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We introduce a neoclassical growth economy with idiosyncratic production risk

and incomplete markets. The general equilibrium is characterized in closed form.

Uninsurable production shocks introduce a risk premium on private equity and

typically result in a lower steady-state level of capital than under complete markets.

In the presence of such risks, the anticipation of low investment and high interest

rates in the future discourages risk-taking and feeds back into low investment in the

present. An endogenous macroeconomic complementarity thus arises, which slows

down convergence and amplifies the magnitude and persistence of the business cycle.

These results — contrasting sharply with those of Aiyagari (1994) and Krusell and

Smith (1998) — highlight that idiosyncratic production or capital-income risk can
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1. Introduction

This paper investigates the impact of idiosyncratic production and capital-income risk
on the level and volatility of macroeconomic activity. We introduce a neoclassical econ-
omy with decentralized production and incomplete insurance markets, in which the
equilibrium is characterized in closed form. Even though agents face no borrowing con-
straints and wealth heterogeneity does not impact aggregate dynamics, incomplete risk
sharing leads to substantial underaccumulation of capital, slows down convergence to
the steady state, and generates a powerful amplification and propagation mechanism
over the business cycle.

The standard neoclassical growth model of Cass, Koopmans and Brock-Mirman as-
sumes complete markets, implying that private agents can fully diversify idiosyncratic
risk in their labor and capital income. Following Bewley (1977), previous research intro-
duces incomplete markets in the form of uninsurable idiosyncratic risk in labor income,
while production and investment take place in a common aggregate technology.1 Finan-
cial incompleteness leads to overaccumulation of capital in the steady state (Aiyagari,
1994) and has no quantitatively important effect on business-cycle dynamics (Krusell
and Smith, 1998).

This paper departs from the Bewley class of models by considering uninsurable
idiosyncratic risk in production activities and capital income. Each agent is a private
producer operating her own neoclassical technology with her own capital stock. Pro-
duction is subject to individual-specific uncertainty, which generates idiosyncratic risk
in capital income. Incomplete risk sharing has strikingly different implications than in
Bewley-type models. It leads to substantial underaccumulation of capital in the steady
state and generates strong amplification and persistence over the business cycle.

Our focus on idiosyncratic production and capital-income risk is motivated by a
number of empirical observations. Large undiversifiable entrepreneurial and investment
risks are paramount not only in the developing world, but also in the most advanced
economies. In a recent study of US private equity, Moskowitz and Vissing-Jørgensen
(2001) document that entrepreneurs and private investors face a “dramatic lack of di-
versification” and an extreme dispersion in returns. In addition, these agents control a
large fraction of savings and investment in the economy.2 For agency and moral-hazard

1See Ríos-Rull (1995) and Ljungqvist and Sargent (2000, ch. 14) for a review of this literature.
2 In the United States, private companies accounted for about half of production and corporate equity

in 1998 and for more than two-thirds in the 70’s and 80’s. Moskowitz and Vissing-Jørgensen (2001)
also observe: “About 77 percent of all private equity is owned by households for whom private equity
constitutes at least half of their total net worth. Furthermore, households with private equity ownership
invest on average more than 70 percent of their private holding in a single private company, in which the
household has an active management interest. [...] Survival rates of private firms are around 34 percent
over the first 10 years of the firm’s life. Furthermore, even conditional on survival, entrepreneurial
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reasons, executives of publicly traded firms are also very exposed to firm-specific risks
in the production and investment decisions they make on behalf of shareholders. Fur-
thermore, labor income often includes returns to entrepreneurial activity, education, or
some form of human or intangible capital.3 Controlling for these effects produces even
larger estimates of capital-income risk.

The presence of undiversifiable production shocks does not impact the average return
but increases the uncertainty of individual investment. As a result, agents discount
future income by a risk premium on private equity. This decreases investment demand
and leads to underaccumulation of capital in the steady state as compared to complete
markets.4 We note that this result originates in risk aversion, and thus contrasts with
the overaccumulation of capital obtained in Bewley-type models from precautionary or
buffer-stock savings.

Perhaps more surprisingly, undiversifiable production risk has novel implications for
business-cycle dynamics. The private equity premium characterizes the willingness to
engage in risky projects at a given point in time. This quantity depends on the ability
to self-insure through borrowing and lending in later periods, and is thus sensitive to
future credit conditions. In our model, the anticipation of low savings and high interest
rates in the future feeds back into high risk premia and low investment in the present.
At the same time, intertemporal consumption smoothing implies that low investment in
the present propagates to low savings and high interest rates in the future. As a result,
low savings and low investment can be self-sustaining for long periods of time.

Undiversifiable production risk thus gives rise to an endogenous dynamic macroeco-
nomic complementarity, which generates amplification and persistence over the business
cycle. Figure 1 illustrates this mechanism by considering an economy hit at date t = 0
by an unanticipated negative wealth shock. The solid lines represent the transmission of
the shock over time in the standard neoclassical growth model. The immediate impact
is to reduce savings, increase interest rates and reduce investment at t = 0. The shock
then propagates to lower wealth, higher interest rates, and lower investment in later
periods. This transmission channel originates in intertemporal consumption smoothing
and is the fundamental propagation mechanism of the complete-markets RBC para-
digm. In the presence of uninsurable idiosyncratic production risk, it is complemented
by a risk-taking effect. As agents anticipate higher interest rates at t = 1, they become
less willing to engage in risky projects and further reduce investment at t = 0. Similarly,
the anticipation of higher interest rates at t = 2 feeds back to even higher risk premia

investment appears extremely risky, generating a wide distribution of returns.”
3Hall (2001) emphasizes the role of intangible capital in productivity growth and stock returns.

Entrepreneurial activity and capital income also have important empirical implications for the wealth
distribution (Castaneda et al., 1998; Quadrini, 2000) and portfolio choices (Heaton and Lucas, 2000).

4Our model thus complements earlier research investigating the impact of aggregate production risk
on investment and diversification (e.g. Acemoglu and Zilibotti, 1997).
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and even lower investment at t = 0 and t = 1. This second channel is represented by
the dashed arrows in the figure. The combination of the intertemporal-smoothing and
risk-taking effects thus amplifies the impact of the exogenous shock and slows down the
recovery of the economy.

Note that when private agents plan how much to save and invest in one period,
they do not internalize the impact that equilibrium interest rates have on optimal
investment and equilibrium risk premia in earlier periods. The macroeconomic com-
plementarity thus originates in a pecuniary externality in risk-taking; it is a genuine
general-equilibrium implication of missing markets. Moreover, the complementarity
arises only when agents face idiosyncratic production risk, and is thus absent from the
Bewley class of models.

We emphasize that the proposed transmission mechanism originates in the endoge-
nous countercyclicality of risk premia. This is an important observation. Any model in
which risk premia increase in anticipation of an economic slowdown is likely to produce
similar business-cycle effects. Furthermore, although there is no available empirical in-
formation on private premia, the market price of risk is strongly countercyclical,5 which
suggests that our theoretical arguments may have substantial empirical content.

Our model belongs to the class of general-equilibrium economies with incomplete
markets and heterogeneous infinitely-lived agents.6 Such models generally suffer from
the “curse of dimensionality” because the wealth distribution — an infinite-dimensional
object — is a relevant state variable. Banerjee and Newman (1993), Galor and Zeira
(1993) and others have stressed the potential importance of wealth heterogeneity for
fluctuations and growth in a variety of settings. In a calibrated Bewley-type economy,
however, Krusell and Smith (1998) show that wealth heterogeneity has approximately
no impact on aggregate dynamics. By adopting a CARA-normal specification (exponen-
tial preferences and Gaussian risks), we render equilibrium prices and macro aggregates
exactly independent of the wealth distribution. This allows the characterization of gen-
eral equilibrium in closed form, which, to the best of our knowledge, is new to the
incomplete-market growth literature. Moreover, this research highlights that incom-
plete markets can have important implications for capital accumulation, medium-run
growth and business cycles, even when wealth heterogeneity does not influence aggregate
dynamics.

The absence of borrowing constraints is another important feature of our model.
The transmission mechanism we identify is thus different from — and in fact comple-

5See for instance Campbell (1999) for a review of the empirical relation between asset prices and
business cycles.

6Examples include Aiyagari (1994, 1995), Calvet (2001), Constantinides and Duffie (1996), Heaton
and Lucas (1996), Huggett (1993, 1997), Krusell and Smith (1998), Ríos-Rull (1996), and Scheinkman
and Weiss (1986).
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mentary to — the effect of credit-market imperfections (Bernanke and Gertler, 1989,
1990; Kiyotaki and Moore, 1997; Aghion, Banerjee and Piketty, 1999). This earlier re-
search focuses on borrowing constraints that affect the ability to invest. Some empirical
research, however, has questioned the impact of borrowing constraints on the cyclical
behavior of investment (e.g. Kaplan and Zingales, 1997). In this paper, we abstract
from credit-market imperfections and focus on incomplete insurance, which only affects
the willingness to invest.7 We show that a countercyclical private equity premium is
sufficient to generate amplification and persistence in aggregate fluctuations, even in the
absence of financial constraints or balance-sheet effects.8 Furthermore while this earlier
research does not address the large cyclical variation in the market price of risk, our
paper highlights the important interactions between business cycles and risk premia.

The rest of the paper is organized as follows. Section 2 introduces the economy and
Section 3 analyzes the individual decision problem. In Section 4 we characterize the
general equilibrium in closed form, analyze the steady state, and describe the propa-
gation and amplification mechanism arising in the presence of idiosyncratic production
risk. Section 5 presents numerical simulations and Section 6 concludes. All proofs are
in the Appendix.

2. A Ramsey Economy with Incomplete Risk Sharing

This section introduces a neoclassical growth economy with decentralized production,
CARA preferences, Gaussian idiosyncratic uncertainty, and an exogenous incomplete
asset span.

2.1. Technology and Idiosyncratic Risks

Time, indexed by t ∈ N ≡ {0, 1, ...}, is discrete and infinite. The economy is stochastic
and all random variables are defined on a probability space (Ω,F ,P). Individuals are
indexed by j ∈ J ={1, ..., J}.9 They are all born at date 0, live forever, and consume a
single consumption good in every date.

Each individual is also a producer, or entrepreneur, who operates his own production
scheme using his own labor and capital stock. The technology is standard neoclassical.
It exhibits constant returns to scale with respect to capital and labor, has diminishing
marginal returns with respect to each input, and satisfies the Inada conditions. There

7 In contrast to the Bernanke-Gertler class of models, our approach considers infinitely-lived utility-
maximizing agents. This permits direct comparison with standard RBC frameworks.

8Our analysis highlights that, even if a borrowing constraint is not currently binding, the risk of
adverse financial conditions in the future affects incentives to invest in the present. This type of dynamic
feedback can have important implications for the cyclical behavior of both asset prices and aggregate
investment.

9The model directly extends to economies with a continuum of agents.
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are no adjustment costs and no indivisibilities in investment. The individual can in-
vest in a single type of capital. We denote by kjt the stock of capital that individual j
holds at the beginning of period t, and by ljt his effective labor endowment in period
t. The individual output in period t is AjtF (k

j
t , l

j
t ). The production function F is de-

terministic and identical in the population. We assume that all individuals have the
same labor supply ljt = l̄, and thus conveniently consider the function f(k) ≡ F (k, l̄).10
The total factor productivity Ajt is a random shock specific to agent j. The individual
controls kjt through his investment at date t − 1, while Ajt is observed only at date t.
Production is thus subject to idiosyncratic uncertainty, which we also call technological,
entrepreneurial, or investment risk.

For comparison with production shocks, it is useful to also introduce endowment
risks. We let ejt denote the exogenous stochastic endowment of the consumption good
that individual j receives in period t. These shocks model risks that are outside the
control of individuals and do not affect production or investment opportunities. The
overall non-financial income of individual j in period t is

yjt = A
j
tf(k

j
t ) + e

j
t . (2.1)

The random shock Ajt is multiplicative, while the endowment risk e
j
t is additive.

2.2. Asset Structure

Idiosyncratic risks can be partially hedged by trading a limited set of short-lived secu-
rities indexed by m ∈ {0, 1, ..,M}. Purchasing one unit of security m at date t yields a
random amount of consumption dm,t+1 at date t+ 1. The price of the security at date
t is denoted by πm,t. The vectors πt = (πm,t)Mm=0 and dt = (dm,t)

M
m=0 are respectively

the price vector and the payoff vector at date t. Security m = 0 is a riskless bond, and
assets m ∈ {1, ...,M} are risky. The bond delivers d0,t = 1 with certainty in every t,
and Rt ≡ 1/π0,t and rt ≡ Rt − 1 denote respectively the gross and the net interest rate
between t and t+ 1.

The asset span is exogenous and generally incomplete. We rule out default, short-
sales constraints and any other credit-market imperfections. Finally, for simplicity,
we assume that all assets are in zero net supply.11 At the outset of every period t,
individuals are informed of the contemporaneous realization of asset payoffs dt and
idiosyncratic shocks {(Ajt , ejt )}j∈J. Information is thus homogeneous across agents and
10f satisfies f 0(k) > 0 > f 00(k) ∀k ∈ (0,∞), limk→0 f

0(k) =∞, and limk→∞ f 0(k) = 0.
11Ricardian equivalence holds in our model because agents have infinite horizons and can freely trade

the riskless bond. Therefore as long as public debt is financed by lump-sum taxation, there is no loss
of generality in assuming that the riskless bond is in zero net supply.
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generates a filtration {Ft}∞t=0.12 We denote by Et the expectation operator conditional
on Ft.

2.3. Preferences

To distinguish between intertemporal substitution and risk aversion, we adopt a prefer-
ence specification that belongs to the Kreps-Porteus/Epstein-Zin non-expected utility
class. Consider two concave Bernoulli utilities U and Υ. A stochastic consumption
stream {ct}∞t=0 generates a stochastic utility stream {ut}∞t=0 defined by the recursion

U(ut) = U(ct) + βU [CEt(ut+1)] ∀t ≥ 0, (2.2)

where CEt(u) ≡ Υ-1[EtΥ(u)] denotes the certainty equivalent of u. The curvature of
Υ thus governs risk aversion, while the curvature of U governs intertemporal substi-
tution. When Υ = U, these preferences reduce to standard expected utility, U(u0) =
E0
P∞
t=0 β

tU(ct). Finally, note that ut is measured in consumption units.

2.4. CARA-Normal Specification

Closed-form certainty equivalents are not possible in general, but can be obtained in
the CARA-normal case.

Assumption 1 (Exponential Preferences) Agents have identical recursive utility
(2.2) with

U(c) = −Ψ exp(−c/Ψ), Υ(c) = −(1/Γ) exp(−Γc). (2.3)

Assumption 2 (Gaussian Risks) The idiosyncratic risks {(Ajt , ejt)}j∈J and asset re-
turns dt are jointly normal.

Note that a high Ψ corresponds to a strong willingness to substitute consumption
through time, while a high Γ implies a high risk aversion. The two assumptions are
motivated by analytical tractability but are not critical for the main arguments of the
paper. Section 5 will propose a calibration method that assumes a constant relative risk
aversion and a constant elasticity of intertemporal substitution at the steady state.

In addition, we consider

Assumption 3 (No Persistence) The idiosyncratic shocks {(Ajt , ejt)}j∈J and the as-
set payoffs dt are i.i.d. across time.13

12The results of this paper are not modifed when income shocks are privately observed and the
structure of the economy is common knowledge.
13More generally, the results of the paper remain unchanged when: (1) idiosyncratic shocks and

dividends follow linear processes, and (2) the residuals of the projection of {(Ajt , ejt)}j∈J on dt are
serially uncorrelated.
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Individual investment choices are then independent of contemporaneous idiosyncratic
income and productivity shocks, which greatly simplifies aggregation. In the quantita-
tive analysis of Section 5, we will mimic persistent idiosyncratic shocks by increasing
the length of a time period.

Assumption 4 (No Aggregate Uncertainty) In all dates and events,
P
j A

j
t/J =

Et−1Ajt = A and
P
j e
j
t/J = Et−1e

j
t = 0.

14

This restriction, too, only serves the tractability of the model; it will imply that asset
prices and all macro variables are deterministic in equilibrium. In Section 4, we dis-
cuss the implications of idiosyncratic productivity risk for an economy with aggregate
uncertainty.

3. Decision Theory

This section examines the decision problem of an individual agent. We show that the
portfolio choice reduces to a mean-variance problem and then derive the optimal saving
and investment rules.

3.1. The Individual Problem

Consider an individual j in period t. Denote his consumption by cjt , physical-capital
investment by ijt , non-financial income by y

j
t , and portfolio of the bond and the risky

assets by θjt = (θ
j
m,t)

M
m=0. The agent’s budget constraint in period t is

cjt + i
j
t + πt · θjt = yjt + dt · θjt , (3.1)

where yjt is given by (2.1). The agent accumulates capital according to k
j
t+1 = (1 −

δ)kjt + i
j
t , where δ ∈ [0, 1] is the fixed depreciation rate of capital. To simplify notation,

we conveniently rewrite the decision problem in terms of stock variables. We let

wjt ≡ Ajtf(kjt ) + (1−δ)kjt + ejt + dt · θjt
represent the agent’s total wealth (or cash-in-hand) at date t. We then restate the
budget constraint (3.1) as

cjt + k
j
t+1 + πt · θjt = wjt . (3.2)

Given a price sequence {πt}∞t=0, agent j chooses an adapted plan {cjt , kjt+1, θjt , wjt}∞t=0
that maximizes utility and satisfies the budget constraint (3.2).
14This assumption follows naturally from the Law of Large Numbers when the economy contains an

infinity of agents facing independent shocks.
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The indirect utility of wealth V jt (w) satisfies the Bellman equation

U
³
V jt (w

j
t )
´
= max
(cjt ,k

j
t+1,θ

j
t )
U(cjt ) + β U

³
CEt[V jt+1(w

j
t+1)]

´
, (3.3)

subject to (3.2) and the transversality condition limt→∞ βtU
³
CEt[V jt+1(w

j
t+1)]

´
= 0.

We denote the corresponding optimal consumption rule by cjt(w).

3.2. Consumption-Investment Choice

CARA preferences and the absence of short-sales constraints imply that the demand for
risky assets and productive capital are independent of wealth. We can thus anticipate
that the wealth distribution will not affect aggregate dynamics. This property, together
with Assumption 4, will ensure that all macro variables are deterministic. This subsec-
tion thus develops individual decision theory when interest rates are deterministic and
traded assets have risk premia equal to zero.15

Along the equilibrium price path, an educated guess is that the value function and
the optimal consumption rule are linear in wealth:

V jt (w) = a
j
tw + b

j
t , cjt(w) = bajtw +bbjt , (3.4)

where ajt ,bajt > 0 and bjt ,bbjt ∈ R are non-random coefficients to be determined. In
every period t, the future Gaussian wealth wjt+1 generates a certainty-equivalent utility
CEt[V jt+1(w

j
t+1)]. We infer from (2.3) and (3.4) that

CEt
h
V jt+1(w

j
t+1)

i
= V jt+1

h
Etwjt+1−ΓjtVart(wjt+1)/2

i
, (3.5)

where Γjt ≡ Γajt+1 measures absolute risk aversion in period t with respect to wealth
variation in period t+ 1. We henceforth call Γjt the effective degree of risk aversion at
date t.

Without loss of generality, we normalize all risky securities (m ≥ 1) to have zero
expected payoffs. Since there is no risk premium, the assets have zero prices and are thus
only used for hedging purposes. For any (cjt , k

j
t+1, θ

j
0,t), the optimal portfolio (θ

j
m,t)

M
m=1

is chosen to minimize the conditional variance of wealth. This has a simple geometric
interpretation. We project Ajt+1 and e

j
t+1 on the asset span:

Ajt+1 = κj · dt+1 + ηjt+1, ejt+1 = ξj · dt+1 + εjt+1.

The projections κj · dt+1 and ξj · dt+1 represent the diversifiable components of the
idiosyncratic production and endowment risks. The residuals ηjt+1 and εjt+1, which
15See Angeletos and Calvet (2000) for a more general analysis.
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are orthogonal to dt+1, correspond to the undiversifiable shocks and alone determine
individual choices. Assumption 3 implies that these variables are i.i.d. through time.
To maintain the symmetry of the model, we also assume that residuals ηjt+1 and εjt+1
are identically distributed across agents. Their variances

σ2A ≡ Var(ηjt+1|Ft) = Var(ηjt+1) σ2e ≡ Var(εjt+1|Ft) = Var(εjt+1)

are useful measures of financial incompleteness.16 We observe that σA = 0 and σe =

0 under complete markets. Aiyagari (1994) and Krusell and Smith (1998) considered
economies with additive idiosyncratic risks but no idiosyncratic production risks, which
in our model corresponds to σe > 0 but σA = 0. This paper focuses on the presence of
uninsurable idiosyncratic production risks, and thus σA > 0.

After optimal hedging, individual wealth reduces to wjt+1 = (A+ ηjt+1)f(k
j
t ) + (1−

δ)kjt + εjt+1 + θj0,t. It has conditional variance Vart(w
j
t+1) = σ2e + f(k

j
t+1)

2σ2A. We define
Φ(k) ≡ Af(k) + (1− δ)k as the expected production function; and

G(k,Γ) ≡ Φ(k)−Γ £σ2e + f(k)2σ2A¤ /2
as the risk-adjusted output. By (3.5), the plan (cjt , k

j
t+1, θ

j
0,t) maximizes

U(cjt ) + βU
n
V jt+1

h
G(kjt+1,Γ

j
t ) + θj0,t

io
subject to the budget constraint, cjt + k

j
t+1 + θj0,t/Rt = w

j
t .

The first-order conditions (FOCs) with respect to kjt and θ
j
0,t imply the key condition

for investment demand:

Rt =
∂G

∂k
(kjt+1,Γt) = Φ

0(kjt+1)− Γjtf(kjt+1)f 0(kjt+1)σ2A. (3.6)

Under complete markets (σA = 0), the agent equates the marginal product of capital
with the interest rate: Rt = Φ0(kjt+1). In the presence of uninsurable production shocks
(σA > 0), however, the return on investment is adjusted for risk. The difference between
the expected marginal product of capital and the risk-free rate, Φ0(kjt+1)−Rt, represents
the risk premium on private equity. Note that it is proportional to the uninsurable
production risk σ2A and the effective risk aversion Γ

j
t .

The FOC with respect to the riskless rate implies the Euler equation:

Etcjt+1−cjt = Ψ ln(βRt) + ΓVart(cjt+1)/2. (3.7)

Expected consumption growth thus increases with the variance of consumption. This
reflects the standard precautionary motive for savings (Leland, 1968; Sandmo, 1970;
16The assumption that σA and σe are independent of t can easily be relaxed. In addition, we could

let σA and σe depend on aggregate wealth to capture that risk sharing worsens during recessions.
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Caballero, 1990; Kimball, 1990). The sensitivity of the growth rate to consumption risk
is governed by the risk aversion Γ, while its sensitivity to the interest rate is governed
by the intertemporal substitution Ψ.

The envelope and Euler conditions imply after simple manipulation that bajt = ajt
and ajt = 1/[1 + (a

j
t+1Rt)

−1]. Forward iteration yields

ajt =
1

1 +
P+∞
s=0(RtRt+1...Rt+s)

−1 . (3.8)

The marginal utility of wealth is thus the inverse of the price of a perpetuity delivering
one unit of the consumption good in each period s ≥ t. We also infer from (3.8) that
effective risk aversion Γjt ≡ Γajt+1 is an increasing function of future interest rates.

The solution to the individual choice problem is summarized below:

Proposition 1 (Individual Choice) For any path {Rt}∞t=0, the value function and
consumption rule are linear in wealth, as in (3.4), and the coefficients ajt and bajt
are equal and satisfy (3.8). The demand for investment is given by

Rt = Φ
0(kjt+1)−Γjtf(kjt+1)f 0(kjt+1)σ2A. (3.9)

Consumption and savings are characterized by the Euler equation,

Etcjt+1−cjt = Ψ ln(βRt) +
Γ

2
Vart(c

j
t+1), (3.10)

where Vart(c
j
t+1) = (a

j
t+1)

2[σ2e + f(k
j
t+1)

2σ2A]. Finally, effective risk aversion Γ
j
t ≡

Γajt+1 increases with future interest rates.

3.3. Comparative Statics

Consider the impact of incomplete markets on capital accumulation. The optimality
condition (3.9) defines optimal investment as a function of the contemporaneous in-
terest rate, the effective risk aversion, and the production risk: kjt+1 = k(Rt,σA,Γ

j
t).

This function decreases with the interest rate Rt and the production risk σA, but is
independent of the endowment risk σe.When σA > 0, the optimal investment k

j
t+1 also

decreases with the effective risk aversion Γjt and thus, by (3.8), with future interest
rates.

Proposition 2 (Investment) The demand for investment decreases with uninsurable
production risk: ∂kjt+1/∂σA < 0. When σA > 0, investment is also discouraged by
high future interest rates: ∂kjt+1/∂Rs < 0 for all s > t.
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Higher interest rates in the future increase the effective risk aversion and thus raise the
risk premium on private equity in the present. We expect that the feedback between fu-
ture credit conditions and current risk-taking is much more general than our model, and
would be strengthened by the presence of borrowing constraints. In Section 4.3, we will
demonstrate that this feedback generates a dynamic macroeconomic complementarity,
which can be the source of amplification and persistence over the business cycle.

We note that high idiosyncratic production risk and high interest rates tend to re-
inforce each other’s negative impact on capital accumulation.17 Because downturns are
associated with large risks and bad credit conditions, the amplification and persistence
effects documented in this paper are likely to be empirically stronger during recessions.

Consider next the impact of incomplete markets on savings. Although endowment
risk unambiguously increases precautionary savings, the effect of technological shocks
is small or ambiguous because production risk is endogenous. It is indeed possible that
when σA goes up, the individual scales back investment k

j
t+1 so much that output risk

f(kjt+1)σA actually decreases. From the Euler equation (3.10), we conclude:

Proposition 3 (Savings) An increase in endowment risk σe raises both wealth risk
Vart(w

j
t+1) and consumption growth Etc

j
t+1−cjt . The impact of production risk σA

is generally ambiguous. For example, in the case of a Cobb-Douglas technology
with capital share α = 1/2, there is a threshold σA such that ∂V art(w

j
t+1)/∂σA <

0 if and only if σA > σA.

While Bewley-type models focus on the effect of incomplete markets on precaution-
ary savings, we observe that this channel is weak or even ambiguous in the presence
of production risks. In contrast, the effect on the private equity premium originates
in risk aversion, unambiguously reduces investment, and seems likely to dominate in
equilibrium.

4. General Equilibrium and Steady State

We now characterize in closed form the general equilibrium and the steady state of the
economy.
17 In the proof of Proposition 2 (Appendix A), we show that ∂2kjt+1/(∂σ

2
A∂Rs) < 0 ∀s > t, at least in

the neighborhood of complete markets.
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4.1. Definitions

By Assumptions 2-4, undiversifiable idiosyncratic risks cancel out in aggregate and are
normally distributed in every period t:

X
j

ηjt =
X
j

εjt = 0,

µ
ηjt
εjt

¶
∼ N

·
0,

µ
σ2A 0

0 σ2e

¶¸
∀j.

The variances σ2A and σ
2
e parsimoniously quantify the structure of risks, and the economy

is fully specified by the parameters E = (β,Γ,Ψ, F,A, δ,σA,σe).
Condition (3.8) implies that, in every period, agents share the same marginal utility

of wealth and effective risk aversion: ajt = at and Γ
j
t = Γat+1.We then infer two impor-

tant properties from condition (3.9). First, because agents have CARA preferences and
face no borrowing constraints, the optimal investment kjt+1 is independent of contem-
poraneous individual wealth wjt . Second, because technology (f, δ, A), investment risk
σA, and effective risk aversion Γat+1 are identical in the population, all agents choose
the same level of investment: kjt+1 = Kt+1 ∀j. Similarly, all agents face identical con-
sumption risk: Vart(c

j
t+1) = (at+1)

2[σ2e+f(Kt+1)
2σ2A]. The CARA-normal specification

thus implies that wealth heterogeneity is irrelevant for aggregate dynamics.
Since there is no exogenous aggregate uncertainty, we focus on equilibria in which

the interest rate is deterministic and there is no risk premium on financial assets. Fi-
nancial securities thus play only one role in the model — the definition of the uninsurable
components of idiosyncratic production and endowment risks.

Definition An incomplete-market equilibrium is a deterministic price sequence {πt}∞t=0
and a collection of state-contingent plans ({cjt , kjt+1, θjt , wjt}∞t=0)Jj=1 such that: (1)
the plan {cjt , kjt+1, θjt , wjt}∞t=0 maximizes the utility of each agent j; and (2) asset
markets clear in every date and event:

PJ
j=1 θ

j
t = 0.

4.2. Equilibrium Characterization

Let Ct, Wt and Kt respectively denote the population averages of consumption, wealth
and capital in period t. Note that the initial mean wealth, W0 =

PJ
j=1w

j
0/J, is an

exogenous parameter for the economy. Since ajt , Γ
j
t , k

j
t+1, and Vart(c

j
t+1) are identical

across agents, aggregation is straightforward and we conclude:

Theorem 1 (General Equilibrium) There exists an incomplete-market equilibrium
in which the macro path {Ct,Kt+1,Wt, Rt}∞t=0 is deterministic and all agents
choose identical levels of productive investment. For all t ≥ 0, the equilibrium
path satisfies

Rt = Φ
0(Kt+1)−Γat+1f(Kt+1)f 0(Kt+1)σ2A (4.1)
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Ct+1−Ct = Ψ ln(βRt) + Γa2t+1
£
σ2e + f(Kt+1)

2σ2A
¤
/2 (4.2)

at =
£
1 +

P+∞
s=0(RtRt+1...Rt+s)

−1¤−1 (4.3)

Ct +Kt+1 =Wt (4.4)

Wt+1 = Φ(Kt+1). (4.5)

Conditions (4.1) and (4.3) follow directly from the individual decision problem. Equa-
tion (4.2) is obtained by aggregating the individual Euler equations. If there were
no undiversifiable idiosyncratic production risks, (4.1) would reduce to the familiar
complete-markets condition Rt = Φ0(Kt+1). If in addition there were no undiversifi-
able endowment risks, then (4.2) would reduce to the complete-markets Euler equation
U 0(Ct) = βRtU

0(Ct+1). Finally, conditions (4.4) and (4.5) express the resource con-
straint and the production frontier of the economy.

Under incomplete markets, aggregate consumption growth increases with the vari-
ance of individual consumption, reflecting the standard precautionary motive. More in-
terestingly, idiosyncratic production shocks introduce a risk premium on private equity,
which reduces aggregate investment for a given risk-free rate. When each agent invests
an additional unit of capital, aggregate output increases deterministically by Φ0(Kt+1),
but individual risk-adjusted returns are only Φ0(Kt+1)− Γat+1f(Kt+1)f 0(Kt+1)σ2A = Rt.
The premium ρt ≡ Φ0(Kt+1)−Rt = (Γat+1)f(Kt+1)f 0(Kt+1)σ2A thus quantifies the gap
between the social and private return on investment.

We finally note from (3.8) that the effective risk aversion Γat+1 and thus the risk
premium ρt increase with all future interest rates {Rs}∞s=t+1. An anticipated increase
in future rates raises the premium on private equity and thereby decreases the demand
for investment. In the next subsection, we show that this feedback generates a dynamic
macroeconomic complementarity, which induces persistence and amplification in the
transitional dynamics.

4.3. Propagation and Amplification: An Endogenous Dynamic Macroeco-
nomic Complementarity

Consider an economy in steady state, which is hit at date t by an unanticipated negative
wealth shock. The impact of such a shock in a complete-market Ramsey economy is well-
known. Consumption and investment fall, interest rates rise, and the economy converges
monotonically and asymptotically back to the steady state. The transition takes some
time under complete markets only because agents seek to smooth consumption. But,
when markets are incomplete, the intertemporal substitution effect is complemented by
a risk-taking effect. Anticipating high interest rates in the near future, private agents
are less willing to invest in risky production. This effect amplifies the fall in initial
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investment and slows down convergence to the steady state, as compared to complete
markets.

This mechanism is illustrated in a simplified version of the model.

Example. For expositional simplicity, we consider that markets are incomplete at
date t = 0 but complete in all subsequent periods t ∈ {1, ..,∞}. Assume in addition
that the aggregate endowment et ≡

P
j e
j
t/J equals zero when t 6= 1, and let It = Kt+1

denote the gross investment in period t. We characterize equilibrium and then analyze
the response of the economy to an aggregate shock.

Since markets are complete at every t ≥ 1, we can easily solve for the Ramsey path
generated by a wealth level W1. Since agents smooth consumption through time, pro-
ductive investment is an increasing function of contemporaneous wealth: It = I∗(Wt).
The wealth level next period is then Wt+1 = Φ(It). Iterating these two equations, we
infer that It can be expressed as an increasing function of I1 alone. By (3.8), effective
risk aversion Γ0 is determined by future interest rates {Rt = Φ0(It)}∞t=1, and is thus
a decreasing function of period-1 investment alone: Γ0 = Γ∗(I1), Γ∗0 < 0. A lower I1
reduces It and increases Rt in all periods t ≥ 1, implying a high effective risk aversion
in period 0.

We now characterize equilibrium at t = 1. The wealth level W1 is determined by
previous investment and contemporaneous endowment: W1 = Φ(I0)+e1. Since markets
are complete at t = 1, we infer that I1 = I∗(W1) and thus

I1 = I
∗(Φ(I0) + e1). (4.6)

More investment in period 0 (or more endowment in period 1) generates more wealth
and therefore more investment in period 1. This reflects intertemporal consumption-
smoothing under complete markets.

Consider now equilibrium in the initial period t = 0. Since markets are incomplete,
I0 satisfies

Φ0(I0) = R0 + ρ(I0, I1), (4.7)

where ρ(I0, I1) ≡ Γ∗(I1)f(I0)f 0(I0)σ2A is the risk premium on private equity. This
relation defines I0 as a function of the contemporaneous interest rate R0 and future
investment I1.18 If production risks are fully insurable (σA = 0), the risk premium on
private equity is zero and condition (4.7) reduces to Φ0(I0) = R0. The chosen I0 is then
independent of I1: ∂I0/∂I1 = 0. On the other hand if σA > 0, the risk premium ρ(I0, I1)

is a decreasing function of I1, and thus: ∂I0/∂I1 > 0. The anticipation of low investment
in the future leads investors to expect low savings and high interest rates in later periods,
18The second-order condition of the individual decision problem implies ∂[Φ0(I0) − ρ(I0, I1)]/∂I0 ≡

∂2G/∂I20 < 0. It follows that ∂I0/∂R0 = 1/(∂2G/∂I20 ) < 0 and ∂I0/∂I1 = (Γ
∗0)(ff 0)σ2A/(∂

2G/∂I20 ) ≥ 0,
since Γ∗0 < 0.
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which in turn discourages risk-taking in the present. This complementarity is at the
heart of our propagation and amplification mechanism. It arises only if σA > 0, and
hinges on the property that the anticipation of a recession in the near future is associated
with high risk premia on private equity in the present.

We now examine the impact at date 0 of an anticipated recession or investment
slump at date 1. To be specific, we assume that the slump originates in an exogenous
decrease in the aggregate endowment e1. For simplicity, we also treat the initial interest
rate R0 as exogenously fixed.19 When σA = 0, by (4.7) the optimal investment I0 is
independent of the expected decline in I1. For fixed R0, we conclude that dI0/de1 = 0,
dW1/de1 = 1, and dI1/de1 = I∗0.Under complete markets, the anticipation of a recession
or an investment slump in period 1 does not affect investment in period 0; and the
impact of the exogenous wealth shock on contemporaneous income and investment is
not amplified.

On the other hand, when σA > 0, the investment levels I0 and I1 are complementary
by (4.7). The anticipation of an exogenous negative wealth shock in period 1 signals
high future interest rates and induces private agents to scale down their risky investment
in period 0. The reduction in I0 implies a further reduction in W1 = Φ(I0) + e1, which
in turn further lowers I1 by the wealth effect (4.6). The anticipation of the endogenous
reduction in W1 and I1 leads to an even lower I0, and another feedback between I1 and
I0 is initiated. The overall impact of the initial exogenous shock can be quite large, and
in particular dI0/de1 > 0, dW1/de1 > 1, and dI1/de1 > I∗0.

In the presence of undiversifiable idiosyncratic production risks, an aggregate shock
propagates from one period to another via the dynamic complementarity of investment.
This propagation amplifies the contemporaneous impact of the shock and leads to in-
creased persistence. ¥

We now make several remarks on this mechanism. First, incomplete markets gener-
ate a particular type of pecuniary externality. In the presence of uninsurable production
shocks, risk-taking depends on future interest rates. When private agents decide how
much to save and invest in a future period, they do not internalize the impact of their
choices on future interest rate and therefore on current investment.

Second, the pecuniary externality generates a dynamic macroeconomic complemen-
tarity. Because interest rates are endogenous and influence risk-taking, the anticipation
19This is equivalent to assuming an infinitely elastic supply for savings. In our model, the supply for

savings at t = 0 is derived from the contemporaneous Euler equation. The anticipation of a recession
in period 1 (lower e1) increases the supply of savings at t = 0 under either complete or incomplete
markets, but decreases the demand for investment only under incomplete markets. The endogeneity of
the interest rate thus tends to dampen but not to offset the amplification and propagation mechanism
we are proposing. The calibrations of Section 5 will confirm that the mechanism is quite powerful in
general equilibrium.

16



of low aggregate investment in the future feeds back into low aggregate investment in
the present. Low levels of investment can thus be self-sustaining for long periods of
time. This dynamic macroeconomic complementarity is the basis of amplification and
persistence over the business cycle. The reader may be familiar with a standard example
of macroeconomic complementarity — the production externalities considered by Bryant
(1983) and Benhabib and Farmer (1994).20 In this literature, an individual’s marginal
productivity is assumed to increase in the aggregate stock of capital, which generates
a complementarity in investment. Note that this type of production externality is ex-
ogenous and ad hoc. In contrast, the complementarity in our model is endogenously
generated by a pecuniary externality, and is thus a genuine general-equilibrium impli-
cation of a market imperfection.

Third, our mechanism hinges on the fact that idiosyncratic uncertainty affects pro-
duction and investment. It is thus not present in Bewley-type economies (e.g., Aiyagari,
1994; Krusell and Smith, 1998) that only consider endowment risks. This explains why
this earlier research did not find the propagation and amplification mechanism identified
in this paper.

We finally note that our results stem from two basic premises. First, the risk pre-
mium on private equity, and thus the willingness to invest in risky production, depend
on the ability to self-insure against future variations in returns. Second, this ability is
lower during recessions and risk premia are higher at the onset of an economic down-
turn. These two premises are obviously much more general than our specific model.21

They alone imply that private investment is lower when a recession is anticipated to per-
sist in the near future, which can slow down recovery and make the recession partially
self-fulfilling. Moreover, our results are consistent with the evidence that risk premia
on public equity are highly countercyclical. The proposed transmission mechanism has
thus strong empirical content and is probably robust to alternative specifications.

4.4. Steady State

We now analyze how the presence of undiversifiable idiosyncratic production risks affects
the capital stock in the long run. A steady state is a fixed point (C∞,W∞,K∞, R∞) of
the dynamic system (4.1)-(4.4). We easily show:

Theorem 2 (Steady State) The consumption level is C∞ = Φ(K∞)−K∞, while the
20Cooper (1999) provides an overview of macroeconomic complementarities.
21Consider for instance an economy with incomplete insurance and credit markets imperfections. We

expect that a risk-averse agent will take less risk and thus invest less in the present when he anticipates
a higher borrowing rate, a higher probability to use credit, or a higher probability to face a binding
borrowing constraint at a future date. Note that this effect occurs whether or not current investment
is financially constrained.
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interest rate and the aggregate capital stock satisfy

R∞ = Φ0(K∞)−ρ∞, (4.8)

ln(βR∞) = − Γ
2Ψ

σ2c , (4.9)

where ρ∞ ≡ Γ(1−R−1∞ )f(K∞)f 0(K∞)σ2A and σ2c ≡ (1−R−1∞ )2
£
σ2e + f(K∞)2σ2A

¤
.

The first equation corresponds to the aggregate demand for productive investment, and
the second to the aggregate supply of savings. The coefficient ρ∞ is the risk premium
on private equity, and σc is the standard deviation of individual consumption. We note
that R∞ = 1/β when markets are complete (σA = σe = 0), but R∞ < 1/β in the
presence of undiversifiable idiosyncratic risks (σA > 0 and/or σe > 0). The property
that the risk-free rate is below the discount rate under incomplete markets has been
proposed as a possible solution to the low risk-free rate puzzle (e.g., Weil, 1992; Huggett,
1993; Constantinides and Duffie, 1996; Heaton and Lucas, 1996).

The steady state is unique when markets are complete, and by continuity when σA
and σe are sufficiently small.22 The comparative statics are then easily derived from
(4.8)-(4.9):

Proposition 4 (Comparative Statics) The capital stock K∞ increases with the en-
dowment risk σe, the discount factor β and the mean productivity A. On the other
hand, the variation of K∞ with the production risk σA is generally ambiguous.

Endowment and production risks have thus very different effects on the steady state.
Consider first the case when σe > 0 but σA = 0. There is no risk premium on private
investment and the steady state equations reduce to

R∞ = Φ0(K∞) and
ln(βR∞)
(1−1/R∞)2 = −

Γ

2Ψ
σ2e.

A higher σe implies a higher consumption risk, increases the precautionary supply of
savings, and reduces the interest rate. Since R∞ = Φ0(K∞), the capital stock necessarily
increases. This is precisely the effect considered by Aiyagari (1994).

We now consider the case when σA > 0. Production shocks introduce a risk premium
on private investment and the steady state is determined by the system (4.8)-(4.9). The
production risk σA affects both the savings supply (like σe) and the investment demand
(unlike σe). An increase in σA tends to encourage the precautionary supply of savings,
reduce the interest rate, and thereby stimulate investment. On the other hand, a higher
σA raises the private risk premium and reduces the demand for investment at any level
22See the Appendix for a discussion of uniqueness.
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of the interest rate. There is thus a conflict between the savings and the investment
effect.

Intuition suggests that the investment channel can dominate in two cases. First,
when agents have a weak precautionary motive, a higher production risk increases the
variance of consumption but has little effect on savings. Second, when real returns
have a strong impact on long-run savings (the steady-state supply of savings is very
elastic with respect to R∞), an increase in precautionary savings will lead to only a
small reduction in the equilibrium interest rate. In either case, the new steady state
is mainly determined by the reduction in investment demand. We observe that these
arguments hinge on the sensitivities of savings to consumption risk and interest rates.
In our framework, they are both valid when the coefficient Ψ is sufficiently high. The
numerical simulations of the next Section will demonstrate that K∞ decreases with σA
unless the elasticity of intertemporal substitution is implausibly low. Therefore, while
Aiyagari (1994) suggests that the economy over invests under incomplete insurance, we
instead conclude that under investment is the most likely scenario.

5. Calibration and Numerical Results

We now calibrate our infinite-horizon economy, and numerically examine how uninsur-
able risks affect the steady state and the convergence rate.

5.1. Calibrated Economies

We begin by specifying technology and risks. The production function is assumed to
be Cobb-Douglas, f(K) = Kα for α ∈ (0, 1), and the mean productivity is Ā = 1. We
calibrate the standard deviations of the uninsurable risks as percentages of GDP. For
instance when σA = 0.25, the standard deviation of gross output, σAf(K∞), represents
25% of mean production, f(K∞). Similarly, we assume that the standard deviation of
the endowment risk is proportional to steady-state output.23

We next consider the specification of preferences. A difficulty with exponential
utilities is that the relative risk aversion and the elasticity of intertemporal substitution
(EIS) vary across consumption levels. It is to show that at a given point C these
coefficients are respectively equal to ΓC and Ψ/C. We can remedy this problem by
choosing parameters Γ and Ψ that match a given relative risk aversion γ and a given EIS
ψ at the steady state. For example when markets are complete, long run consumption
is C∗∞(α,β, δ) ≡ [(β−1 + δ − 1)/α − δ][α/(β−1 + δ − 1)]1/(1−α).24 We thus set Γ =
23More specifically, we impose [V ar(εit+1)]

1/2 = σef(K∞). This renormalization does not affect indi-
vidual decision-making, and simply leads us to replace σe by σef(K∞) in equations (4.2) and (4.9).
24This follows from a simple calculation. Since Φ0(K∗∞) = R∗∞ = 1/β, the steady capital stock is

K∗∞ = [α/(β−1 + δ − 1)]1/(1−α) and average consumption is then given by C∗∞ = Φ(K∗∞)−K∗∞.

19



γ/C∗∞(α,β, δ) and Ψ = ψC∗∞(α,β, δ) for every (α,β, δ). The calibration of Γ and Ψ is
broadly similar under incomplete markets, as discussed in Appendix B.

Overall, a calibrated economy is parameterized by Ecal = (β, γ,ψ,α, δ,σA,σe), where
β is the discount factor, γ the relative risk aversion, ψ the EIS, α the income share
of capital, δ the depreciation rate, and σA and σe the idiosyncratic production and
endowment risks as percentages of GDP.

5.2. Calibrated Steady State

We now characterize the comparative statics of the calibrated steady state around σA =
σe = 0.

Proposition 5 (Comparative Statics) As we move away from complete markets,
the interest rate R∞ decreases with σe and σA. The capital stock K∞ increases
with the endowment risk σe; it decreases with the production risk σA if and only
if ψ > ψ, where ψ ≡ (β−1 − 1) £(β−1 − 1) + (1− α)δ

¤
/(2α2).

As discussed in Section 4.4, the endowment risk σe stimulates precautionary savings
but does not affect investment demand. As a result, a higher σe unambiguously reduces
R∞ and increases K∞. In contrast, the productivity risk σA has the conflicting effects
of increasing precautionary savings and reducing investment demand. When the EIS ψ

is high, variations in consumption risk have little impact on the interest rate, and the
investment effect dominates.

We note that the lower bound ψ is typically smaller than 0.20 for plausible values of
(β,α, δ). For instance, ψ = 0.20 when each time period lasts a year and the technology
only uses physical forms of capital: (β,α, δ) = (0.95, 0.35, 0.05). We similarly obtain
ψ = 0.14 with a longer time interval and a broader definition of capital: (β,α, δ) =
(0.75, 0.70, 0.25). Since empirical evidence suggests an EIS close to 1 and certainly well
above 0.20, the most plausible scenario is that uninsurable technological risks reduce
the long run capital stock as we move away from complete markets.

5.3. Numerical Simulations of the Steady State

Numerical simulations were performed for many values of Ecal = (β, γ,ψ,α, δ,σA,σe).
On one hand, when ψ is very small (typically less than 0.20), the capital stock K∞ is
a single-peaked function of σA. The introduction of a new asset increases the long run
capital stock if markets are very incomplete (high σA); but if markets are nearly complete
(low σA), the savings effect dominates and financial innovation decreases K∞. On the
other hand, for moderate or high ψ (typically larger than 0.20), the investment effect
always dominates. Better sharing of production risks then unambiguously increases the
long-run capital stock.
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Figure 2 illustrates the monotonicities of the capital stock K∞ and the net interest
rate r∞ ≡ R∞−1 for a typical RBC specification in annual frequency. We set β = 0.95,
γ = 4, ψ = 1, δ = 0.05, and consider either α = 0.70 (Panel A) or α = 0.35 (Panel
B). Panel A considers both physical and human forms of capital, and Panel B physical
capital only. In each graph, the solid line corresponds to σe = 0 and the dashed one to
σe = 50%. In both cases, K∞ monotonically decreases as σA varies from 0 to 100%, and
the decline is more pronounced for the larger value of the capital share α. In particular
for σA = 100%, the capital stock is about 25% lower than its complete-market value if
α = 0.35 (Panel B), and 40% lower if α = 0.70 (Panel A).

The simulations in Figure 2 assume that an idiosyncratic shock lasts only one year.
Since infinitely-lived agents can easily self-insure against short transitory shocks, the
impact of missing insurance markets on the steady state is relatively modest. Financial
incompleteness is expected to have stronger effects when idiosyncratic shocks are highly
persistent, and investment is subject to long irreversibilities or adjustment costs. Per-
sistent production shocks and long irreversibilities are empirically valid assumptions,
especially for human capital formation, large R&D projects, and investments involving
specialization, indivisibilities, and long horizons. Unfortunately, we cannot explicitly
introduce these features in the model without losing tractability. Persistence can how-
ever be captured in our simulations by increasing the length of the time period. The
interval between t and t + 1 then corresponds to the horizon of an investment project
and the average life of an idiosyncratic productivity shock.

Figure 3 illustrates the case of a 5-year investment horizon. We choose β = 0.75 and
δ = 0.25 over the 5-year period, which correspond to discount and depreciation rates of
about 5% per year. We also set γ = 4, ψ = 1, and α ∈ {0.35, 0.70}. The effect of σA on
K∞ is now very strong. At σA = 100%, the capital stock is 30% of its complete-market
value if α = 0.35 (Panel B); it is only 15% of the complete-market level when α = 0.70

(Panel A).
In contrast to Aiyagari (1994), Figures 2 and 3 show that incomplete markets can

imply both a low risk free rate and a low capital stock. Furthermore, in an incomplete-
market economy, the risk-free rate can be a very poor proxy for the marginal produc-
tivity of capital. In Panel B of Figure 3, the marginal productivity of capital is 18% per
year when σA = 100%, as compared to a yearly interest rate of 4%.

The simulations provide useful insights on the interaction between endowment and
production risks. In Figures 2 and 3, the dashed lines correspond to σe = 50% and the
solid ones to σe = 0. We observe that the steady state becomes less sensitive to σe as
σA increases. This is because when σA is large, individuals are already holding a buffer
stock that can be used to self-insure against both investment and endowment risks. The
precautionary effect of σA similarly diminishes with σe, implying that the investment
effect dominates more easily when there are already large precautionary savings in the
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economy.
We note that when σe and σA are approximately equal, the impact of production

risk on capital stock is prevalent. For instance in Figures 2 and 3, the capital stock
K∞ is well below its complete-markets value for σA = σe = 50%. When production
and endowment risks contribute equally to idiosyncratic income variation, the adverse
investment effect tends to be stronger than the favorable precautionary impact induced
by both types of income risk.

We conclude that the quantitative impact of σA on K∞ can be large.25 Although
empirical estimates of σA or σe are not readily available, we know that idiosyncratic
production, entrepreneurial, and investment risks are very substantial in reality. For
example, the survival rate of a new private firm is only 34% after 10 years. The distri-
bution of returns to entrepreneurial activity is also extremely wide even conditionally
on survival.26 In addition, private savings are very low in the United States. These
facts are consistent with our model and suggest that substantial underinvestment due
to incomplete risk-sharing is a very likely empirical scenario.

5.4. Persistence

We showed in Section 4.3 that uninsurable production risks generate a dynamic macro-
economic complementarity in investment, which can be a source of amplification and
propagation over the business cycle. We now quantify this effect by examining how σA
alters convergence to the steady state.

In Appendix C, we linearize the dynamic system (4.1)-(4.5) around the steady state
and calculate the stable eigenvalue λ. The local dynamics can then be approximated
by log(Kt+1/K∞) = λ log(Kt/K∞). The quantity 1− λ is called the convergence rate.
Incomplete insurance slows down convergence if 1 − λ decreases with σA. Numerical
simulations show that this is indeed the case for a wide range of plausible parameter
values. Consider our earlier example of a 5-year investment project (Figure 3). We
calibrate the model using β = 0.75 (discount rate ≈ 5% per year), δ = 0.25 (depreciation
rate ≈ 5% per year), γ = 4, ψ = 1, and α ∈ {0.35, 0.70}. In Figure 4 we illustrate the
convergence rate and the half-life of an aggregate wealth shock27 as σA varies from 0

to 100%. The convergence rate decreases rapidly with σA. With a narrow definition of
capital (α = 0.35, Panel B), the half-life of a shock almost doubles as σA increases from
0 to 100%. The effect is even stronger when incompleteness affects both physical and
25The numerical results of Figures 1 and 2 are not very sensitive to changes in ψ and γ. A higher

ψ weakens the effect of σA on R∞ and strengthens its impact on K∞, because it increases the interest
elasticity of savings. On the other hand, γ tends to have a small ambiguous effect, since a higher γ
increases both the precautionary motive and the risk premium on investment.
26See Moskowitz and Vissing-Jorgensen (2001).
27The half-life T of a deviation from the steady state is defined by λT = 1/2, or T = − log2 λ.
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human capital (α = 0.7, Panel A).28

Undiversifiable productivity shocks thus substantially slow down convergence to the
steady state, as implied by the dynamic macroeconomic complementarity discussed in
Section 4. We anticipate that convergence would be even slower in the presence of
borrowing constraints.

While this paper considers a one-sector economy, it is straightforward to extend our
framework to multiple sectors. For instance, we can introduce two production technolo-
gies, one with high mean return and high risk and another with low mean return and
low risk. We can also include several forms of investment, such as physical and human
or intangible capital. In such an environment, incomplete risk sharing distorts not only
the aggregate levels of savings and investment, but also the cross-sectoral allocation of
capital and labor. This cross-sectoral distortion reduces aggregate productivity, imply-
ing a further reduction in steady-state capital and income.29 Moreover, the anticipation
of stringent future credit conditions induces not only a lower level of overall risk tak-
ing, but also a substitution away from high-risk high-return investment opportunities.
As the economy shifts to safer but less productive technologies during downturns, the
persistence and the amplitude of the business cycle are further increased.

These results suggest that production risk could generate additional persistence over
the business cycle in standard RBC models with aggregate uncertainty (e.g. Kydland
and Prescott, 1982). Furthermore, the magnitude of uninsurable productivity shocks
appears as a potential determinant of both the steady state and conditional convergence.
Cross-country variation in the degree of risk sharing may thus help explain the large
diversity of productivity levels and growth rates around the world (e.g. Barro, 1997;
Jones, 1997).

6. Concluding Remarks

This paper examines a standard neoclassical growth economy with heterogeneous agents,
decentralized production, and uninsurable production and endowment risks. Under a
CARA-normal specification for preferences and risks, we obtain closed-form solutions for
individual choices and aggregate dynamics. Uninsurable production shocks introduce a
28Figure 3 also demonstrates the asymmetry between production and endowment risk. While en-

dowment risk does not introduce a dynamic macroeconomic complementarity, the precautionary motive
tends to boost savings above the steady state and thus speed up convergence in an initially poor econ-
omy. The convergence rate thus tends to decrease with σA but increase with σe. When σA and σe are
equal, the investment effect dominates and the convergence rate is lower than under complete markets.
29A multi-sector extension of our paper would thus complement the endogenous-growth literature

examining the effect of uninsurable investment risks on the allocation of savings across different invest-
ment opportunities, such as liquid and illiquid assets (e.g., Bencivenga and Smith, 1991) and storage
and risky production (e.g. Greenwood and Jovanovic, 1990; Obstfeld, 1994).
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risk premium on private equity and reduce the aggregate demand for investment. As a
result, the steady-state capital stock tends to be lower under incomplete markets, despite
the low risk-free rate induced by the precautionary motive. Undiversifiable idiosyncratic
production risks generate a powerful dynamic macroeconomic complementarity between
future and current investment. Based on the endogenous countercyclicality of the risk
premium, this mechanism amplifies the impact of an exogenous aggregate shock on
output and investment, slows down convergence to the steady state, and increases the
persistence of the business cycle.

Credit-market imperfections and non-convexities in production have been viewed by
many authors as a source of persistence in the business cycle. Although these departures
from the neoclassical growth model are not considered here, we find that incomplete
risk sharing alone is sufficient to generate underinvestment and introduce a powerful
propagation mechanism. The presence of uninsurable production risks reduces the in-
dividual’s willingness to invest. Introducing borrowing constraints would in addition
restrict the ability to undertake risky projects and increase the sensitivity of risk premia
and investment demand to future credit conditions. While CARA preferences rule out
wealth effects on risk taking, the private equity premium is even more countercyclical
when wealth encourages risk taking. During a recession, agents are unwilling to take
risk not only because they anticipate stringent future credit conditions but also because
they are poorer. The impact of credit constraints and wealth on risk premia could thus
reinforce the steady-state and business-cycle effects documented in the paper. Further-
more, we anticipate that the impact of risk premia on investment represents a source of
amplification and persistence that is much more general than our specific model.

The next step is to construct a full-fledged RBC model with isoelastic preferences,
decentralized production, borrowing constraints, and both aggregate and idiosyncratic
production uncertainty. This can be accomplished by combining our framework with
the numerical analysis of Krusell and Smith (1998). This extension would permit a
quantitative evaluation of the interaction between risk premia and business cycles, which
is the heart of our argument. It would also permit a reassessment of the impact of wealth
heterogeneity on aggregate dynamics. In addition, idiosyncratic capital-income risk may
help match the skewness of the wealth distribution in the data,30 and have important
asset pricing implications.31 We leave these questions open for future research.
30Krusell and Smith (1998) show that a calibrated Bewley-type model fails to match the large disper-

sion of wealth observed in the US economy unless persistent idiosyncratic shocks are introduced in the
discount factor. We conjecture that persistent capital income risk may have similar effects than these
utility shocks, and could thus help match the empirical wealth distribution.
31Constantinides and Duffie (1996) show that Bewley-type models can explain the magnitude and

countercyclicality of the public equity premium by assuming that labor-income risk is itself highly coun-
tercyclical. Our findings suggest that idiosyncratic production uncertainty can generate large coun-
tercyclicality in risk premia even when exogenous shocks are acyclical. Moreover, Heaton and Lucas
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Finally, like Aiyagari (1994) and Krusell and Smith (1998), this paper treats the
financial structure as exogenous. There is an important literature on how incomplete
risk sharing can originate in private information32 or lack of commitment.33 Our results
suggest that a promising extension to this research may consider production economies
with idiosyncratic capital-income risk and endogenous asset markets. This would pro-
vide a more detailed picture of the relation between economic growth, the process of
financial innovation, and the business cycle.

(2000) show empirically that proprietary income risk has a strong impact on portfolio holdings, which
is suggestive of the potential importance of capital-income risk for asset prices.
32See for example Townsend (1982), Green (1987), Banerjee and Newman (1991), Atkeson and Lucas

(1992), and Cole and Kocherlakota (2001).
33See for example Kehoe and Levine (1993), Kocherlakota (1996), and Alvarez and Jermann (2000).
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Appendix A: Proofs

Proof of Proposition 1 (Individual Choice)
A sketch of the portfolio-decision choice is provided in the text. We present here a

more detailed derivation under the assumption that there is no risk premium on financial
securities.

Since the asset structure includes a riskless bond, there is no loss of generality in
assuming that Etdm,t+1 = 0 for all m ≥ 1. In the absence of a risk premium, it follows
that πm,t = 0, ∀m ≥ 1. We thus rewrite the optimization problem (3.3) as

max
(cjt ,k

j
t ,θ

j
0t)
U(cjt ) + βU

(
V jt+1

"
Etwjt+1−

Γajt+1
2

min
(θj1t,..,θ

j
Jt)
Vart(w

j
t+1)

#)
. (6.1)

This suggests a two-step solution. We successively solve for the optimal portfolio of
risky assets, and then for the consumption-investment choice.

Given any (cjt , k
j
t , θ

j
0,t), the optimal portfolio (θ

j
j,t)

J
j=1 minimizes the conditional vari-

ance of wealth, Vart(w
j
t+1) = Vart

h
Ajt+1f(k

j
t+1) + e

j
t+1 +

PJ
j=1 d

j
j,t+1θ

j
j,t

i
.Without loss

of generality, we normalize Var(dm,t+1) = 1 and Cov(dm,t+1; dn,t+1) = 0 for m 6= n. The
FOCs then imply

θjm,t = −Covt
h
dm,t+1 ; A

j
t+1f(k

j
t+1) + e

j
t+1

i
, ∀m ≥ 1.

This result has a natural geometric interpretation. For all t, we can project (or regress)
Ajt+1 and e

j
t+1 on the asset span. This yields A

j
t+1 = κj · dt+1 + ηjt+1 and e

j
t+1 = ξj ·

dt+1+ε
j
t+1, where κ

j , ξj are deterministic constants and ηjn,t+1, ε
j
t+1 are random variables

orthogonal to dt+1. The optimal portfolio fully hedges the diversifiable component of
idiosyncratic risks:

θjt · dt+1 = −
h
f(kjt+1)κ

j + ξj
i
· dt+1. (6.2)

Individual wealth then reduces to wjt+1 = (A+ ηjt+1)f(k
j
t+1) + (1− δ)kjt+1 + εjt+1 + θj0,t.

Thus, Etwjt+1 = Af(k
j
t+1) + (1− δ)kjt+1 + θj0,t and Vart(w

j
t+1) = σ2e + f(k

j
t+1)

2σ2A.

We now turn to the optimal consumption, saving and investment decision. We
define Φ(k) ≡ Af(k) + (1− δ)k and G(k,Γa) ≡ Φ(k)− Γa £σ2e + f(k)2σ2A¤ /2. It follows
that Etwjt+1 = Φ(k

j
t+1) + θj0,t and Etw

j
t+1 − Γajt+1Vart(wjt+1)/2 = G(kjt+1,Γajt+1) + θj0,t.

Combining with (6.1), we conclude that the optimal (cjt , k
j
t+1, θ

j
0,t) maximizes

U(cjt) + βU
n
V jt+1

h
G(kjt+1,Γa

j
t+1) + θj0,t

io
, (6.3)

subject to cjt + k
j
t+1 + θj0,t/Rt = w

j
t . The FOCs with respect to k

j
t and θj0,t give

U 0(cjt) = βU 0
n
V jt+1

h
G(kjt+1,Γa

j
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io
ajt+1

∂G

∂k
(kjt+1,Γa
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t+1),

U 0(cjt) = βU 0
n
V jt+1

h
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t+1) + θj0,t

io
ajt+1Rt.
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Dividing these equalities yields Rt = ∂G/∂k.
We now write the envelope condition: U 0[V jt (w

j
t )]a

j
t = U

0(cjt ). Using (2.3) and (3.4),
this reduces to cjt = ajtw

j
t + b

j
t − Ψ lnajt . We infer that bajt = ajt and bbjt = bjt − Ψ lnajt .

Using (2.3) and (3.4), we rewrite the FOC with respect to θj0,t as

U 0(cjt ) = βRtU
0
n
V jt+1

h
Etwjt+1−Γajt+1Vart(wjt+1)/2

io
ajt+1

= βRtU
0
n
ajt+1Etw

j
t+1−Γ(ajt+1)2Vart(wjt+1)/2 + bjt+1−Ψ lnajt

o
.

Using ajt+1 = bajt+1, bjt+1 = bbjt + Ψ ln ajt+1 and the consumption rule, the above reduces
to

U 0(cjt ) = βRtU
0
h
Etcjt+1−ΓVart(cjt+1)/2

i
.

This gives the Euler condition (3.10).
Combining the envelope condition with the FOC for θj0,t gives

U 0[V jt (w
j
t )]a

j
t = βU 0

n
V jt+1

h
G(kjt+1,Γa

j
t+1) + θj0,t

io
ajt+1Rt,

or equivalently V jt (w
j
t ) = V

j
t+1

h
G(kjt+1,Γa

j
t+1) + θj0,t

i
− Ψ ln(βajt+1Rt/ajt). The budget

constraint and the consumption rule imply that θj0,t = Rt(1 − bajt )wjt − Rtkjt+1 − Rtbbjt ,
where bajt = ajt . We thus infer
ajt ·wjt + bjt = ajt+1Rt(1− ajt ) · wjt +

+ ajt+1

h
G(kjt+1,Γa

j
t+1)−Rtkjt+1 −Rtbbjti+ bjt+1 −Ψ ln(βajt+1Rt/ajt).

Since this linear relation holds for every wjt , we conclude that a
j
t = a

j
t+1Rt(1 − ajt ) or

equivalently ajt = 1/[1 + (a
j
t+1Rt)

−1]. Iterating forward yields (3.8). QED

Proof of Proposition 2 (Investment)
By the implicit function theorem, the first-order condition (3.6) implies ∂kjt+1/∂(σ

2
A) =

−µΓt and ∂kjt+1/∂Γt = −µσ2A, where µ ≡ f(kjt+1)f 0(kjt+1)/(−∂2G/∂k2). We infer from
the second-order condition ∂2G/∂k2 < 0 that µ > 0. Finally, condition (3.8) implies that
∂Γt/∂Rs > 0 and thus ∂kjt+1/∂Rs = −µσ2A∂Γt/∂Rs < 0 for all s > t. Differentiating

this relation at σA = 0, we obtain ∂
¯̄̄
∂kjt+1/∂Rt+s

¯̄̄
/∂(σ2A) = µ∂Γt/∂Rs > 0. QED

Proof of Proposition 3 (Savings)
Since Vart(w

j
t+1) = σ2e + σ2Af(k

j
t+1)

2, we infer that ∂Vart(w
j
t+1)/∂σ

2
e > 0. On the

other hand, ∂Vart(w
j
t+1)/∂σ

2
A = f(kjt+1)

2 + [2σ2Af(k
j
t+1)f

0(kjt+1)](∂k
j
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2
A) has an

ambiguous sign. Consider the special case f(k) =
√
k and δ = 1. Then G(k,Γ) =

(2
√
k)−1(A−Γσ2A

√
k) and Rt = ∂G(kjt+1,Γ

j
t)/∂k imply k

j
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2
/(2Rt+Γtσ

2
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2. Hence,
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Vart(w
j
t+1) = σ2e +σ2AA

2
/(2Rt+Γtσ

2
A)
2.We conclude that ∂Vart(w

j
t+1)/∂σ

2
A < 0 if and

only if σ2A > 2Rt/Γt. QED

Proof of Theorem 1 (General Equilibrium)
We now derive the equations characterizing general equilibrium. First, note that

(3.8) implies ajt = at for all j, t. We infer from the optimality condition (3.9) that
kjt+1 = Kt+1 for all j. Equation (3.9) then reduces to (4.1) and the Euler equation
(3.10) can be rewritten as

Etcjt+1 − cjt = Ψ ln(βRt) +
Γa2t+1
2

[σ2e + f(Kt+1)σ
2
A].

We aggregate these equalities across agents and infer (4.2). Finally, (4.4) and (4.5)
follow from aggregating the budget constraints and Assumption 4 (absence of aggregate
uncertainty). QED

Proof of Theorem 2 (Steady State)
The steady state is defined by the system (4.8)− (4.9). The second equation implies

R∞ ≤ 1/β. The transversality condition imposes that R∞ > 1 and a∞ > 0. The interest
rate R∞ is therefore bounded between 1 and 1/β. Since R∞ > 1, the first equation
implies AF 0(K∞) + 1 − δ > 1, or equivalently K∞ < bK ≡ (F 0)−1(δ/A). The capital
stock K∞ is therefore contained between 0 and bK.

Each steady-state equation implicitly defines the interest rate as a function of the
capital stock. Consider for instance equation (4.9). It is useful to define the functions
m1 : (1,β

−1] → [0,+∞), m1(R) ≡ (2Ψ/Γ)(1 − R−1)−2 ln[1/(Rβ)], and m2 : [0, bK) →
[σ2e,σ

2
e+f( bK)2σ2A), m2(K) ≡ σ2e+f(K)

2σ2A.We observe that m1 is decreasing in R and
m2 is increasing in K. The steady state equation (4.9) is equivalent to m1(R) = m2(K).

For each K ∈ [0, bK), the equation m1(R) = m2(K) has a unique solution, R2(K) ≡
m−11 [m2(K)], which maps [0,+∞) onto (1,m−11 (σ2e)] ⊆ (1,β−1]. Similarly, the steady
state equation (4.8) implicitly defines a decreasing function R1(K), which maps (0, bK]
onto [1,+∞). The intersection of R1 and R2 gives K∞.

Consider the function ∆(K) ≡ R2(K) − R1(K). When K → 0, we observe that
R2(K) is bounded and R1(K) → +∞, implying ∆(K) → −∞. We also note that
∆( bK) = R2( bK)− 1 > 0. Hence, there exists at least one steady state for any (σA,σe).
Under complete markets, the steady state is unique since the function R2 is constant
and R1 is decreasing. By continuity, the steady state is also unique when σA and σe are
sufficiently small. QED

Proof of Proposition 4 (Comparative Statics)
Consider the functions R1 and R2 defined in the proof of Theorem 2. Observe that

R1(K) and R2(K) are both decreasing. We know that |R01(K∞)| > |R02(K∞)| when the
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steady state is unique. An increase in σe or β leaves the function R1(K) unchanged
and pushes down the function R2(K). The steady state is therefore characterized by
a lower interest rate and a higher capital stock. Similarly, an increase in 1 − δ and A
pushes up R1(K), also leading to a lower interest rate and a higher capital stock. An
increase in Γ or σA reduces both R1(K) and R2(K), reflecting the fact that ΓσA enters
in both the investment demand and the savings supply. Γ and σA can therefore have
ambiguous effects, as verified in simulations. QED

The proof of Proposition 5 is presented in Appendix B after the discussion of the
calibration method.

Appendix B: Calibrated Economies

We now present the calibration of Γ and Ψ, which allows the comparison between our
CARA economy and the standard isoelastic setup used in RBC models. Relative risk
aversion at the steady-state consumption level is ΓC∞. We restrict the incomplete-
market economy E so that ΓC∞ remains invariant at a fixed level γ.

We next consider Ψ. The elasticity of intertemporal substitution (EIS) is equal to
Ψ/C∞ at the steady state consumption level. Similar to the calibration of risk aversion,
we could restrict Ψ/C∞ to remain constant at a fixed level ψ. In Angeletos and Calvet
(2000), we adopted this method and the additional restriction Ψ = 1/Γ (expected
utility). We found that idiosyncratic production risks strongly reduce the convergence
rate to the steady state, confirming the predictions contained in Section 4.

In this paper, however, we propose a more elaborate calibration method that stems
from the following observation. Consider a complete-market Ramsey economy with
intertemporal utility

P+∞
t=0 β

tU(ct), where U is a smooth strictly concave function. Gross
output is Φ(K) = f(K) + (1 − δ)K. The local dynamics around the steady state are
approximated by ln(Kt+1/K∞) ≈ λ ln(Kt/K∞), where λ is the stable eigenvalue of the
linearized system. It is easy to show that34

λ =
1

2

½
1 + β(β−1 − 1 + δ)M∞ +

1

β
−
r
[1 + β(β−1 − 1 + δ)M∞]2 − 4

β

¾
,

where

M∞ =
f 00(K∞)/f 0(K∞)
U 00(C∞)/U 0(C∞)

.

The ratio M∞ quantifies the relative curvatures of the production and utility functions.
The eigenvalue λ is thus fully determined by (β, δ) and M∞. The Cobb-Douglas spec-
ification f(K) = Kα implies that f 00(K)/f 0(K) = −(1 − α)/K. With a CARA utility
34Cass (1965) derives a similar result for continuous time economies.
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U(C) = Ψ exp(−C/Ψ), we also know that U 00(C)/U 0(C) = −1/Ψ. The ratio M∞ then
reduces to (1− α)Ψ/K∞, and

λ =
1

2

1 + β(β−1−1 + δ)(1− α)
Ψ

K∞
+
1

β
−
s·

1 + β(β−1 − 1 + δ)(1− α)
Ψ

K∞

¸2
− 4

β

 .
(6.4)

Under complete markets, the convergence rate g = 1−λ is thus fully determined by the
parameters (α,β, δ) and the ratio Ψ/K∞, which quantifies the relative curvature of the
production and utility functions at the steady state.

When we move from complete to incomplete markets, two phenomena affect the
eigenvalue λ and thus the convergence rate g = 1− λ. First, the transitional dynamics
are affected by new terms in (4.1)-(4.5): the risk premium in the investment-demand
equation and the consumption variance in the Euler equation. Second, changes in the
steady state affect the relative curvature Ψ/K∞ and thereby the eigenvalue λ. This
second effect reflects the shift of the steady-state to different points on the production
and utility functions. It is thus purely mechanical and sheds little light on the impact
of incomplete risk sharing on the transitional dynamics. For this reason, we prefer to
neutralize this effect by keeping Ψ/K∞ (or equivalentlyM∞) invariant at a prespecified
level as we vary σA and σe.35 This in turn requires an appropriate calibration of
Ψ/K∞. When markets are complete, we impose that the intertemporal elasticity Ψ/C∞
be equal to a given coefficient ψ. This allows us to choose a value of ψ that matches
empirical estimates of the EIS. A simple calculation also implies C∞/K∞ = q∗−δ, where
q∗ ≡ (β−1 − 1 + δ)/α. The ratio Ψ/K∞ is therefore equal to ψC∞/K∞ = ψ(q∗ − δ)

under complete markets. When markets are incomplete, we keep Ψ/K∞ invariant at its
complete-market level ψ(q∗ − δ). Our calibration thus disentangles the dynamic effect
of financial incompleteness from purely mechanical changes in the relative curvatures of
the production and utility functions.

Following this methodology, we define36

35The alternative calibration method, which keeps constant the EIS Ψ/C∞ at ψ but lets Ψ/K∞ vary,
also implies a very substantial increase in persistence when σA increases from zero. But, because K∞
typically decreases with σA, the change in Ψ/K∞ tends to reduce persistence. For large production
risks, the convergence rate g = 1 − λ is then slightly non-monotonic in σA in some simulations (while
staying far below the complete market value). It is then interesting to consider the shadow complete-
market convergence rate obtained by substituting the incomplete market capital stock in (6.4). The
difference between the actual convergence rate and its shadow value is then monotonically increasing in
σA. The dynamic effect of σA thus unambiguously slows down convergence.
36Our calibration method also has the following alternative interpretation. Instead of adjusting the

EIS around the incomplete-markets steady state, we can set it at a predetermined level Ψ/C∞ = ψ, but
assume that the production function is exponential rather than Cobb-Douglas: f(K) = 1− exp(−φK).
We calibrate the coefficient φ by setting the income share of capital equal to α in the complete-market
steady state. This specification implies M∞ = φ/Ψ = β(β−1 − 1 + δ)(1 − α)ψ(q∗ − δ) and generates
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Definition A calibrated economy Ecal = (β, γ,ψ,α, δ,σA,σe) is an incomplete market
economy E = (β,Γ,Ψ, f, δ, A,σA,σ

0
e) such that ΓC∞ = γ, Ψ/K∞ = ψ(q∗ − δ),

q∗ ≡ (β−1 − 1 + δ)/α, A = 1 and σ0e = σef(K∞).

We then easily show

Proof of Proposition 5 (Calibrated Steady State)
Given Ecal = (β, γ,ψ,α, δ,σA,σe), let q∞ ≡ f(K∞)/K∞ = Kα−1∞ denote the output-

capital ratio in the steady state, implying f 0(K∞) = αq∞ and C∞/K∞ = q∞ − δ. The
calibration of Γ and Ψ implies ΓC∞ = γ and Ψ/K∞ = ψ(q∗ − δ). The steady-state
system (4.8)− (4.9) thus reduces to

R∞ = 1− δ + αq∞(1− γ∆σ2A), ln(βR∞) = −γ∆
2

ψν
(σ2A + σ2e). (6.5)

where ∆ ≡ (1 − R−1∞ )q∞/(q∞ − δ) and ν ≡ 2(q∗ − δ)/(q∞ − δ). When σA = σe = 0

(complete markets), R∞ = 1/β, q∞ = q∗ ≡ (β−1−1+δ)/α, ∆ = (1−β)q∗/(q∗−δ), and
ν = 2 like in the standard Ramsey model. When σ2A and σ2e are positive but close to 0,
the first-order variations in R∞ and q∞ are obtained by keeping ∆ and ν constant in
(6.5). We thus get d(lnR∞) = −(γ∆2)/(ψν) · d(σ2A) and dq∞ = γ∆q∞(1− ψ/ψ)d(σ2A),

where ψ = (q∗−δ)(β−1−1)/(2α). It follows that dq∞/d(σ2A) > 0 and thus dK∞/dσA < 0
if and only if ψ > ψ. QED

Appendix C: Local Dynamics

We now derive the local dynamics of (4.1)-(4.5) around the steady state. An equilibrium
path can be calculated by a backward recursion of the state vector zt = (at, Ct,Wt).

Lemma (Equilibrium Recursion) For any vector zt+1 = (at+1, Ct+1,Wt+1) ∈ (0, 1]×
R×[0,+∞), there exists a unique (at, Ct,Wt,Kt+1, Rt) ∈ (0, 1)×R2×R2+ satisfying
the equilibrium recursion (4.1)− (4.4).

Proof. Given zt+1 = (at+1, Ct+1,Wt+1), the feasibility condition implies that Kt+1 =
Φ−1(Wt+1). The interest rate is then given by Rt = ∂G(Kt+1,Γat+1)/∂K. Finally, equa-
tions (4.3)− (4.4) assign unique values to at, Ct, and Wt. QED

The lemma implies the existence of a unique recursion mapping H such that zt =
H(zt+1) for all t. Note that this mapping is implicitly defined by

at = 1/[1 + (at+1Rt)
−1],

Ct = Ct+1 −Ψ ln(βRt)− Γa2t+1
£
f(Kt+1)

2σ2A + σ2e
¤
/2,

Wt = Ct +Kt+1,

exactly the same calibrated steady state.
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where Kt+1 = Φ−1(Wt+1) and Rt = ∂G(Kt+1,Γat+1)/∂K. The Jacobian of H is

DzH =


∂at

∂at+1
0 ∂at

∂Wt+1

∂Ct
∂at+1

1 ∂Ct
∂Wt+1

∂Ct
∂at+1

1 ∂(Ct+Kt+1)
∂Wt+1

 .
We observe that ∂Kt+1/∂Wt+1 = 1/Φ

0(Kt+1) > 0, and

∂Rt
∂at+1

= −Γf(Kt+1)f 0(Kt+1)σ2A ≤ 0,
∂Rt

∂Wt+1
=

1

Φ0(Kt+1)
©
f 00(Kt+1)

£
A−Γat+1f(Kt+1)σ2A

¤−at+1[f 0(Kt+1)]2Γσ2Aª < 0.
Consider the function χ(v) ≡ 1/(1 + v−1) = v/(1 + v), which has derivative χ0(v) =
1/(1 + v)2 = [χ(v)/v]2. Since at = χ(at+1Rt), we infer that

∂at
∂at+1

=

µ
at

at+1Rt

¶2µ
Rt−at+1

¯̄̄̄
∂Rt
∂at+1

¯̄̄̄¶
,

∂at
∂Wt+1

= −
µ

at
at+1Rt

¶2
at+1

¯̄̄̄
∂Rt

∂Wt+1

¯̄̄̄
< 0.

The Euler equation Ct = Ct+1 −Ψ ln(βRt)− Γa2t+1
£
f(Kt+1)2σ2A + σ2e

¤
/2 then implies

∂Ct
∂at+1

=
Ψ

Rt

¯̄̄̄
∂Rt
∂at+1

¯̄̄̄
−Γat+1[f(Kt+1)2σ2A + σ2e]

∂Ct
∂Wt+1

=
Ψ

Rt

¯̄̄̄
∂Rt

∂Wt+1

¯̄̄̄
−Γa2t+1σ2A

f(Kt+1)f
0(Kt+1)

Φ0(Kt+1)

Let I denote the identity matrix. The characteristic polynomial P (x) ≡ det(DzH−
xI) can be rewritten as

P (x) =

µ
∂at
∂at+1

−x
¶½

x2−
·
1 +

∂(Ct +Kt+1)

∂Wt+1

¸
x+

∂Kt+1
∂Wt+1

¾
+ x

∂Ct
∂at+1

∂at
∂Wt+1

.

The roots of P are the eigenvalues of the backward dynamical system. (The eigenvalue
λ considered in Section 5 and Appendix B thus satisfies P (1/λ) = 0 and 1/λ > 1.)

Since P (−∞) = +∞ and P (+∞) = −∞, there always exists a real eigenvalue. Simple
calculation shows that P (1) > 0 if and only if |R02(K∞)| > |R01(K∞)| , where R1 and R2
are defined in the proof of Theorem 2. When the steady state is unique, this inequality
is satisfied, the characteristic polynomial has at least one root in (1,+∞) and the stable
manifold has a dimension no smaller than 1.

When markets are complete (σA = σe = 0), we know that R∞ = Φ0(K∞) = 1/β.
We then infer that around the steady state,

∂Kt+1
∂Wt+1

= β,
∂Rt
∂at+1

= 0,
∂Rt

∂Wt+1
= −A ¯̄f 00(K∞)¯̄ ,
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∂at
∂at+1

= β,
∂Ct
∂at+1

= 0,
∂Ct

∂Wt+1
= Ψβ2A

¯̄
f 00(K∞)

¯̄
.

The characteristic polynomial reduces to P (x) = (β − x)Q(x), where

Q(x) = x2− £1 + β +Ψβ2A
¯̄
f 00(K∞)

¯̄¤
x+ β.

The characteristic polynomial P has the obvious root x = β, which belongs to (0, 1)
and thus corresponds to an unstable solution of the forward dynamical system. We next
observe that Q(0) > 0 and Q(1) < 0. This implies that the quadratic polynomial Q has
one root in the interval (0, 1) and one root in (1,+∞). Overall, the Jacobian matrix
DzH has two eigenvalues in the interval (0, 1) and one eigenvalue x = 1/λ larger than
1. When the production function is Cobb-Douglas f(K) = Kα, it is easy to check that
the stable root λ is given by (6.4).

When markets are incomplete, the dynamical system is still locally determined
around the steady state when σA and σe are not very large. This follows by conti-
nuity from our finding that the cubic polynomial P (x) has only one root outside (0, 1)
when σA = σe = 0. We also numerically check that all the economies considered in
Section 5 are locally determined. Since P (x) is a cubic, there is a closed-form solution
for the incomplete-markets convergence rate, which is omitted for expositional simplic-
ity. Using Mathematica, we easily derive the analytical expression of λ and run the
numerical experiments of Section 5.
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Figure 2.A  (α  = 0.70) 
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Figure 2.B  (α  = 0.35) 
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FIGURE 2. We perform an RBC calibration of the model with a time period of one year. The discount 
rate is 5% per year, the depreciation rate is 5% per year, the degree of relative risk aversion is 4, and the 
elasticity of intertemporal substitution is 1. The income share of capital is 70% in Panel A and 35% in 
Panel B. The solid lines correspond to σe = 0 (no idiosyncratic endowment risk) and the dashed ones to σe 
= 50% (of steady-state GDP). The plots show the steady-state level of the capital stock, the interest rate, 
and the marginal product of capital (MPK), as idiosyncratic production risk σA varies between zero and 
100% of steady-state GDP. 
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Figure 3.A  (α  = 0.70) 
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Figure 3.B  (α  = 0.35) 
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FIGURE 3. We assume the same parameter values as in Figure 2, but now use a five year time period 
(for both the length of an investment project and the duration of an idiosyncratic production shock). The 
solid lines correspond to σe = 0 and the dashed ones to σe = 50%. The plots show the steady-state level of 
the capital stock, the interest rate, and the marginal product of capital (MPK), as idiosyncratic production 
risk σA varies between zero and 100%. 
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Figure 4.A  (α  = 0.70) 
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Figure 4.B  (α  = 0.35) 
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FIGURE 4. Assuming the same parameters as in Figure 3, we plot the convergence rate and the half-life 
of the deviation from the steady state as idiosyncratic production risk σA varies between zero and 100%. 
The solid lines correspond to σe = 0 and the dashed ones to σe = 50%.  

 

 


