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Abstract

Investment tournament is a type of decision problem intro-
duced and studied in this paper. These problems involve alloca-
tion of investments among several alternatives whose values are
subject to exogenous shocks. The payoff to the decision maker is
a weighted sum of final values of each alternatives with weights
convex in final values. (1) For the case of constant returns to
scale it is optimal to allocate all resources to the most promising
alternative.(2) In tournaments for a promotion the agents would
rationally choose to put forth more effort in the early stage of
the tournament in a bid to capture a larger share of mentoring
resources.
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1 Introduction

This paper introduces and investigates a class of decision problems re-
ferred to here as investment tournaments. In an investment tournament
problem, the decision maker and nature take alternating turns (or act
simultaneously). At each decision node the decision maker selects an
investment level for each of the N alternatives, and the value of each
alternative increases in the amount of the investment. The values of
alternatives also change due to random shocks (actions of nature). The
payoff in an investment tournament depends only on the realization of
the most valuable alternative. (Only investments into the winning al-
ternative are useful. The other investments are wasted from an ex-post
perspective).1 This setting is a generalization of the auction environment
introduced in Schwarz and Sonin (2001).
For example of an investment tournament, let us turn to the process

of new product development. Suppose a few prototypes are being devel-
oped simultaneously. The firm (decision maker) has to allocate invest-
ment dollars among prototypes (alternatives) before the performance
(value) of prototypes becomes known. The expected performance of a
prototype is increasing in the amount of resources committed to it. The
new product is based on the best prototype. Consequently, the profit of
the firm depends only on the realization of the highest value alternative.2

Career choice can also be viewed as an investment tournament. A
1Optimal search problems first investigated by Manning and Moragan (1985) and

Weitzman (1979) are also maximal problems and thus related to investment tourna-
ments considered herein. Neither problem is a special case of the other. In the optimal
search literature there is a cost of obtaining an extra draw. In other words, there is
a cost of obtaining information about a particular alternative. Loosely speaking, the
optimal search literature studies the optimal strategy for investment into information
acquisition. In contrast, in investment tournament problem the information about
the value of each alternative is revealed over time at no cost to the decision maker
and investment into alternatives plays no role in information acquisition.

2It is worth noting that many real life decision problems share features of both
investment tournaments and optimal search problems. For instance, both investment
tournaments and search models are relevant for understanding different aspects of
R&D investment decisions. For a recent example of applications of optimal search
results to R&D experimentation, see Dahan and Mendelson (2001) who study op-
timal prototyping strategy. In particular, they investigate the optimal number of
prototypes and the optimal combination between parallel and sequential prototyp-
ing. Note that in the context of optimal search literature, the amount of resources
invested in each prototype is assumed to be exogenously fixed and all prototypes are
assumed equally promising. In contrast, investment tournament model considers a
world where a firm can adjust its investment level into each prototype depending on
preliminary (noisy) evaluations of the potential of each prototype. Thus, investment
tournament model isolates an aspect of the optimal prototyping problem that has
not been previously investigated.
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person hesitating between accounting and engineering majors (alterna-
tives) might choose to take some courses in each filed. Taking courses
can be viewed as investment into alternatives. From an ex-post perspec-
tive the courses taken in accounting are a waste of time for someone who
eventually chooses the engineering profession.3 Investment tournaments
have received very little previous attention. It suffices to say that this
paper is the first to use the term investment tournament for lack of an
existing term. Yet investment tournaments are ubiquitous. Applications
of investment tournaments range from decisions as diverse as choosing
a mate to making investments in firm-specific human capital.
We propose a model of investment tournaments and characterize the

optimal investment strategy. The simplest model of investment tourna-
ment is a three period decision problem. In the first and third periods
the decision maker receives signals about the value of each alternative,
in the second period the decision maker chooses the level of investment
into each alternative (by dividing a fixed budget among competing al-
ternatives). In the third period the final value of each alternative is
realized; it is equal to the sum of the first and the third period signals
plus the amount of the investment received by that alternative in the
second period. The payoff of the decision maker is the final value of the
most valuable alternative. The class of investment tournaments ana-
lyzed in this paper is far more general than a simple three period model.
In Section 2 we consider investment tournaments with a large number
of periods where the decision maker and nature are alternating taking
actions or act simultaneously. A multi-period model captures a possi-
bility that the decision maker learns over time about the value of each
alternative and uses this information to adjust the share of investment
into each alternative. Proposition 1 characterizes the optimal investment
strategy in a multi-period setting. Optimal strategy calls for investing
all resources into the leading alternative4 at every decision node (thus,
magnifying the lead of the leading alternative). Note that due to infor-
mation revelation the leading alternative at one decision node need not
remain in the lead at the next decision node. Thus, we can interpret
Proposition 1 as a statement that the optimal strategy is invariably to

3A basic investment tournament model highlights the aspects of the career choice
steaming from a necessity to make invests into learning trades (investing into al-
ternatives) before the information regarding which trade fits a person best (has the
highest value) is revealed. Obviously, the complexity of educational choices can not
be fully captured by a simple investment tournament model. A person may take
courses in various fields in order to learn what career suits him best or in order to
satisfy intellectual curiosity.

4The leading alternative is the one with the highest sum of all past investments
into that alternative and the signals about its value.
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put all the eggs in the “favorite basket,” although the “favorite basket”
may change over time. Proposition 3 establishes that this result contin-
ues to hold if the payoff to the decision maker is not the final value of the
highest alternative but a weighted sum of final values of all alternatives
with convex weights. Section 4 farther generalizes the benchmark model
of investment tournaments by allowing the returns to investment into
an alternative to be decreasing. In this case more than one alternative
may receive positive investment. However, we show that the difference
in the amount of resources invested into the leading alternative and the
alternative with the second highest current value does not converge to
zero even as the difference between the current values of these alterna-
tives converges to zero. Thus, even though the optimal strategy in this
case is less extreme than “putting all eggs in one basket,” it is still op-
timal to “substantially” favor the leading alternative (even if the lead is
infinitesimal). This can explain a seemingly myopic behavior of agents
in investment tournaments. For instance, a firm working on several pro-
totypes of a new product rationally invests substantially more in the
development of the prototype that is slightly more promising at the mo-
ment than other prototypes. A student selecting between two majors
may rationally devote a lot of time to a major that seems slightly more
promising. A very small amount of new information can reverse the
order of the alternatives causing a student to dramatically change the
amount of time she invests in each alternative. Thus, a seemingly irra-
tional jumping back and forth from one major to another is consistent
with expected utility maximization.
Section 5 applies investment tournaments to personnel economics. It

builds upon the literature on incentive aspects of tournaments. The
study of incentive tournaments was pioneered by Lazear and Rosen
(1981) and quickly developed into a flourishing literature.5 In an incen-
tive tournament workers (alternatives) are competing for a prize (usually
a promotion). The performance (value) of each worker depends on his
effort and luck. The best performing worker wins a promotion.6 Within
the incentive tournament framework the firm’s profit depends primarily
on the average performance of workers in a tournament. The value of
the worker who wins the tournament has no special significance (aside
from being a term in the summation). We argue that in many contexts,

5See, for example, Bhattacharya and Guasch (1988), Bull et al. (1987), Ehrenberg
and Bognannon(1990), Eriksson (1999), Ferrall (1996), Green and Stokey (1983),
Nalebuff and Stiglitz (1983), and Taylor (1995).

6The workers are motivated to exert costly effort because performance, and hence
the probability of winning the tournament increases in effort.
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firm-specific capital of worker who wins the tournament has special sig-
nificance. For instance, in an up or out tournament7 investments into
firm-specific human capital of losing contenders are wasted from an ex-
post perspective. Workers accumulate firm-specific human capital over
the course of the promotion contest. The value of worker’s human cap-
ital at the end of the contest depends on a number of factors including
investments into worker’s firm-specific human capital undertaken during
the contest by the decision maker within the firm. In Proposition 7 we
show that other things being equal, the greater is the investment com-
ponent of a tournament the more effort workers exert in the beginning
of the tournament. In the context of an up or out contest for a part-
nership in a law firm, the greater is the role of mentoring in formation
of firm-specific human capital the harder the associates will work in the
beginning of the tournament in a bid to “get ahead” and rip a larger
share of mentoring resources.8

The rest of the paper is organized as follows, Section 2 introduces
and solves the benchmark model of investment tournament. Section 3
considers investment tournaments where the payoff is a weighted sum
of final values of some or all alternatives. Section 4 considers invest-
ment tournaments where returns to investments are decreasing. Section
5 combines investment tournament model with the models of tourna-
ment theory and applies the results to personnel economics. Section 6
concludes.

2 Benchmark Model of Investment Tournament

This section formulates and solves the benchmark model of an invest-
ment tournament. The subsequent sections generalize and build upon
the benchmark model. Consider a T period decision problem. There
are N alternatives and each period the decision maker chooses how to
distribute a budget of size B of scarce investment resources among these
alternatives. The amount of resources invested into alternative i at pe-
riod t is some non-negative quantity bti, and the sum of all investments
in each period must not exceed the amount of available investment re-
sources B.9 , 10 More formally, the action of the decision maker in period

7In an up or out tournament workers are either promoted (winners) or laid off
(losers). Obviously the firm specific human capital of losers is unimportant.

8Mentoring is a scarce resource that can take form of meeting important clients
or being assigned to projects that develop firm specific human capital.

9For simplicity of notations we assume that the amount of resources available
for investment is the same each period. Results and proofs do not change if the
investment budget is also a random variable that changes from period to period.
10When investments into alternatives are intangible it may be appropriate to as-

sume that there is a fixed investment budget. For example, a partner in a law firm
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t is represented by a vector bt = (bt1, bt2, ...btN) and the action space
of the decision maker is represented by A = {b ∈ RN : bti ≥ 0 andPN

i=1 bti = B}. Each period nature draws a random shock to each alter-
native from an atomless distribution F (·). The shock to the value
of alternative i in period t is denoted by sti. The shocks are inde-
pendent across alternatives and across time. The support of F (·) is
bounded from below. The action of nature at time t is denoted by vec-
tor st = (st1, st2, ...stN), drawn from a distribution F (·)× ...× F (·). We
assume here that the decision maker and nature act simultaneously, but
note that the problem is identical if they take alternating turns with the
decision maker taking the first turn. The value of alternative i at the
terminal node is given by Vi =

PT
t=1 sti +

PT
t=1 bti. In other words, the

final value of alternative i is the sum of all shocks and the sum of all
investments into alternative i. The winner of a tournament is the alter-
native with the highest terminal node value. The decision maker’s payoff
is equal the value of the winning alternative, i.e. max{V1, ...VN}. Unless
otherwise indicated, the decision maker is assumed to be risk neutral.
We would like to find an optimal strategy for this decision problem.
First let us introduce some useful notation. The history at time t

is denoted by ht = (s1,b1, s2,b2, ...st−1,bt−1). Information about the
values of alternatives contained in a history ht can be summarized by a
vectorVt = Vt(ht) = (Vt1, Vt2...VtN), where Vti =

Pt−1
τ=1 sτ,i+

Pt−1
τ=1 bτ,i.

11

We will say that an alternative i is a favorite at time t if for any j we have
Vti ≥ Vtj (note that in principle there may be more than one favorite).
The winner of the investment tournament is the favorite at the terminal
node.12

Proposition 1 In the benchmark model of an investment tournament
the following strategy is optimal: at every decision node the decision
maker allocates all investment resources to an alternative that is a fa-
vorite at that decision node. The remaining N − 1 alternatives receive
zero amount of investment. (If there is more than one favorite alterna-
tivee at a decision node all resources are allocated to one of the favorites).

The proof is provided in the appendix. Let us discuss the intuition
behind the proof. We first note that the expected payoff under a strategy
σ can be expressed as a function of current values of alternatives (or
extended values defined as eVti = Vti + bti). Thus, we can express the

may invest into human capital of associates by bringing an associate alone for a
meeting with an important client.
11The value at the terminal node is V(T+1)i ≡ Vi.
12If there is more than one favorite at the terminal node some tie braking rule is

used to determine the winner.
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expected payoff asΠ(Vt1...VtN , σ) or eΠ(eVt1...eVtN , σ). Essentially, values of
alternatives at node t contain all relevant information about the history
prior to time t, and extended values of alternatives at node t contain
all relevant information regarding both the decision maker’s action at
time t and the history prior to time t. In Lemma 9 we prove using the
envelope theorem that under an optimal strategy, say σ∗, deΠ(eVt1...eVtN ,σ∗)

∂ eVti
equals the probability that alternative i wins the tournament. The proof
of this lemma is based on the fact that under the optimal strategy a
small change in the value (or extended value) of a particular alternative
has a second order effect on the probability that this alternative wins
the tournament. Lemma 9 shows that at the decision node where an
alternative receives positive investment, the probability of winning for
this alternative must be at least as high as for any other alternative. It
is intuitive but not obvious that the favorite alternative is most likely to
win. The proof by induction is provided in Lemma 10.
Both the result and the proof of Proposition 1 are more general than

it might appear. Results similar to Proposition 1 continue to hold in a
variety of settings.
For example, if the decision maker and nature alternate their turns in

any way the result of the proposition still holds. The proof remains virtu-
ally unchanged. Furthermore, it is worth noting that the assumption of
risk neutrality is not absolutely necessary. Indeed, if the decision maker
is infinitely risk averse, then investing all resources into the favorite al-
ternative remains the optimal strategy. Consider a decision problem
with the same decision tree and the same space of possible histories as
in the benchmark tournament model. The only difference is that now
the agent is infinitely risk averse. For an infinitely risk averse decision
maker the expected payoff from some strategy σ conditional on history
ht equals to minst,s(t+1)...sT [max{V1, V2...VN |σ,ht}], which is the lowest
possible value of the winning alternative.

Proposition 2 An infinitely risk averse decision maker will choose to
invest all resources into the favorite alternative.

Interestingly, infinitely risk averse and risk neutral decision makers
select the same strategy for completely different reasons. Unlike Proposi-
tion 1, Proposition 2 is essentially obvious. Because the value of random
shocks sτi is bounded from below, investing everything into the favorite
alternative maximizes the payoff in the worst possible case.13 Proposi-
tion 1 and Proposition 2 establish that investing all resources into the
13Conditional on history Vt, in the worst possible state of the world all future

shocks are st+j,i =s for all i = 1...N and j = 1...(T − t), where s is the lower bound
for a random shock. In this case the value of alternative i at the terminal node is
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favorite alternative maximizes both the expected payoff and the worst
possible payoff.

3 Investment Tournament with Convex Weights

The benchmark model assumes that the decision maker cares only about
realization of the highest value alternative. In a number of environments
this is an uncontroversial assumption. Consider, for example, a firm se-
lecting a blue print for a new product, a student selecting a major, or a
young person choosing a mate. However, in a number of situations this
assumption holds only approximately or not at all. In fact, the tourna-
ment theory makes exactly the opposite assumption. Models of incentive
tournaments investigate worker’s choice of effort, under the underlying
assumption that a promotion is merely a prize for the past performance.
This is an appropriate assumption whenever a promotion does not en-
tail a change in the amount of responsibility (as in promotion from an
assistant to an associate professor). In many instances, a combination of
incentive tournament theory and investment tournament models is most
appropriate. For example, the firm-specific human capital (value) of the
tournament winner is of particular importance when promotion entails
increased responsibility.14 In this case developing firm-specific human
capital of any worker may contribute to profits but not as much as the
firm-specific human capital of the tournament winner. This suggest an-
other generalization of the benchmark model. Suppose the action space
of the decision maker and the actions of nature are exactly the same
as in the benchmark model. The only modification is a mapping from
terminal histories into payoffs. Now we assume that the payoff to the
decision maker is the weighted sum of realizations of all alternatives. We
assume that the payoff of the decision maker is

PN
k=1 µ(Vk) where µ(·)

is increasing and convex.

Proposition 3 Consider a modification of the benchmark model. The

given by Vi = Vti + (T − t)s+
PT

τ=t bτi. The optimal strategy of the decision maker
solves the following program.

max
bτi
[max{Vt1 + (T − t)s+

TX
τ=t

bτ1, ..., VtN + (T − t)s+
TX
τ=t

bτN}]

subject to
PN

i=1 bτi = B for τ = t...T .
The (T − t)s term is the same for all alternatives so it is optimal for the decision

maker to invest all resources into the alternative with the highest Vti.
14The human capital of a person advancing to the next level of management may

enter the profit equation as a multiplier of the combined value (performance) of
subordinates.
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structure of the decision problem remains unchanged, except that the
payoff of the decision maker is now equal to

PN
k=1 µ(Vk) where µ

0(·) > 0
and µ00(·) > 0. Then the optimal strategy is to invest all resources into
the favorite alternative.

Note that Proposition 1 is not a particular case of Proposition 3
because in the context of Proposition 3 the weight of an alternative is
increasing in the value of the alternative, not in its rank. We can also
consider a generalization of the benchmark model where the weight of
an alternative is an increasing function of it’s rank. In this case we
assume that the decision-maker’s payoff is given by

PN
k=1 λkVr(k) where

λ1 ≥ λ2 ≥ λ3... ≥ λN and Vr(k) denotes the final value of the alternative
ranked k at the end of the tournament; r(1) and r(N) are the alternatives
with the lowest and the highest final values respectively. The benchmark
model is a special case of this “rank-weighted” model with λ1 = 1
and λj = 0 for j = 2...N . The following proposition establishes that
the optimal strategy for rank-weighted model is the same as for the
benchmark model.

Proposition 4 Consider a modification of the benchmark model. The
structure of the decision problem remains unchanged, except that the
payoff of the decision maker is now given by

PN
k=1 λkVr(k) where

λ1 ≥ λ2 ≥ λ3... ≥ λN ≥ 0

and r(k) denotes the alternative with k-th highest final value. Then,
investing all resources into the favorite alternative at every decision node
is an optimal strategy.

Note that for λ1 = λ2 = λ3... = λN any investment strategy is
optimal. However, if at least one inequality is strict then any optimal
strategy calls for investing all resources into a favorite alternative.

4 Investment Tournaments with Decreasing Returns
to Investment

In the benchmark model we assumed that returns to investment are con-
stant and that investment budget is fixed exogenously. These assump-
tions are released in the present section. First, we consider a case where
returns to investment into an alternative are decreasing in the amount
of investment into that particular alternative. This tends to be the case
whenever investments are of financial nature. Then, we consider a some-
what less prevalent case of returns to investment decreasing in the total
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amount of investment into all alternatives (in this case the cost of in-
vestment necessary for increasing the values of alternative i and j by one
unit each is the same as the cost of increasing the value of one alternative
by two units. But the cost of increasing the value of alternative i and j
is more than double the cost of increasing only the value of alternative i
by one unit). This possibility is relevant if investment takes form of the
decision maker’s time or effort.15

Let us consider the case of diminishing returns to investment in in-
dividual alternatives. In the benchmark model the action each period
was represented by an N dimensional vector bt, where each element of
bt represented an increase in the value of an alternative, and the total
increase in values of all alternatives due to investment in period t was
constrained to be smaller or equal to an exogenously fixed constant Bt.
Let us relax this constraint. Instead, assume that the decision maker
can choose to increase the level of each of N alternatives by any non-
negative amount. The action space at node t is At = {bt : bti ≥ 0 for
all i = 1...N}, and the total cost of investment at period t is equal toPN

i=1G(bti), where G
0(·) > 0 and G00(·) > 0. The decision maker’s payoff

is equal to max{V1, V2...VN} −
PT

t=1

PN
i=1G(bti). It is straightforward

to generalize Lemma 8 to show that there exists an optimal strategy of
the form bti = bti(Vt1...VtN). The following proposition characterizes this
optimal strategy.

Proposition 5 Consider a modification of the benchmark tournament
model where the action space at each decision node is

A = {b ∈ RN : bti ≥ 0}.
The decision maker’s payoff is

max{V1, V2...VN}−
TX
t=1

NX
i=1

G(bti),

where G0(·) > 0 and G00(·) > 0. Then,
15For example, consider a student hesitating between accounting and engineering

professions. One extra course in accounting brings a student one course closer to
becoming an accountant, regardless if it is a second or fifth course in accounting.
Thus, as a first order approximation we can assume that marginal increase in the
value of the accounting alternative is the same regardless of the number of accounting
courses that a student takes in a given semester. However, the cost of effort associated
with taking an additional course in accounting depends on the total number of courses
that a student takes. The cost of effort in this case depends only on the number of
courses that a student takes. The breakdown of courses by field may be unimportant
for assessing the cost of effort. In such a case the returns to investment are decreasing
in the total amount of investment.
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(1) for any two alternatives i and j such that Vti > Vtj any optimal
strategy σ calls for investments bti ≥ btj and if bti, btj > 0 then bti > btj.
(2) Consider a history Vt = (Vt1...Vtk...Vtm...VtN) where alternative k is
the unique favorite and at least one alternative receives positive invest-
ment under the optimal strategy. Then under any optimal strategy,

lim
Vtm→V −tk

(btk(Vt1...VtN)− btm(Vt1...VtN)) > 0

for any m 6= k.
(3) dbti(Vt1...VtN )

dVti
≥ 0 for any alternative i at any decision node t.

This proposition states that under an optimal strategy the amount
of resources invested into an alternative is increasing in the rank of the
alternative (if two alternatives receive positive amounts of investment
the higher ranked alternative receives strictly more investment.) Also,
as long as at least one alternative receives positive amount of investment
the difference between investment in the favorite alternative and the al-
ternative ranked second does not converge to zero as the value of the al-
ternative ranked second approaches the value of the favorite alternative.
In other words, if for some historyVt = (Vt1...Vtk...V

0
tm...VtN) alternative

k is such that Vtk ≥ Vti for all i 6= m then function btk(Vt1...VtN) rep-
resenting optimal strategy at decision node t is discontinuous in m−th
argument at the point where V 0

tm = Vtk. Finally, other things being
equal, the amount of investment into an alternative at some decision
node t is increasing in the value of that alternative at decision node t.
Above we considered a case of decreasing returns to scale in invest-

ment in individual alternatives. Now we proceed to a case where returns
to investment are decreasing in total investment in all alternatives.16.
We assume that the decision maker can choose the amount by which
he increases the value of each alternative. The cost of investment at
period t is given by increasing and convex function

PT
t=1C(Bt), where

Bt =
PN

i=1 bti. The following proposition characterizes the optimal strat-
egy for this case.

Proposition 6 Consider a modification of the benchmark tournament
model where action space at each decision node is

A = {b ∈ RN : bti ≥ 0}
16Both types of diminishing returns to scale can be combined in a single model,

with the decision maker’s payoff max{V1, V2...VN} −
PT

t=1C(
PN

i=1G(bti)), where
C0(·) > 0, C00(·) > 0, G0(·) > 0, G00(·) > 0. The results and the proof of Proposition
5 continue to holds for this setup. For the sake of expositional clarity Proposition
5 is formulated and proved in this paper rather than this slightly more general, but
notation-heavy result.
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and the payoff of the decision maker is

max{V1, V2...VN}−
TX
t=1

C(Bt),

where C 0(·) > 0 and C 00(·) > 0 and Bt =
PN

i=1 bti. Then,
(1) the optimal strategy requires that at each decision node only one
favorite alternative receives positive investment, and
(2) the amount of investment at decision node t is increasing in the value
of the favorite alternative at decision node t.

5 Promotion Tournaments: Mix of Incentive and
Investment Tournaments

In the earlier sections we considered a situation where “competing al-
ternatives” are not players in the tournament game; we assumed that
an alternative cannot take actions intended to influence its value. This
assumption is appropriate if “competing alternatives” are non-conscious
or otherwise indifferent to the outcome of the investment tournament
(for example, competing alternatives can be occupations). In this sec-
tion we consider tournaments where “alternatives” are able to influence
the outcome of the tournament by choosing their actions (as in a tour-
nament for a promotion among associates in a law firm.) This adds an
additional layer of complexity to the benchmark tournament model of
Section 2.
In order to emphasize that alternatives are now players in the game,

we will use the word “contender” instead of the word “alternative”. For
example, in an up or out tournament “contenders” may be associates in
a law firm. At every decision node associates select the level of effort
that they invest into acquiring firm-specific human capital. The decision
maker is a senior partner of a firm. His investment decision is how to
divide scarce mentoring resources among contenders. Essentially, the
partner selects levels of investment into contenders’ firm-specific human
capital. For example, the partner selects whom he brings along for a
meeting with an important client. For simplicity, we assume that in an
up or out tournament the investments into firm-specific human capital
of associates who do not become partners are wasted from an ex-post
perspective.17

The model offered in this section combines benchmark investment
tournaments introduced above with elements of an incentive tourna-
ments model (see for example Lazear and Rosen (1981)). We refer to

17For most results it is enough to assume that an investment in the winning alter-
native is more useful than that into a losing alternative.
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tournaments where the only players are contenders and nature as incen-
tive tournaments. In contrast, in the benchmark investment tournament
model, the only players are the decision maker and nature.
Let us consider a T period model of a promotion tournament that

combines features of investment and incentive tournaments. Nature
takes an action in period zero. In subsequent periods nature, the deci-
sion maker and contenders move simultaneously. Each period contenders
select the level of investment in their firm-specific human capital (invest-
ments are in the form of effort). The action space of each contender is
Ac = {eti : eti > 0}, where eti is the amount of effort contender i invests
in building firm-specific human capital in period t. The decision maker
selects investment level into each contender Ad = {bt ∈ RN : bti ≥ 0 andPN

i=1 bti = B}. A random shock to the value of contender i at time pe-
riod t is denoted by sti. We continue to assume that each period nature
independently draws a random shock to value of each contender from an
atomless distribution F (·). The support of F (·) is bounded from below as
before. The value (the amount of firm-specific human capital) of a con-
tender at the terminal node is a sum of his investments, investments by
the decision maker and random shocks Vi =

PT
t=0 sti+

PT
t=1 bti+

PT
t=1 eti.

The contender with the highest value at the terminal node is the winner
of the tournament. The history of the game at period τ is summarized
by
¡
Vτi =

Pτ−1
t=0 st,i +

Pτ−1
t=1 bt,i +

Pτ−1
t=1 eti

¢N
i=1
. We refer to Vτi as the in-

termediate value of contender i (at decision node τ). We will say that
contender i is a favorite at decision node τ if Vτi ≥ Vτj for all j. The
utility payoff of the decision maker is the value of the winner of the tour-
nament max{V1, ...VN}. The utility payoff of a contender i who loses the
tournament is equal to the cost of effort that he invested −PT

t=1 θ(eti)
where θ0(·) > 0, θ00(·) > 0. If contender i wins the tournament his payoff
is R −PT

t=1 θ(eti), where R can be interpreted as the amount of rents
associated with winning a promotion. The game has the following infor-
mation structure. At any decision node the decision maker knows the
intermediate value of each contender. The contenders do not observe
random shocks or investments by the decision maker (at each decision
node, each contender’s information set contains only his or her effort
level from earlier periods). The following result characterizes equilibria
of the promotion tournament game.18

18We model decreasing returns to effort by assuming that per period cost of effort
is convex. Consider a modified version of promotion tournament game, where all
elements of the game are unchanged except the payoff of the winning contender
which is now given by R −Q(e1,i + e2,i) and Q0(·) > 0 , Q00(·) > 0 (in this case the
cost of effort depends only on e1,i+ e2,i). In this game the decision maker invests all
resources into the favorite contender, and the contenders invest all effort in the first
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Proposition 7 In any pure strategy equilibrium of a promotion tourna-
ment the following is true:
(1) at every decision node the decision maker chooses to invest all re-
sources into one of the favorite contenders,
(2) the effort of each contender is decreasing each period,
(3) contender’s effort is weakly increasing in the decision maker’s in-
vestment budget B.

Part (1) of Proposition 7 is a generalization of Proposition 1. The
investment strategy of the decision maker is essentially unaffected by the
incentive tournament component of the tournament because from deci-
sion maker’s perspective there is no difference between actions of nature
and of contenders, since the contenders cannot condition their behavior
on that of the decision maker. Contenders do have an incentive to in-
fluence the actions of the decision maker, however. Contenders invest
more effort into improving their position in the tournament in the early
stages of the contest because early effort can attract “free” investments
from the decision maker (if an employee shows unusual promise in the
early stages of his career he may find himself on the fast track being
groomed for a senior managerial position). The larger is the amount of
the investment resources in the hands of the decision maker the more
effort the contenders put forth at each decision node prior to node T . We
can interpret the size of investment budget B available to the decision
maker as a measure of investment tournament component of a promo-
tion tournament (if B = 0 the promotion tournament considered above
reduces to a pure incentive tournament). Thus, part (3) of Proposition
7 can be interpreted as following: the larger is the investment tourna-
ment component of the promotion tournament the more effort agents
put forth in the early stages of the tournament.
Consequently, we should expect that first year graduate students

work harder than second year students or that first year associates in a
law firm work longer hours than second year associates. For the same
reason we predict that employees are less likely to get married in the
beginning of the promotion tournament.

6 Concluding Remarks

In a wide class of situations, a contender with a small lead tends to
enjoy a substantially better chances of winning the tournament than

period.
The intuition is straightforward. We assumed that the cost of effort depends only

on (e1,i + e2,i) and contenders receive no additional information after the end of the
first period. Consequently, they shift all effort to the first period in a bid to receive
more mentoring (investment) from the decision maker.
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other contenders. Consequently, as long as contenders are motivated to
win the tournament, all contenders put forth more effort in the early
stages of the tournament. Casual conversations about career develop-
ment include expressions like “fast track” that young managers aspire
to and “rat race” that young professionals presumably had to endure
(perhaps because they are trying to get on the fast track).19 Evidence
that this is a reality at least in some occupations can be found in Lan-
ders, Rebitzer and Taylor (1996). They offer an adverse selection based
explanation of rat race and provide evidence that associates in law firms
log in an inefficiently high number of hours.20 Holmstrom (1999) model
predicts that effort is relatively high early in a worker’s career because
of signaling. The present paper generates the same prediction without
relying on asymmetric information or bounded rationality. The model
developed herein implies that effort declines with time most rapidly in
careers where mentoring plays an important role in accumulation of hu-
man capital. This prediction is distinct from aforementioned literature.
Applications of investment tournaments are not limited to career de-

velopment and product design examples. The investment tournament
model is a metaphor for many decisions involving choice. The domain of
applicability of the model stretches beyond the purely economic realm.
For instance, investment tournaments may help to explain why people
tend to date one person at a time. Dating (in an innocent interpretation
of the word) amounts to spending time with a potential mate. This can
be viewed as an investment that increases the value of the mate. As
we have learn from Proposition 7, even if it is highly uncertain which
mate will be chosen it is still optimal to invest disproportionately into
the most promising alternative. Proposition 7 predicts that the effort
invested into relationship by suitors is the largest in the early stages
of dating. It is worth noting that modeling dating as an investment
tournament is by any standard a very crude approximation. For in-
vestment tournament model to be applicable a member of one gender
must act as a decision maker while several members of the other gender
act as contenders.21 The limitations of investment tournament model
when applied to dating suggest a few promising directions for future
work. It may be challenging but useful to extend investment tourna-

19Meyer (1991) considers a model of boundedly rational decision-makers who can
bias noisy rank-order contests sequentially, thereby changing the information they
convey. He shows that the optimal final-period bias favors the leader. This may be
interpreted as a bounded rationality based explanation of fast track. The present
paper provides an explanation of why an early leader may be favored even if the
decision maker is fully rational.
20The first adverse selection model of rat race can be found in Akerlof (1976).
21This assumption may fit medieval times better than it fits the modern era.
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ment model to two-sided matching, where both sides of the market can
make investments into individual contenders on the other side of the
market. Also, investment tournament model neglects the search aspect
of dating. In this and in many other contexts optimal search models
and investment tournament models are complementary— each highlights
one important aspects of choice while neglecting all others. The models
of search focus on information acquisition while assuming away a possi-
bility of investment into improving the quality of a match. In contrast,
the investment tournament model assumes away a possibility of strate-
gic information acquisition while explicitly modeling investments into
relationships. Combining search and matching models with investment
tournament models is likely to be another fruitful direction for future
work.
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A Appendix
A.1 Proof of Proposition 1.
We start with a list of notations and definitions used in the proof. Then
we formulate and prove three lemmas that combined establish the result
of the proposition.
Notations and definitions:
Memoryless strategy: a strategy is memoryless if at each decision node
the action depends only on the summary of the history contained in vec-
tor Vt. When considering a memoryless strategy we can abuse notation
and refer to Vt as history.
Extended history: eht = (ht,bt) = (s1,b1, s2,b2, ...st−1,bt−1,bt)
Extended value: eVti = Vti + bti; eVt = eVt(eht) = (eVt1, eVt2...eVtN)
Extended favorite: we will say that an alternative i is an extended fa-
vorite at time t if for any j we have eVti ≥ eVtj.
Allocated investment: bti(ht, σ) (or bti(Vt, σ)) is the investment allocated
to alternative i by a pure strategy σ conditional on history ht or Vt.
Expected payoff: Π(ht, σ) (or Π(Vt, σ)) is the expected payoff from strat-
egy σ conditional on ht, (or Vt); eΠ(eht, σ) (or eΠ(eVt, σ)) is the expected
payoff from strategy σ conditional on eht, (or eVt).
Hybrid history: f(ht,h0τ) ≡ (s1,b1, ...st−1,bt−1, s0t,b0t, ...s0τ−1,b0τ−1)where
ht = (s1,b1, ...st−1,bt−1) and h0τ = (s

0
1,b

0
1, ...s

0
τ−1,b

0
τ−1) and τ ≥ t.

Continuation strategy: σ(ht); according to σ(ht) decision maker acts at
decision node τ conditional on history h0τ as if he plays strategy σ at
a decision node τ conditional on history f(ht,h

0
τ). For a memoryless

strategy we can write σ(Vt) instead of σ(ht).
Equivalence: ht is equivalent to h0t if and only if Vt(ht) = Vt(h

0
t)

Probability of winning: Pti(Vt, σ) represents the probability that alter-
native i wins the tournament conditional onVt and memoryless strategy
σ; Pt = (Pt1...PtN); ePti(eVt, σ) represents the probability that alterna-
tive i wins the tournament conditional on eVt and memoryless strategy
σ; ePt = ( ePt1... ePtN).
Modified value: Vt|i(δ) = (Vt1, ..., V

0
ti = Vti + δ, ...VtN) and eVt|i(δ) =

(eVt1, ..., eV 0
ti = eVti + δ, ...eVtN)
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Lemma 8 There exists a memoryless optimal strategy σ. (This is equiv-
alent to a claim that an optimal strategy can be represented by a function
of the form bti(Vt, σ) = bti.)

Proof. The above lemma is almost obvious. The proof is pro-
vided for the sake of completeness. First, we note that for any opti-
mal strategy σ and for any two equivalent histories ht and h0t we have
Π(h0t, σ) = Π(ht, σ). This follows from the fact that the expected payoff
under strategy σ conditional on history ht can be achieved after history
h0t by following continuation strategy σ(ht). More formally, by assump-
tion Vt(ht) = Vt(h

0
t) and by construction after decision node t both

random shocks and investments are identical under strategy σ(ht) fol-
lowing history h0t and under strategy σ after history ht. Thus,

Π(h0t, σ) = Π(ht, σ(h
0
t)) ≤ Π(ht, σ)

and
Π(ht, σ) = Π(h0t, σ(ht)) ≤ Π(h0t, σ)

Hence, Π(h0t, σ) = Π(ht, σ).
Consequently, based on any optimal non-memoryless strategy we can
construct a memoryless strategy with the same expected payoff by di-
viding histories into equivalency classes and using the same course of
action for each history in an equivalence class.

Lemma 9 If Pti(Vt, σ) is continuous at Vt then
dΠ(Vt,σ)

dVti
= Pti(Vt, σ)

and deΠ( eVt,σ)

deVti = ePti(eVt, σ) where σ is an optimal strategy.

Proof. Let us first show that for any strategy σ the following is true

dΠ(Vt, σ(Vt))

dVti
= Pti(Vt, σ) (1)

Consider Π(Vt|i(δ), σ(Vt))−Π(Vt, σ(Vt)). Note that the difference be-
tween these payoffs is zero if alternative other than alternative i wins the
tournament for both histories Vt|i(δ) and Vt. There are two remaining
contingencies:
(1) With probability Pti(Vt, σ(Pti(Vt, σ)) alternative i wins the tourna-
ment under both histories Vt|i(δ) and Vt. In this case the difference in
expected payoffs is exactly δ.
(2) With probability proportional to δ alternative i wins the tournament
conditional on history Vt|i(δ) but not on history Vt. In this case the
difference between expected payoffs is less than δ.
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Thus, Π(Vt|i(δ), σ(Vt)) − Π(Vt, σ(Vt)) = Pti(Vt, σ)δ + o(δ)22. Conse-
quently, Equation 1 holds.
It remains to show that if σ is an optimal strategy then

dΠ(Vt, σ(Vt))

dVti
=

dΠ(Vt, σ)

dVti
.

First note that we can write:

dΠ(Vt, σ)

dVti
=

dΠ(Vt|i(δ), σ(Vt|i(δ)))
dδ

|δ=0

Now we can apply the envelope theorem.

dΠ(Vt, σ)

dVti
=

∂Π(Vt|i(δ), σ(Vt))

∂δ
|δ=0 + ∂Π(Vt, σ(Vt|i(δ)))

∂δ
|δ=0.

Since σ is an optimal strategy the second term is zero. The first term is
Pti(Vt, σ) according to Equation 1. Thus,

dΠ(Vt,σ)
dVti

= Pti(Vt, σ).

The proof that deΠ( eVt,σ( eVt))

deVti = ePti(eVt, σ) is analogous.

Lemma 10 Assumption A: suppose at decision node K the value of
dΠ(Vt,σ)

dVti
is the highest for the favorite alternative and at all subsequent

nodes the optimal strategy allocates all investment to one favorite alter-
native. If assumption A holds then the optimal strategy must allocate all
resources to the favorite at the decision node K − 1.
Proof. The proof consists of three steps. First, we show that only

an extended favorite alternatives may receive positive amount of invest-
ment. Second, we show that only one extended favorite receives positive
investment. Finally, we show that the extended favorite alternative that
receives all investment is also a favorite.
Throughout the proof we assume that assumption A holds. It is easy to
see that if assumption A holds, then an extended favorite alternative at
decision node K−1 is most likely to win the tournament under the opti-
mal strategy. Combining this fact and Lemma 9 we conclude that under
the optimal strategy all resources at decision node K − 1 are received
by extended favorite alternative(s). (There may be more than one).
Now let us show that all investment at node K − 1 is allocated to one
extended favorite (we already know that investment is allocated to ex-
tended favorites; now we would like to show that investment is not di-
vided among a few extended favorites). We use proof by contradiction.

22Note that this argument relies on continuity of Pti(Vt, σ) at Vti. As we will see
later Pti(Vt, σ) is not continuous at Vti if and only if there is a tie such that Vti = Vtj
for some j.
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Suppose alternatives i and j receive positive investments bKi and bKj.
In this case “redistributing δ” from i to j does not increase expected
profit, i.e.

eΠ((eV(K−1)1, ..., eV(K−1)i − δ...eV(K−1)j + δ...eV(K−1)N), σ) ≥
eΠ((eV(K−1)1, ...eV(K−1)i − δ...eV(K−1)j + δ...eV(K−1)N), σ(eV(K−1)))

and by construction

eΠ((eV(K−1)1, eV(K−1)i − δ...eV(K−1)j + δ...eV(K−1)N), σ(eV(K−1))) ≤
eΠ((eV(K−1)1, eV(K−1)i − δ...eV(K−1)j + δ...eV(K−1)N), σ)

Consequently,

argmax
δ
[eΠ((eV(K−1)1, eV(K−1)i − δ...eV(K−1)j + δ...eV(K−1)N), σ(eV(K−1)))] = 0

(2)
We would like to check if Equation 2 holds. Towards this end we need
to write down first and second order conditions. Applying Lemma 9 we
obtain the equation for the first order condition

∂eΠ((eV(K−1)1, eV(K−1)i − δ...eV(K−1)j + δ...eV(K−1)N), σ(eV(K−1)))
∂δ

=

eP(K−1)j((eV(K−1)1, eV(K−1)i − δ...eV(K−1)j + δ...eV(K−1)N), σ(eV(K−1)))

− eP(K−1)i((eV(K−1)1, eV(K−1)i − δ...eV(K−1)j + δ...eV(K−1)N), σ(eV(K−1))) = 0
(3)

Consequently, the first order condition is satisfied as long as

eP(K−1)i(eV(K−1), σ(eV(K−1))) = eP(K−1)j(eV(K−1), σ(eV(K−1))).

Let us show that the second order condition is violated. Differentiating
Equation 3 we obtain the expression for the second derivative of Equation
2.

−d
eP(K−1)j(eV(K−1), σ(eV(K−1)))

V(K−1)i
+

d eP(K−1)j(eV(K−1), σ(eV(K−1)))
V(K−1)j

+

+
d eP(K−1)i(eV(K−1), σ(eV(K−1)))

V(K−1)i
− d eP(K−1)i(eV(K−1), σ(eV(K−1)))

V(K−1)j
(4)
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It follows immediately from assumption A that ePti(eVt, σ(eVt)) is strictly
increasing in eVti and decreasing in eVtj. Consequently, Expression 4 is
strictly positive. Thus the second order condition is violated and Equa-
tion 2 can not be true. Thus, all investment at node K − 1 is allocated
to one extended favorite.
To complete the proof we need to show that an extended favorite is also
a favorite at decision node K − 1. Suppose, to the contrary, that at the
decision node K − 1 alternative i is a favorite and alternative j is an
extended favorite but not a current favorite. Thus, VK−1,i > VK−1,j and
bK−1,j = B, bK−1,i = 0. Consequently, eVK−1,j = VK−1,j + B > eVK−1,i =
VK−1,i. Note that the same expected payoff may be achieved with in-
vestments b0K−1,j = VK−1,i − VK−1,j and bK−1,j = B − VK−1,i+ VK−1,j.23

Thus, if an alternative other than the favorite receives investment under
optimal strategy, then there exists another optimal strategy where more
than one alternative receives positive investment. But we’ve already
showed that cannot be true. Hence, we reach a contradiction.
Proof. The inductive proof of Proposition 1 follows from Lemma

10 and the fact that assumption A automatically holds at the terminal
node.

A.2 Proof of Proposition 3
Proof. Introducing a few modifications to the proof of Proposition 1 al-
lows us to establish the result of Proposition 3. Here we only discuss the
steps of the proof of Proposition 1 that require modification. First we
note that there exists a memoryless optimal strategy: the proof is identi-
cal to that of Lemma 8. In order to establish an analogue of Lemma 9 for
the present setting we need to introduce some notation. Let ρi(Vi,Vt, σ)
represent the probability density function of the final value of alterna-
tive i conditional on history Vt and strategy σ. Repeating the proof of
Lemma 9 with obvious modification yields that if ρi(Vi,Vt, σ) is continu-
ous at Vt then

dΠ(Vt,σ)
dVti

=
R +∞
0

ρi(v,Vt, σ)µ
0(v)dv where σ is an optimal

strategy.24 The intuition is simple: µ0(v) represents the change in the
payoff if the final value of alternative i is increased provided that Vi = v

23Let us illustrate this by means of a numerical example. Suppose that alternative
j with VK−1,j = 4 receives all of the resources, and the favorite is alternative i with
VK−1,i = 6. Suppose B = 4. Then, entering next period the alternative j is the
extended favorite with eVK−1,j = VK−1,j + 4 = 8 and VK−1,i = VK−1,i + 0 = 6.
However, exactly the same outcome (up to relabelling) can be achieved by dividing
investment between alternatives i and j. Indeed if bK−1,i = 2 and bK−1,i = 2 then
VK−1,i = VK−2,i + 2 = 6 and VK−1,j = VK−1,j + 2 = 8.
24Of course, the analogue of the second part of Lemma 9 holds as well.
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and ρi(v,Vt, σ) represents the likelihood that Vi = v.25. The rest of
the proof very closely follows the proof of Proposition 1. The claim of
Lemma 10 remains true in the context of the present proposition. The
proof of Lemma 10 remains valid if the words ‘alternative most likely to
win the tournament’ are replaced with the words ‘alternative with the
the highest value of dΠ(Vt,σ)

dVti
’. To complete the proof we need to show

that assumption A holds in the context of the present theorem at the
last node. To see that it is true we note that if for any function µ(x) such
that µ0(x) > 0 and µ00(x) > 0 and any two positive random variables X
and Y (with p.d.f’s ρX(·) and ρY (·), respectively) such that X stochas-
tically dominates Y we have

R +∞
0

ρX(x)µ
0(x)dx ≥ R +∞

0
ρY (x)µ

0(x)dx.
Combining this with the fact that at the last node the final value of the
extended favorite stochastically dominates the final value of any other
alternative establishes that assumption A holds at the final node.

A.3 Proof of Proposition 4.
Proof. The proof of Proposition 1 readily generalizes for the present
setting. Lemma 9 is the first place where the proof of Proposition 1
needs modification. The analogue of Lemma 9 states that if P k

ti(Vt, σ)

is continuous at Vt then
dΠ(Vt,σ)

dVti
=
PN

k=1 P
k
ti(Vt, σ)λk where P k

ti(Vt, σ)
denotes the probability that alternative i will have final value ranked
k conditional on a history Vt and optimal strategy σ. The remaining
modifications are essentially identical to these contained in the proof of
Proposition 3.

A.4 Proof of Proposition 5
Proof.
Part (1): Lemma 8 and Lemma 9 and their proofs hold for the modified
model essentially without changes. Let us formulate an analogue of
Lemma 10. First we need to modify assumption A of Lemma 10.
Assumption B: Suppose that for any optimal strategy σ and for some
node K the following is true: for any t = K + 1, ...T + 1 and any i, j if
Vti > Vtj then Pti(Vt, σ) > Ptj(Vt, σ) and bti(Vt, σ) ≥ btj(Vt, σ) and for
btj(Vt, σ) 6= 0 we have bti(Vt, σ) > btj(Vt, σ).
The analogue of Lemma 10 is: provided assumption B is satisfied then
for any i and j if VKi > VKj

PKi(VK , σ) > PKj(VK , σ) (5)

25This intuition is not a complete proof, because it remains to show that a small
change in the value of Vti at time t has only a second order effect on the subsequent
strategy. We refer the reader to the proof of Lemma 9 for this detail.
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and

bKi(VK , σ)≥ bKj(VK , σ) (6)

if bKj(VK , σ) 6=0 then bKi(VK, σ) > bKj(VK, σ)

First let us show that if eVKi > eVKj then

ePKi(eVK , σ) > ePKj(eVK , σ) (7)

and

bKi(VK, σ)≥ bKj(VK, σ) (8)

btj(VK, σ) 6=0 then bKi(VK , σ) > bKj(VK , σ)

Suppose eVKi > eVKj. Note that for any two optimal strategies σ and σ0,
if VKi (or eVKi) is not equal to value (extended value) of any other alter-
native then ePKi(eVK , σ) = ePKi(eVK , σ

0) and bKi(VK , σ) = bKi(VK , σ
0).

Also, note that the optimal strategy must be invariant with regard
to relabeling alternatives. Hence, if ePKi(eVK , σ) is increasing in VKi

then Equation 7 holds. It is straightforward that ePKi(eVK, σ(eV)) is
increasing in VKi because as VKi increases the terminal value of alter-
native i increases while the terminal values of all other alternatives are
the same for all states of the world. But, by the envelope theorem
d ePKi( eVK ,σ)

deVti = d ePKi( eVK ,σ( eV))
deVti . Hence, ePKi(eVK, σ) is increasing in VKi. We

have thus established that Equation 7 must hold. Combining Equation
7 and Lemma 9 yields that deΠ( eVt,σ)

deVKi
> deΠ( eVt,σ)

deVKj
when eVKi > eVKj. Let us

show that this implies that Inequality 8 must hold as well. Note that
G0(bKi) can be interpreted as the cost of increasing eVKi by one unit and
deΠ( eVt,σ)

deVKi
= ePKi(eVK , σ) can be interpreted as the corresponding increase

in the expected final value of the favorite at the terminal node. For an
interior solution the following FOC must hold

ePKi(eVK , σ)−G0(bKi) = ePKj(eVK, σ)−G0(bKj) (9)

for any bKi > 0, bKj > 0. Combining this FOC with Equation 7 and the
fact that G(b) is convex shows that Inequality 8 must hold. In order to
show that ePKi(eVK , σ) > ePKj(eVK, σ) =⇒ PKi(VK , σ) > PKj(VK , σ) it
only remains to show that if VKi > VKj then eVKi > eVKj. The proof of
this fact is identical to that contained in Lemma 10 and thus we omit it
here. We have established the analogue of Lemma 10. Part (1) follows
from the above lemma by induction since assumption B automatically
holds at the terminal node.
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Part (2): It is easy to see that bti(Vt1...VtN , σ) is continuous in Vti at
any point where Vti 6= Vtj for any j 6= i. Let us show that there is a
discontinuity at Vti = Vtj whenever bti(Vt1...VtN , σ) > 0. From Part (1)
it follows that if bti(Vt1...VtN , σ) were continuous at Vti = Vtj then

bti(Vt1...Vti = V 0...Vtj = V 0...VtN , σ) = btj(Vt1...Vti = V 0...Vtj = V 0...VtN , σ).

We would like to show that this is not consistent with σ being an optimal
strategy. In other words, we show that δ = 0 does not maximize

Π((Vt1...Vti = V 0 − δ...Vtj = V 0 + δ...VtN , σ(V)))

It is straightforward to show that the second order condition fails (to
check the second order condition we combine Lemma 9 and the result
that the probability of winning is increasing in the value of the alterna-
tive). Hence, there is a discontinuity in the size of investment into an
alternative at the value where the alternative changes rank.
Part (3): In the proof of Part (1) we have established that the prob-
ability that an alternative wins is increasing in its value. Combining
this fact with Equation 9 and taking into account that G(·) is convex
completes the proof of Part (3).

A.5 Proof of Proposition 6
Proof. The proof of the first statement of the Proposition 6 is a straight-
forward corollary of Proposition 1. To prove the second part of Propo-
sition 6 we can use an argument virtually identical to that of Lemma 9
to show that in the present setupeΠ(eVt1...eVtN , σ)

∂eVti = ePti(eVt, σ) (10)

Because the favorite alternative receives all investment under the optimal
strategy we have eΠ(eVt1...eVtN , σ)

∂Vti
=

dC(Bt)

dBt
(11)

Combining Equations 10 and 11 we have

ePti(eVt, σ) =
dC(Bt)

dBt
(12)

We also can obtain from the first part of the proposition that

d ePti(eVt, σ)

deVti > 0 (13)

(the probability that the favorite alternative wins is increasing in the
value of the favorite). Taking into account that C 0(·) > 0 and C 00(·) > 0
and combining Equations 12 and 13 completes the proof.
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A.6 Proof of Proposition 7
Proof.
Part (1): The result follows directly from Proposition 1. Suppose that
the strategy of contender i is to select effort levels e1i...eTi. Then, as far
as the decision maker is concerned this is equivalent to the benchmark
model where contenders do not take actions and the constant equal toPT

t=1 eti is added to the first shock received by contender i.
Part (2): Suppose that for some contender i we have eti ≥ et0i with
t > t0. Then, by part (1), switching the effort levels in periods t and
t0 will increase the chances that contender i wins the tournament while
leaving the cost of effort unchanged. Hence, we must have et0i > eti
when t > t0.
Part (3): First we need to show that the symmetric pure strategy equi-
librium is unique. Note that in all symmetric pure strategy equilibria
the distribution of the sum of

PT
t=1 bti is the same. Consequently, in all

symmetric equilibria the last period tournaments are identical. Thus, it
is straightforward to see that there is at most one symmetric equilibrium
in the last stage of the game and by inductive argument any promotion
tournament has at most one pure strategy symmetric equilibrium. Now,
suppose that in some period t, the unique symmetric equilibrium calls
for each contender to exert et when the budget is B and e0t when the
budget is B0 with B0 > B. We need to show e0t ≥ et. Suppose to
the contrary that e0t < et. Consider some contender i. Given that et
was optimal when budget was B, he has an incentive to deviate for two
reasons: (i) since θ00(·) > 0, the cost of the marginal increase in effort
is lower, and (ii) since B0 > B, the benefit of the marginal increase in
effort is higher. Hence e0t cannot be an equilibrium.
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