stock (x1,t), long-term bond returns (x2,t), and the term spread (x3,t) (respectively, NTIS,

LTR, and TMS in Goyal and Welch (2008)):

yt+τ = b1x1,t + b2x2,t + b3x3,t + vt+τ

vt+τ = εt+τ + θ1εt+τ−1 + · · · + θτ−1εt+1

x1,t+τ = 0.951x1,t+τ−1 + u1,t+τ (8)

x2,t+τ = 0.072x2,t+τ−1 + u2,t+τ

x3,t+τ = 0.95x3,t+τ−1 + u3,t+τ

var





εt

u1,t

u2,t

u3,t



 =





18.0
0.18 0.14
2.24 0.03 7.29
0.01 0.01 −0.32 0.2



 for τ = 1,





25.0
0.20 0.14
2.18 0.03 7.29
0.03 0.01 −0.32 0.2



 for τ = 12.

In DGP 2 experiments, the restricted and unrestricted prediction models take the fol-

lowing forms:

yt+τ = α0 + v1,t+τ (9)

yt+τ = α0 + α1x1,t + α2x2,t + α3x3,t + v2,t+τ (10)

As in the case of DGP 1, in 1-step ahead experiments (τ = 1), the residual in the DGP

for yt+τ is serially uncorrelated, so θi = 0 ∀ i. In 12-step ahead experiments (τ = 12),

the residual in the DGP for yt+τ follows an MA(11) process, with coefficients declining

gradually, taking the values described above for DGP 1.

As with DGP 1, we consider experiments with three different settings of the set of bi

coefficients, which correspond to the elements of β22/
√

T . In one set of experiments (Table

1), all of the bi coefficients are set to zero, such that the restricted model is expected to
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predict yT+τ better than the unrestricted model does. In others (Table 2), empirically–

based values of the bi coefficients are multiplied by a constant less than one, such that,

in population, the restricted and unrestricted models are expected to be equally accurate

for forecasting yT+τ . For example, with T = 360, we use b1 = 0.18, b2 = 0.09, and b3 =

0.15 at a horizon of 1 month (compared to empirical estimates of, respectively, 0.2, 0.14,

and 0.25) and b1 = 1.24, b2 = 0.50, and b3 = 1.99 at a horizon of 12 months (compared

to empirical estimates of, respectively, 1.6, 0.7, and 2.5). In another set of experiments

(Table 3), in which the unrestricted model is expected to forecast more accurately than the

restricted model does, the coefficients are set to b1 = 0.3, b2 = 0.15, and b3 = 0.25 in 1-step

experiments and b1 = 1.5, b2 = 0.6, and b3 = 2.4 in 12-step experiments.

3.2 Results

Tables 1 through 3 present results for our various Monte Carlo experiments. For DGP 1, for

which the unrestricted model has one more variable than the restricted, we report results

for both a two-sided Wald test and a one-sided t-test. For DGP 2, for which the unrestricted

model has three extra variables, we only report results for the Wald test. The variances

entering the test statistics incorporate the White (1980) correction for heteroskedasticity at

the 1-month horizon and the Newey and West (1987) correction at the 12-month horizon

(using a bandwidth of 18 lags). For each test statistic, we report rejection rates based on the

central χ2 (Wald) or normal (t-test) distributions, non-central χ2 (Wald) or normal (t-test)

distributions, and bootstrap (non-central) distributions. In light of the well-known problems

in long-horizon regression inference associated with estimation of HAC variances (see, e.g.,

Hodrick (1992), Nelson and Kim (1993), and Kirby (1997)), we also report rejection rates

based on a bootstrap of the central distributions.9 We use a fixed regressor bootstrap, under

the null that the coefficients on the additional variables in the larger model are zero. This

bootstrap takes the same form as the non-central bootstrap detailed in section 2, modified

to impose zero coefficients on the additional variables. We focus our presented results on

10 percent critical values; results are qualitatively similar at the 5 percent level.
9In applications satisfying the martingale difference sequence assumptions of Hodrick (1992), replacing

the Newey and West (1987) variance estimate with that proposed by Hodrick (1992) should significantly
improve the size performance of the tests based on asymptotic critical values. In practice, though, most
researchers seem to use the Newey-West estimator.
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3.2.1 DGPs with no predictive ability

Table 1 presents Monte Carlo results for DGPs in which, in truth, the x variables considered

have no predictive content for y, such that, in a finite sample, the restricted forecasting

model should be expected to forecast yT+τ most accurately. These results generally line up

with the expectations described above. At a prediction horizon of one month (left half of

table), comparing Wald and t-tests against conventional critical values from the central χ2

and normal distributions yields rejection rates of roughly the nominal size (10 percent), with

rejection rates ranging from 9.2 to 12.2 percent across experiments and tests. The bootstrap

of the central distribution yields very similar rejection rates. In contrast, comparing the

Wald and t-tests against non-central χ2 and normal distributions or our proposed bootstrap

distribution yields much lower rejection rates, ranging from 0.7 to 2.5 percent. In the non-

central case, results are very similar under the asymptotic (χ2 and normal) and bootstrap

distributions. Our proposed test approach lowers the rejection rates because the null of

equal predictive ability implies (for a finite sample) non-zero coefficients on the x variables,

and in fact the coefficients are zero in these experiments.

At a prediction horizon of 12 months, there remains a large qualitative difference in

inference based on central distributions and inference based on non-central distributions.

However, the well-known problems in long-horizon regression inference (see, e.g., Hodrick

(1992), Nelson and Kim (1993), and Kirby (1997)) increases asymptotic rejection rates,

particularly for tests compared to the usual central distributions. Using bootstrap critical

values yields rejection rates significantly below those based on asymptotic critical values.

Specifically, the Wald test compared against central χ2 critical values is significantly over-

sized, with size ranging from 18.0 to 37.4 percent. The t-test compared against central

normal critical values is also oversized, although not as badly as the Wald test. For ex-

ample, in the DGP 1 experiment with T = 360, the sizes of the Wald and t-tests are,

respectively, 20.3 and 14.4 percent. In testing against the central distributions, a bootstrap

yields more accurate inference — indeed, tests that are about correctly sized. Across the

Wald and t tests, central bootstrap–based size ranges from 8.6 to 11.1 percent.

Again, comparing the test statistics against non-central χ2 and normal distributions

yields much lower rejection rates. At the 12-step horizon, the tests are typically, although

not always, undersized. For example, in the DGP 1 experiment with T = 360, comparing

the Wald and t-tests against non-central χ2 and normal distributions yields rejection rates
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of 8.6 and 3.7 percent, respectively. Comparing the test statistics against our non-central

bootstrap approximation yields still-lower rejection rates, of 4.6 and 2.0 percent in the same

example. With our non-central bootstrap, test rejection rates are below 10 percent in all

of the 12-step experiments in Table 1, ranging from 1.9 to 5.1 percent (compared to the

central bootstrap range of 8.6 to 11.1 percent).

3.2.2 DGPs with equal predictive ability

Table 2 presents results for DGPs in which the bi coefficients on the x variables are non–zero

but small enough that, under our asymptotic approximation, the restricted and unrestricted

forecasting models are expected to be equally accurate for forecasting yT+τ . These results

also generally line up with the expectations described above, and show clearly that, for

testing the null of equal predictive ability, using our proposed bootstrap yields the most

reliable inference. At the 1-month prediction horizon, comparing Wald and t-tests against

critical values from the non-central bootstrap distribution yields rejection rates close to,

although a bit below, the nominal size — specifically, rejection rates ranging from 7.9 to

9.0 percent.

At the 12-month horizon, using the bootstrap yields rejection rates that are modestly

oversized, more so for DGP 2 than DGP 1 and more so for small samples than large. Across

the 12-step experiments in Table 2, bootstrap rejection rates range from 12.6 to 18.1 percent.

Much of the oversizing of the bootstrap with DGP 2 seems to stem from the persistence of

some of the regressors. In unreported results in which we replaced the AR(1) coefficients of

0.95 with AR(1) coefficients of 0.5, the bootstrap yielded better-sized tests, ranging from

11.1 to 14.2 percent for the modified version of DGP 2 instead of the range of 16.0 to 18.1

percent shown in Table 2 for DGP 2. We should acknowledge, though, that our asymptotic

results do not establish the validity of a non-central test for multi-step forecasts from DGP

2. With multi-step forecasts, our proposed tests are technically only valid with one extra

variable in the unrestricted model; the unrestricted model in the DGP 2 experiments has

three extra variables. Our test applied to multi-step forecasts from DGP 2 — compared

against bootstrap critical values — seems to perform adequately, but our theoretical results

do not provide a formal basis.

In the same experiments with DGPs satisfying the null of equal predictive ability, us-

ing the non-central χ2 and normal distributions yields inference about as accurate as the

bootstrap at the 1-month horizon, but significantly less accurate than the bootstrap at the
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12-month horizon. At the 1-month prediction horizon, comparing Wald and t-tests against

critical values from the non-central asymptotic distributions yields rejection rates ranging

from 8.9 to 11.3 percent (compared to the bootstrap range of 7.9 to 9.0 percent). At the

12-month horizon, using critical values from the non-central asymptotic distributions yields

rejection rates ranging from 18.2 to 49.3 percent (compared to the bootstrap range of 12.6

to 18.1 percent). In the asymptotic case, the over-sizing is much more severe for DGP 2

than DGP 1. The better performance of the bootstrap likely reflects well-known difficulties

in estimating the HAC variance in finite samples (see, e.g., Hodrick (1992)), and the success

of the bootstrap in capturing the finite-sample impact of HAC imprecision.10

In contrast, comparing the Wald and t-tests against critical values from the central χ2

and Wald distributions consistently and significantly overstates the evidence of predictabil-

ity: even though the models are equally accurate in forecasting yT+τ , these inference ap-

proaches reject the null with a frequency well in excess of 10 percent.11 At the 1-month

prediction horizon (left half of Table 2), rates of rejection based on central bootstrap distri-

butions range from 22.5 to 37.6 percent (rates based on the central asymptotic distributions

are very similar). At the 12-month prediction horizon, central bootstrap-based rejection

rates are similarly high, ranging from 22.6 to 42.6 percent. At the 12-month horizon, using

asymptotic critical values from the central distributions yields rejection rates significantly

higher than those obtained with bootstrapped critical values, peaking at 75.8 percent, due

to the HAC estimation-related size distortions discussed above.

3.2.3 DGPs with strong predictive ability

Table 3 provides results for DGPs in which the bi coefficients on the x variables are large

enough that, under our asymptotics, the unrestricted model is expected to predict yT+τ

more accurately than the restricted model does. These results confirm that, when the

unrestricted model is the more accurate, tests based on non-central distributions have power,

more so the larger the sample size.12 For example, with DGP 1 and a 1-month ahead
10The modest oversizing of our non-central bootstrap-based tests in the multi-step case likely stems from

a tendency to understate the HAC variance V that enters the rescaling calculations (the oversizing of tests
compared against central asymptotic distributions indicates V is biased downward). Understating V causes
the signal-noise ratio to be over-estimated, which results in the bootstrap DGP coefficients being scaled
down modestly too much (in finite samples).

11Consistent with the findings of Inoue and Kilian (2004), in the DGP 1 experiments the one-sided t-test
compared against central distributions rejects the null of no predictability at a higher frequency than does
the (two-sided) Wald test.

12In the case of non-central tests, the one-sided t-test and two-sided Wald test have very similar power
because the squared percentiles of the non-central normal and the percentiles of the chi square distributions
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prediction horizon, t-test rejection rates based on the non-central bootstrap distribution

rise from 13.0 percent at T = 240 to 36.7 percent at T = 600. As expected, tests based

on central distributions yield higher rejection rates, rising (in the case of the t-test and the

bootstrap distribution) from 43.9 percent at T = 240 to 73.0 percent at T = 600.

4 Applications

To illustrate the use of our proposed testing methods, in this section we apply them to

models of excess stock returns. Some recent examples from the long literature on stock

return forecasting include Rapach and Wohar (2006), Ang and Bekaert (2007), Campbell

and Thompson (2008), and Goyal and Welch (2008).

In our application, we use the data of Goyal and Welch (2008) to examine the pre-

dictability of excess returns (from CRSP, measured on a log basis) at horizons of 1 and 12

months. We construct the 12-month return as a simple sum of the monthly return vari-

able provided in the Goyal-Welch dataset. The restricted model includes just a constant.

The unrestricted models add in one lag of a predictor, taken from the set of variables in

the Goyal-Welch data set. We consider 16 possible predictors of returns, including, among

others, net equity expansion, an interest rate term spread, the dividend-price ratio, and

the cross-sectional premium. The full set of 16 predictive variables is listed in Table 4,

with details provided in Goyal and Welch (2008). Following studies such as Pesaran and

Timmermann (1995), we focus on the post-war period. Our model estimation sample is

January 1956 to December 2002.

In our assessment of predictability, we use the coefficient signs considered in Campbell

and Thompson (2008) and Goyal and Welch (2008). For simplicity, we have done so by

multiplying by -1 those variables for which the coefficients should be expected to be negative

(Amit Goyal kindly provided us with the list: NTIS, LTY, TBL, INFL, and D/E). As a

result, all of the estimated coefficients and t-statistics should be expected to be positive. In

turn, we use one-sided (to the right) t-tests of the null of equal predictive ability. But using

(two-sided) Wald tests yields very similar results.

Results for tests of stock return predictability are reported in Table 4. The second col-

umn reports t-statistics, which incorporate the White (1980) correction for heteroskedastic-

ity at the 1-month horizon and the Newey-West variance estimate at the 12-month horizon

turn out to be virtually the same (with k2 = 1 as it is in DGP 1, the sample Wald test is the square of the
sample t-test).
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(using a bandwidth of 18 lags). The remaining columns report p-values computed under

alternative distributions (all one-sided): (1) the usual, central, normal distribution that is

appropriate under the null of no predictive ability; (2) a fixed regressor bootstrap of the

central distribution (computed with 9999 replications); (3) the non-central normal distri-

bution that is appropriate under our asymptotics and the null of equal predictive ability;

and (4) our bootstrap of the non-central distribution that applies under our asymptotics

(computed with 9999 replications).

Based on conventional tests of the null of no predictability, the evidence in Table 4 is

broadly consistent with much of the literature: based on regression tests, there appears

to be some evidence of predictability. At the 1-month horizon, seven variables appear to

have predictive content for excess returns (based on 10 percent significance). At the 12-

month horizon, seven variables are significant under asymptotic critical values, and three

are significant under the more reliable (central) bootstrap critical values. Under bootstrap

critical values, at both horizons, net equity expansion, the long-term bond return, and the

term spread appear to have significant predictive content for excess returns.

However, using our proposed testing methodology yields very little evidence of pre-

dictability. That is, there is little evidence to reject the null of equal predictive ability. At

the 1-month horizon, none of the t-statistics are significant when compared against non-

central normal or bootstrap distributions. At the 12-month horizon, only the long-term

bond return appears to have significant predictive content when inference is based on the

non-central normal or bootstrap distributions. The contrast in results based on our (non-

central) asymptotic distributions versus conventional (central) distributions suggests that

while several predictive variables might have regression coefficients that, in population, dif-

fer from 0, the coefficients are sufficiently small that, in the samples of data available, the

coefficients are estimated with sufficient imprecision so as to make forecasts from a restricted

model at least as accurate as forecasts from a true, unrestricted model.

5 Conclusion

As reflected in the principle of parsimony, when some variables are truly but weakly related

to the variable being forecast, having the additional variables in the model may detract

from forecast accuracy, because of parameter estimation error. Focusing on such cases of

weak predictability, we show that standard in-sample tests of equal predictive ability fail to
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take account of estimation error.

We first derive, theoretically, tests that take account of the bias-variance trade-off asso-

ciated with including the additional variables in the model. These tests are straightforward

extensions of the standard F -, t- and HAC-robust Wald tests for predictability. In appli-

cations when the forecast errors are 1-step ahead and form a conditionally homoskedastic

martingale difference sequence, the F - and HAC-robust Wald tests can be used directly, but

with critical values taken from the non-central — rather than the more typical central —

χ2 distribution. Compared to the usual approach based on standard (central) distributions,

our suggested approach raises the bar for including a predictor in the estimated forecasting

model. In more general environments that allow multi-step forecasts and that have forecast

errors that are conditionally heteroskedastic, we are able to establish a similar result in the

scalar case where there is a single additional predictor in the unrestricted model. In those

cases for which our theory applies, we are able to establish the asymptotic validity of a

novel, simple bootstrap procedure that approximates the relevant critical values.

Monte Carlo experiments generally confirm our theoretical results. Specifically, in DGPs

based on empirical finance applications, using our proposed non-central testing methods

yield reliable inference in tests of the null of equal predictive ability. Our Monte Carlo

results also indicate that, in some practical settings, bootstrap inference is more reliable

than inference based on asymptotic critical values (from non-central distributions). An

application to prediction of stock returns shows that conventional tests based on central

distributions indicate some predictability to stock returns — in the sense that some predic-

tors appear to have non-zero coefficients. However, our proposed tests systematically fail to

reject the null of equal predictive ability: while some coefficients may be non-zero, they are

small enough that a model restricted to include just a constant can be expected to forecast

at least as well as any model including another one of the variables considered.
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6 Appendix: Theory Details

Proof of Proposition 1: Straightforward algebra reveals that

T (û2
1,T+τ − û2

2,T+τ ) =

2(T 1/2h′T,2,T+τ )(−JB1(T )J ′ + B2(T ))(T 1/2HT,2(T ))

−(T 1/2H ′
T,2(T ))(−JB1(T )xT,1,T x′T,1,T B1(T )J ′ + B2(T )xT,2,T x′T,2,T B2(T ))(T 1/2HT,2(T ))

+2δ′B−1
2 (T )(−JB1(T )J ′ + B2(T ))(T 1/2hT,2,T+τ )

+δ′(xT,2,T x′T,2,T − 2xT,2,T x′T,2,T JB1(T )J ′B−1
2 (T ) + B−1

2 (T )JB1(T )xT,1,T x′T,1,T B1(T )J ′B−1
2 (T ))δ

+2δ′(B−1
2 (T )JB1(T )xT,1,T x′T,1,T B1(T )J ′ − xT,2,T x′T,2,T JB1(T )J ′)(T 1/2HT,2(T )).

Taking expectations then gives

TE(û2
1,T+τ − û2

2,T+τ ) =

E{−(T 1/2H ′
T,2(T ))(−JB1(T )xT,1,T x′T,1,T B1(T )J ′ + B2(T )xT,2,T x′T,2,T B2(T ))(T 1/2HT,2(T ))

+δ′(xT,2,T x′T,2,T − 2xT,2,T x′T,2,T JB1(T )J ′B−1
2 (T ) + B−1

2 (T )JB1(T )xT,1,T x′T,1,T B1(T )J ′B−1
2 (T ))δ

+2δ′(B−1
2 (T )JB1(T )xT,1,T x′T,1,T B1(T )J ′ − xT,2,T x′T,2,T JB1(T )J ′)(T 1/2HT,2(T ))}.

If we then note that Assumption 3 suffices for the observables to be uniformly integrable, taking
limits gives us

lim
T→∞

TE(û2
1,T+τ − û2

2,T+τ ) = −tr[(−JB1J
′ + B2) lim

T→∞
E(T 1/2HT,2(T ))(T 1/2H ′

T,2(T ))]

+δ′B−1
2 (−JB1J

′ + B2)B−1
2 δ

= −tr[(−JB1J
′ + B2)V ] + δ′B−1

2 (−JB1J
′ + B2)B−1

2 δ.

and the proof is complete.
Proof of Proposition 2: Assumption 3 suffices for Bi(T )→p Bi i = 1, 2 and, along with de Jong

(1997), is sufficient for T 1/2HT,2(T )→d V 1/2W (1). Continuity then implies

T 1/2β̂22,T →d N(β22J
′
2B2V B2J2)

T 1/2(J ′2σ̂
2B2(T )J2)−1/2β̂22,T →d N((J ′2σ

2B2J2)−1/2β22, (J
′
2σ

2B2J2)−1/2(J ′2B2V B2J2)(J ′2σ
2B2J2)−1/2)

T 1/2(J ′2B2(T )V (T )B2(T )J2)−1/2β̂22,T →d N((J ′2B2V B2J2)−1/2β22, I).

Taking the inner product of the final two terms, as well as the definition of M = DAD, provides

the desired result.

Proof of Corollary 1: Under the null hypothesis we know tr((−JB1J ′+B2)V ) = β′22F
−1
2 β22. (a)

Under conditional homoskedasticity however, since both β′22(J ′2B2V B2J2)−1β22 = β′22F
−1
2 β22/σ2

and tr((−JB1J ′+B2)V ) = σ2k2 the proof is complete. (b) In the scalar case, note that J ′2B2V B2J2 =

F2 · tr((−JB1J ′+B2)V ). But under the null hypothesis, β2
22F

−1
2 = tr((−JB1J ′+B2)V ) and hence

β2
22 = J ′2B2V B2J2 and the proof is complete.

24



Proof of Proposition 3: (a) This is immediate from the proof of Proposition 2. (b) As in the

proof of Corollary 1 (b), under the null hypothesis we know β2
22 = J ′2B2V B2J2. Hence β22 =

sign(β22)(J ′2B2V B2J2)1/2 and the proof is complete.

Throughout the remainder of the proofs define v∗T,2,s+τ = (ηs+τεT,2,s+τ+ θ1ηs−1+τεT,2,s+τ−1 +

... + θτ−1ηs+1εT,2,s+1), v̂∗T,2,s+τ = (ηs+τ ε̂T,2,s+τ+ θ̂1ηs−1+τ ε̂T,2,s+τ−1 + ... + θ̂τ−1ηs+1ε̂T,2,s+1),

h∗T,2,s+τ = xT,i,sv∗T,2,s+τ , ĥ∗T,2,s+τ = xT,i,sv̂∗T,2,s+τ , H∗
T,2(T ) = (T−1

∑T−τ
t=1 h∗T,2,s+τ ), and Ĥ∗

T,2(T ) =

(T−1
∑T−τ

t=1 ĥ∗T,2,s+τ ).

Lemma 1: Maintain Assumptions 1 or 1′, 2, 3′, and 4. (a) T 1/2(Ĥ∗
T,2(T ) −H∗

T,2(T )) = op(1).

(b) V ∗(T )→p V.

Proof of Lemma 1: For ease of presentation, we show both results assuming τ = 2 and hence

v̂∗T,2,s+2 = ηs+2ε̂T,2,s+2+ θ̂ηs+1ε̂T,2,s+1 and v∗T,2,s+2 = ηs+2εT,2,s+2 +θηs+1εT,2,s+1. (a) Rearranging

terms gives us,

T 1/2(Ĥ∗
T,2(T )−H∗

T,2(T )) = T−1/2
∑T−τ

s=1
(v̂∗T,2,s+2 − vT,2,s+2)xT,2,s =

T−1/2
∑T−τ

s=1
(ηs+2(ε̂T,2,s+2 − εT,2,s+2) + θηs+1(ε̂T,2,s+1 − εT,2,s+1) +

(θ̂ − θ)ηs+1(ε̂T,2,s+1 − εT,2,s+1) + (θ̂ − θ)ηs+1εT,2,s+1)xT,2,s.

If we take a first order Taylor expansion of both ε̂T,2,s+2 and ε̂T,2,s+1, then for some γT in the

closed cube with opposing vertices γ̂T and γT we obtain

T 1/2(Ĥ∗
T,2(T )−H∗

T,2(T )) =

T−1/2
∑T−τ

s=1
(ηs+2∇ε̂T,2,s+2(γT )(γ̂T − γT ) + θηs+1∇ε̂T,2,s+1(γT )(γ̂T − γT )

+(θ̂ − θ)ηs+1∇ε̂T,2,s+1(γT )(γ̂T − γT ) + (θ̂ − θ)ηs+1εT,2,s+1)xT,2,s

or equivalently

T 1/2(Ĥ∗
T,2(T )−H∗

T,2(T )) =

(T−1
∑T−τ

s=1
ηs+2∇ε̂T,2,s+2(γT )xT,2,s)(T 1/2(γ̂T − γT ))

+θ(T−1
∑T−τ

s=1
ηs+1∇ε̂T,2,s+1(γT )xT,2,s)(T 1/2(γ̂T − γT ))

+(θ̂ − θ)(T−1
∑T−τ

s=1
ηs+1∇ε̂T,2,s+1(γT )xT,2,s)(T 1/2(γ̂T − γT ))

+(T 1/2(θ̂ − θ))(T−1
∑T−τ

s=1
ηs+1εT,2,s+1xT,2,s).
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Assumptions 1 or 1′ and 3′ suffice for both T 1/2(γ̂T−γT ) and T 1/2(θ̂−θ) to be Op(1). In addition,

since for large enough samples Assumption 3′ bounds the second moments of ∇ε̂T,2,s+2(γT )x2,s and

∇ε̂T,2,s+1(γT )x2,s, the fact that the ηs+τ are iidN(0, 1) then implies T−1
∑T−τ

s=1 ηs+2∇ε̂T,2,s+2(γT )xT,2,s,

T−1
∑T−τ

s=1 ηs+1∇ε̂T,2,s+1(γT )xT,2,s, and T−1
∑T−τ

s=1 ηs+1εT,2,s+1xT,2,s are all op(1) and the proof is

complete.

(b) First note that under our assumptions,

V = Γ0 + (Γ1 + Γ′1) = lim
T→∞

E(ε2
T,2,s+2xT,2,sx

′
T,2,s + θ2ε2

T,2,s+1xT,2,sx
′
T,2,s)

+ (θE(ε2
T,2,s+1xT,2,sx

′
T,2,s−1 + ε2

T,2,s+1xT,2,s−1x
′
T,2,s)).

Since j̄ is finite and limT→∞K(j/L) = 1 for each j, it suffices to show that

T−1
∑T−τ

s=1+j
v̂∗T,2,s+τ v̂∗T,2,s+τ−jxT,2,sx

′
T,2,s−j →p Γj ∀ j

For all j > τ − 1 this is trivial given the iidN(0, 1) nature of the increments ηs+τ and the fact that

under our assumptions, Γj = 0 for these values of j. We will show this for j = 1, the case for j = 0

is similar.

Straightforward algebra, along with a first order Taylor expansion gives us

T−1
∑T−1

s=2
v̂∗T,2,s+2v̂

∗
T,2,s+1xT,2,sx

′
T,2,s−1

= T−1
∑T−1

s=2
(ηs+2ηs+1ε̂T,2,s+2ε̂T,2,s+1)xT,2,sx

′
T,2,s−1 + θ̂T−1

∑T−1

s=2
(ηs+2ηsε̂T,2,s+2ε̂T,2,s)xT,2,sx

′
T,2,s−1

+θ̂
2
T−1

∑T−1

s=2
(ηs+1ηsε̂T,2,s+1ε̂T,2,s)xT,2,sx

′
T,2,s−1 + θ̂T−1

∑T−1

s=2
η2

s+1ε
2
T,s+1xT,2,sx

′
T,2,s−1

+θ̂[(T 1/2(γ̂T − γT ))′ ⊗ (T 1/2(γ̂T − γT ))′]T−2
∑T−1

s=2
η2

s+1vec[∇ε̂T,2,s+1(γT )∇ε̂T,2,s+2(γT )′]xT,2,sx
′
T,2,s−1

for some γT in the closed cube with opposing vertices γ̂T and γT . Since θ̂ →p θ, and Assumption 3′

suffices for T−1
∑T−1

s=2 η2
s+1ε

2
T,s+1xT,2,sx′T,2,s−1 →p Eη2

s+1ε
2
T,s+1xT,2,sx′T,2,s−1 = Eε2

T,s+1xT,2,sx′T,2,s−1,

we know θ̂T−1
∑T−1

s=2 η2
s+1ε

2
T,s+1xT,2,sx′T,2,s−1 →p Γ1. The result will follow if the first three right-

hand side terms, as well as the last, are all op(1). In each case Assumption 3′ implies that the

arguments of the summation are L2-bounded and hence the iid N(0, 1) nature of the ηs+τ imply

T−1
∑T−1

s=2 (ηs+2ηs+1ε̂T,2,s+2ε̂T,2,s+1)xT,2,sx′T,2,s−1, T−1
∑T−1

s=2 (ηs+2ηsε̂T,2,s+2ε̂T,2,s)xT,2,sx′T,2,s−1,

T−1
∑T−1

s=2 (ηs+1ηsε̂T,2,s+1ε̂T,2,s)xT,2,sx′T,2,s−1, and T−2
∑T−1

s=2 η2
s+1vec[∇ε̂T,2,s+1(γT )∇ε̂T,2,s+2(γT )′]

× xT,2,sx′T,2,s−1 are all op(1). Since θ̂ →p θ and T 1/2(γ̂T − γT ) = Op(1) the proof is complete.

Proof of Proposition 4: We will provide the results for GC ′∗(T ). The proofs for GC∗(T ) and

t∗(T ) are very similar. Let β̂
∗
2,T denote the OLS estimate of β2 in the bootstrap sample. We begin by

noting that T 1/2β̂
∗
2,T = T 1/2J ′2[B2(T )H∗

T,2(T ) + β̃2,T + B2(T )(Ĥ∗
T,2(T )−H∗

T,2(T ))]. Assumption 3′
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and Lemma 1 imply T 1/2(Ĥ∗
T,2(T )−H∗

T,2(T )) = op(1) and J ′2B2(T )V ∗(T )B2(T )J2 →p J ′2B2V B2J2.

T 1/2J ′2B2(T )H∗
T,2(T ) →d N(0, J ′2B2V B2J2), T 1/2J ′2β̃2,T = Op(1), and both of the latter two terms

are asymptotically independent of one another due to the i.i.d.N(0, 1) nature of the bootstrap incre-

ments ηt+τ . Hence conditional on T 1/2J ′2β̃2,T , (J ′2B2(T )V ∗(T )B2(T )J2)−1/2T 1/2J ′2[B2(T )H∗
T,2(T )+

β̃2,T ] is asymptotically normal with unit variance and mean equal to (J ′2B2V B2J2)−1/2[limT→∞ T 1/2

× J ′2β̃2,T ]. The result will follow if [limT→∞ T 1/2J ′2β̃2,T ]′(J ′2B2V B2J2)−1[limT→∞ T 1/2J ′2β̃2,T ] =

k2. We will show this under two sets of assumptions.

(a) Assume conditional homoskedasticity. Note that with this assumption, (J ′2B2V B2J2)−1 =

σ−2F−1
2 . But the estimator for the bootstrap replication was constructed to satisfy the property

(T 1/2J ′2β̃2,T )F−1
2 (T )(T 1/2J ′2β̃2,T ) = σ̂2k2. Since F−1

2 (T ) →p F−1
2 and σ̂2

T →p σ2 the proof is

complete.
(b) Assume that β22 is scalar. Note that under this assumption, J ′2B2V B2J2 = F2tr((−JB1J ′+

B2)V ). But the estimator for the bootstrap replication was constructed to satisfy the property
(T 1/2J ′2β̃2,T )2 = F2(T )tr((−JB1(T )J ′+B2(T ))V (T )). Since F2(T )→p F2, (J ′2B2(T )V ∗(T )B2(T )J2)
→p (J ′2B2V B2J2), and tr((−JB1(T )J ′ + B2(T ))V (T ))→p tr((−JB1J ′ + B2)V ) we find

[ lim
T→∞

T 1/2J ′2β̃2,T ]′(J ′2B2V B2J2)−1[ lim
T→∞

T 1/2J ′2β̃2,T ] = 1

and the proof is complete.
Proof of Proposition 5: We will start by providing the results for GC ′∗(T ) and then provide the

result for t∗(T ). The proof for GC∗(T ) is very similar to that of GC ′∗(T ). First note that by the
definition of the ridge estimator (without the sign restriction) we have

T 1/2J ′2β̃2,T = ±
(

tr[(−JB0(T )J ′ + B1(T ))V (T )]
(T 1/2β̂2,T )′J2F

−1
2 (T )J ′2(T 1/2β̂2,T )

)1/2

J ′2(T
1/2β̂2,T )

= ±
(

tr[(−JB0(T )J ′ + B1(T ))V (T )]

β̂
′
22,T F−1

2 (T )β̂22,T

)1/2

β̂22,T

→ p ±
(

tr[(−JB0J ′ + B1)V ]
β′22F

−1
2 β22

)1/2

β22.

Since T 1/2(Ĥ∗
T,2(T )−H∗

T,2(T )) = op(1) by Lemma 1 and (J ′2B2(T )V ∗(T )B2(T )J2)→p (J ′2B2V B2J2) >

0 we also have

T 1/2(J ′2B2(T )V ∗(T )B2(T )J2)−1/2J ′2β̂
∗
2,T

= T 1/2(J ′2B2(T )V ∗(T )B2(T )J2)−1/2J ′2[B2(T )H∗
T,2(T ) + β̃2,T + B2(T )(Ĥ∗

T,2(T )−H∗
T,2(T ))]

→ dN(±(J ′2B2V B2J2)−1/2

(
tr[(−JB0J ′ + B1)V ]

β′22F
−1
2 β22

)1/2

β22, I).

The result will follow if the inner product of the mean of the asymptotic distribution takes the

value k2.
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(a) Assume conditional homoskedasticity. Note that with this assumption, (J ′2B2V B2J2)−1 =

σ−2F−1
2 . Taking the inner product of the mean and noting tr[(−JB0J ′ + B1)V ] = σ2k2 gives us

(
tr[(−JB0J ′ + B1)V ]

β′22F
−1
2 β22

)
β′22(J

′
2B2V B2J2)−1β22

=
(

σ2k2

β′22F
−1
2 β22

)
β′22F

−1
2 β22/σ2 = k2

and the proof is complete.

(b) Assume that β22 is scalar. Note that under this assumption, (J ′2B2V B2J2)−1 = F−1
2 /tr((−JB1J ′+

B2)V ). Taking the inner product of the mean then gives us

(
tr[(−JB0J ′ + B1)V ]

β′22F
−1
2 β22

)
β′22(J

′
2B2V B2J2)−1β22

=
(

tr[(−JB0J ′ + B1)V ]
β′22F

−1
2 β22

)
β′22F

−1
2 β22/tr((−JB1J

′ + B2)V ) = 1

and the proof is complete.

We now show the result for t∗(T ). Note that with the sign restriction, the ridge estimator

now takes the form T 1/2J ′2β̃2,T = sign(β22)
(

tr[(−JB0(T )J′+B1(T ))V (T )]

(T 1/2β̂2,T )′J2F−1
2 (T )J′2(T

1/2β̂2,T )

)1/2

|J ′2(T 1/2β̂2,T )|. As

above, this estimator is asymptotically normal with unit variance and mean equal to (J ′2B2V B2J2)−1/2

×
(

tr[(−JB0J′+B1)V ]

β′22F−1
2 β22

)1/2
β22. The result will follow if this is equal to sign(β22). But, as in case

(b) above, we know that when β22 is scalar (J ′2B2V B2J2)−1 = F−1
2 /tr((−JB1J ′+B2)V ) and hence

(J ′2B2V B2J2)−1/2
(

tr[(−JB0J′+B1)V ]

β′22F−1
2 β22

)1/2
β22 =

(
F2tr[(−JB0J′+B1)V ]

J′2B2V B2J2

)1/2
β22

|β22| = sign(β22) and the

proof is complete.
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Table 1: Monte Carlo Rejection Rates, Restricted Model Best
(nominal size = 10%)

horizon = 1 month horizon = 12 months
test distribution T=240 T=360 T=480 T=600 T=240 T=360 T=480 T=600
DGP 1
Wald central chi-square .103 .108 .100 .105 .229 .203 .193 .180
Wald central bootstrap .097 .103 .097 .103 .100 .099 .102 .099
Wald non-central chi-square .023 .024 .024 .025 .105 .086 .076 .068
Wald non-central bootstrap .020 .022 .021 .024 .051 .046 .045 .041
t central normal .092 .093 .092 .096 .157 .144 .138 .135
t central bootstrap .088 .089 .090 .094 .086 .088 .090 .093
t non-central normal .010 .009 .011 .011 .045 .037 .033 .031
t non-central bootstrap .009 .008 .010 .010 .023 .020 .020 .019
DGP 2
Wald central chi-square .122 .115 .111 .104 .374 .312 .271 .249
Wald central bootstrap .109 .105 .104 .098 .107 .111 .107 .106
Wald non-central chi-square .014 .012 .010 .008 .154 .107 .081 .067
Wald non-central bootstrap .007 .008 .007 .007 .040 .035 .030 .028

Notes:
1. The data generating processes are defined in equations (5) and (8). In these experiments, the coefficients bi = 0 for all i,
such that the restricted forecasting model is expected to be more accurate for forecasting yT+τ .
2. For each artificial data set, we estimate equation (7) (DGP 1) or equation (9) (DGP 2) by OLS and form Wald and/or
t-tests of the explanatory power of the x variables. T and refers to the size of the estimation sample.
3. In each Monte Carlo replication, the simulated test statistics are compared against critical values from central chi square
and normal distributions, non-central chi square and normal distributions, and the bootstrap distribution generated as
described in section 2.
4. The number of Monte Carlo simulations is 20,000; the number of bootstrap draws is 999.
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Table 2: Monte Carlo Rejection Rates, Equally Accurate Models
(nominal size = 10%)

horizon = 1 month horizon = 12 months
test distribution T=240 T=360 T=480 T=600 T=240 T=360 T=480 T=600
DGP 1
Wald central chi-square .233 .241 .243 .248 .397 .372 .359 .350
Wald central bootstrap .225 .234 .237 .243 .226 .234 .233 .237
Wald non-central chi-square .089 .093 .091 .095 .235 .211 .192 .185
Wald non-central bootstrap .080 .085 .085 .090 .134 .131 .126 .126
t central normal .341 .350 .358 .363 .479 .463 .456 .448
t central bootstrap .330 .343 .352 .356 .341 .350 .354 .360
t non-central normal .089 .092 .090 .095 .229 .207 .188 .182
t non-central bootstrap .079 .084 .085 .090 .138 .133 .127 .128
DGP 2
Wald central chi-square .386 .381 .389 .375 .758 .704 .668 .644
Wald central bootstrap .361 .365 .376 .365 .404 .418 .425 .426
Wald non-central chi-square .113 .106 .108 .098 .493 .412 .368 .334
Wald non-central bootstrap .081 .085 .089 .084 .181 .172 .162 .160

Notes:
1. See the notes to Table 1.
2. In these experiments, the coefficients bi = 0 are scaled such that the restricted and unrestricted models are expected to
equally accurate for forecasting yT+τ .
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Table 3: Monte Carlo Rejection Rates, Unrestricted Model Best
(nominal size = 10%)

horizon = 1 month horizon = 12 months
test distribution T=240 T=360 T=480 T=600 T=240 T=360 T=480 T=600
DGP 1
Wald central chi-square .319 .431 .530 .613 .473 .546 .621 .688
Wald central bootstrap .309 .423 .524 .607 .290 .388 .482 .563
Wald non-central chi-square .144 .219 .297 .379 .301 .359 .426 .488
Wald non-central bootstrap .130 .208 .286 .366 .180 .248 .312 .378
t central normal .449 .566 .665 .736 .566 .648 .718 .783
t central bootstrap .439 .558 .657 .730 .424 .535 .628 .708
t non-central normal .144 .220 .298 .380 .298 .359 .426 .488
t non-central bootstrap .130 .208 .286 .367 .186 .253 .318 .382
DGP 2
Wald central chi-square .570 .730 .847 .915 .750 .808 .860 .908
Wald central bootstrap .545 .714 .839 .911 .395 .553 .678 .778
Wald non-central chi-square .237 .390 .546 .676 .483 .549 .623 .698
Wald non-central bootstrap .188 .343 .510 .649 .176 .252 .336 .422

Notes:
1. See the notes to Table 1.
2. In these experiments, the coefficients bi are set to values large enough that the unrestricted model is expected to forecasting
yT+τ more accurately than the restricted model does.
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Table 4: Tests of Predictability of Excess Stock Returns, 1956-2002
1-month horizon

p–values
explanatory t-statistic central central non-central non-central
variable normal bootstrap normal bootstrap
net equity expansion (NTIS) 2.139 .016 .018 .127 .135
long-term return (LTR) 2.132 .017 .018 .129 .139
term spread (TMS) 1.990 .023 .023 .161 .166
dividend payout ratio (D/E) -.543 .706 .705 .939 .940
stock variance (SVAR) -1.313 .905 .843 .990 .979
default return spread (DFR) .563 .287 .283 .669 .673
long-term yield (LTY) .272 .393 .392 .767 .768
inflation (INFL) .920 .179 .186 .532 .539
Treasury bill rate (TBL) 1.274 .101 .110 .392 .398
default yield spread (DFY) 1.761 .039 .041 .223 .232
dividend-price ratio (D/P) 1.334 .091 .097 .369 .387
dividend yield (D/Y) 1.387 .083 .085 .349 .363
earning-price ratio (E/P) 1.080 .140 .141 .468 .478
book to market (B/M) .429 .334 .339 .716 .720
earning (10 year)-price ratio (E10/P) 1.089 .138 .143 .465 .467
cross-sectional premium (CSP) 1.513 .065 .065 .304 .317

12-month horizon
p–values

explanatory t-statistic central central non-central non-central
variable normal bootstrap normal bootstrap
net equity expansion (NTIS) 1.711 .044 .096 .239 .303
long-term return (LTR) 4.023 .000 .000 .001 .002
term spread (TMS) 2.221 .013 .035 .111 .171
dividend payout ratio (D/E) -.581 .719 .683 .943 .922
stock variance (SVAR) .707 .240 .308 .615 .607
default return spread (DFR) -.897 .815 .807 .971 .974
long-term yield (LTY) -.427 .665 .627 .923 .872
inflation (INFL) 1.353 .088 .148 .362 .443
Treasury bill rate (TBL) .669 .252 .305 .630 .601
default yield spread (DFY) 1.056 .145 .209 .477 .517
dividend-price ratio (D/P) 1.394 .082 .158 .347 .501
dividend yield (D/Y) 1.412 .079 .162 .340 .470
earning-price ratio (E/P) 1.378 .084 .139 .353 .427
book to market (B/M) .517 .303 .340 .685 .718
earning (10 year)-price ratio (E10/P) 1.208 .114 .175 .418 .469
cross-sectional premium (CSP) -2.040 .979 .951 .999 .992

Notes:
1. As described in section 4, the null model for excess stock returns includes just a constant; the alternative models include
a constant and the variable listed in the first column. The estimation sample is January 1956 to December 2002.
2. For each variable or alternative model, the table reports the HAC-robust t-statistic on the variable given in the first
column and one-sided (to the right) p-values based on central and non-central distributions. Those variables for which the
coefficients should be expected to be negative have been multiplied by -1, such that all estimated coefficients and t-statistics
should be expected to be positive.
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