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Abstract. We propose a sequential test for predictive ability. The test is

designed for regressions in which the researcher is interested in recursively assess-

ing whether some economic variables have predictive or explanatory content for

another variable. It is common in the forecasting literature to assess predictive

ability by using “one-shot” tests at each estimation period. We show that this

practice: (i) leads to size distortions; (ii) selects overfitted models and provides

spurious evidence of in-sample predictive ability; (iii) may lower the accuracy of

the model selected by the test. The usefulness of the proposed test is shown in

well-known empirical applications to the real-time predictive content of money

for output, and the selection between linear and non-linear models.

Keywords: Sequential tests, predictive ability, model selection.

JEL Classification: C52, C53

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6931736?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


We would like to thank Todd Clark, Lutz Kilian, Michael McCracken, Alessan-

dro Tarozzi and two anonymous referees for many useful and detailed comments.

We are also grateful to seminar participants at the Financial Econometrics Lunch

at Duke University and Louisiana State University, in particular T. Bollerslev,

R. Gallant, E. Hillebrand and G. Tauchen for comments and helpful suggestions.

Corresponding author: Barbara Rossi, Department of Economics, Duke Uni-

versity, Durham, NC27705 USA. Phone: 919 660 1801. E-mail: brossi@econ.duke.edu.



1

1. Introduction

Assessing whether there is predictability among macroeconomic variables has always

been a central issue for applied researchers. For example, much effort has been de-

voted to analyzing whether money has predictive content for output. This question

has been addressed by using both simple linear Granger Causality (GC) tests (e.g.

Stock and Watson (1989)) as well as tests that allow for non-linear predictive rela-

tionships (e.g. Amato and Swanson (2001) and Stock and Watson (1999), among

others). When parameters may be time-varying, and the objective of the researcher

is to assess the presence of a relationship between two economic variables, it is tempt-

ing to use predictability tests recursively. While this procedure has the correct size

at each point in time, it will not have the correct size over the whole sequence of

test statistics. In particular, the overall size of the tests will approach one as the

procedure is repeated more and more times. Similar problems are likely to occur

when the researcher recursively tests whether inflation is under control, as many

inflation-targeting Central Banks in practice do.

We propose a new recursive test for predictive ability that controls the overall size

of the procedure and, hence, protects the researcher from overfitting. Our test applies

to predictive regressions in which, at each point in time, the researcher tests whether

a set of economic variables has predictive content for some variable of interest on the

basis of an in-sample test using only observations available until that time, and the

parameters are recursively re-estimated as time goes by. The outcome of the test
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may be used as evidence of in-sample predictive ability as well as for out of sample

forecasting purposes. Commonly used tests, whose critical values do not take into

account the recursive nature of the test (referred to as “one-shot tests”) will have size

equal to the nominal (desired) level at each point in time. However, their recursive

application will lead to severe size distortions. We instead derive the distribution of

the test statistic under the null hypothesis by considering the recursive nature of the

whole testing procedure. This allows us to derive the correct critical values, which can

then be used to recursively test for predictive ability. The test statistics proposed in

this paper are calculated as usual, but their critical values are different, and depend

upon the sample size. These critical values can be easily calculated by using a table

provided in the paper, so that applied researchers can directly apply the proposed

test procedure. The test is similar in spirit to the fluctuation test discussed in Chu

et al. (1996), but our test focuses on predictive ability. We also allow for a more

general GMM framework and possibly nonlinear restrictions. The GMM framework

can also be useful to select between linear and non-linear models, which is one of the

empirical applications that we consider.

Our test is different from existing out-of-sample recursive tests for predictive

ability (e.g. Clark and McCracken (2001, 2003d) for one step ahead predictions, and

Clark and McCracken (2003c) for h-steps ahead predictions, under the maintained as-

sumption of dynamic correct specification) or out-of-sample tests of Granger Causal-

ity (see Chao, Corradi and Swanson (2001), and Corradi and Swanson (2002) for an



3

out-of-sample test for Granger Causality which is consistent against generic alterna-

tives, and which allows for dynamic misspecification under the null). In these tests,

the available sample is given, i.e. it is considered fixed. The sample is recursively split

into two subsets: one which is used to estimate the parameters, and one which is used

to validate the forecasts of the model. Despite the fact that this procedure involves

recursive estimation of the parameters, the test is, in essence, one-shot, because the

sample size is given. Furthermore, our procedure can be applied to situations in

which data available at different times vary as a result of redefinitions, a common

situation for macroeconomic data (see Croushore and Stark (2001)).

Our discussion may shed some light on the fragile link between in-sample model

selection and out-of-sample forecasting in real time. Stock and Watson (1989) apply

in-sample Granger Causality tests and find some evidence that money has predic-

tive content for output whereas more recent contributions find no evidence of out-

of-sample predictive ability. Thus, what kind of guide do in-sample tests offer to

out-of-sample predictive ability? In-sample and out-of-sample tests often provide

contradictory results. These contradictory findings are often attributed to overfit-

ting or low power of forecasting tests (Kilian and Inoue (2002)) or to the presence

of parameter instability (Clark and McCracken (2003a,b,d)). This paper investigates

another possible explanation, namely the fact that repeated tests for model selection

might select overfitted models, thus deteriorating forecasting ability. On the other

hand, the approach in this paper is valid only for comparing two nested models and,
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in this sense, it cannot be viewed as a sequential alternative to the Diebold and

Mariano (1995) and West (1996) out-of-sample tests.

The paper is organized as follows. Section 2 discusses background and motivation,

Section 3 the main result of the paper: the recursive tests. Section 4 provides some

small Monte Carlo evidence on the size and power of the proposed tests, and shows

that they have both good size and power properties. Section 5 applies the recursive

tests to two important empirical applications: the relationship between money and

output, and the choice between linear and non-linear models for a few representative

macroeconomic variables. The last section concludes.

2. Background and motivation

As a simple motivating example,1 consider a researcher that has available a historical

dataset of size T . He is interested in testing a null hypothesis on a parameter at each

point in time t > T , that is, t = T+1, T+2, ... For example, the researcher is interested

in assessing whether a scalar variable “x” has predictive content at any point in time

for another variable “y”. That is, the researcher is interested in recursively testing

hypotheses on βt in the regression: yt+1 = βtxt+ut+1, where ut+1 satisfies the usual

linear regression assumptions. The null hypothesis is: βt = β0 at every t ≥ T+1, and

the alternative is: βt 6= β0 for some t ≥ T + 1. Let bβt denote the recursive estimate
of β at every point in time t = T +1, T +2, ... , and let τ t denote the associated t-test

statistic. To test the null hypothesis, one might simply perform a t-test using conven-

1This is just an example. The framework of this paper is much more general, as explained later.



5

tional (normal) large sample critical values at each t, and reject the null hypothesis if

the t-test rejects at any point in time. Unfortunately, with conventional critical val-

ues, by the Law of Iterated Logarithm the probability that this test eventually rejects

the null hypothesis is asymptotically one. Note that the same argument remains true

if one uses any constant critical values, no matter how large. To remedy this problem,

this paper derives critical values that allow to “follow” the test statistic through the

whole sequence as t = T + 1, T + 2, ... in such a way that the probability of rejecting

the null hypothesis is under control at each t. This requires a boundary function such

that the path of the test statistic crosses this boundary with the desired probability

level under the null hypothesis. This is achieved by controlling the behavior of the test

statistic as a function of π ≡ t/T and exploiting results on boundary crossing proba-

bilities (e.g. Chu et al., 1996) like lim
T→∞

P
n√
t|τ t| ≥

√
Tψ (t/T ) , for some t > T

o
=

lim
T→∞

P
n
| τ t√

π
| ≥ ψ (π) , for some π > 1

o
, where ψ (.) is the boundary function. There

are various possible choices for the boundary function. For example, a fluctuation

test of size α would use ψ (π) =
q
k21,α + ln (π), where k1,α is a constant such that

2[1− Φ (kα) + kαφ (kα)] = α, α is the desired size, and Φ,φ are the c.d.f. and p.d.f.

of a standard normal distribution. In this paper, we also propose critical values that

result in more powerful tests when there is more than one restriction.
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3. Assumptions and Theorems

Assume that {zT,t} is a triangular array of random variables. Consider estimation of

the parameter θ based on moment conditions

E[g(zT,t, θ0)] = 0

The researcher is interested in testing the null hypothesis: H0 : a(θ0) = 0, versus

the alternative: a(θ0) 6= 0, where g : Z ×Θ→ <q, Z ⊂ <k, Θ ⊂ <p and a : Θ→ <r.

Define a sequential unconstrained GMM estimator of θ by:2

bθt = bθT (π) = argmin
θ∈Θ

bQT (θ,π), bQT (θ,π) ≡ 1
2
ĝT (θ,π)

0ŜT (π)−1ĝT (θ,π),

where t = [Tπ] = T + 1, T + 2, ... is the time at which the monitoring takes place,

ĝT (θ,π) = (1/[Tπ])
P[Tπ]
t=1 g(zT,t, θ) is the sample analogue of E[g(zT,t, θ)] and bST (π)

is a sequence of consistent estimators for the long-run covariance matrix of g(zT,t, θ0).

Similarly, define a sequential constrained GMM estimator by

θ̄t = argmin
θ∈Θ

QT (θ,π) subject to a(θ) = 0

Define the sequential Wald, Lagrange Multiplier and LR-like test statistics by Wt =

2Note that bθT (π) is simply another way to rewrite bθt , as π = t/T.
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WT (π), LMt = LMT (π) and LRt = LRT (π) where

WT (π) = [Tπ]a(θ̂T (π))[A(θ̂T (π))(Ĝ
0
T (π)ŜT (π)

−1ĜT (π))−1A(θ̂T (π))0]−1a(θ̂T (π)),

LMT (π) = [Tπ]∇QT (θ̄T (π),π)0(Ḡ0T (π)S̄T (π)−1ḠT (π)))−1∇QT (θ̄T (π),π),

LRT (π) = −2[Tπ](QT (θ̂T (π),π)−QT (θ̄T (π),π)),

ĜT (π) = (1/[Tπ])
P[Tπ]
t=1 ∂g(zT,t, θ̂T )/∂θ

0, ḠT (π) and S̄T (π) are ĜT (π) and ŜT (π)

with θ̂T (π) replaced by θ̄T (π), respectively, and A (θ) = ∂a(θ)/∂θ0.

We derive the limiting distributions of the test statistics under both the null

hypothesis and a sequence of local alternatives (see (c) below) under the following:

Assumptions:

(a) zTt is strictly stationary for every T .

(b) Θ ⊂ <p is compact and g (.) is continuous in θ with probability one.

(c) For each T , there is a unique θT = θ0 + δ/
√
T that satisfies

E[g(zTt, θT )] = 0.

(d) For every integer n that is greater than 1,

1

[πT ]

[πT ]X
t=1

g(zTt, θ) = E[g(zt, θ)] + op(1), (1)

1

[πT ]

[πT ]X
t=1

∂

∂θ0
g(zTt, θ0) = G+ op(1), (2)

Ŝ[πT ] = S + op(1), (3)

where G = E[∂g(zTt, θ0)/∂θ0] and op(1) is uniform in π ∈ [1, n] and in θ ∈ Θ.
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(e) For every integer n that is greater than 1,

1√
T

[·T ]X
t=1

g(zTt, θ0)⇒ S
1
2W (·)

where the weak convergence is defined in the space of right-continuous functions
with left-hand limits on [0, n] equipped with the Skorohod topology.

(f) G is of rank p.

(g) Ŝ[πT ] is positive semidefinite for all π ∈ [1,∞) and T and S is positive definite.
(h) a is continuously differentiable and A = ∂a(θ0)/∂θ

0 is of rank r.

The strict stationarity imposed in Assumption (a) is not necessary but simplifies

the notation. The compactness of the parameter space in Assumption (b) can be

dropped for linear regression models, but otherwise (b) ensures the existence of the

estimator. Assumption (c) states that the moment conditions are correctly specified

and the parameters are identified. It also specifies a sequence of local alternatives.

When c 6= 0, zTt becomes a triangular array because the true parameter value θT

depends on T . Assumptions (d) and (e) assume uniform convergence and weak

convergence for π ∈ [1, n]. These assumptions are high-level assumptions; more

primitive sufficient conditions can be found in the literature (e.g., Andrews, 1993).

Assumptions (f), (g) and (h) are standard rank, positive definiteness and smoothness

conditions. All these Assumptions are standard for extremum estimators. From these

assumptions, it immediately follows that the GMM estimator converges in probability

to θ0 uniformly in π ∈ [1, n] and is asymptotically normally distributed for π ∈ [1, n].

The following Theorem extends weak convergence over π ∈ [1, n] to weak conver-

gence over π ∈ [1,∞) :
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Theorem 1 : Under Assumptions (a)-(h) we have:

p
[T ·](θ̂T (·)− θ0) ⇒ (G0S−1G)−1G0S−1(

µ
S

·
¶ 1

2

Bq(·) +Gδ), (4)

p
[T ·](θ̄T (·)− θ0)⇒ (G0S−1G)−

1
2M(G0S−1G)−

1
2G0S−1(

µ
S

·
¶ 1

2

Bq(·) +Gδ), (5)

WT (·)⇒ Ψ, LMT (·)⇒ Ψ, LRT (·)⇒ Ψ (6)

where Ψ ≡ ( 1√·Bq(·)+S−
1
2Gδ)0C 0(CC 0)−1C( 1√·Bq(·)+S−

1
2Gδ), Bq(·) is the q-dimensional

standard Brownian Motion, C ≡ A(G0S−1G)−1G0S−1/2, M ≡ Ip− (G0S−1G)−1/2A0

(A(G0S−1G)−1A0)−1A(G0S−1G)−1/2.

Remarks: 1) For fixed π, both GMM estimators are asymptotically normally dis-

tributed, and the three statistics are asymptotically distributed as χ2(r) because

C 0(CC 0)−1C is idempotent with rank r. 2) Theorem 1 also shows that, when π is

fixed and δ 6= 0, the test statistics are asymptotically distributed as non-central χ2(r)

distributions with non-centrality parameter equal to δ ≡ (Gδ)0S 1
2C 0(CC0)−1CS

1
2Gδ.

Thus, the tests have nontrivial power provided δ > 0.

The next Theorem provides the probability of accepting H0 when it is true.

Theorem 2: Under Assumptions (a)-(h) with δ ≡ 0, as T →∞, we have:

P (Wt ≤ c2 + r ln

µ
t

T

¶
,∀ t ≥ T )→ ξ

P (LMt ≤ c2 + r ln

µ
t

T

¶
,∀ t ≥ T )→ ξ

P (LRt ≤ c2 + r ln

µ
t

T

¶
,∀ t ≥ T )→ ξ,

where ξ ≡ P (Br(π)
0Br(π)/π ≤ c2 + r ln(π),∀π ≥ 1) =

R
Πri=1{1 − 2[1 − Φ(ai) +
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aiφ(ai)]}da, and Br(·) = (CC 0)−1/2CBq(·) is the r-dimensional standard Brownian

motion and the integrations are taken over the set {a = (a1, ..., ar) : 0 ≤ ai ≤

c, ∀ i = 1, 2, ..., r, Pr
j=1 a

2
j = c

2}.

To make the tests operational, one needs c. For example, to test at the 5%

significance level, one needs to find c such that ξ is equal to 0.95. Because it is

difficult to evaluate the integral numerically for mildly large r, we estimate c by Monte

Carlo simulation. First, we generate r-dimensional random vectors {a(j)}Jj=1 that are

uniformly distributed over the set {a = (a1, a2, ..., ar) : 0 ≤ ai ≤ c, ∀i = 1, 2, ..., r,Pr
j=1 a

2
j = c

2}. Second, we estimate the integral by averaging

1

J

JX
j=1

Πri=1[1− 2(1− Φ(a(j)i ) + a(j)i φ(a
(j)
i ))] (7)

Lastly, we choose c so that the Monte Carlo integral is close to 1 − α, where α is

the desired significance level. Table 1 readily provides values for c to be used in the

construction of the critical values when r ≤ 14. Since these depend on both r and

α, we denote them by cr,α. Critical values for the Recursive Wald, LM and LR tests

of size α at time t with r restrictions and first monitoring time T + 1 are obtained

from Table 1 as c2r,α+ r ln(
t
T ). Thus, the critical values depend upon both the actual

sample size, t, and the historical sample size, T .

It is very easy to implement the test in practice. The researcher calculates the

Wald, LM or LR test as usual (and, thus, with commonly used packages). The
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critical values of size α for the test statistic calculated at time t with r restrictions

and first monitoring time T + 1 are obtained as c2r,α + r ln(
t
T ), where the values of

cr,α are obtained from Table 1. Note that this formula and Table 1 allow the applied

researcher to readily calculate the critical value to be used in a particular economic

application without having to calculate (7), so that no simulations nor complicated

computations are required. An example of how to implement the test in practice is

presented in the next section.

Note that the test statistic proposed in this paper is different from the fluctuation

test obtained by applying Chu et al. (1996) to our problem. First of all, it is more

powerful. We investigate its local power and compare with that of the fluctuation

test in the next section. Finally, we consider a more general framework (GMM and

possibly nonlinear restrictions).

INSERT TABLE 1

4. A small Monte Carlo experiment

We are interested in the situation in which the researcher is making real-time tests

for Granger Causality. At each point in time t = T, .., Tmax, the researcher chooses

between two models. For simplicity, we assume that the models are nested and linear:

M0 : yt+1 = ²t+1, vs. Mp : yt+1 = β0tx
(p)
t + ²t+1, p = 1, 2 and T = 250, Tmax = 500.

Note that the superscript identifying the model (“p”) is equal to the number of

estimated parameters and also to the number of restrictions. We assume that the

DGP is yt+1 = β0xt + ²t+1,where β = 0, ²t is an i.i.d. scalar standard normal, x
(p)
t
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is a p-dimensional normal with zero mean and covariance Σ(2)X =

 1 ρX

ρX 1

 for

p = 2 and Σ(1)X = 1 for p = 1. The choice between the two models at time t is based

on an in-sample test using observations available until time t. As models are nested,

the model selection device is an F-test for β = 0, where β is a rolling estimate.

We will consider the following tests, and show that, among them, only the Re-

cursive Wald test has both good size and power properties:

- the “Fluctuation test”:

Ft =
√
tbΣ−1/2t

bβt (8)

where bΣt ≡ bσ2 ¡1t Pt
s=1 xsxs

¢−1
and bσ2 is the estimated variance of the residuals of

the regression up to time t. For t = [Tπ], from the functional central limit theorem, Ft

converges (weakly) to Bp (π) /
√
π, where Bp (π) is a standard p-dimensional Brownian

motion. This test statistic is similar in spirit to that proposed by Chu et al. (1996).

These authors developed a test statistic for recursively testing for structural breaks;

our test is a recursive test for predictive ability. Boundary crossing probabilities for

(8) can be derived by using the methods discussed in Chu et al. (1996, p. 1055).

Let α denote the desired size of the test. Then, the test rejects when maxp|Ft| >q
(kp,α)

2 + r ln (t/(T )), where kp,α solves 1− [1−2 (1− Φ (kp,α)− kp,αφ (kp,α))]p = α.

- the “Recursive Wald test” proposed in this paper:

Wt = tbβ0tbΣ−1t bβt (9)
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By noting that Wt = F
0
tFt and by applying the continuous mapping theorem to (9):

Wt ⇒ Rp (π)
2 /π, where Rp (π) is the Bessel process, that is the square root of a sum

of p-dimensional squared Brownian Motions. Boundary crossing probabilities and

critical values can be obtained as described in the previous section.

- the “One-shot Granger Causality (GC) test”, where, for each t = [πT ], as

T →∞, Wt = tbβ0tbΣ−1t bβt has a χ2p asymptotic distribution.3
To clarify how to implement these tests, let’s consider the following concrete

example. Let p = 1, α = 0.05, and we monitor at t = 251, ..500 starting from the

historical sample T = 250. To implement the Recursive Wald test at time t, calculate

the usual Wald test at time t and then reject if, at any t, the estimated Wald test

statistic is bigger than c21,α + ln (t/250). To implement the Fluctuation test at time

t, calculate Ft and k1,α such that 2 (1− Φ (k1,α)− k1,αφ (k1,α)) = α, and reject if, at

any t, |Ft| >
q
k21,α + ln (t/250). Finally, to implement the one-shot GC test, reject

if, at any t, the estimated Wald test is bigger than the 1− α quantile of a χ21.

We will consider the following Monte Carlo experiments.

Local power comparison. We perform a simple local power comparison of the

tests that have the correct size asymptotically (Ft and Wt) and a size-adjusted (by

simulation) One-shot test. Let p = 1 or 2, ρX = 0 or 0.7, T
max = 500, T = 250 and

the number of Monte Carlo replications be 1000. Figure 1 shows the resulting power

functions (see also Table 2 for details). It is clear that the recursive Wald test has

3That is, for any π, Wt has a Bp (1)
0Bp (1) asymptotic distribution, which is a χ2p.
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higher power than the Fluctuation test when p > 1. Note that the size-adjusted One-

shot test has higher power than Wt, but it would have the wrong size if its critical

values, which are computed for a given Tmax, are used recursively with a bigger total

sample size.

INSERT FIGURE 1 AND 2, AND TABLE 2

Recursive model selection. To investigate size, we perform the following Monte

Carlo experiment. At times t = T + 1, ..., Tmax (where T = 250) we use both the

one-shot and the recursive tests to choose between Models 1 and 2. Figure 2 plots

the fraction of times in which each test rejected at least once. Note that, for this

design, the one-shot Wald test has a 0.10 probability of (incorrectly) rejecting the

true model at least once after 30 periods, whereas the proposed recursive procedures

successfully control size.

5. Empirical applications

The real-time predictive content of money for output.

Amato and Swanson (2001) test in-sample marginal significance of money for

output in autoregressive models by using Wald and SIC tests based on recursive

estimation. They find evidence that money is significant in revised data, (although

the evidence is somewhat weaker if one uses un-revised data). Here below we consider

a similar exercise. First, we recursively test whether money has predictive content

for output at each point in time between 1978:1 and 2002:4. Second, based upon
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the results of the recursive test, we select the forecasting model. Forecasts use only

data available at the time in which the forecast is made and are one-step ahead.4

We consider the realistic situation in which data are released in real-time. We use

quarterly data for money (M1 and M2) and industrial production (IPT) for the U.S.

provided by the Federal Reserve Bank of Philadelphia, as well as CPI and 3-month

Treasury Bills as a measure of interest rates. The data are discussed in Croushore and

Stark (2001). The first estimation period is from 1959:01 to 1978:01, and forecasts

are made until 2002:4. All variables (except interest rates) are in logarithms, and

first differenced. See Appendix 2 for details.

Results for regressions with different lag structure and different regressors are

reported in Table 3. The first four columns report the number of lags included of:

interest rate (i), money supply M1 or M2 (m), industrial production (ip) and prices

(p). If a variable is not included as a regressor, the column reports “0”. Rows

denoted by “AIC” (“SIC”) report the results if the researcher recursively selects the

lag length by AIC (SIC). Every regression includes a constant. MSEF and MSEW

denote, respectively, the ratio of RMSE (i.e. Root Mean Squared Error) of forecasts

based on models selected by the Fluctuations and Wald tests relative to the RMSE

of the one-shot GC test. RF , RW and RGC respectively denote the fraction of times

4That is, real time observations that would have been available to someone at that point in
time, the vintage date. We assume a floating-date information set, in which the exact day of the
information set is given by the 15th when the day of the release of the industrial production report
falls on the 15th or before, or by the date of the industrial production report, when that date exceeds
the 15th.
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the Fluctuations, Wald and one-shot GC tests rejected the null hypothesis.

The results show that, for M1, the recursive tests reject the hypothesis that

money does not Granger Cause output less often than the one-shot test. For M2,

instead, the results of the recursive and one-shot tests are very similar. Furthermore,

forecasts based on the recursive tests are, on average, better than those based on

the one-shot GC test for M1, but not for M2. In fact, for M1, over 27 estimated

regressions, the forecasts based on the recursive Wald test are better than the one-

shot test approximately seventy percent of the times. For M2, the former are always

better than or equal to the latter when based on the Fluctuation test, and when

based on the Wald test they are worse only once. As it is clear from the table, this is

generally due to the fact that the recursive tests reject less often the null hypothesis

of no Granger Causality, thus relying on the restricted (smaller) model more often

than the one-shot test. This result may shed some light on the fragile link between

in-sample model selection and out-of-sample forecasting in real time: one-shot tests,

when used recursively, tend to select overfitted models, which deteriorate forecasts.

INSERT TABLE 3, AND FIGURE 3

By comparing the RF , RW and RGC columns of Table 3, our results suggest that

M1 does have some predictive content for output, but M2 does not. Also, Figure

3 shows which dates the tests do (do not) reject Granger Causality for a particular

model specification in Table 3 (one in which the Recursive Wald and the one-shot

tests disagree over some portion of the sample). The picture plots the asymptotic
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critical values of the Recursive Wald test and the one-shot tests. Note that the critical

values of one-shot tests are constant, whereas those of the recursive test are generally

increasing with the sample size (the only times in which they are not, it is because

some data on any of the variables used in the regression were not available at that

time, and this reduced the sample size, e.g. in 1981). According to our method, there

is no evidence of Granger Causality of money for output especially for most of the

1980’s and the late 1990’s.5

INSERT TABLE 4

Linear versus non-linear models, and forecasting

Many nonlinear models have a linear model nested in the nonlinear structure.

Before using a nonlinear model, it is advisable to test whether the linear model is an

adequate description of the economic relationships of interest. If that turns out to

be the case, the researcher can avoid estimating unnecessarily complicated models.

Furthermore, a non-linear model might appear to fit the data better than a linear

model even if the true economic relationship is linear, but its forecasts would be

worse out-of-sample. Indeed, Stock and Watson (1999) compare forecasts of linear

and non-linear models and conclude that linear models appear to forecast better

than non-linear models, on average. Marcellino (2002) finds similar results. Swanson

and White (1997a,b) also found that multivariate adaptive linear VAR models often

5 In results not reported, we also find less evidence of Granger causality of other macroeconomic
variables (not only money) for output in the early 1980s.
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outperform (in terms of forecasting) adaptive nonlinear models. As the true economic

relationship may change over time from linear to non-linear (and vice-versa), Swanson

andWhite (1997b, p. 540) allow their econometric model to be recursively chosen over

time between linear and non-linear, and analyze whether this possibility can improve

forecasting ability out-of-sample. Following their approach, we call a model adaptive

if a new specification is chosen before each new rolling forecast is constructed.

We revisit this empirical evidence by using our testing procedure to recursively

select between nested linear and non-linear models for a series of macroeconomic

variables described in Appendix 2. We focus on Artificial Neural Network (ANN)

versus linear models, both because ANN are commonly used (see Swanson and White

(1997b)) and because Stock and Watson (1999) found that ANN outperform other

non-linear model specifications. Let ςt = [yt−1, yt−2, ..., yt−p]; the single layer neural

network model (with 1 hidden unit) is:

yt = β00ςt + γ1g
¡
β01ςt

¢
+ ²t, g (z) = (1 + e

z)−1 (10)

We perform a general test for non-linearities based on LM principles due to Ter
..
asvirta

et al. (1993). It is a test for H0 : ϕij = 0 in the auxiliary regression:

but = β00ςt +
pX
i=1

p−1X
j=1

ϕijς
(i)
t ς

(j)
t (11)

where the dependent variable, but, is the residual of a linear regression of yt onto ςt,
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and ς
(i)
t is the i-th column of ςt (constant excluded). Ter

..
asvirta et al. (1993) show

that this test performs better than tests explicitly designed for neural networks. If

the test does reject the hypothesis that the model is linear, we estimate (11) or (10).6

Table 4 reports the results. The table focuses on four basic macroeconomic vari-

ables (unemployment, real and nominal GDP, and consumption) and a variety of

univariate autoregressive models, characterized by different lag lengths p. RF , RW

and RGC respectively denote the frequency by which the Fluctuations, Recursive

Wald and one-shot tests rejected the null hypothesis over the sample. MSESWF de-

notes the ratio (relative to one-shot tests) of the RMSEs of forecasts obtained as

follows. At each point in time, we use our method and the test statistic (11) to select

between a linear and a non-linear model; if the test does reject linearity, forecasts

are made by using the Stock and Watson method. MSEF and MSEW instead use

model (10) to forecast; the former chooses the model by using the Fluctuation test

whereas the latter uses the recursive Wald test. “Lags” denotes the number of lags

used in the autoregression. The results show that the recursive linearity tests based

on our critical value reject the linear model less often than one-shot tests. The latter

end up selecting an over-parametrized non-linear model too often than desired. The

table also shows that forecasts based on our recursive test for linearity are better

6The ANN model is estimated by a modified version of an algorithm developed by Stock and
Watson (1999), see M. Watson’s webpage: http://www. econ.princeton.edu/ ~mwatson. The only
difference is that we use the faster Gauss-Newton algoritm provided by Matlab (fminunc.m) to
estimate the parameters. It is possible to use other tests for non-linearities such as Hong and Lee
(2003). These tests are more powerful to reject non-linearities and would reinforce our results.
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than those based on usual one-shot critical values.

6. Conclusions

This paper proposes tests for recursive predictive ability. The test statistics are the

same as those commonly used in the literature, but the critical values are different.

These critical values can be easily calculated by using Table 1, so that the applied

researcher can directly implement the proposed test. We show in Monte Carlo sim-

ulations that our test has good power and can significantly improve forecasts based

on recursive model selection procedures. By using our test, we find weaker empirical

evidence of predictive ability of money for output, and of non-linear relationships

between some representative macroeconomic variables.

While the method proposed in this paper is easy to implement and performs well

in our Monte Carlo simulations, alternative approaches to inference are possible. In

particular, one might implement LIL bounds, as proposed by Altissimo and Corradi

(2003). As shown by these authors, LIL bound procedures are straightforward to

calculate and implement, but require some computational adjustments in small sam-

ples. While these procedures have both zero size and power one for fixed alternatives,

they will have no power against the local alternatives considered in this paper. They

are therefore not considered here, but nevertheless remain an interesting option for

future research.
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8. Appendix 1: Proofs

Proof of Theorem 1: Let D[0, n] and D[0,∞) denote the spaces of right-continuous
functions with left-hand limits on [0, n] and [0,∞), respectively. Equip D[0, n] with
the Skorohod topology. For z1, z2 ∈ D[0,∞), define D[0,∞) with ρ(z1, z2) =P∞
n=1 2

−nmin(ρn(z1, z2), 1), where ρn(z1, z2) is the Skorohod topology for the re-
strictions of z1 and z2 to D[0, n].

First, we prove that the GMM estimator is consistent uniformly in π ∈ [1,∞):

θ̂T (π) = θ0 + op(1) (12)

where op(1) is uniform in π ∈ [1,∞). By Assumption (d) it follows that

sup
π∈[1,n]

sup
θ∈Θ

|Q̂[πT ](θ)−Q(θ)| = op(1), (13)

where Q(θ) = limT→∞E[g(zTt, θ)0]S−1E[g(zTt, θ)]. It follows from Assumptions (c),
(d), (g) that, for every neighborhood Θ0 ⊂ Θ of θ,

inf
π∈[1,n]

inf
θ∈Θ/Θ0

|Q(θ)−Q(θ0)| > 0 (14)

A slight modification of Lemma A.1 of Andrews (1993, p.846), (13) and (14) imply

θ̂T (π) = θ0 + op(1), (15)

where op(1) is uniform in π ∈ [1, n]. By Theorem 25.2 of Billingsley (1995, p. 330) it
follows from (15) that

θ̂T (·) ⇒ θ0 (16)

where the weak convergence is uniform in π ∈ [1, n]. Note thatD[1,∞) = ∪∞n=2D[1, n]
and that elements in D[1, n] are uniformly bounded for n = 2, 3, ... (see e.g. Billings-
ley, 1968, p.110). Thus, by Theorem 1.6.1 of van der Vaart and Wellner (1995, p.
43), it follows that (16) holds with weak convergence uniform in π ∈ [1,∞). Thus it
follows that

sup
π∈[1,∞)

³
θ̂T (π)− θ0

´
⇒ 0 (17)

By applying Theorem 25.3 of Billingsley (1995, p. 331) to (17), the uniform conver-
gence (12) follows. The proof for the uniform consistency of the constrained GMM
estimator is analogous and is thus omitted.

Next we will prove that the unconstrained GMM estimator is asymptotically
normal. Suppose that n is a fixed positive integer greater than 1. Then it follows
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from analogous arguments used in the proof of Theorem 1 of Andrews (1993) that
√
T (θ̂T (·)− θ0) = [ĜT (θ̂(·))0Ŝ−1T (·)ĜT (θ̂(·))]−1ĜT (θ̂(·))0Ŝ−1T (·)

√
T ·ĝT (·) + op(1)

= (G0S−1G)−1GS−1
√
TπĝT (·) + op(1), (18)√

T ·(θ̄T (·)− θ0) = [ĜT (θ̄(·))0S̄T (·)−1ĜT (θ̄(·))]−1/2M̂T [ĜT (θ̄(·))0S̄T (·)−1ĜT (θ̄(·))]−1/2
×ĜT (θ̂(·))0Ŝ−1T (·)

√
T ·ĝT (θ0, ·) + op(1)

= (G0S−1G)−1/2M(G0S−1G)−1/2G0S−1
√
T ·ĝT (θ0, ·) + op(1), (19)

1√
T

[T ·]X
t=1

g(zTt, θT ) ⇒ S
1
2Wr(·) +Gδ (20)

on D[1, n] where op(1) is uniform. Next, it follows from Theorem 1.6.1 of van der
Vaart and Wellner (1996, p.43) that (18), (19) and (20) hold onD[1,∞), which proves
(4) and (5). (6) follows by applying the continuous mapping theorem.¤

Proof of Theorem 2: Under the null hypothesis, i.e, δ ≡ 0, Theorem 1 implies

WT (π)⇒ Br(π)
0Br(π)/π

and a similar expression holds for LMT (π) and LRT (π). Thus,

WT (π)− r ln(π)⇒ Br(π)
0Br(π)/π − r ln(π), (21)

and similar expressions hold for LMT (π) and LRT (π). Since Br(π)0Br(π)/π−r ln(π)
is the sum of r stochastically independent processes, that is, the sum of (squares of
independent Brownian motions minus ln(π)), we have

P (Br(π)
0Br(π)/π − r ln(π) ≤ c2, ∀π ≥ 1) = P (

rX
i=1

(B(i)2r (π)/π − ln(π)) ≤ c2, ∀π ≥ 1)

=

Z
Πri=1P (B

(i)2
r (π)/π − ln(π) ≤ a2i , ∀π ≥ 1)da, (22)

where the integration is taken over the set {a = (a1, a2, ..., ar) : 0 ≤ ai ≤ c, ∀i =
1, 2, ..., r,

Pr
j=1 a

2
j = c2}. By equation (7) of Chu et al. (1996, p.1052), we have

P (B
(i)2
r (π)/π − ln(π) ≤ a2i , ∀π ≥ 1) = 1 − 2(1 − Φ(ai) + aiφ(ai)) for i = 1, 2, ..., r,

and Theorem 2 immediately follows from this and (21).¤
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9. Appendix 2: Data description
The data used in the real-time predictive content of money for output exercise are
real-time data for money (M1 and M2) and industrial production (IPT) for the U.S.
from the database provided by the Federal Reserve Bank of Philadelphia (Federal
Reserve Bank of Philadelphia, “Notes on the Philadelphia Fed’s Real Time Data Set
for Macroeconomists”, at: http://www.phil.frb.org/econ/forecast/reaindex.html). In
addition, we also use 3-month Treasury Bills as a measure of interest rates (like all
financial data, they are never revised). The data are discussed in Croushore and
Stark (2001). Monthly data are available from 1959:01 to 2002:12 and at quarterly
vintages starting from 1965:11 to 2002:11 for M1 and from 1973:2 to 2002:11 for M2.
All data are seasonally adjusted. We merged quarterly and monthly data follow-
ing the suggestions of the Notes on the Philadelphia Fed’s Real Time Data Set for
Macroeconomists, sec. IV, “The relationship between monthly industrial production
vintages and core quarterly vintages”. All our results are thus based on quarterly
data. The first estimation period is from 1959:01 (or the earliest available date after
1959:01 in which all variables are reported) to 1978:01. Data for CPI (not seasonally
adjusted) is available from Norman Swanson’s webpage (CPI_NSA.xls).

The data used in the linear versus non-linear empirical work have been chosen
among the macroeconomic variables considered by Swanson and White (1997b) and
Stock and Watson (1999). All the following data are from the St. Louis Fed database.
Mnemonics are provided.

Unemployment (U): Civilian U.S. Unemployment Rate, mnemonic “UNRATE”, is
seasonally adjusted, available at monthly frequency, in percentage units, from 1948:01
to 2003:07. Concerning these data, the BLS announced several revisions to the House-
hold Survey on February 2003, with the release of the January 2003 data. The changes
affect data back to 2000, and are mainly due to a new seasonal adjustment procedure
and new seasonal factors back to January 1998. This series is ultimately taken from
the U.S. Department of Labor, Bureau of Labor Statistics.

Real GDP (RGDP) and Nominal GDP (GDP): Nominal U.S. GDP, mnemonic
“GDP”, is seasonally adjusted, at annual rate, available at quarterly frequency, in
billions of dollars units, from 1947:1 to 2003:4. Real U.S. GDP, (RGDP), mnemonic
“GDPC1” is seasonally adjusted, available at quarterly frequency, in billions of
chained 1996 Dollars, from 1947:1 to 2003:4. Both series are ultimately taken from
the U.S. Department of Commerce, Bureau of Economic Analysis.

Consumption (C): Real Personal Consumption expenditures, mnemonic “PCEC96”,
is a seasonally adjusted annual rate, available at monthly frequency, in billions of
chained 1996 Dollars, from 1967:1 to 2003:6. This series is ultimately taken from the
U.S. Department of Commerce, Bureau of Economic Analysis.

All variables except unemployment are first differences of logs; unemployment is
in levels.
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Table 1: The Critical Value cr,α for the Sequential Tests
r α = 0.05 α = 0.10

1 2.7955 2.5003
2 3.1070 3.0548
3 3.4253 3.3949
4 4.0745 4.0479
5 4.5980 4.5746
6 5.0584 5.0372
7 5.4701 5.4507
8 5.8655 5.8475
9 6.1605 6.1440
10 6.4066 6.3912
11 7.3913 7.3752
12 7.3494 7.3348
13 7.4186 7.4057
14 8.9039 8.8884

Note to Table 1. The table reports the values of c to be used to obtain critical
values for the Recursive tests described in Theorem 2. Critical values for the Recursive
Wald, LM and LR tests of size α at time t with r restrictions and first monitoring
time T are obtained from this table as: c2r,α + r ln(

t
T ). The number of simulations

used to obtain these critical values are 1000000 for r = 1, .., 5 and 10000 for r > 5.

Table 2. Local power comparison of correctly sized tests.
p = 1 2 2

ρX = 0 ρX = 0.7
δ Ft Wt LMt Ft Wt LMt Ft Wt LMt

0 .014 .014 .014 .024 .034 .034 .028 .034 .034
.025 .032 .032 .028 .050 .062 .058 .046 .086 .08
.05 0.08 0.08 .076 .102 .148 .138 .212 .296 .288
.075 .188 .188 .178 .292 .400 .388 .518 .664 .646
.10 .348 .348 .342 .458 .638 .634 .812 .916 .910
.125 .566 .566 .552 .702 .862 .854 .978 .988 .988
.15 .76 .76 .756 .886 .944 .944 .998 1 1
.175 .906 .906 .904 .968 .99 .988 1 1 1
.20 .954 .954 .954 1 1 1 1 1 1

Note to Table 2. The table reports the power function (as a function of the
local alternative δ) of the Fluctuations test (Ft), the Recursive Wald (Wt) and LM
(LMt) tests, with 1,000 Monte Carlo simulations and p regressors. The DGP is:

xt ∼ N(0,Σ
(p)
X ), where Σ

(1)
X = 1,Σ

(2)
X =

µ
1 ρX
ρX 1

¶
.



28

Table 3. Recursive tests
M1

m i ip p MSEF MSEW RF RW RGC
3 0 0 0 0.984 0.996 0.45 0.74 0.89
3 1 0 0 1.011 1.017 0.39 0.5 0.73
3 3 0 0 0.991 0.992 0.38 0.46 0.68
3 0 0 1 1.013 0.998 0.58 0.86 1
3 1 0 1 1.02 0.989 0.43 0.68 1
3 3 0 1 1.04 0.992 0.47 0.69 1
3 0 0 3 0.979 0.995 0.59 0.86 1
3 1 0 3 1.001 0.986 0.38 0.70 1
3 3 0 3 1.011 0.991 0.40 0.68 1
3 0 1 0 1.029 1.018 0.36 0.54 0.75
3 1 1 0 1.022 1.006 0.34 0.47 0.67
3 3 1 0 1.017 1.009 0.24 0.37 0.51
3 0 1 1 1.058 0.992 0.43 0.82 1
3 1 1 1 1.057 0.982 0.31 0.65 0.98
3 3 1 1 1.071 0.986 0.21 0.58 0.95
3 0 1 3 1.018 0.98 0.33 0.79 1
3 1 1 3 1.072 0.986 0.26 0.56 1
3 3 1 3 1.11 1.005 0.15 0.43 0.89
3 0 3 0 1.028 1.015 0.32 0.52 0.71
3 1 3 0 1.024 1.016 0.33 0.46 0.67
3 3 3 0 1.023 1.006 0.16 0.36 0.46
3 0 3 1 0.986 0.996 0.47 0.83 1
3 1 3 1 1.028 0.986 0.36 0.67 0.97
3 3 3 1 1.04 1.001 0.18 0.61 0.9
3 0 3 3 0.959 0.985 0.42 0.71 1
3 1 3 3 0.961 0.987 0.31 0.60 0.99
3 3 3 3 0.996 0.771 0.24 0.47 0.85
S I C 1 1 1 1 1
A I C 1 1 1 1 1

M2
MSEF MSEW RF RW RGC
1 1 1 1 1
1 1 0.97 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 0.97 1 1

0.999 1 0.94 1 1
0.999 1 0.97 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 0.99 0.99 0.99

0.999 1 0.99 1 1
0.999 1 0.95 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 0.99 0.99 0.99
1 1 1 1 1
1 1 0.99 0.99 0.99
1 1.018 0.99 1 0.99
1 1 0.74 0.74 0.74
1 1 0.74 0.74 0.74

Note to Table 3. We report empirical evidence on the predictive ability of lagged
money for output from regressions with various lag structure and regressors. The
first four columns report the number of lags included of: interest rate (i), money
supply (m), industrial production (ip) and prices (p). Every regression includes a
constant. “AIC” (“SIC”) denote recursive lag length selection by AIC (SIC). MSEF
and MSEW denote the ratio of RMSE of forecasts based on models selected by the
Fluctuations and Wald tests relative to the RMSE of the one-shot GC test. RF , RW
and RGC respectively denote the fraction of times the Fluctuations, Recursive Wald
and one-shot GC tests rejected H0. One-step ahead forecasts begin at 1978:1.
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Table 4. Linear versus non-linear models
Variable Lags MSEF MSEW MSESWF RF RW RGC

Unemployment 2 0.9981 0.9981 - - 0.9968 0.9968 1
3 1 1 - - 1 1 1
4 1 1 0.0149 1 1 1
5 1 1 0.0148 1 1 1

Consumption 2 1 1 1 0 0 0
3 1 1 1 0 0 0
4 0.8524 1 0.8100 0.3529 1 1
5 0.9073 1 0.8108 0.5936 1 1

GDP 2 0.7589 0.7589 0.7589 0 0 0.0971
3 0.9074 0.9074 0.9074 0 0 0.0291
4 1 1 0.4708 1 1 1
5 1 1 0.4758 1 1 1

Real GDP 2 1 1 1 0 0 0
3 1 1 1 0 0 0
4 0.7836 0.7836 0.7836 0 0 0.8350
5 0.9936 0.9738 0.7131 0.7961 0.9612 1

Note to Table 4. MSESWF denotes the ratio of the RMSE (relative to one-shot
Granger Causality tests) of forecasts obtained as follows. At each point in time,
we use our method and the test statistic (11) to select between a linear and a non-
linear model; if the test does reject linearity, forecasts are made by using the Stock
and Watson method. MSEF and MSEW instead use model (10) to forecast; the
former chooses the model by using the Fluctuation test whereas the latter uses the
recursive Wald test. RF , RW and RGC denote, respectively, the fraction of times the
Fluctuations, Wald and one-shot Granger Causality tests rejected the null hypothesis.
“Variable” denotes the macroeconomic variable used in the univariate model and
“Lags” denotes the number of lags used in the autoregression. “- -” means “not
available”.
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Figure 1 : Local power comparison
of correctly sized tests.
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Figure 1(continued)
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Figure 2. Rejection probabilities
of recursive and one− shot tests.
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Figure 3. Empirical evidence on predictive
content of M1 for output in real time.
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Notes to figures. Figure 1 compares the local power of the Fluctuation, the
Recursive Wald and a size-adjusted (by simulation) One-shot test with one (upper
panel) or two correlated (lower panel, ρX = 0.7) regressor(s). Figure 2 shows the
rejection probabilities of the GC one-shot, Recursive Wald and Fluctuation tests.
The latter two perfectly overlap. Figure 3. We recursively test whether money GC
output during the last decade. The figure shows when the recursive Wald (W (t))
test rejects the null hypothesis that some macroeconomic variables do not jointly GC
output (it rejects when W (t) is bigger than its critical value). For comparison, we
also show the critical values of the one shot test. The regression includes a constant,
1 lag of money, and no lags of interest, output and prices.


