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Abstract

Many questions about institutional trading can only be answered if one can track

institutional equity ownership continuously. However, these data are only available on

quarterly reporting dates. We infer institutional trading behavior from the �tape,�

the Transactions and Quotes database of the New York Stock Exchange, by regress-

ing quarterly changes in reported institutional ownership on quarterly buy and sell

volume in di¤erent trade size categories. Our regression method predicts institutional

ownership signi�cantly better than the simple cuto¤ rules used in previous research.

We also �nd that total buy (sell) volume predicts increasing (decreasing) institutional

ownership, consistent with institutions demanding liquidity in aggregate. Furthermore,

institutions tend to trade in large or very small sizes: buy (sell) volume at these sizes

predicts increasing (decreasing) institutional ownership, while the pattern reverses at

intermediate trade sizes that appear favored by individuals. We then explore changes

in institutional trading strategies. Institutions appear to prefer medium size trades on

high volume days and large size trades on high volatility days.
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1. Introduction

How do institutional investors trade in equity markets? Do they hold stocks that deliver

high average returns? Do they arbitrage irrationalities in individual investors�responses

to information? Are they a stabilizing or destabilizing in�uence on stock prices? These

questions have been the focus of a large and recent body of empirical literature.

Lakonishok, Shleifer, and Vishny (1992), Grinblatt, Titman, and Wermers (1995), Wer-

mers (1999, 2000), Nofsinger and Sias (1999), and Grinblatt and Keloharju (2000a, b) show

that quarterly increases in institutional ownership and quarterly stock returns are contempo-

raneously correlated. Several studies investigate this relationship further, and �nd evidence

that short-term expected returns are higher (lower) for stocks that have recently been subject

to signi�cant institutional buying (selling).1 Some authors, notably Lakonishok, Shleifer,

and Vishny (1992), suggest that institutional investors follow simple price-momentum strate-

gies that push stock prices away from fundamental values. This is disputed by others, such

as Cohen, Gompers, and Vuolteenaho (2002), who �nd that institutions are not simply fol-

lowing price-momentum strategies; rather, they sell shares to individuals when a stock price

increases in the absence of any news about underlying cash �ows.

One limitation of this literature is that it is di¢ cult to measure changes in institutional

ownership as they occur. While some countries, such as Finland, do record institutional own-

ership continuously, in the United States institutional positions are reported only quarterly in

13-F �lings to the Securities and Exchange Commission. A quarterly data frequency makes

it hard to say whether institutions are reacting to stock price movements or causing price

movements, and makes it impossible to measure institutional responses to high-frequency

news such as earnings announcements.

To measure institutional trading at higher frequencies, some authors have looked at data

on equity transactions, available on the New York Stock Exchange Trade and Quotes (TAQ)

database. Most transactions can be identi�ed as buy orders or sell orders using the procedure

1See Daniel, Grinblatt, Titman, and Wermers (1997), Chen, Jegadeesh, and Wermers (2000), and Gom-
pers and Metrick (2001), among others.
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of Lee and Ready (1991), which compares the transaction price to posted bid and ask quotes.

A more di¢ cult challenge is to identify orders as coming from institutions or individuals.

A common procedure is to label orders above some upper cuto¤ size as institutional, and

those below a lower cuto¤size as individual. Trades at intermediate sizes remain unclassi�ed.

Lee and Radhakrishna (2000) evaluate several alternative cuto¤ rules by applying them to

the TORQ data set, a sample of trades with complete identi�cation of market participants.

They �nd, for example, that upper and lower cuto¤s of $20,000 and $2,500 are most e¤ective

at accurately classifying trades in small stocks. Unfortunately the TORQ data set includes

only 144 stocks over a three-month period in 1994 and it is not clear that these results apply

more generally or in more recent data.

In this paper we develop a new method for inferring high-frequency institutional trading

behavior. Our method combines two datasets that in the past have been used separately in

analyses of investor behavior. The TAQ database gives us trade-by-trade data pertaining to

all listed stocks on the NYSE and AMEX, NASDAQ national market system, and small cap

stocks, beginning in 1993. We restrict the current analysis to stocks traded on the NYSE

and AMEX. TAQ is essentially the �tape�, recording transactions prices and quantities

of every trade conducted on these exchanges. We match TAQ to the Spectrum database.

Spectrum records the SEC mandated 13-F �lings of large institutional investors, providing

quarterly snapshots of institutional holdings. Finally, we use the cumulative quarterly

trades recorded on the �tape�to predict institutional holdings in Spectrum. By regressing

changes in institutional ownership on cumulative trades of di¤erent sizes, we �nd the best

function mapping trade size to institutional behavior. This function can be used to track

institutional trading on a daily or intra-daily basis.

There is a fundamental di¤erence between the approach in this paper, and that employed

in the previous literature attempting to separate individual from institutional ownership.

The best known example is the analysis of Lee and Radhakrishna (2000), in which the authors

attempt to classify each trade as institutional or individual, using characteristics of the trade,

such as the size of the trade in dollars or number of shares. However, this classi�cation
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is done without regard to the characteristics of other trades that may be occurring in any

speci�ed interval of time. In contrast, our method combines the information provided by

the entire observed set of trades to get the best overall prediction of changing institutional

ownership. It is worth noting at this point that if we had higher frequency institutional

ownership data than quarterly 13-F �lings, say weekly data, we could still employ our method

(at the weekly frequency using the weekly ownership data as our left hand side variable) to

yield rich insights about the trading behavior of institutional investors.

The di¤erence between our approach and that employed by the pre-existing literature

is dramatic. If one is equipped with a correct classi�cation scheme that gives the true

probability that each trade is institutional, then one can aggregate the probability weighted

trades to get the best prediction of the change in institutional ownership. In general, however,

the probability that a trade is institutional depends on the entire environment and not just

on the characteristics of the trade alone. This is best elucidated using an example: suppose

all individuals trade in $10,000 amounts and trade in a perfectly correlated manner (either

all sells, or all buys on a particular day); assume that all institutions except one trade in

$10,000 amounts and trade in a manner that is perfectly positively correlated with other

institutions and perfectly negatively correlated with individuals; �nally one large institution

trades in $100,000 amounts and trades in a manner that is perfectly correlated with other

institutions. In this case the probability that a $10,000 trade is institutional, based on its

own characteristics is 50 percent, and the probability that a $100,000 trade is institutional is

100 percent. However, if we observe a $100,000 buy, then we can infer that all the $10,000

buys are institutional with probability 100 percent.

What this means is that the coe¢ cients on trade size bins in a regression predicting

institutional ownership may be very di¤erent from the probabilities that trades of that size

are institutional. In the example above, volume occurring in trade sizes of $100,000 should

get a coe¢ cient that is far greater than one, because it reveals the direction of all the $10,000

institutional trades. Our paper reports regression coe¢ cients rather than probabilities that

particular trades are institutional or individual: we cannot directly infer these probabilities
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from our regression coe¢ cients. Our analysis gives us a regression function with which to

infer institutional ownership, rather than a rule generating probabilities of isolated trades

being individual or institutional. We can map from Lee and Radhakrishna and similar

rules to regression functions, but we cannot in general do the reverse operation. Using

this mapping, we �nd that our method of inferring institutional buying and selling from the

�tape� signi�cantly outperforms the simple classi�cation rules in previous literature. For

example, a simple cut-o¤ rule that classi�es all trades over $20,000 as institutional has a

negative R2 when used as a predictor of the change in institutional ownership. This is in

contrast to the 10 percent R2 obtained by our method.

Our second �nding is that institutions on average appear to demand liquidity. Across

all trades (ignoring trade sizes), volume classi�able as buys predicts an increase and volume

classi�able as sells predicts a decline in reported institutional ownership. These results sug-

gest that institutions use the liquidity provided by the specialist and possibly also provided

by limit orders from individuals.

Third, we �nd that buying at the ask and selling at the bid is more likely to be indicative of

institutional buying or selling if the trade size is either very small or very large. Trades that

are either under $2,000 or over $30,000 in size are very likely to be initiated by institutions,

whereas intermediate size trades are relatively more likely to be by individuals.

We then go several steps further. First, we smooth the e¤ects of trade size in our

speci�cations by employing the exponential function of Nelson and Siegel (1987), formerly

used for parsimonious yield curve modeling. The resulting speci�cation is far less unwieldy

than allowing separate regressors for each trade size bin. We explore the time stability of

the parameters of the function, and �nd that the out-of-sample R2 statistics are still much

higher than those generated by simple cuto¤ rule based classi�cation schemes.

We then use the methodology we develop to explore the sensitivity of the trading patterns

of institutional investors to daily movements in volume, returns and volatility. We do so by

incorporating daily interactions between these variables and the TAQ �ows in various bins

into the Nelson-Siegel speci�cation. This generates several new and interesting �ndings
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about features of institutional trading behaviour. In brief, institutions appear to stop

trading in the very smallest bins in small �rms when returns are high, large institutional

trades in small �rms are concentrated on days when volatility is high, perhaps because

institutions are particularly urgent about their transactions at such times; and medium-size

institutional trades in small �rms are concentrated on days when volume is high, possibly

because institutions see an opportunity for stealth trading at times when liquidity is high.

Several of these results hold true for the largest �rms in our sample as well.

The organization of the paper is as follows. Section 2 introduces the TAQ, Spectrum and

CRSP data used in the study, and conducts a preliminary data analysis. Section 3 presents

and applies our method for predicting institutional ownership. In Section 4 we explore how

institutional trading is a¤ected by variation in daily returns, volume and volatility. Section

5 concludes.

2. Preliminary data analysis

2.1. CRSP data

Shares outstanding, stock returns, share codes, exchange codes and prices for all stocks come

from the Center for Research on Security Prices (CRSP) daily and monthly �les. In the

current analysis, we focus on ordinary common shares of �rms incorporated in the United

States that traded on the NYSE and AMEX. Our sample begins in January 1993, and ends

in December 2000. We use the CRSP PERMNO, a permanent number assigned to each

security, to match CRSP data to TAQ and Spectrum data. Figure 1 shows the evolution

of the number of matched �rms in our data over time: as �rms list or delist from the NYSE

and AMEX, or move between NYSE and AMEX and other exchanges, this number changes.

The maximum number of �rms is 2222, in the third quarter of 1998. The minimum number

of �rms is 1843, in the �rst quarter of 1993.

In the majority of our analysis, we present results for all �rms, as well as for �ve quin-

tiles of �rms, where quintile breakpoints and membership are determined by the market
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capitalization (size) of a �rm at the start of each quarter. Our data are �ltered carefully,

as described below. After �ltering, our �nal sample consists of 3334 �rms. When sorted

quarterly into size quintiles, this results in 735 �rms in the largest quintile, and between

1131 and 1357 �rms in the other four quintiles (these numbers include transitions of �rms

between quintiles), and 63,403 �rm quarters in total.

2.2. TAQ data

The Transactions and Quotes (TAQ) database of the New York Stock Exchange contains

trade-by-trade data pertaining to all listed stocks, beginning in 1993. TAQ records transac-

tions prices and quantities of all trades, as well as a record of all stock price quotes that were

made. TAQ lists stocks by their tickers. We map each ticker symbol to a CRSP PERMNO.

As tickers change over time, and are sometimes recycled or reassigned, this mapping changes

over time.

The TAQ database does not classify transactions as buys or sells. To classify the direction

of trade, we use an algorithm suggested by Lee and Ready (1991). This algorithm looks

at the price of each stock trade relative to contemporaneous quotes in the same stock to

determine whether a transaction is a buy or sell. In cases where this trade-quote comparison

cannot be accomplished, the algorithm classi�es trades that take place on an uptick as buys,

and trades that take place on a downtick as sells. The Lee-Ready algorithm cannot classify

some trades, including those executed at the opening auction of the NYSE, trades which are

labelled as having been batched or split up in execution, and cancelled trades. We aggregate

all these trades, together with �zero-tick�trades which cannot be reliably identi�ed as buys

or sells, into a separate bin, and use this bin of unclassi�able trades as an additional input

into our prediction exercise.

Lee and Radhakrishna (2000) �nd that the Lee-Ready classi�cation of buys and sells is

highly accurate; however it will inevitably misclassify some trades which will create mea-

surement error in our data. Appendix 1 describes in greater detail our implementation of

the Lee-Ready algorithm.
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Once we have classi�ed trades as buys or sells, we assign them to bins based on their dollar

size. In all, we have 19 size bins whose lower cuto¤s are $0, $2000, $3000, $5000, $7000,

$9000, $10,000, $20,000, $30,000, $50,000, $70,000, $90,000, $100,000, $200,000, $300,000,

$500,000, $700,000, $900,000, and $1 million. In several of our speci�cations below, we use

buy and sell bins separately, and in others, we subtract sells from buys to get the net order

�ow within each trade size bin. We aggregate all shares traded in these dollar size bins to

the daily frequency, and then normalize each daily bin by the daily shares outstanding as

reported in the CRSP database. This procedure ensures that our results are not distorted

by stock splits.

We aggregate the daily normalized trades within each quarter to obtain quarterly buy

and sell volume at each trade size. The di¤erence between these is net order imbalance

or net order �ow. We normalize and aggregate unclassi�able volume in a similar fashion.

The sum of buy, sell, and unclassi�able volumes is the TAQ measure of total volume in each

stock-quarter.

We �lter the data in order to eliminate potential sources of error. We �rst exclude

all stock-quarters for which TAQ total volume as a percentage of shares outstanding is

greater than 200 percent (there are a total of 102 such stock-quarters). We then compute

the standard deviation across stock-quarters of each volume measure and the net order

imbalance, relative to each quarter�s cross-sectional mean, and winsorize all observations

that are further than 2.5 standard deviations from their cross-sectional mean. That is, we

replace such outliers with the cross-sectional mean for the quarter plus or minus 2.5 standard

deviations. This winsorization procedure a¤ects between 2.50 and 3.15 percent of our data.

Figure 2 shows equal and market capitalization weighted cross-sectional means and stan-

dard deviations of TAQ total volume as a percentage of shares outstanding in each quarter,

in annualized percentage points. In the early years of our sample period equal weighted

total volume averaged between 60 percent and 80 percent of shares outstanding per year;

this increased to between 80 percent and 100 percent in the later years of the sample. These

numbers are consistent with other recent studies such as Chen, Hong and Stein (2002) and
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Daves, Wansley and Zhang (2003). The equal weighted cross-sectional standard deviation

ranges between 30 and 40 percent of total shares outstanding. This indicates that there

is considerable cross-sectional heterogeneity in volume. Some of this cross-sectional hetero-

geneity can be explained by di¤erences in the trading patterns in small and large stocks.

The size-weighted average indicates that total volume as a percentage of shares outstanding

has experienced a relative increase for the larger stocks in the later years of the sample.

However, the size-weighted standard deviation of total volume as a percentage of shares

outstanding is not dramatically di¤erent from the equal weighted standard deviation.

The di¤erences in trading patterns across small and large stocks are summarized dif-

ferently in Table I, which reports means, medians, and standard deviations across all �rm-

quarters, and across �rm-quarters within each quintile of market capitalization. Mean total

volume ranges from 53 percent of shares outstanding in the smallest quintile to 91 percent

in the largest quintile. Figure 2 suggests that much of this di¤erence manifests itself in the

�nal years of our sample. The distribution of total volume is positively skewed within each

quintile, so median volumes are somewhat lower. Nevertheless, median volumes also increase

with market capitalization. This is consistent with the results of Lo and Wang (2000), who

attribute the positive association between �rm size and turnover to the propensity of active

institutional investors to hold large stocks for reasons of liquidity and corporate control. The

within-quintile annualized standard deviations (computed by multiplying quarterly standard

deviation by a factor of 200, under the assumption that quarterly observations are iid) are

fairly similar for stocks of all sizes, ranging from 27 percent to 33 percent.

Table I also reports the moments of the net order �ow for each size quintile. Mean net

order �ow increases strongly with market capitalization, ranging from �2.1 percent for the

smallest quintile to 4.5 percent for the largest quintile. This suggests that over our sample

period, there has been buying pressure in large stocks and selling pressure in small stocks,

with the opposite side of the transactions being accommodated by unclassi�able trades that

might include limit orders.2 This is consistent with the strong price performance of large

2In support of this interpretation, net order �ow is strongly negatively correlated with Greene�s [1995]
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stocks during most of this period.

Unclassi�able volume is on average about 15 percent of shares outstanding in our data set.

This number increases with �rm size roughly in proportion to total volume; our algorithm

fails to classify 18 percent of total volume in the smallest quintile, and 21 percent of total

volume in the largest quintile. It is encouraging that the algorithm appears equally reliable

among �rms of all sizes. Note that the means of buy volume, sell volume, and unclassi�able

volume do not exactly sum to the mean of total volume because each of these variables has

been winsorized separately.

Figure 3 summarizes the distribution of buy and sell volume across trade sizes. The �gure

reports three histograms: for the smallest, median, and the largest quintiles of stocks. Since

our trade size bins have di¤erent widths, ranging from $1000 in the second bin to $200,000

in the penultimate bin and even more in the largest bin, we normalize each percentage of

total buy or sell volume by the width of each bin, plotting �trade intensities� rather than

trade sizes within each bin. As the largest bin aggregates all trades greater than $1 million

in size, we arbitrarily assume that this bin has a width of $5 million.

It is immediately obvious from Figure 3 that trade sizes are positively skewed, and that

their distribution varies strongly with the market capitalization of the �rm. In the smallest

quintile of stocks almost no trades of over $70,000 are observed, while such large trades are

commonplace in the largest quintile of stocks. A more subtle pattern is that in small stocks,

buys tend to be somewhat smaller than sells, while in large stocks the reverse is true.

Table II summarizes the distribution of trade sizes in a somewhat di¤erent fashion. The

table reports the medians and cross-sectional standard deviations of total classi�able volume

(buys plus sells) in each trade size bin for each quintile of market capitalization. The rarity

of large trades in small stocks is apparent in the zero medians and tiny standard deviations

for large-size volume in the smallest quintile of �rms.

measure of limit order depth for all size quintiles of stocks. This measure essentially identi�es a limit order
execution as the quoted depth when a market order execution is accompanied by a movement of the revised
quote away from the quoted midpoint.
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2.3. Spectrum data

Our data on institutional equity ownership come from the Spectrum database, currently

distributed by Thomson Financial. They have been extensively cleaned by Kovtunenko

and Sosner (2003) to remove inconsistencies, and to �ll in missing information that can

be reconstructed from prior and future Spectrum observations for the same stock. A more

detailed description of the Spectrum data is presented in Appendix 2. Again, we �rst �lter

the data by removing any observation for which the change in Spectrum recorded institutional

ownership as a percentage of �rm shares outstanding is greater than 100 percent (there are

28 such stock-quarters). We then winsorize these data in the same manner as the TAQ

data, truncating observations that are more than 2.5 standard deviations away from each

quarter�s cross-sectional mean. This procedure a¤ects 2.5 percent of our Spectrum data.

Table I reports the mean, median, and standard deviation of the change in institutional

ownership, as a percentage of shares outstanding. Across all �rms, institutional ownership

increased by an average of 0.6 percent per year, but this overall trend conceals a shift by

institutions from small �rms to large and especially mid-cap �rms. Institutional ownership

fell by 1.3 percent per year in the smallest quintile but rose by 1.7 percent per year in the

median quintile and 0.8 percent per year in the largest quintile.

On average, then, institutions have been selling smaller stocks and buying larger stocks.

This corresponds nicely with the trade intensity histograms in Figure 3, which show that

the smallest stocks tend to have larger-size sales than buys, while the largest stocks have

larger-size buys than sells. If institutions more likely trade in large sizes, we would expect

this pattern. The behavior of mid-cap stocks is however anomalous in that these stocks

have larger-size sales than buys despite their growth in institutional ownership.

We now turn to our regression methodology for predicting institutional ownership.
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3. Predicting institutional ownership

3.1. Regression methodology

In the market microstructure literature, institutional trading behavior has generally been

identi�ed using a cuto¤ rule. Trades above an upper cuto¤ size are classi�ed as institutional,

trades below a lower cuto¤ size are classi�ed as individual, and intermediate-size trades are

unclassi�ed. Lee and Radhakrishna (2000) evaluate alternative cuto¤ rules using the TORQ

data set. As an example of their �ndings, they recommend an upper cuto¤ of $20,000 in

small stocks. 84 percent of individual investors� trades are smaller than this, and the

likelihood of �nding an individual initiated trade larger than this size is 2 percent.

Our methodology re�nes and extends the idea of using an optimally chosen cuto¤ rule.

We match the TAQ data at a variety of trade sizes to the Spectrum data for a broad cross-

section of stocks, over our entire sample period. That is, we use the intra-quarter tape to

predict institutional ownership at the end of the quarter. Our predictive regression combines

information from various trade size bins in the way that best explains the quarterly changes

in institutional ownership identi�ed in Spectrum.

We begin with extremely simple regressions that ignore the information in trade sizes.

Writing Yit for the share of �rm i that is owned by institutions at the end of quarter t, Uit

for unclassi�able trading volume, Bit for total buy volume, and Sit for total sell volume in

stock i during quarter t (all variables are expressed as percentages of the end-of-quarter t

shares outstanding of stock i), we estimate

�Yit = �+ �Yi;t�1 + ��Yi;t�1 + �UUit + �BBit + �SSit + "it (3.1)

This regression tells us how much of the variation in institutional ownership can be ex-

plained simply by the upward drift in institutional ownership of all stocks (the intercept

coe¢ cient �), short and long-run mean-reversion in the institutional share for particular

stocks (the autoregressive coe¢ cients � and �), and the total unclassi�able, buy, and sell

volumes during the quarter (the coe¢ cients �U , �B, and �S). An even simpler variant of
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this regression restricts the coe¢ cients on buy and sell volume to be equal and opposite, so

that the explanatory variable becomes net order �ow Fit = Bit � Sit and we estimate

�Yit = �+ �Yi;t�1 + ��Yi;t�1 + �UUit + �FFit + "it (3.2)

We also consider variants of these regressions in which the intercept � is replaced by time

dummies that soak up time-series variation in the institutional share of the stock market as a

whole. In this case the remaining coe¢ cients are identi�ed purely by cross-sectional variation

in institutional ownership, and changes in this cross-sectional variation over time. Standard

errors in all cases are computed using the delete-cross-section jackknife methodology of Shao

and Wu (1989) and Shao (1989). The jackknife estimator, besides being nonparametric,

has the added advantage of being robust to heteroskedasticity and cross-contemporaneous

correlation of the residuals.

Table III reports estimates of equation (3.1) in the top panel, and equation (3.2) in the

bottom panel. Within each panel, column A restricts the lagged level of the dependent

variable, the lagged change in the dependent variable and unclassi�able volume to have zero

coe¢ cients, column B restricts the lagged dependent variable, and the lagged change in the

dependent variable, column C restricts only the lagged change in the dependent variable,

and column D is unrestricted. Columns E, F, and G repeat these speci�cations including

time dummies rather than an intercept. The results are remarkably consistent across all

speci�cations. On average, buy volume gets a coe¢ cient of about 0.37 and sell volume gets a

coe¢ cient of about �0.46. This suggests that institutions tend to use market orders, buying

at the ask and selling at the bid or buying on upticks and selling on downticks, so that

their orders dominate classi�able volume. The larger absolute value of the sell coe¢ cient

indicates that institutions are particularly likely to behave in this way when they are selling.

The autoregressive coe¢ cients are negative, and small but precisely estimated, telling us

that there is statistically detectable mean-reversion in institutional ownership, at both short

and long-run horizons.

The coe¢ cient on unclassi�able volume is small and only marginally signi�cant when buys
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and sells are included separately in equation (3.1), but it becomes signi�cantly negative when

buys and sells are restricted to have equal and opposite coe¢ cients in equation (3.2). To

understand this, note that a stock with an equal buy and sell volume is predicted to have

declining institutional ownership in the top panel of Table III. The net �ow regression in the

bottom panel cannot capture this e¤ect through the net �ow variable, which is identically

zero if buy and sell volume are equal. Instead, it captures the e¤ect through a negative

coe¢ cient on unclassi�able volume, which is correlated with total volume.

Table IV repeats the unrestricted regressions incorporating time dummies, for the �ve

quintiles of market capitalization. The main result here is that the coe¢ cients on buys, sells,

and net �ows are strongly increasing in market capitalization. Evidently trading volume

is more informative about institutional ownership in large �rms than in small �rms. The

explanatory power of these regressions is U-shaped in market capitalization, above eight

percent for the smallest �rms, above 10 percent for the largest quintile, and around six

percent for the median size �rms. This is consistent with the fact, reported in Table II, that

institutional ownership has the greatest cross-sectional volatility in mid-cap �rms.

3.2. The information in trade size

The above summary regressions ignore the information contained in trade size. We now

generalize our speci�cation to allow separate coe¢ cients on buy and sell volume in each trade

size bin:

�Yit = �+ �Yi;t�1 + �UUit +
X
Z

�BZBZit +
X
Z

�SZSZit + "it; (3.3)

where Z indexes trade size. In the case where we use net �ows rather than separate buys

and sells, the regression becomes

�Yit = �+ �Yi;t�1 + �UUit +
X
Z

�FZFZit + "it: (3.4)

Table V estimates equation (3.4) separately for each quintile of market capitalization,
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replacing the intercept � with time dummies. It is immediately apparent that the coe¢ cients

tend to be negative for smaller trades and positive for larger trades, consistent with the

intuition that order �ow in small sizes re�ects individual buying while order �ow in large

sizes re�ects institutional buying. There is however an interesting exception to this pattern.

Extremely small trades of less than $2,000 have a signi�cantly positive coe¢ cient in the

smallest three quintiles of �rms, and in all quintiles have a coe¢ cient that is much larger than

that for somewhat larger trades. This is consistent with several possibilities. Institutions

might break trades into extremely small sizes when they are �stealth trading� (trying to

conceal their activity from the market), or institutions are likely to engage in �scrum trades�

to round o¤ extremely small equity positions.3 Another possibility is that institutions may

put in tiny �iceberg�trades to test the waters before trading in larger sizes. It could also be

the case that these trades are in fact by individuals, but they are correlated with unobserved

variables (such as news events). This could generate unclassi�able volume from institutions

in a direction consistent with small trades.

These results are illustrated graphically in Figure 4. Figure 4 standardizes the net

�ow coe¢ cients, for the smallest, median, and largest quintiles, subtracting their mean and

dividing by their standard deviation so that the set of coe¢ cients has mean zero and standard

deviation one. The standardized coe¢ cients are then plotted against trade size. In all cases

the trough for trade sizes between $2,000 and $30,000 is clearly visible. Consistent with

the results for net �ows, it turns out that the pattern of coe¢ cients for the case where buys

and sells are included separately in the trade-size regression shows a trough and subsequent

hump for buy coe¢ cients, and a hump and subsequent trough for sell coe¢ cients.

The information in trade sizes adds considerable explanatory power to our regressions.

Comparing the second panel in Table IV with Table V, the R2 statistics increase from 8.1

percent to 9.7 percent in the smallest quintile, from 5.7 percent to 12.1 percent in the median

3Chakravarty (2001) presents an in-depth analysis of stealth trading (de�ned, consistently with Barclay
and Warner (1993) as the trading of informed traders that attempt to pass undetected by the market maker).
He shows that stealth trading (i.e., trading that is disproportionately likely to be associated with large price
changes) occurs primarily via medium-sized trades by institutions of 500-9,999 shares. This runs contrary
to our result here.
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quintile, and from 10.2 percent to 13.9 percent in the largest quintile (all R2 statistics are

computed after time speci�c �xed e¤ects are removed). The corresponding numbers for the

trade-size regressions incorporating buys and sells separately are: R2 statistics increase from

8.2 to 11.9 percent in the smallest quintile, from six percent to 13.4 percent in the median

quintile, and from 10.5 percent to 14.5 percent in the largest quintile. Of course, these

R2 statistics remain fairly modest, but it should not be surprising that institutional trading

activity is hard to predict given the incentives that institutions have to conceal their activity,

the considerable overlap between the trade sizes that may be used by wealthy individuals and

by smaller institutions, and the increasing use of internalization and o¤-market matching of

trades by institutional investors.

Table VI shows that our regressions are a considerable improvement over the naive cuto¤

approach used in the previous market microstructure literature. The cuto¤ model can

be thought of as a restricted regression where buys in sizes above the upper cuto¤ get a

coe¢ cient of plus one, buys in sizes below the lower cuto¤ get a coe¢ cient of minus one, and

buys in intermediate sizes get a coe¢ cient of zero. We estimate variants of this regression

in Table VI, allowing greater �exibility in successive speci�cations. In all cases, to present

a fair comparison with our method, we allow free coe¢ cients on both the lagged level and

lagged change in institutional ownership on the right hand side of each regression. When

the coe¢ cient restrictions implied by the naive approach are imposed, we �nd that the R2

statistic in most cases is negative. In fact, the R2 statistic given the restrictions on the

�ows above and below the cuto¤s is positive only twice for the two smallest size quintiles,

and maximized at 4.8 percent, 5.4 percent and 9.8 percent for the median, fourth and

largest quintiles respectively. In the R2 comparison, we move progressively closer to our

own method, �nally allowing freely estimated coe¢ cients on the cuto¤ values proposed by

Lee and Radhakrishna. When we allow �ows above and below the cuto¤s to have free

coe¢ cients, the R2 statistics of the regressions increase substantially but in most cases are

well below those of our freely estimated regressions in Table V.
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3.3. Smoothing the e¤ect of trade size

One concern about the speci�cations (3.3) and (3.4) is that they require the separate esti-

mation of a large number of coe¢ cients. This is particularly troublesome for small stocks,

where large trades are extremely rare: the coe¢ cients on large-size order �ow may just re�ect

a few unusual trades. One way to handle this problem is to estimate a smooth function

relating the buy, sell, or net �ow coe¢ cients to the dollar bin sizes. We have considered

polynomials in trade size, and also the exponential function suggested by Nelson and Siegel

(1987) to model yield curves. We �nd that the Nelson and Siegel method is well able to

capture the shape suggested by our unrestricted speci�cations. For the net �ow equation,

the method requires estimating a function �(Z) that varies with trade size Z, and is of the

form:

�(Z) = b0 + (b1 + b2) [1� e�Z=� ]
�

Z
� b2e�Z=� : (3.5)

Here b0; b1; b2, and � are parameters to be estimated. The parameter � is a constant that

controls the speed at which the function �(Z) approaches its limit b0 as trade size Z increases.

We estimate the function using nonlinear least squares, searching over di¤erent values of � ,

to select the function that maximizes the R2 statistic:

�Yit = �+ �Yi;t�1 + �UUit + b0
X
Z

FZit + b1
X
Z

g1(Z)FZit + b2
X
Z

g2(Z)FZit + "it; (3.6)

where g1(Z) = �
Z
(1� e�Z=� ) and g2(Z) = �

Z
(1� e�Z=� )� e�Z=� .

Table VII presents the coe¢ cients from estimates of equation (3.6). The R2 statistics

from estimating the Nelson-Siegel speci�cation are slightly lower than the ones shown in

Table V at nine percent for the smallest quintile of stocks, 10.7 percent for the median

quintile, and 12.6 percent for the largest quintile. The statistical signi�cance of the estimated

parameters is quite high, giving us some con�dence in the precision of our estimates of the

implied trade-size speci�c coe¢ cients.

Figure 5 plots the trade-size coe¢ cients implied by estimating (3.6). The pattern of

coe¢ cients in Figure 4 is accentuated and clari�ed. As before, the �gure standardizes the
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net �ow coe¢ cients, subtracting their mean and dividing by their standard deviation so that

the set of coe¢ cients has mean zero and standard deviation one. Figure 6 presents buy

and sell coe¢ cients estimated using an analogous Nelson-Siegel speci�cation. Again, the

shapes that appear in the two panels are consistent with our results from the speci�cation

estimated in Table V, that allows separate coe¢ cients for each trade size bin.

The parsimony of equation (3.6) is extremely useful, in that it permits a relatively

straightforward investigation of changes in the functional form over time. This allows

us to investigate the time stability of our regression coe¢ cients, and to compare the out of

sample forecasting power of our method to the R2 statistics implied by the Lee-Radhakrishna

method. The last two rows in Table VI show the implied R2 statistics generated by the

out of sample forecasts generated by the Nelson-Siegel speci�cation. We �rst estimate the

Nelson-Siegel speci�cation over the �rst half of the entire sample, from the �rst quarter of

1993 until the �nal quarter of 1996. We then �x the coe¢ cients and calculate the out-of-

sample R2 over the entire second half of the full sample period, from the �rst quarter of

1997 until the �nal quarter of 2000. In all cases, our implied out-of-sample R2 are higher

than the restricted coe¢ cient estimates implied by Lee-Radhakrishna, though in some cases

less than the R2 statistics generated when free coe¢ cients are allowed on the implied cuto¤

points.

We also compute out of sample R2 statistics in a more sophisticated manner. We begin

by using the �rst quarter of the entire sample period, from the �rst quarter of 1993 until the

�nal quarter of 1994, and construct an implied �tted value for the �rst quarter of 1995 using

the parameters estimated over the earlier period. We then re-estimate the Nelson-Siegel

function each period, progressively forecasting one period ahead, each period. The implied

out of sample R2 statistics from this procedure are presented in the last row of Table VI.

For the two smallest size quintiles of stocks, these are higher than any R2 statistic generated

by the Lee-Radhakrishna method, including the unrestricted cuto¤ coe¢ cients speci�cation.

For the three largest size quintiles of stocks, the R2 statistics are higher than all but the

unrestricted cuto¤ coe¢ cients speci�cation.
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The use of the functional form (3.6) also gives us an uncomplicated way to explore the

interaction of institutional trading strategies with �rm characteristics and market conditions.

This is the topic of the next section.

4. Institutional Trading, Returns, Volume and Volatility

There has been little investigation of changes in the trading strategies of institutional in-

vestors in response to movements in variables such as total volume, returns and volatility.

We attempt to shed light on these questions by augmenting the Nelson-Siegel functional

form to incorporate interactions between these variables and the �ows in various trade size

bins.

4.1. Estimating Interaction E¤ects

The interaction variables we employ are: daily volume (measured as a fraction of total shares

outstanding to normalize for stock splits); daily volatility (measured as the absolute value of

returns); daily returns; and average daily quoted depth (measured as the average of depth

at the bid and depth at the ask across all quotes each day as reported in the TAQ data set,

and normalized by daily shares outstanding).

We consider a variation of the Nelson-Siegel function (3.5) which varies with trade size

Z, as well as with an interaction variable represented by �. We separately estimate the

speci�cation for each one of the interaction variables independently, and do not in this

analysis consider simultaneous movements in the interaction variables.

Here, the subscript d indicates the daily frequency:

�(Z; �id) = b01+ b02�id+(b11 + b12�id + b21 + b22�id) [1�e�Z=� ]
�

Z
� (b21+ b22�id)e�Z=� (4.1)

Note here that we do not allow the parameter � to vary with �id, as a simpli�cation.

As before, g1(Z) = �
Z
(1 � e�Z=� ) and g2(Z) = �

Z
(1 � e�Z=� ) � e�Z=� . Armed with the
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parameters of function (4.1), we can evaluate the function at various levels of �id, providing

comparative statics on changes in institutional trading patterns with movements in volume,

volatility and returns.

In order to estimate these parameters, we consider a daily version of speci�cation (3.6).

For the moment, we disregard the inclusion of the lagged level of institutional ownership (we

can subsequently condition on it in the quarterly estimation):

�Yid = �+ ��Yi;d�1 + �UUid + �U��idUid + ���id

+ b01
X
Z

FZid + b02
X
Z

�idFZid + b11
X
Z

g1(Z)FZid

+ b12
X
Z

g1(Z)�idFZid + b21
X
Z

g2(Z)FZid + b22
X
Z

g2(Z)�idFZid + "id (4.2)

We can then aggregate this daily function up to the quarterly frequency, (q represents

the number of days in a quarter, and as before, t indicates the quarterly frequency), resulting

in:

�Yit = q�+ ��Yi;t�1 + �UUit + �U�

 
qX
d=1

�idUid

!
+ ���it

+ b01
X
Z

FZit + b02
X
Z

 
qX
d=1

�idFZid

!
+ b11

X
Z

g1(Z)FZit

+ b12
X
Z

g1(Z)

 
qX
d=1

�idFZid

!
+ b21

X
Z

g2(Z)FZit + b22
X
Z

g2(Z)

 
qX
d=1

�idFZid

!
+ "it (4.3)

We make an assumption here in moving from equation (4.2) to equation (4.3) that the

error in measured daily institutional ownership "id is uncorrelated at all leads and lags within

a quarter with all of the right hand side variables in equation (4.2). This exogeneity assump-

tion guarantees that the parameters of the daily function b01; b02; b11; b12; b21; b22; � will be the

same as those estimated at the quarterly frequency. Conditional on this assumption, we

can estimate equation (4.3) by nonlinear least squares, selecting the function that maximizes
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the R2 statistic. We additionally incorporate the lagged level of institutional ownership as

a right hand side variable in our quarterly estimation to capture long run mean-reversion in

the institutional share of holdings of particular stocks. We can then go on to recover the

parameters of the daily function �(Z; �id), and evaluate comparative statics at various levels

of �. We now turn to the results from this exercise.

4.2. Results

Table VIII evaluates the additional explanatory power generated by estimating the individual

interaction speci�cations (4.3) rather than equation (3.6). In all cases, we �rst add in �it

on its own and evaluate the resulting changes to explanatory power. We then assess the

subsequent marginal increase in the R2 statistic from interacting �it with the trade size bins.

The �rst feature of note is that simply adding returns to the baseline speci�cation gen-

erates large increases in the explained variation of changes to institutional ownership. The

increase ranges between �ve percent for the largest size quintile of stocks, and 30 percent

for the second smallest size quintile. This result mirrors the �nding in the large body of

literature (Lakonishok, Shleifer and Vishny (1992) and Gompers and Metrick (2001) are two

notable examples) that examines the relationship between changes in quarterly institutional

ownership and returns.

Second, when we add absolute returns to the baseline speci�cation, increases in explana-

tory power are primarily evident in the two smallest size quintiles of stocks. Apparently

movements in volatility directly a¤ect changes in institutional ownership primarily in small

stocks.

Next, we �nd that for all choices of �it, the interactions with trade size bins turn out to be

quite important. Changes in volume, volatility and returns clearly have signi�cant impacts

on the trading patterns of market participants. For the absolute return interactions, in

all but the smallest quintile of stocks, at least 15 percent additional R2 is generated, going

as high as 29 percent for the third size quintile of stocks in our sample. For returns, the

increases in R2 from adding in the interaction terms are not as high, peaking at nine percent
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for the smallest size quintile of stocks, and smallest at around four percent for the third size

quintile of stocks. While the explanatory power from including volume or average quoted

depth alone is minimal, for volume, the increase in explanatory power from including the

interaction variables ranges from four percent for the median size quintile to approximately

seven percent for the second size quintile of stocks. For average quoted depth, the equivalent

range is between two percent and 17 percent. For all three of the absolute return, volume and

especially average quoted depth interactions, the increase in R2 generated by the addition

of the interaction terms is generally higher than the additional R2 generated by adding the

variable itself. Much of the explanatory power of volatility and volume for changes in

institutional ownership comes from the changes that these variables generate in institutional

and individual trading strategies.

On net, the total additional explanatory power generated by estimating (4.3) is substan-

tial. This is especially true when � is absolute returns or returns - for these two variables, the

total improvement in R2 ranges from 10 to 36 percent, and is generally around 30 percent.

For the purposes of comparative statics, we evaluate the function (4.1) in all cases at

two di¤erent levels: the daily mean level of � (computed in all cases as the quarterly mean

divided by 63, the mean number of days in a quarter), and two daily standard deviations

away from the mean. The daily standard deviations of volume, volatility and returns are

calculated as the quarterly standard deviation divided by the square root of 63, under the

assumption that these variables are iid at the daily frequency.

For the return, absolute return and volume interactions, the most pronounced e¤ects

of the interaction with the bin size coe¢ cients are evident in the smallest size quintile of

stocks, though the pattens are broadly similar across the other size quintiles. For the depth

interaction, changes are most evident in the largest size quintile of stocks. In the interests

of parsimony, we present results from these size quintiles to illustrate the changes to trading

strategies with volume, volatility and returns, and specify when the results are dissimilar for

the other size quintiles.
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4.2.1. Returns

First, , the coe¢ cient on returns, is uniformly positive across size quintiles. The magnitude

of the coe¢ cient indicates that a one percent move in returns over a day is associated with a

four basis point upward move in institutional holdings as a percentage of shares outstanding

for a stock in the median quintile. Figure 7 shows the e¤ect of movements in returns on

the trading behaviour of institutional investors in the smallest size quintile of stocks. When

returns (�) are set to their daily mean in the function (4.1), we see institutional buying in the

smallest bin, and in bins larger than $20,000 in size, as before. On days on which returns

are two standard deviations above their daily mean, institutional buying in the smallest

bin disappears on net. One possible interpretation of this result is that institutions stop

using tiny scrum trades in small �rms on high return days. Another possibility is that

naive individual investors enter the market on such days and do a large amount of small-size

buying. We now turn to the e¤ects of volatility on our results.

4.2.2. Volatility

The coe¢ cient on absolute returns  in equation (4.3) is negative for the �rst two quintiles of

stocks, and positive for the remaining three quintiles. However, the magnitude of  is very

low - a one percent move in daily volatility generates a maximum of a 1.7 basis point move

in institutional ownership over the day, for stocks in quintile four. Figure 7 shows the e¤ects

of movements in volatility on institutional trading in the smallest stocks. When volatility is

set to its daily mean, we see the familiar pattern in which institutions buy in the smallest size

bin and in bins greater than around $10,000 in size. However, on days on which volatility is

two standard deviations above its daily mean, institutional buying becomes more aggressive

in the larger size bins. This concentration of large institutional trades in small �rms on

days when volatility is high suggests that institutions may be particularly urgent about their

transactions at such times. The second interesting feature in �gure 7 is that at times of high

volatility, buying activity appears in the intermediate size bins of $7000-$10,000 where none

had existed before. This is broadly consistent with a world in which institutions attempt to
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disguise their activity from the market maker, increasing �stealth-trading�activity in medium

size bins in small stocks at times of high volatility.

In the largest quintile of stocks, institutional trading disappears in the very smallest bin

in days with high volatility, much like the behaviour in periods of high returns. Furthermore,

institutional trading in large stocks shifts towards the intermediate size bins in periods of

high volatility, akin to the behaviour in small stocks.

4.2.3. Volume and Average Quoted Depth

Robustness of Dollar Size Bin Speci�cation The �exibility of the Nelson-Siegel func-

tional form also allows us to check whether our speci�cation can be improved by alternative

de�nitions of trade size bins. We currently de�ne our bins in terms of the dollar size of

a trade. This dollar based bin classi�cation is motivated by the insight that we can use

the wealth constraint experienced by individuals to try to separate the trading behaviour of

institutions from that of individuals. In other words, individual investors generally either

cannot trade large dollar trade sizes because they simply don�t have the money, or dislike

making large dollar trades because such trades would result in extremely concentrated and/or

leveraged positions relative to their wealth.

Another possible constraint we could use to separate individuals from institutions is the

liquidity constraint, i.e. institutions generally do not like to trade illiquid securities for a

variety of reasons (such as the desire to window dress their portfolios). This, especially for

active institutional traders, indicates a preference for more liquid trade sizes in which it is

easier to increase or decrease holdings.4 This in turn suggests that we rede�ne our bins each

quarter in terms of percentiles of total trading volume that fall within each bin. Yet another

approach is to specify bins in terms of multiples of average quoted depth, as a measure of

the �normal�or �most liquid�trade size in a stock.

A straightforward way to check whether the liquidity constraint can help us better identify

institutional ownership is to interact our dollar size bins with measures of liquidity. When

4Thanks to Soeren Hvikdjaer for �rst bringing this issue to our attention.
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total daily volume or daily average quoted depth, are high relative to their time series means,

does trading shift across into di¤erent size bins? Does time variation in liquidity generate

variation in the preferred trading habitat of institutional investors?

Results When � is volume,  is uniformly negative across size quintiles, and approximately

the same size across quintiles. For the largest quintile of stocks, the magnitude of the

coe¢ cient indicates that when total daily volume in a stock increases by 1 percent of total

shares outstanding, institutional holdings in the stock reduce by 2.6 basis points over the

day. Institutions, therefore, appear to sell on net when liquidity is high. Turning to the

patterns across trade size bins, when volume is set to its daily mean, we see the familar

pattern in which institutions appear to trade in the smallest bin, and in bins greater than

$20,000 in size. Figure 9 shows the coe¢ cients for the smallest quintile of stocks. On days

when volume is two standard deviations above its daily mean there is a dramatic change in

the shape of the function, with institutional trading increasing in all bins between $7,000

and $90,000 in size. This increase in the concentration of medium-size institutional trades

in small �rms on days when volume is high could be because institutions see an opportunity

for stealth trading at times of high liquidity. The results for the largest quintile of stocks

suggest that institutional trading becomes slightly more aggressive in all bins greater than

$20,000 in size in response to increases in volume.

When � is average quoted depth, again  is uniformly negative across size quintiles, and

ranges from -0.15 for the smallest quintile of stocks to -0.95 for the second largest quintile.

For the largest quintile of stocks,  is -0.34, and the magnitude of the coe¢ cient indicates

that when average quoted daily depth increases by one percent of total shares outstanding,

institutional holdings in the stock reduce by approximately 34 basis points over the day.

This con�rms our results from the volume interaction: institutions appear to sell on net

when liquidity is high. Figure 10 shows the bin-speci�c coe¢ cients for the largest size

quintile of �rms, in which the depth interaction results are quite pronounced. In the largest

�rms, when depth is high, institutional trading aggressively shifts into the smallest bins,
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up to around $10,000 in size, and then picks up again in bins greater than $50,000. The

intermediate bins, as before, appear to be favoured by individuals.

The results for the average quoted depth interaction, along with the results from the

volume interaction, suggest that �small�dollar trade sizes may only appear that way when

liquidity is low. Trade sizes previously considered small may seem larger to institutional

investors when there is an easing of their liquidity constraint. These results suggest that

augmenting our static dollar bin sizes with a time varying liquidity component might yield

improvements to our method for predicting institutional ownership.

5. Conclusion

This paper has presented a technique for predicting quarterly institutional ownership using

the �tape�, the publicly available record of all trades and quotes within the quarter. The

technique can be used to track high-frequency institutional trading in a large cross-section of

stocks. In future research we plan to use this approach to measure patterns of institutional

behavior around earnings announcements, stock splits, and other corporate actions.

The results of this paper shed light on the trading behavior of institutions. Total

classi�able buy volume predicts increasing institutional ownership and total sell volume

predicts decreasing institutional ownership. These results are consistent with institutions

tending to buy at the ask and sell at the bid, or to buy on upticks and sell on downticks, and

suggest that institutions demand liquidity rather than provide it. The coe¢ cient on total sell

volume is larger in absolute value than the coe¢ cient on total buy volume, suggesting that

institutions are particularly likely to demand liquidity when they sell. All these patterns

are more pronounced in large stocks than in small stocks.

Classifying transactions by their size adds considerable explanatory power to our re-

gressions. Buy volume in sizes between $2,000 and $30,000 is associated with decreasing

institutional ownership, while buy volume in larger sizes predicts increasing institutional

ownership. Interestingly, extremely small buys below $2,000 also predict increasing institu-

tional ownership, suggesting that institutions use these trades to conceal their activity or to
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round small positions up or down. All these patterns are reversed for sell volume, and are

remarkably consistent across �rm sizes.

The method we develop in this paper represents a marked improvement to the pre-

existing approach to measuring high frequency institutional ownership. We �nd that the R2

statistics generated by our regression methodology are much higher than that generated by

the simple cuto¤ classi�cation schemes that were previously employed. This remains true

when we compare the out-of-sample R2 statistics derived from our analysis to those from

the cuto¤ classi�cation schemes.

We also investigate changes in the trading patterns of institutions in response to move-

ments in daily returns, volume and volatility. We �nd that periods of high returns appear to

reduce institutional trading in the very smallest trade sizes. High volatility is accompanied

by increased institutional trading intensity in large trade sizes, suggesting that institutions

may have high demands for liquidity at such times. Finally, periods of high volume and

quoted depth appear to generate greater institutional trading activity in small and medium

size trades, suggesting that institutions may use periods of high market liquidity to increase

stealth-trading activity.
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6. Appendices

6.1. Appendix 1: Buy-Sell Classi�cation

TAQ does not classify transactions as either buys or sells. To classify the direction of each

trade, we use a matching algorithm suggested by Lee and Ready (1991). This algorithm

looks at the trade price relative to quotes to determine whether a transaction is a buy or sell.

The method works by matching trades to pre-existing quotes, based on time stamps. More

precisely, we inspect quotes lagged by at least �ve seconds to avoid problems of stale reporting

of quotes. If the trade price lies between the quote midpoint and the upper (lower) quote,

the trade is classi�ed as a buy (sell). If the trade price lies at the midpoint of the quotes,

we use a tick test, which classi�es trades that occur on an uptick as buys, and those on a

downtick as sells. If the trade price lies at the midpoint of the quotes and the transactions

price has not moved since the previous trade (trade occurs on a �zerotick�), Lee and Ready

suggest classifying the trade based on the last recorded move in the transactions price. If

the last recorded trade was classi�ed as a buy (sell), then the zerotick trade is classi�ed as

a buy (sell). From Lee and Ready, trade-to-quote matching can be accomplished in 75.7%

of trades, while tick tests are required in 23.8% of cases. The remaining trades take place

outside the quoted spread.

The analysis in Lee and Radhakrishna (2000) evaluates the e¤ectiveness of the Lee

and Ready matching algorithm, using the TORQ database, which has buy-sell classi�ed,

institutional-individual identi�ed data for 144 stocks over a 3 month period. They �nd

that after removing trades with potentially ambiguous classi�cations (such as trades that

are batched or split up during execution), the buy/sell classi�cation algorithm is 93 per-

cent e¤ective. In particular, they �nd that the accuracy is highest (at 98 percent) when

trade-to-quote matching can be accomplished, lower (at 76 percent) for those trades that

have to be classi�ed using a tick test, and lowest (at 60 percent) for those trades classi�ed

using a zerotick test. We eliminate this last source of variability in our data by terming

as unclassi�able those trades for which a zerotick test is required. We further identify as
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unclassi�able all trades that occur in the �rst half hour of trading (since these come from

the opening auction) as well as any trade that is reported as cancelled, batched or split up

in execution. This last category of trades is identi�ed as unclassi�able since we use trade

size as one important input into our prediction of institutional ownership. A trade that is

reported as being batched or split up cannot be unambiguously classi�ed in terms of its size.

We aggregate all unclassi�able trades together, and use the bin of unclassi�able trades as an

additional input into our prediction exercise.

6.2. Appendix 2: Spectrum Institutional Ownership Data

A 1978 amendment to the Securities and Exchange Act of 1934 required all institutions

with greater than $100 million of securities under discretionary management to report their

holdings to the SEC. Holdings are reported quarterly on the SEC�s form 13F, where all

common-stock positions greater than 10,000 shares or $200,000 must be disclosed. These

reports are available in electronic form back to 1980 from CDA/Spectrum, a �rm hired by the

SEC to process the 13F �lings. Our data include the quarterly reports from the �rst quarter

of 1993 to the �nal quarter of 2001. Throughout this paper, we use the term institution to

refer to an institution that �les a 13F. On the 13F, each manager must report all securities

over which they exercise sole or shared investment discretion. In cases where investment

discretion is shared by more than one institution, care is taken to prevent double counting.

Our Spectrum data have been extensively cleaned by Kovtunenko and Sosner (2003).

They �rst identify all inconsistent records, those for which the number of shares held by an

institution in a particular stock at the end of quarter t � 1 is not equal to the number of

shares held at the end of quarter t minus the reported net change in shares since the prior

quarter. They assume that the holdings data are correct for such observations, rather than

the reported change data.

They proceed to �ll in missing records, using the general rule that if a stock has a return

on CRSP but does not have reported Spectrum holdings in a given quarter, holdings are set

to zero. For the missing records inconsistent with this assumption (those for which holdings
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at the end of quarter t are above the reported net change from previous quarter holdings),

they �ll in the holdings for the end of quarter t� 1 as split-adjusted holdings in period t less

the reported net change in holdings.

The Spectrum 13F holdings �le contains three columns: date, CUSIP code, identi�er for

the institution, and number of shares held in that stock by that institution on that date.

All dates are end-of-quarter (March 31, June 30, September 30, or December 31). For each

CUSIP and date we simply sum up the shares held by all institutions in the sample to get

total institutional holdings of the security at the end of that quarter.
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Table I: Summary Statistics for Firm Size Quintiles 
 

Table I presents means, medians and standard deviations for the TAQ and Spectrum variables in our specifications.  
All data are independently winsorized at the 2.5 standard deviation level.  The variables are in sequence, the total 
buyer initiated orders in TAQ classified by the Lee and Ready algorithm; the total seller initiated orders, similarly 
classified; the total unclassifiable volume (those transacted in the opening auction, reported as cancelled, or 
unclassifiable as a buy or a sell by the LR algorithm); the total volume (the sum of the previous three variables); the 
net order imbalance (total classifiable buys less total classifiable sells); and finally, the change in quarterly 13-F 
institutional ownership as reported in the Spectrum dataset as a fraction of CRSP shares outstanding.  All TAQ 
variables are normalized by daily shares outstanding as reported in CRSP, and then summed up to the quarterly 
frequency.  All summary statistics are presented as annualized percentages (standard deviations are annualized under 
the assumption that quarterly observations are iid).  The columns report these summary statistics first for all firms, and 
then for firm size quintiles, where firms are sorted quarterly by market capitalization (size).       
 
 
 All Small Q2 Q3 Q4 Large
       
Mean       
TAQ Total Buys 31.83 20.88 27.42 33.56 39.20 38.04 
TAQ Total Sells 30.99 23.13 28.58 33.00 36.45 33.75 
TAQ Unclassifiable 15.39 9.66 13.21 15.94 18.85 19.29 
TAQ Total Volume 78.31 53.82 69.28 82.62 94.61 91.14 
TAQ Net Imbalance 0.96 -2.13 -1.08 0.63 2.87 4.49 
Spectrum Change 0.60 -1.31 0.29 1.73 1.49 0.77 
       
Median       
TAQ Total Buys 23.84 13.72 18.76 24.85 31.40 30.58 
TAQ Total Sells 23.90 15.80 20.63 25.58 29.90 27.41 
TAQ Unclassifiable 11.57 5.70 8.73 11.47 15.04 15.81 
TAQ Total Volume 60.42 36.43 49.26 63.03 77.00 74.35 
TAQ Net Imbalance 0.55 -1.22 -0.62 0.15 1.62 3.09 
Spectrum Change 0.43 -0.03 0.41 1.65 1.35 0.98 
       
Standard Deviation       
TAQ Total Buys 13.48 11.00 13.04 13.84 14.23 12.82 
TAQ Total Sells 12.40 11.32 12.55 12.81 12.83 11.30 
TAQ Unclassifiable 6.79 5.69 6.69 7.00 7.03 6.21 
TAQ Total Volume 31.68 27.09 31.27 32.62 33.06 29.46 
TAQ Net Imbalance 5.07 4.87 5.07 5.22 5.15 4.23 
Spectrum Change 8.94 7.48 9.40 9.87 9.59 8.03 
 



Table II: Summary Statistics for Bins and Firm Size Quintiles 
Table II presents medians (top panel) and standard deviations (bottom panel) for total TAQ buys + sells classified by 
the Lee and Ready algorithm (normalized by firm shares outstanding).  All data are winsorized at the 2.5 standard 
deviation level.  All summary statistics are reported in annualized percentage terms (standard deviations are 
annualized under the assumption that quarterly observations are iid). 
 

Median Small Q2 Q3 Q4 Large
      
Buys + Sells      
0-2000 2.126 0.680 0.163 0.000 0.000 
2000-3000 1.727 0.728 0.409 0.166 0.000 
3000-5000 3.438 1.675 1.004 0.700 0.319 
5000-7000 2.597 1.738 1.045 0.691 0.405 
7000-9000 1.943 1.623 1.051 0.713 0.385 
9000-10000 0.793 0.710 0.512 0.330 0.139 
10000-20000 4.902 6.038 5.025 3.555 1.954 
20000-30000 2.056 3.351 3.526 3.070 1.831 
30000-50000 1.784 3.934 4.584 4.692 3.215 
50000-70000 0.544 2.378 3.085 3.353 2.630 
70000-90000 0.000 1.628 2.352 2.737 2.194 
90000-100000 0.000 0.586 0.998 1.180 0.988 
100000-200000 0.000 3.562 6.626 8.567 7.630 
200000-300000 0.000 1.329 3.411 5.059 5.064 
300000-500000 0.000 1.139 3.623 5.941 6.554 
500000-700000 0.000 0.000 1.853 3.452 4.116 
700000-900000 0.000 0.000 1.067 2.237 2.814 
900000-1000000 0.000 0.000 0.000 0.792 1.087 
>1000000 0.000 0.000 4.018 9.543 14.178 

 
Standard Deviation Small Q2 Q3 Q4 Large
      
Buys + Sells      
0-2000 1.905 1.002 0.529 0.317 0.134 
2000-3000 1.095 0.744 0.459 0.324 0.197 
3000-5000 1.861 1.444 0.910 0.610 0.382 
5000-7000 1.575 1.348 0.910 0.610 0.404 
7000-9000 1.336 1.228 0.892 0.606 0.376 
9000-10000 0.658 0.620 0.477 0.332 0.224 
10000-20000 3.554 3.610 3.009 2.293 1.421 
20000-30000 2.013 2.243 2.080 1.835 1.245 
30000-50000 2.216 2.720 2.679 2.514 1.903 
50000-70000 1.317 1.757 1.799 1.753 1.470 
70000-90000 0.940 1.329 1.399 1.372 1.155 
90000-100000 0.427 0.606 0.642 0.635 0.542 
100000-200000 1.981 3.193 3.730 3.840 3.291 
200000-300000 1.047 1.736 2.214 2.395 2.132 
300000-500000 1.188 1.942 2.600 2.925 2.699 
500000-700000 0.705 1.178 1.615 1.832 1.786 
700000-900000 0.467 0.861 1.168 1.329 1.296 
900000-1000000 0.134 0.385 0.530 0.582 0.570 
> 1000000 1.949 3.481 4.655 5.791 5.865 



Table III: Regression Specifications on Total Buys, Sells and Net Flows 
Table III presents estimates of several specifications, in which the dependent variable is the change in Spectrum institutional 
ownership as a fraction of shares outstanding.  The first panel below presents the independent variables in rows: an intercept, the 
lagged level of Spectrum institutional ownership as a percentage of the shares outstanding of the firm, the lagged change in 
Spectrum ownership computed similarly, the total unclassifiable volume in TAQ, total buyer initiated trades and total seller 
initiated trades.   The second panel uses the same first three independent variables, but uses total net flows (total buys less total 
sells) as the fourth independent variable.  Different specifications use different combinations of these independent variables.  
Specifications D-F are the same as specifications A-C, except that they incorporate quarter-specific time dummy variables.  t-
statistics computed using the delete-1 jackknife method are reported in parentheses below the coefficients.   
 

 A B C D E F G H
         
Intercept 0.007 0.007 0.011 0.011     
 (23.905) (23.841) (34.623) (34.161)     
Lagged Spectrum Level   -0.014 -0.012   -0.014 -0.012 
   -(17.715) -(16.110)   -(17.583) -(16.025) 
Lagged Spectrum Change    -0.065    -0.064 
    -(10.304)    -(10.125) 
TAQ Unclassifiable  0.034 0.033 0.034  0.004 0.001 -0.001 
  (2.305) (2.234) (2.322)  (0.221) (0.067) -(0.039) 
TAQ Total Buys 0.362 0.354 0.375 0.382 0.361 0.360 0.381 0.389 
 (33.867) (31.221) (33.000) (33.555) (33.675) (30.987) (32.750) (33.395) 
TAQ Total Sells -0.453 -0.462 -0.460 -0.470 -0.447 -0.448 -0.446 -0.456 
 -(38.314) -(37.819) -(37.766) -(38.532) -(37.804) -(36.317) -(36.244) -(36.967) 
         
R-Squared 0.046 0.046 0.052 0.056 0.045 0.045 0.050 0.054 
N 63403 63403 63403 63403 63403 63403 63403 63403 
N(Firms) 3334 3334 3334 3334 3334 3334 3334 3334 
         
Time Dummies? No No No No Yes Yes Yes Yes 

 
 A B C D E F G H
         
Intercept 0.000 0.005 0.011 0.010     
 (0.791) (19.474) (33.319) (32.792)     
Lagged Spectrum Level   -0.016 -0.014   -0.015 -0.013 
   -(20.760) -(19.329)   -(19.713) -(18.217) 
Lagged Spectrum Change    -0.063    -0.064 
    -(10.003)    -(10.042) 
TAQ Unclassifiable  -0.133 -0.094 -0.098  -0.134 -0.097 -0.101 
  -(16.875) -(11.302) -(11.626)  -(17.069) -(11.664) -(12.018) 
TAQ Net Flows 0.349 0.388 0.404 0.412 0.351 0.391 0.405 0.414 
 (32.465) (35.230) (36.814) (37.456) (32.573) (35.409) (36.868) (37.587) 
         
R-Squared 0.032 0.042 0.049 0.052 0.032 0.042 0.049 0.052 
N 63403 63403 63403 63403 63403 63403 63403 63403 
N(Firms) 3334 3334 3334 3334 3334 3334 3334 3334 
         
Time Dummies? No No No No Yes Yes Yes Yes 



Table IV: Size Quintile Specific Regressions of Spectrum Change on Total TAQ Flows 
 

This table presents estimates of specification F from Table III, estimated separately for stocks sorted into market 
capitalization quintiles.  The dependent variable in all specifications is the change in Spectrum institutional ownership 
as a fraction of shares outstanding.  The first panel below presents the independent variables in rows: the lagged level 
of Spectrum institutional ownership as a percentage of the shares outstanding of the firm, the total unclassifiable 
volume in TAQ, total buyer initiated trades and total seller initiated trades.   The second panel uses the same first three 
independent variables, but uses total net flows (total buys less total sells) as the fourth independent variable.  All 
specifications incorporate quarter-specific time dummy variables.  t-statistics computed using the delete-1 jackknife 
method are reported in parentheses below the coefficients.   
 

 Small Q2 Q3 Q4 Large
      
Lagged Spectrum Level -0.041 -0.026 -0.020 -0.020 -0.026 
 -(14.874) -(12.160) -(9.860) -(8.959) -(10.259) 
Lagged Spectrum Change -0.049 -0.030 -0.032 -0.078 -0.165 
 -(3.141) -(2.285) -(2.559) -(5.722) -(10.514) 
TAQ Unclassifiable -0.094 0.030 0.065 0.036 0.026 
 -(2.766) (0.759) (1.667) (0.967) (0.739) 
TAQ Total Buys 0.172 0.218 0.356 0.472 0.612 
 (6.517) (7.989) (13.823) (17.979) (21.808) 
TAQ Total Sells -0.234 -0.308 -0.471 -0.550 -0.712 
 -(9.348) -(11.743) -(17.442) -(18.533) -(22.246) 
      
R-Squared 0.082 0.047 0.060 0.067 0.105 
N 12516 12609 12621 12732 12925 
N(Firms) 1131 1357 1319 1161 735 
      
Time Dummies? Yes Yes Yes Yes Yes 

 
 

 Small Q2 Q3 Q4 Large
      
Lagged Spectrum Level -0.042 -0.027 -0.023 -0.022 -0.028 
 -(15.113) -(12.997) -(11.556) -(10.469) -(11.941) 
Lagged Spectrum Change -0.048 -0.029 -0.031 -0.077 -0.162 
 -(3.075) -(2.213) -(2.457) -(5.628) -(10.355) 
TAQ Unclassifiable -0.176 -0.110 -0.119 -0.083 -0.122 
 -(9.973) -(5.734) -(6.075) -(4.469) -(6.891) 
TAQ Net Flows 0.207 0.261 0.396 0.493 0.633 
 (8.854) (10.768) (16.425) (19.428) (22.911) 
      
R-Squared 0.081 0.045 0.057 0.066 0.102 
N 12516 12609 12621 12732 12925 
N(Firms) 1131 1357 1319 1161 735 
      
Time Dummies? Yes Yes Yes Yes Yes 

 
  
 



Table V: Estimates of Spectrum-TAQ Quarterly Predictive Regression 
This table presents estimates from an equation relating quarterly Spectrum institutional ownership to TAQ for different 
size quintiles of stocks.  Here, the dependent variable is the change in quarterly 13-F institutional ownership from 
Spectrum (as a fraction of firm shares outstanding). In order, the dependent variables are the lagged level of the 
Spectrum institutional ownership fraction, the total unclassifiable volume in TAQ, and Net Flows, which are the 
number of shares bought less shares sold traded within dollar cutoff bins from TAQ (normalized by CRSP daily shares 
outstanding, and then summed up to the quarterly frequency). All specifications incorporate quarter-specific time 
dummy variables.  t-statistics computed using the delete-1 jackknife method are reported below coefficients in 
parentheses.  
 Small Q2 Q3 Q4 Large
      
Lagged Spectrum Level -0.040 -0.027 -0.024 -0.021 -0.026 
  -(14.469) -(12.799) -(11.885) -(9.839) -(10.879) 
Lagged Spectrum Change -0.053 -0.044 -0.055 -0.097 -0.184 
 -(3.417) -(3.384) -(4.615) -(7.148) -(11.894) 
Total Unclassifiable -0.156 -0.086 -0.077 -0.085 -0.099 
 -(8.789) -(4.471) -(3.829) -(4.455) -(5.296) 
Net Flows      
0-2000 0.832 3.639 4.103 1.893 -1.254 
  (4.770) (5.245) (2.802) (0.769) -(0.233) 
2000-3000 -0.378 -0.193 -3.966 -3.724 -4.485 
  -(1.552) -(0.215) -(2.480) -(1.749) -(1.452) 
3000-5000 -0.459 -2.361 -1.810 -2.508 -1.966 
  -(3.155) -(4.372) -(1.694) -(1.646) -(0.873) 
5000-7000 -0.349 -1.576 -3.285 1.025 -4.804 
  -(2.297) -(3.152) -(3.214) (0.601) -(2.240) 
7000-9000 -0.348 -0.605 -2.165 -2.292 -1.796 
  -(2.029) -(1.252) -(2.246) -(1.411) -(0.801) 
9000-10000 -0.074 -1.285 -3.530 -5.361 1.534 
  -(0.285) -(1.747) -(2.576) -(2.312) (0.455) 
10000-20000 0.052 -1.084 -1.169 -2.084 -3.027 
  (0.603) -(4.827) -(3.079) -(2.891) -(2.614) 
20000-30000 0.060 0.011 -0.375 -0.991 1.585 
  (0.521) (0.046) -(0.894) -(1.451) (1.181) 
30000-50000 0.263 0.283 0.286 0.662 0.107 
  (2.488) (1.536) (0.962) (1.459) (0.120) 
50000-70000 0.328 0.510 0.452 1.038 1.497 
  (2.590) (2.358) (1.357) (2.110) (1.992) 
70000-90000 0.606 0.777 0.525 1.021 1.603 
  (3.654) (3.287) (1.515) (2.090) (1.848) 
90000-100000 0.992 1.200 0.812 1.944 -0.090 
  (3.583) (3.272) (1.612) (2.641) -(0.079) 
100000-200000 0.615 0.628 0.790 0.721 0.668 
  (6.467) (5.409) (5.364) (3.492) (1.846) 
200000-300000 0.312 0.937 1.049 0.935 -0.096 
  (2.360) (6.321) (6.175) (3.994) -(0.262) 
300000-500000 0.198 0.471 0.915 0.958 0.338 
  (1.679) (3.959) (6.887) (5.545) (1.299) 
500000-700000 0.119 0.310 0.715 0.764 1.066 
  (0.699) (2.182) (4.638) (3.811) (3.776) 
700000-900000 0.463 0.353 1.118 1.041 2.319 
  (1.695) (2.121) (6.450) (4.871) (7.611) 
900000-1000000 2.004 0.442 0.473 1.188 3.720 
  (2.270) (1.355) (1.674) (3.556) (7.644) 



> 1000000 0.184 0.215 0.269 0.287 0.378 
 (2.730) (4.989) (7.165) (7.115) (8.187) 
      

2R  0.097 0.084 0.121 0.109 0.139 
N 12516 12609 12621 12732 12925 
N(Firms) 1131 1357 1319 1161 735 
      
Time Dummies? Yes Yes Yes Yes Yes 

 



 Table VI: Evaluating the Lee-Radhakrishna Method Using Spectrum and TAQ 
This table presents 2R  statistics for various specifications of the Lee-Radhakrishna regression of the change in 
quarterly 13-F institutional ownership as reported in the Spectrum dataset (as a fraction of CRSP shares outstanding O) 

)/( ,, titi OS∆  on the lagged level and change in institutional ownership, and net quarterly flows from TAQ 

(normalized by CRSP daily shares outstanding, and then summed up to the quarterly frequency ).  Here , ( )i tf c , 

represents net flows greater than $c, and , ( )i tf c−  represents net flows less than $c.  We estimate variants of: 

( ), , , 1 , 1 , 1 , 1 1 , 2 , ,( / ) ( / ) ( / ) ( 1) ( 2)i t i t i t i t i t i t c i t c i t i tS O S O S O f c f cα φ ρ β β ε− − − −∆ = + + ∆ + − + + .    

The specifications in rows labeled tαα ˆ=  include quarter-specific time dummies.  The specification is estimated 

separately for different size quintiles of stocks (in columns).  Row headings indicate estimates of the 2R  statistic 
under different coefficient restrictions, for different values of the dollar cutoff levels c1 and c2.  The second to last 
row shows the out of sample 2R  of the CRV method evaluated over the second half of the sample using coefficients 
estimated over the first half of the sample.  The final row shows the one period ahead out of sample 2R  of the CRV 
method estimated from a rolling regression updated each period. 

2R  Small Q2 Q3 Q4 Large
     
c1 =2,000; c2=5,000     

1,1,0 21 =−== cc ββα  -0.082 -0.094 -0.050 -0.009 0.044 
1,1,ˆ 21 =−== cct ββαα  -0.080 -0.086 -0.033 0.010 0.068 

2211
ˆ,ˆ,0 cccc ββββα ===  0.059 0.027 0.042 0.055 0.081 

2211
ˆ,ˆ,ˆ cccct ββββαα ===  0.067 0.042 0.062 0.070 0.100 

C1=3,000;c2=10,000      
1,1,0 21 =−== cc ββα  -0.052 -0.072 -0.029 0.003 0.052 

1,1,ˆ 21 =−== cct ββαα  -0.049 -0.062 -0.011 0.021 0.075 

2211
ˆ,ˆ,0 cccc ββββα ===  0.063 0.032 0.057 0.067 0.093 

2211
ˆ,ˆ,ˆ cccct ββββαα ===  0.071 0.048 0.078 0.081 0.111 

c1=3,000;c2=20,000      
1,1,0 21 =−== cc ββα  -0.025 -0.048 -0.008 0.016 0.060 

1,1,ˆ 21 =−== cct ββαα  -0.021 -0.037 0.010 0.033 0.083 

2211
ˆ,ˆ,0 cccc ββββα ===  0.065 0.037 0.063 0.071 0.096 

2211
ˆ,ˆ,ˆ cccct ββββαα ===  0.073 0.053 0.084 0.085 0.114 

c1=3,000;c2=50,000      
1,1,0 21 =−== cc ββα  -0.001 -0.026 0.014 0.032 0.072 

1,1,ˆ 21 =−== cct ββαα  0.005 -0.014 0.032 0.046 0.091 

2211
ˆ,ˆ,0 cccc ββββα ===  0.065 0.040 0.068 0.074 0.100 

2211
ˆ,ˆ,ˆ cccct ββββαα ===  0.072 0.056 0.088 0.087 0.116 

c1=5,000;c2=100,000      
1,1,0 21 =−== cc ββα  -0.005 -0.017 0.029 0.042 0.082 

1,1,ˆ 21 =−== cct ββαα  0.004 -0.002 0.048 0.054 0.098 

2211
ˆ,ˆ,0 cccc ββββα ===  0.059 0.038 0.073 0.078 0.105 

2211
ˆ,ˆ,ˆ cccct ββββαα ===  0.067 0.056 0.095 0.091 0.119 

CRV Out of Sample       
Q1 1997: Q4 2000 0.073 0.061 0.072 0.080 0.116 
Rolling One Period Ahead 0.077 0.072 0.092 0.089 0.117 



 
Table VII: Estimates of Nelson-Siegel Function Coefficients 

This table presents nonlinear least squares estimates of the Nelson-Siegel (1987) function that relates the change in 
quarterly 13-F institutional ownership from Spectrum (as a fraction of firm shares outstanding) to exogenous variables 
and TAQ flows.  The exogenous variables in order are: the dependent variables are the lagged level of the Spectrum 
institutional ownership fraction, lagged change in the Spectrum institutional ownership fraction and the total 
unclassifiable volume in TAQ.  The coefficients on flows in various bins (indexed by Z, the midpoint of the range of 
dollar trade sizes captured in the bin) can be recovered from the coefficients below, using the function: 

/ /
0 1 2 2( ) ( )[1 ]Z ZZ b b b e b e

Z
τ ττβ − −= + + − −  

All specifications incorporate quarter-specific time dummy variables.  All t-statistics are computed following 
estimation of the nonlinear parameter τ , using the delete-1 jackknife method.  These are reported below coefficients 
in parentheses.   

 
 Small Q2 Q3 Q4 Large
      
Lagged Spectrum Level -0.040 -0.026 -0.022 -0.017 -0.025 
 -(14.445) -(12.412) -(10.878) -(8.321) -(10.277) 
Lagged Spectrum Change -0.050 -0.039 -0.049 -0.095 -0.180 
 -(3.205) -(3.040) -(4.138) -(6.966) -(11.543) 
Total Unclassifiable -0.152 -0.062 -0.038 -0.048 -0.077 
 -(8.547) -(3.250) -(1.959) -(2.542) -(4.163) 
b0 0.349 0.448 0.594 0.626 0.685 
  (10.704) (16.022) (24.270) (24.391) (19.362) 
b1 4.475 18.593 109.043 84.100 -10.954 
 (6.880) (8.695) (8.266) (3.984) -(5.471) 
b2 -8.652 -31.156 -145.007 -118.802 8.951 
 -(8.296) -(10.617) -(9.799) -(5.198) (2.869) 
Tau 1000 998 501 501 5010 
      

2R  0.091 0.073 0.107 0.096 0.126 
N 12516 12609 12621 12732 12925 
N(Firms) 1131 1357 1319 1161 735 
      
Time Dummies? Yes Yes Yes Yes Yes 



Table VIII: Adding Interaction Terms to the Nelson-Siegel Specification  
The first row of Table VII presents 2R  statistics for estimates of the baseline Nelson-Siegel specification relating the 
lagged level of quarterly institutional ownership, total unclassifiable volume and net flows in bins of different sizes 
(measured daily and aggregated up to the quarterly frequency) to the quarterly change in institutional ownership as 
measured in Spectrum.  The rows below present in order, the 2R from a Nelson-Siegel specification estimated using 
the same right hand side variables as above as well the variable itself (quarterly aggregated daily returns, absolute 
returns, volume and average quoted depth); the percentage change from the baseline 2R upon addition of the variable; 
the 2R from adding quarterly aggregated daily interactions between the flows in various bins and returns, absolute 
returns, volume or average quoted depth (as indicated by the headings); the marginal percentage increase in the 

2R from adding the interaction variables (over and above the variable itself) to the N-S specification; and finally the 
total percentage increase in 2R  from adding both the variable and the interactions.  Columns present the results for the 
different size quintiles of stocks.     

 
 Small Q2 Q3 Q4 Large
     
Baseline Nelson-Siegel 2R  0.091 0.073 0.107 0.096 0.126 
     
Returns      
N-S and Returns 0.103 0.094 0.132 0.117 0.132 
Percentage Increase in 2R  13.91% 29.45% 23.58% 22.16% 5.18% 
N-S, Interactions and Returns 0.113 0.099 0.137 0.127 0.138 
Marginal Percentage Increase in 2R  9.08% 5.36% 3.75% 8.66% 4.10% 
Total Increase in 2R  24.25% 36.39% 28.22% 32.74% 9.48% 
      
Absolute Returns     
N-S and Absolute Returns 0.107 0.077 0.107 0.100 0.126 
Percentage Increase in 2R  17.60% 5.59% 0.12% 3.71% 0.45% 
N-S, Interactions and Absolute Returns 0.114 0.095 0.138 0.125 0.146 
Marginal Percentage Increase in 2R  6.80% 23.19% 29.34% 25.61% 15.30% 
Total Increase in 2R  25.60% 30.08% 29.50% 30.28% 15.81% 
      
Volume     
N-S and Volume 0.091 0.074 0.108 0.096 0.127 
Percentage Increase in 2R  0.80% 1.17% 1.00% 0.07% 0.60% 
N-S, Interactions and Volume 0.096 0.078 0.112 0.102 0.134 
Marginal Percentage Increase in 2R  5.28% 6.70% 4.28% 6.72% 6.20% 
Total Increase in 2R  6.12% 7.94% 5.32% 6.79% 6.84% 
      
Average Quoted Depth     
N-S and Depth 0.096 0.074 0.110 0.107 0.127 
Percentage Increase in 2R  5.52% 1.72% 3.03% 11.88% 0.54% 
N-S, Interactions and Depth 0.098 0.078 0.116 0.125 0.142 
Marginal Percentage Increase in 2R  2.29% 5.35% 5.22% 16.76% 11.92% 
Total Increase in 2R  7.93% 7.16% 8.41% 30.63% 12.52% 



Figure 1 
This figure plots the evolution of the number of firms in our sample across time measured in quarters.  The sample 
consists only of firms issuing common stock on the NYSE or AMEX exchanges.  The data begin in the first quarter of 
1993, and end in the final quarter of 2000.   

Evolution of Firms Over Time

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

31/3/1993 30/6/1994 29/9/1995 31/12/1996 31/3/1998 30/6/1999 29/9/2000

Quarter End Date

N
(F

irm
s)

Figure 2 
This figure plots the equal and market capitalization weighted means and standard deviations across all firms each 
quarter of the total volume of shares traded as a percentage of shares outstanding for each firm.  The volume measure 
is obtained by summing all trades reported for each stock-quarter in the Transactions and Quotes (TAQ) database of 
the NYSE.  Total shares outstanding and market capitalization for each firm is obtained from CRSP. 
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Figure 3 
Figure 3 plots histograms of trade intensities (total volume as a percentage of shares outstanding in each bin divided by relative bin 
width), for dollar trade size bins that aggregate TAQ trades classified into buys and sells.  A bin size of $5 million is assigned to the 
largest bin.  The three panels show, in sequence, histograms for small, median and large firms sorted quarterly into quintiles based 
on relative market capitalization (size).   
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Figure 4 
This figure plots the net flow coefficients for each trade size bin, for the Q1, Q3 and Q5 firms in our sample.  The 
coefficients are standardized by removing the within quintile cross-sectional mean of bin coefficients, and dividing by 
the cross-sectional standard deviation of bin coefficients.  
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Figure 5 
This figure plots the net flow coefficients estimated using the method of Nelson and Siegel [1987] for each trade size 
bin, for the Q1, Q3 and Q5 firms in our sample.  The coefficients are standardized by removing the within quintile 
cross-sectional mean of bin coefficients, and dividing by the cross-sectional standard deviation of bin coefficients.  
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Figure 6 



This figure plots the buy and sell coefficients estimated using the method of Nelson and Siegel [1987] for each trade 
size bin, for the Q1, Q3 and Q5 firms in our sample.  The coefficients are standardized by removing the within quintile 
cross-sectional mean of bin coefficients, and dividing by the cross-sectional standard deviation of bin coefficients.  
The top panel shows the buy coefficients, and the bottom panel the sell coefficients. 
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Sells  

Standardized Sell Coefficients For Different Trade Sizes
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Figure 7 

This figure plots the net flow coefficients estimated using the method of Nelson and Siegel [1987] for each trade size 
bin, for the Q1 firms in our sample, setting the value of the return interaction to its daily mean and two standard 
deviations above its daily mean.   
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Figure 8 
This figure plots the net flow coefficients estimated using the method of Nelson and Siegel [1987] for each trade size 
bin, for the Q1 firms in our sample, setting the value of the absolute return interaction to its daily mean and two 
standard deviations above its daily mean.   
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Figure 9 

This figure plots the net flow coefficients estimated using the method of Nelson and Siegel [1987] for each trade size 
bin, for the Q1 firms in our sample, setting the value of volume to its daily mean and two standard deviations above its 
daily mean.   

Raw Net Flow Coefficients: Quintile 1 Firms
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Figure 10 
This figure plots the net flow coefficients estimated using the method of Nelson and Siegel [1987] for each trade size 
bin, for the Q5 firms in our sample, setting the value of average quoted depth to its daily mean and two standard 
deviations above its daily mean.   
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