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1. Introduction

Activity in prominent auction markets seems to be concentrated at a few sites. For

example, Sotheby’s and Christie’s have dominated the traditional fine art auction

business for a century or more, with relatively equal market shares over that period.1 The

combined market share of the two firms is now estimated to be greater than 90%.2  In the

online auction market, eBay refused to cut commission rates in the face of highly-touted

lower priced competition following the September 1998 opening of Yahoo! Auctions and

the March 1999 opening of Amazon Auctions. Despite eBay’s higher fees and tenfold

growth of online auctions since Yahoo’s entry,  eBay has maintained a dominant

position.3 While eBay has (often via acquisition) achieved a large share of online auctions

in many countries, a notable exception is Japan, where Yahoo entered before eBay and is

now reported to have a 95% market share.

This paper develops a very simple model of competing auction sites to analyze

some forces that may lead auction markets to be concentrated. Specifically, we study

when two competing markets or auction sites of different sizes co-exist in equilibrium,

                                                

1 Sotheby’s is descended from the book auction firm founded by Samuel Baker in 1745 and Christie’s from
a general art, furniture, etc. business founded by James Christie in 1766. The two firms achieved
prominent positions by the early 19th century.  See Learmount (1985). Each firm had about $2.25 billion in
gross merchandise sales in 1999.
2The U.S. Department of Justice uses the 90% figure in press releases related to the recent price-fixing case.
Bonhams (founded 1793) and Phillips (founded 1796) recently merged their UK operations to form what is
said to be the third largest traditional fine art auction house with gross merchandise sales of about $200m.
The third largest fine art auction house in the U.S., Butterfield and Butterfield, had about $100m in annual
merchandise sales prior to its acquisition by eBay. The dominant position of the two firms is particularly
striking given that they were accused of collusion following fee increases in 1975 and 1992, and were
convicted of price-fixing in connection with their joint adoption in 1995 of a nonnegotiable scale for
sellers’ commissions.
3 About $8 billion in merchandise will be auctioned on eBay this year. This is perhaps twenty times the
volume of trade on Yahoo or Amazon. The second largest “auction” site for consumer products is actually
Ubid.com which sells computers, electronics and a variety of other goods (often refurbished and/or surplus
merchandise) directly to consumers and mostly uses “no reserve” auctions rather than posted prices. It also
lists items for sale by other firms.



and when this is impossible because the larger auction will attract all of the smaller one’s

patrons.  It is clear that two markets can co-exist if they are geographically distinct and

clients face sufficiently large transport costs, and conversely it is clear that otherwise

identical markets of different sizes cannot co-exist if larger markets offer a greater variety

of goods and buyers have a sufficiently large preference for more diverse markets.  This

paper abstracts away from both of these issues by examining an extremely stark model

with a single good that is traded in a single period.

In our model, there are B ex-ante identical buyers, each with unit demand, and S

sellers, each with a single unit of the good to sell. At the start of the period a population

of B buyers and S sellers simultaneously choose between two possible locations. Buyers

then learn their private values and a uniform price auction is held at each location.  This

is a very stark model, but we hope that some of the insights it provides will be useful,

and that it can provide a benchmark case for richer and more realistic models.

Our model always has an equilibrium in which only a single market is active:

With such extreme coordination a player who switched to the other market would find

that there is no one to trade with.  When the numbers of buyers and sellers are even,

there is also an equilibrium where the two markets are exactly the same size.  An

important question is whether the equal-size market is an unstable  “knife-edge” case, or

whether in fact there is a range of equilibrium allocations of agents to markets.

To begin, we show in Section 2 that larger markets are more efficient than smaller

ones, holding the seller/buyer ratio constant.  This efficiency effect makes it harder for

the smaller market to survive, but on its own it does not rule out equilibria with two

active markets, because the efficiency advantage (on a per-trader basis) of a larger market



is on the order of the inverse of the number of traders. Hence, it can be offset the impact

that any individual trader has on the market price when he or she switches to the other

market, which tends to be of the same magnitude.  Because of this  "crowding" or

“market impact” effect,   the equal-sizes configuration mentioned above is not only an

equilibrium, but a strict equilibrium: If a buyer or seller were to switch to the other

market he or she would find that there were now more participants on his or her side of

the market and no more on the other, which would make it strictly less attractive.

Our goal in this paper is to determine the range of equilibrium market sizes that is

permitted by these two conflicting effects.  Proposition 3 presents a general but

correspondingly weak first result on this question: It is impossible for a market with a

finite number of buyers and sellers to coexist with market with a continuum of

participants.  Intuitively, there is no crowding from moving into an infinite market, so

equilibrium requires that both the buyers and the sellers do as well in the small market as

in the large one, but this is inconsistent with the fact that the deterministic outcome in the

infinite market gives each buyer the highest possible expected surplus for a given

expected utility of the sellers.

Section 3 contains some simple general results.  The results here serve two

purposes: they provide intuition for why the equilibrium set has the form it does, and they

are used as lemmas in later sections.  This section simplifies the analysis in two ways.

First, the section looks at “quasi-equilibria,” which drop the constraint that the numbers

of buyers and sellers in each market must be integers.  Second, instead of deriving the

utility functions for the buyers and sellers in each market from the auction game, section

3 treats the utility functions as exogenous primitives, and simply imposes a set of



conditions on them. (The conditions are satisfied for the two distributions that we have

analyzed, the uniform and exponential.)  Notably, we strengthen the conclusion of

Proposition 3 by assuming that either buyers or sellers are worse off in a finite market

than in a small market than in a larger one, even if the larger market is not infinite. Also,

we assume that the amount that either buyers or sellers prefer the larger market is

bounded by a term proportional to the square of the difference in sizes, divided by the

total number of buyers.  It is intuitive that this difference should go to zero as the

difference in sizes shrinks; the quadratic bound is sufficient for a range of equilibrium

sizes to persist as the total number of participants grows.

Sections 4 and 5 specialize the model to two particular distributions. In section 4

we assume that buyers’ valuations are uniformly distributed on [0, 1]; this might be a

reasonable assumption for thinking about Pokemon cards, Beanie Babies, and other

ordinary items being sold on eBay. We verify that the induced market utilities satisfy the

assumptions of Section 3, and use those results to get an exact characterization of the set

of quasi-equilibria. It is typically possible to have a stable two-site equilibrium where the

small site is one-third or one-fourth as large as the larger site; just how unequal the two

markets can be depends on the buyer-seller ratio, for reasons explained in section 4. We

note that this qualitative conclusion is robust in a couple ways: it would suffice for agents

on one side of the market rather than both to recognize that they have a market impact;

and similar results still obtain if we restrict attention to full equilibria with integer

numbers of agents in each market.

Section 5 examines the model with exponentially distributed valuations. This

might be a reasonable assumption for thinking about fine art items. We note some



differences in how the model works out, but the general pattern of the results is the same.

There are equilibria with somewhat unequal market sizes, and there again is a cutoff such

that a market with less than that fraction of all agents can not be viable. Our take on the

results is that the efficiency effect can lead agents to concentrate, but does not seem

sufficiently powerful to account for all of the concentration we observe.

Section 6 examines another factor that may support concentration – market

“thinness”. One aspect of eBay listings that we found striking when we looked at a

random sample of items is that most of them seemed to be unique items. This may be an

important common trait of fine art and online auctions. One way to model the sale of

unique items would be to modify our basic model so that each seller only has a chance q

of having an object for sale. When q is sufficiently small (relative to S) it is easy to see

that this model predicts complete concentration (except for a knife-edge equilibrium with

a 50-50 split). When q is small enough sellers can essentially ignore the possibility that

they will be competing with other sellers. If one market has more buyers, then all sellers

will go to that market, and hence it must have all buyers. While this is a powerful

argument, we note that it requires a fairly extreme thinness.  If there are only three

sellers, each of whom is certain to have the good (so we return to q = 1) there is a split

equilibrium with two sellers going to one market and one seller to the other.

The fact that a size ratio of  3:1 or 4:1 is possible is consistent with the long-term

coexistence of Christie’s and Sotheby’s; it is also consistent with the lack of successful

large-scale entry into this market.  In contrast, eBay is too much larger than its

competitors to be consistent with the bounds we derive; from the viewpoint of our model



this market looks more like one that has “tipped” to a single auction than a stable

coexistence of multiple auction sites.

 Our conclusion that a range of size ratios is possible differs from that of past

analyzes of the choice of location or market inn cases where the efficient outcome would

be for everyone to go to the same location. We discuss this in greater detail in section 7,

but let us note here two important features of our model.  First of all,  previous analyzes

have argued that that the “crowding” or “competitive” effect of  one agent moving on

equilibrium outcomes in each location is small enough to be ignored; in our model this

effect is as large as the efficiency force that pushes in the opposite direction. Second, in

some past work, such as Pagano [1989], there is a single group of agents, rather than the

distinct sets of buyers and sellers here, so that there is no “market impact effect” to

counterbalance the efficiency advantage of larger markets.4

2. The Efficiency of Large Markets

A. Welfare in a Single Market

Consider a single market with S sellers and B S>  buyers.  The efficient outcome

here is for the buyers with the S  highest values to receive the good, so the maximum total

surplus that can be achieved is  : : :Pr( ) ( | ) ( | )S B S B S BB v v E v v v S E v v v≥ ≥ = ≥i i i .  The

maximized surplus per seller (or per item sold) is : 1:( | ) ( | )S B S BE v v v E v v v +≥ = > , which

we define to be ( , )w S B .  This can be written as

                                                

4 In Pagano’s model, players do not know ex-ante whether they will be buyers or sellers.



( )1:

1: 1: 1:

0
( , ) ( | ) ( )

S B

b b S B S B S B

v
w S B v f v v v dv f v dv

+

+ + += >∫ ∫

where the fs are the relevant densities. Note that as the market grows, holding the

buyer/seller ratio fixed, the efficient outcome converges to  a deterministic limit, with the

good given to all buyers whose value exceeds the market-clearing price  :S Bp  defined by

:1 ( )S B SF p
B

− = .    Put differently, in the continuum limit the good is allocated to all

buyers with 1 1 Sv v F
B

−  ≥ ≡ − 
 

. Thus welfare per seller converges to the average of the

buyer values on the range where value is at least the market price, ( | )E v v v≥ .

The following propositions show that our model has the intuitive property that

larger markets are more efficient.  The first result compares a finite market to the

continuum limit discussed above; the second extends this to a comparison of finite

markets of different sizes.

Proposition 1

The maximal expected surplus per buyer in a finite market with S sellers and B buyers is

strictly less than the maximal surplus in a market with continua of buyers and sellers and

the same seller-buyer ratio.

Remark:  The idea of the proof is simply that the distribution of realized utility as a

function of buyer’s value in the large market first-order stochastically dominates the

distribution in the small one. In both markets, buyers have the same probability S
B

 of



receiving the good, but in the small market, buyers “win”  in a less efficient way, as they

sometimes win when v v< .

Proof:   Let ( )c v  be the buyer’s probability of consuming the good in the small market

when  his value is v. Then the buyer’s expected utility in the large market is

( | ) Pr( )E v v v v v≥ ⋅ ≥ , and her expected utility in the small market is ( ( ))E v c v⋅ .  And so

the difference in utility between the large and small market is

( | ) Pr( ) ( ( ))E v v v v v E v c v≥ ⋅ ≥ − ⋅ =

( | ) Pr( ) ( ( ) | ) Pr( ) ( ( ) | ) Pr( )E v v v v v E v c v v v v v E v c v v v v v≥ ⋅ ≥ − ⋅ ≥ ⋅ ≥ − ⋅ < ⋅ < =

( )(1 ( )) | Pr( ) ( ( ) | ) Pr( )E v c v v v v v E vc v v v v v− ≥ ⋅ ≥ − ≤ ≤ >

( )(1 ( )) | Pr( ) ( ( ) | ) Pr( )E v c v v v v v E vc v v v v v− ≥ ⋅ ≥ − ≤ ≤ =

( )1 ( ) | Pr( ) ( ( ) | ) Pr( )v E c v v v v v E c v v v v v− ≥ ⋅ ≥ − ≤ ≤ =  

[ ]Pr( ) ( ( )) 0S Sv v v E c v v
B B
 ≥ − = − =  

;

where the strict inequality follows from the fact that the trade in the small market is not

deterministic (because S<B and the distribution of types is strictly monotone.)

QED.

The next result extends the previous one by showing that efficiency is in fact

monotone in market size.  It implies the first, but has slightly more complex proof that

views the smaller market as a subsample of  the larger one.

Proposition 2



If m and n are  integers with m<n, then holding S and B fixed we have

( , ) ( , )w mS mB w nS nB< .

Proof:  See appendix.

Remark:   We conjecture that this convergence is at rate 1/n.  We can show that this is the

case for the normal approximations to the distribution of the order statistics; a complete

proof along this line would require an analysis of the rate of convergence of the

distributions of the order statistics to the approximating distributions.

B.  Equilibrium Prices in an Auction

To model price formation, we suppose there is a uniform-price sealed bid auction.

Thus if the market doesn’t have excess supply, the price will be at the (S+1)st highest of

the B buyer values, that is 1:S Bv + , which we will also denote as p . We assume that

1S B+ <  so that if all agents go to a single market there is excess demand and so with

probability 1 the market price is strictly positive. Since sellers have 0 reservation value

and are risk neutral, their expected utility in this market is just the expected price, which

we denote by p ,or ( , )p S B  when we need to track the dependence on the number of

buyers and sellers.  The expected utility of a buyer in a market with S sellers and B

buyers (including himself) is

1: :( , ) ( | )S B S B
bu S B E v v v v+= − ≥ .

We also have that ( )( , ) ( , )
( , )b

S w S B p S B
u S B

B
−

= .



C.  A Finite Market Cannot Co-exist with an Infinitely Large One

We can use the fact that large markets are more efficient that small ones to get a

general impossibility result:  A market of  fixed finite size cannot coexist with a market

that is infinitely large.  Let the finite market be market 1, with numbers 1 1,S B  of sellers

and buyers, and let market 2 be deterministic with seller-buyer ratio 2

2

S
B

,   and the

deterministic price 2p  in market 2 defined by 2 2

2

1 ( ) SF p
B

− = .  A buyer or seller moving

into the large market will have no effect on the price there, so for both markets to coexist

it is necessary and sufficient that the expected price in market 1  satisfies 1 2p p≥  (or else

sellers move to market 2) and  that 1 2
b bu u≥  (or else the buyers move.)

Proposition 3

 There is no equilibrium in which trade takes place in both a continuum market and a

finite one.

Proof:     As before let ( )c v  be the buyer’s probability of consuming the good in the

small market when her type is v.  Then 2 2 2 2( | ) Pr( )bu E v p v p v p= − ≥ ≥  is the buyer’s

expected utility in the large market, and ( )1 1( ) ( )bu E v p c v= − i  is the buyer’s expected

utility in the small market.   Since ( )1 ( )E p c vi  is the buyer’s expected payment, and

(from symmetry) each buyer purchases a unit with probability 1

1

B
S

, we know that



( ) ( )1 1 1 11

1

( ) ( ( )) ( )BE p c v p p E c v E p c v
S

= = =i i .  Hence

( ) ( )1 1 1( ) ( ) ( ) ( )bu E v p c v E v p c v= − = −i i , and so  1 2p p≥  implies that

( ) ( )1 1 2( ) ( ) ( ) ( )bu E v p c v E v p c v= − ≤ −i i .

The expression on the right hand side is the buyer’s expected utility when he pays

price 2p  and purchases according to ( )c v . This expression is maximized when the buyer

purchases exactly when 2v p≥ , and the maximized utility is exactly  the buyer’s utility in

the large market.  Any other specification of c leads to strictly lower utility, so 1 2
b bu u<

because with a strictly monotone cdf F, equilibrium trade in the small market cannot

follow the deterministic rule “consume exactly when 2v p≥ ”.

QED

3. Two Finite Markets

Proposition 3 suggests that there must be a bound on the ratio of the sizes of two

markets for both of them to remain active. In this section, we present some general results

on the coexistence of two finite markets. The results illustrate and provide some intuition

for our main observation – that markets of somewhat different sizes can coexist. We will

also use them in subsequent sections, where we assume specific distributions of buyer

valuations to study how the maximum inequality in equilibrium market size relates to the

size of the overall “economy” (that is the combined sizes of the two markets) and to the

aggregate buyer-seller ratio.



Let ( , )su S B  and ( , )bu S B  be the seller and buyer utility in a market with S sellers

and B buyers. While these functions would normally be defined only on the nonnegative

integers, for the purposes of this section we will think of them as continuous functions

defined on [0, ) [0, )∞ × ∞ . Assume that these functions satisfy:

 (A1)
( , ) 0 if ,  ( , ) 0 if 
( , ) 0 if 0,  (0, ) 0 

s s

b b

u S B B S u S B B S
u S B S u B

> > = ≤
> > =

For B > S assume that the functions are differentiable and satisfy the natural

monotonicity properties:

(A2) 0, 0, 0,  and 0s s b bu u u u
S B S B

∂ ∂ ∂ ∂< > > <
∂ ∂ ∂ ∂

We showed in Proposition 2 that holding the buyer-seller ratio constant larger

markets are more efficient. In Proposition 3 we showed that either buyers or sellers are

worse off in a finite market than in a market with a continuum of sellers, regardless of

whether the buyer-seller ratio is different. In this section, we'll assume that in a

comparison of two finite markets, the smaller market is less efficient in a similar sense.

 (A3) 1 2 1 1 2 2 1 1 2 2If  then ( , ) ( , ) or ( , ) ( , ).s s b bB B u S B u S B u S B u S B< < <

This condition is satisfied in the uniform and exponential cases we consider in the next

two sections, and we conjecture that it holds under fairly general conditions.

In our analysis we will often present simpler results ignoring integer constraints.

Our basic definitions are

Definition. An allocation 1 2 1 2( , , , )S S B B is a quasi-equilibrium if it satisfies the following

four constraints:



(S1) 1 1 2 2( , ) ( 1, )s su S B u S B≥ +

(S2) 2 2 1 1( , ) ( 1, )s su S B u S B≥ +

(B1) 1 1 2 2( , ) ( , 1)b bu S B u S B≥ +

(B2) 2 2 1 1( , ) ( , 1)b bu S B u S B≥ +

Definition. An allocation 1 2 1 2( , , , )S S B B  is an equilibrium if it is a quasi-equilibrium and

1 2 1, ,S S B  and 2B  are all integers.

Checking whether an allocation is an equilibrium in principle requires checking

four constraints.  However, we will show that only the constraints ensuring that agents do

not want to leave the smaller market are relevant for determining the smallest possible

number of buyers in an active market.

To make the argument, it is helpful to define the loci where the incentive

constraints in the small market are satisfied with equality.  For fixed values of S  and B,

let 1
1 1( )BS B be the value of 1S  such that such that (B1) holds with equality at

1 1 1 1( , , , )S S S B B B− − . Let 1
1 1( )SS B the value of 1S  such that  (S1) holds with equality at

1 1 1 1( , , , )S S S B B B− − .

Lemma 1: Given assumptions (A1)–(A3), 1
1
BS is a well-defined, increasing, differentiable

function on the domain [0, ]B . There exist constants minB and maxB  with

min max0 / 2B B B B< < < < such that 1
1
SS is a well-defined, increasing, differentiable



function on the domain min max[ , ]B B  with 1 min
1 ( ) 0SS B = and 1 max

1 ( )SS B S= . Moreover,

1
1 1( ) / 2 1/ 2SS B S= +  and 1

1 1( ) / 2BS B S< .

Proof: See appendix.

Proposition 4 is a precise statement of our observation that one need only consider

whether the “small market” constraints can be satisfied in order to determine whether

there is a quasi-equilibrium with specified numbers of buyers in the two markets.

Proposition 4

Fix S and B with 1S B+ < . Assume (A1) – (A3) and that 1 / 2.B B≤ Then, there exists an

1S  such that 1 1 1 1( , , , )S S S B B B− − is a quasi-equilibrium if and only if there exists an 1S

such that 1 1 1 1( , , , )S S S B B B− − satisfies the (B1) and (S1) constraints.

Proof: The "only if" direction is trivial. To establish the "if" result, suppose that 1B  and

1S are such that 1 1 1 1( , , , )S S S B B B− − satisfies the (B1) and (S1) constraints.

By analogy to the construction in the lemma, let 2
1 1( )BS B be the (unique) value of 1S such

that (B2) holds with equality, and let 2
1 1( )SS B be such that  (S2) holds with equality.

Considering the payoffs as 1S approaches 0 and S it is easy to see that the former is well

defined. For 1B  less than maxB B− there is no 1S that makes (S2) hold with equality. If this



is the case, condition (S2) always holds and can be ignored (or one can regard all of the

equations below as applying with 2
1 1( ) 0.SS B = )

(B1) is satisfied if and only if 1
1 1 1( ).BS S B≥  (S1) is satisfied if and only if

1
1 1 1( ).SS S B≤  (B2) is satisfied if and only if 2

1 1 1( ).BS S B≤ (S2) is satisfied if and only if

2
1 1 1( ).SS S B≥ The fact that (B1) and (S1) are both satisfied at 1S implies that

1 1
1 1 1 1( ) ( ).S BS B S B≤ Assumption (A2) immediately implies that 1 2

1 1 1 1( ) ( )B BS B S B< and

2 1
1 1 1 1( ) ( )S SS B S B< , e.g.

1 1 1 1
1 1 1 1 1 2 1 1 1 1 1 2( ( ), ) ( ( ), 1) ( ( ), 1) ( ( ), ).B B B B

b b b bu S B B u S S B B u S B B u S S B B= − + ⇒ + < −

Finally, using (A2),  (A3), and then (A2) again we can see that 2 2
1 1 1 1( ) ( )S BS B S B< :

2 2 2 2
1 1 1 1 1 2 1 1 1 1 1 2

2 2
1 1 1 1 1 2

2 2
1 1 1 1 1 2

( ( ) 1, ) ( ( ), ) ( ( ), ) ( ( ), )

      ( ( ), ) ( ( ), )

      ( ( ), 1) ( ( ), ).

S S S S
s s s s

S S
b b

S S
b b

u S B B u S S B B u S B B u S S B B
u S B B u S S B B
u S B B u S S B B

+ = − ⇒ > −

⇒ < −

⇒ + < −

Combining these inequalities gives 2 1 1 2
1 1 1 1 1 1 1 1max( ( ), ( )) min( ( ), ( )).S B S BS B S B S B S B≤

Any 1S  between these bounds will satisfy (B1), (B2), (S1) and (S2).

QED

The following result on the possibility of very unequal or almost equal market

splits follows easily from Proposition 4.

Proposition 5



Fix S and B with 1S B+ < . Assume (A1) – (A3). Then,

(a) There exist quasi-equilibria for all 1B in some neighborhood of / 2B .

(b) There do not exist quasi-equilibria for positive 1B  in some neighborhood of 0.

Proof: For part (a) note that (S1) and (B1) are satisfied with strict inequalities for

1 / 2B B= and 1 / 2.S S= By continuity, they are also satisfied for nearby values of 1.B

For min
1B B<  (A2) implies that (S1) cannot be satisfied and hence there is no quasi-

equilibrium.  QED

Remark: Proposition 5 shows that the quasi-equilibrium with a 50-50 split is not a knife-

edge for any fixed market size.  This leaves open the possibility that the set of two-

market equilibria shrinks to a 50-50 split as the market size grows.  Proposition 7 below

provides a much stronger result on the coexistence of small and large markets.

The following result provides a little more detail on the structure of the quasi-

equilibrium set.

Proposition 6

Assume (A1)–(A3). Then there exists a 1 [0, / 2]B B∈  and an 1 [0, / 2]S S∈ for which (S1)

and (B1) both hold with equality. If there is a unique such 1B , then there exists an 1S  such

that 1 1 1 1( , , , )S S S B B B− − is a quasi-equilibrium if and only if 1 1 1[ , ].B B B B∈ −



Proof:   Assume w.l.o.g.  that 1 / 2.B B≤  We noted in Lemma 1 that 1 min
1 ( ) 0.SS B =  The

assumption in (A1) that buyers receive zero utility when there are no sellers implies that

1 min
1 ( ) 0BS B > . Lemma 1 also shows that 1

1 ( / 2) / 2 1/ 2SS B S= +  and 1
1 ( / 2) / 2.BS B S<  By

the intermediate value theorem there exists a 1 [0, / 2]B B∈ for which 1 1
1 1 1 1( ) ( )B SS B S B= .

For 1 1B B=  and 1
1 1 1( )BS S B= , (S1) and (B1) hold with equality.

We know from Proposition 4 that a quasi-equilibrium exists with 1B  buyers in the

smaller market if and only if min
1B B≥ and 1 1

1 1 1 1( ) ( )B SS B S B≤ .  If the two curves have a

unique intersection, then the fact that they are continuous and that

1 1
1 1( / 2) ( / 2)B SS B S B< implies that 1 1

1 1 1 1( ) ( )B SS B S B≤  if and only if [ ]1 1, / 2B B B∈ .

QED

Remark: We will sometimes refer to the assumption in the second part of Proposition 6 as

the single crossing condition for the 1
1
BS and 1

1
SS curves. It will be straightforward to show

that it holds for the distributions of valuations considered in sections 4 and 5. A major

component of our characterizations of the quasi-equilibrium set will be explicitly solving

for 1B .

Figures 1 and 2 illustrate the structure of the equilibrium and quasi-equilibrium

sets in a typical case. (The bu  and su  functions were taken to be the "natural" extensions

to the reals of the functions one would derive in an example with ten buyers with

valuations drawn from a uniform distribution on [0,1]  and five sellers.)



Figure 1 graphs the fractions of sellers in market 1 that make buyers and sellers

exactly indifferent between the two markets against the fraction of buyers in market 1.

The functions satisfy the assumptions (A1)-(A3). As a result, the solid 1
1
BS  curve lies

above the dotted 1
1
SS curve when 1 / 2B B< . (For 1

1 1 1( )SS S B= sellers are indifferent

between the small and large market. (A3) implies that buyers prefer the small market for

this 1S . (A2) then implies that buyers are indifferent only with a higher 1S .) The unique

intersection of the curves is at 1 / 2B B= . If buyers and sellers did not adversely affect

prices when moving to the other market, the only quasi-equilibrium with split markets

would be an unstable equilibrium with an exactly 50-50 split between the two markets.

Figure 2 graphs the values of 1 /S S  for which the (B1), (B2), (S1) and (S2)

constraints hold with equality for the same utility functions as in Figure 1. The quasi-

equilibrium set is the parallelogram-shaped region in the center of the figure below the

curves where (S1) and (B2) hold with equality and above the curves where (S2) and (B1)

hold with equality. In this example, quasi-equilibria exist whenever the smaller market

has at least 11% of the buyers (meaning 1B is at least 1.1).

We have placed small stars in the figure at points within the quasi-equilibrium set

where the numbers of buyers and sellers are both integers. These are the equilibria. In an

equilibrium the smaller market can have two buyers and one seller or four buyers and two

sellers.  There is no equilibrium with three or five buyers in the smaller market. With

three buyers in the smaller market, for example, then there are a range of values of 1S

near one-and-a-half which satisfy the quasi-equilibrium conditions. None of these

allocations, however, satisfy the integer constraints – sellers would be unwilling to stay in



small market if there were two sellers, while buyers would be unwilling to stay in a

market if there was only one seller.

Unequal sized markets are only possible in our model because buyers and sellers

have an adverse “market impact” if they switch markets. The market impact is small

when the number of buyers and sellers is large, but so are the efficiency differences.  For

example, while there is a very big difference between having two and four buyers in a

market, a market with two hundred sellers is already close to efficient and there is little

difference between such a market and a market with four hundred sellers.

To illustrate how markedly the efficiency effect declines with the size of the

market, Figure 3 graphs the equal-buyer-utility and equal-seller-utility curves which

apply to a model with 30 buyers and 15 sellers (and a uniform distribution of seller

valuations as in Figure 1). The curves are much closer together than the curves in Figure

1. Sellers are indifferent when prices are equal in the two markets. The closeness of the

two curves reflects that efficiency differences are fairly small and can only offset a small

difference in price.

Figure 4 graphs the four curves that bound the quasi-equilibrium set in this case.

One interesting thing to note is that the range of market sizes in the quasi-equilibrium set

is very similar to that in Figure 2: Here a quasi-equilibrium exists whenever at least 12%

of the buyers are in the small market, as compared to the 11% in Figure 2. The quasi-

equilibrium set looks much flatter in the S-dimension. This reflects that the “market

impact” is much smaller and hence buyer and seller utility (the latter of which is equal to

the price) have to be more nearly equal in the two markets in equilibrium. The stars in the

figure illustrate that there are nonetheless a substantial number of true equilibria. (Recall



that the y-axis graphs 1 /S S and hence the integers are closer together.)   Recall that

Proposition 5 did not rule out the possibility that the fraction of buyers necessary to make

the small market viable in a quasi-equilibrium might be converging to one-half as the

number of buyers and sellers grows. In the examples discussed in sections 4 and 5 the

degree of asymmetry between markets that is possible in a quasi-equilibrium is roughly

independent of the total market size (for a given buyer-seller ratio).  To provide some

intuition for this, we offer a more general sufficient condition under which there is a set

of quasi-equilibria with a non-vanishing interval of market sizes even in the limit as

market size goes to infinity. 

Assume that 1 2B B< . Note that conditions (B1) and (S1) can be rewritten as

(B1′) 2 2 2 2 2 2 1 1( , ) ( , 1) ( , ) ( , )b b b bu S B u S B u S B u S B− + ≥ −

(S1′) 2 2 2 2 2 2 1 1( , ) ( 1, ) ( , ) ( , ).s s s su S B u S B u S B u S B− + ≥ −

The left-hand sides of each of these conditions measure the “market impact” that buyers

and sellers, respectively, have when they move to market 2. The right-hand sides measure

the degree to which buyers and sellers, respectively, find the larger market more

attractive. Assumption (A3) implies that the RHS of at least one of these two equations is

positive.

In the examples we examine in the following two sections, when the buyer-seller

ratio in each of the two markets is held fixed at γ , the market impact and large-market

efficiency effects will satisfy the following condition:



(A4)

1 2 3 4

1
2 2 2 2

2
2 2 2 2

32 1
2 2 1 1

2
2 2 1 1

There exists an x (0,1/ 2) and positive constants , ,  and  such that

      ( , ) ( , 1)

      ( , ) ( 1, )

      ( , ) ( , )

      ( , ) ( , )

b b

s s

b b

s s

k k k k
ku S B u S B
B
ku S B u S B
B

kB Bu S B u S B
B B

Bu S B u S B

∈

− + ≥

− + ≥

−− ≤

−− ≤ 1 4

1 2 1 1 1 2 2when / [ ,1/ 2], ,  and .

B k
B B

B B x B B B S B S Bγ γ∈ = − = =

Roughly, what this means is that the “market impact” of a buyer or seller is a 1/ B effect

and that the “efficiency advantage” of a large market goes to zero at rate 1/ B as B gets

large and also goes to zero linearly in  the difference 2 1B B
B
− between the sizes of the two

markets (expressed as a fraction of the total number of buyers).

It is easy to show that when the market impact and efficiency advantages of the

smaller market are of this magnitude, then the range of 1'sB for which a quasi-equilibrium

exists (with equal buyer-seller ratios in the two markets) is a nonvanishing fraction of the

total market size.

Proposition 7

Suppose su and bu satisfy (A1)–(A3). Suppose that for a given value of γ , (A4) is

satisfied and the inequalities in (A4) hold for constants 1 2 3 4, , , ,  and x k k k k . Then for any

B and any 1B with 1
1 3 2 4 1 3 2 4

1 1 1 1[ min( / , / ), min( / , / )]
2 2 2 2

B k k k k k k k k
B
∈ − +  and

1 [ ,1 ]B x x
B
∈ − , the model with B buyers and Bγ sellers has a quasi-equilibrium with 1B

buyers in market 1.



Proof: We know from Proposition 4 that it suffices to show that for a fixed B and S, (B1′)

and (S1′) are satisfied for some 1S whenever 1 [ ,1/ 2]B x∈  and

2 1 1 3 2 4( ) / min( / , / )B B B k k k k− < . That (B1′) holds for 1 1S Bγ= follows immediately from

(A4) and 2 1 1 3( ) / /B B B k k− <

31 2 1
2 2 2 2 2 2 1 1( , ) ( , 1) ( , ) ( , )b b b b

kk B Bu S B u S B u S B u S B
B B B

−− + ≥ ≥ ≥ − .

That (S1′) also holds for this 1S follows just as easily from (A4) and 2 1 2 4( ) / /B B B k k− <

2 2 1 4
2 2 2 2 2 2 1 1( , ) ( 1, ) ( , ) ( , )s s s s

k B B ku S B u S B u S B u S B
B B B

−− + ≥ ≥ ≥ − .

QED

In the following two sections we will consider two particular specifications of the

value distribution, verify that they satisfy each of the assumptions used in this section,

and then perform some explicit calculations to provide a clearer view of the quasi-

equilibrium and equilibrium sets.

4. Two Finite Markets: The Uniform Case

 To learn more about when two markets can co-exist, and to verify that the

assumptions in Section 3 are reasonable, we will consider two tractable distributions in

some detail.  This section analyzes the uniform distribution, which has  a bounded

support, and the next section analyzes the exponential case, where the distribution of

values is unbounded.  The bounded-support case may be a better description of markets

for goods where there is a readily available close substitute that effectively caps the



maximum willingness to pay, while the unbounded support may be a better description of

models for one-of-a-kind objects like paintings or rare collectibles. On  the technical side,

the distinction between bounded and unbounded support is relevant to our analysis

because with a bounded support,  the expected value of the highest value is less sensitive

to adding more buyers.

A. Preliminaries

 Under the uniform distribution, the expected value of the ith lowest  order

statistic out of n draws is distributed Beta(i, n-i+1) and has expectation
1

i
n +

(see e.g.

David [1970].) The seller’s expected utility is equal to the expectation of the price, which

we will denote by p . The price is given by the S+1th highest buyer value, which is

the thB S− lowest. Hence, ( , )
1s

B Su S B p
B
−= =
+

, and 1 p−  is 1
1

S
B
+
+

. We can also compute

1: 1:
1:( | )  for 

(1 )
S B S B

S B

Sf v v v v
B v

+ +
+= >

−
. Because the buyers valuation conditional on

being greater than p is uniform on ( ,1]p , the buyer’s expected utility conditional on

winning the good at p is (1 ) / 2.p−  Each buyer wins the good with probability /S B , so

the buyer’s expected utility is ( )1 ( , ) (1 )( , )
2 2 (1 )b

p S BS S Su S B
B B B

− += =
+

.  Note that holding

S
B

 constant, buyers are actually better off in smaller markets, even though the larger

market is more efficient.



Adding a seller to a market causes the price to fall by 1
1B +

, irrespective of the

number of sellers in the market, while adding a buyer reduces buyer utility by

( 1)
( 1)( 2)

S S
B B B

+
+ +

.  Thus the “crowding” or “market impact” effect of adding another buyer

is strongest when S
B

 is near to 1; this will allow more unequal size ratios to be equilibria.

Although the derivation of the utility functions assumes that the numbers of uyers and

sellers are integers, the utility functions given above are well-defined for all non-negative

real numbers.  Moreover, it is clear from inspection that these functions satisfy (A1) and

(A2).    For (A3) (at least one side is better off in a larger market) note that we can rewrite

the buyer utility as (1 ) 1(1 (1 ))
2b

pu p
B

−= − + ; 5 thus if prices are higher in market 1 and

1B is smaller than 2B , then buyers must be better off is market 2.  (A4) requires that there

be lower bounds on the market impact and upper bounds on the efficiency advantage of

larger markets of a particular form when 1 /B B is in some interval [ ,1 ]x x− .

The market impact effect of adding a seller is at least 1/ B , while the market impact of

adding a buyer is greater than 
2

B
γ .  As we remarked above, holding S

B
 fixed, buyers are

worse off in larger markets, so we can take 3 0k = . Finally, we compute

1 2 1 2 2 1 2 1 2 1
2 2 1 1

1 2 1 2

( )(1 )( , ) ( , ) .
( 1)( 1) ( 1)( 1)s s

S B S B S B S B B Bu S B u S B
B B B B

γ+ + − − − − −− = =
+ + + +

If we restrict 1B
B

to lie in the interval [ ,1 ]x x− , this is less than 2 1
2

( )(1 ) 2 .B B
B x

γ− −



B. Necessary And Sufficient Conditions for Quasi-Equilibrium

Proposition 8

 When buyer values have the uniform distribution, there is an unique  1 [0, / 2]B B∈  for

which (S1) and (B1) both hold with equality.  Moreover, 1 1 51
4

B S
B B

+ > − 
 

and

1( ) 1 1lim lim
4 4B B

B B S
B B→∞ →∞

= − .

Corollary

 There exists an 1S  such that 1 1 1 1( , , , )S S S B B B− − is a quasi-equilibrium if and only if

1 1 1[ , ].B B B B∈ −  There are no equilibria in which both markets are active and

1 1 5 1 51
4 4 4

B S S
B B B

+ + ≤ − = − 
 

.

Proof of Proposition 8: Set 2 1S S S= −  and 2 1B B B= − .  The (S1) constraint can be

rewritten as 1 11 ( 1)S c B+ ≤ + , where 3
2

Sc
B
+=
+

.

When (S1) holds with equality, the (B1) constraint, which is

1 1 2 2

1 1 2 2

(1 ) (1 )
(1 ) ( 1)( 2)

S S S S
B B B B

+ +≥
+ + +

, becomes 1 1 1 1

1 1

( )( 1) ( )( 1)c B B B B S S S S
B S

− − + − − +≥ .

Further algebra shows that if we define 1 1
2

Bz
B
+=
+

 and 1
2

f
B

=
+

, this can be rewritten as

                                                                                                                                                

5 To show this, note that S/B = (S+1)/(B+1)  +  (S/B - (S+1)/(B+1)).



( ) ( )
( ) ( )

3 3 2 2 2

2 3 2

(1 ) (1 ) (1 )

( 2 ) ( ) ) 2 ) ( 2 )( )
( 2 )( )

c z cf c f z cf c f z cf f

c z cf c f c c c f z f c f c cf c f c f z
f c f c f

− + + + + + − + ≥

+ − + − − − + − + + − − −
− −

Subtracting the right-hand side from the left yields the quadratic equation

2 2 2 24 (5 4 2 ) 2 4 0cz c c cf f z f c cf c− + − + − + − − + ≥ .

Rearranging terms gives

(a") [ ]2 2 24 (5 ) 2 ( 2 2 ) 0cz c c z c c f f cz z c − + − − + + + − − ≥  .

The quadratic expression in the first set of square brackets has two roots, 1
4

cz −=  and

1z = . It is positive between these roots. Because 1 3
3 2 4( 2) 4

c S cf
S B B

+= = < =
+ + +

, and

1/ 2z < , the term in the second set of square brackets is negative. Hence, the full

expression must either have two roots in the interval [(1 ) / 4,1]c− or no roots at all. The

fact that (B1) is satisfied at 1 1( , ) ( / 2, / 2 1/ 2)B S B S= +  (where (S1) holds with equality)

implies that the expression (a") is positive at 1/ 2z = . Hence, there is a unique solution

with 1 1/ 2B <  and it satisfies 1 1 1 1
2 4 4( 2)

B c B S
B B
+ − − −> =
+ +

 which is equivalent to

1 1 51
4

B S
B B

+ > − 
 

.

When B goes to infinity, f converges to zero, and the smaller solution to (a")

converges to the smaller solution to the first quadratic in that equation. As noted above

this is 1 1 51
4

B S
B B

+ = − 
 

.

QED



Here is an intuition for the role of the aggregate seller/buyer ratio S
B

γ=  in the

limiting value of 1B . When both markets are large, the crowding effects are small, so the

seller/buyer ratios in each market must be about the same. We saw above that with equal

seller/buyer ratios buyers are actually better off in the smaller market, while the seller's

advantage in the larger market is proportional to 2 1

1 2

( )(1 )
( 1)( 1)

B B
B B

γ −−
+ +

. To have a quasi-

equilibrium, the efficiency advantage must be offset by the market impact that a seller

moving to the larger market would have. The market impact is 21/( 1)B + . When γ  is

larger, the efficiency advantage is reduced, while the market impact is unchanged. Hence,

the (S1) constraint can be satisfied for larger values of 2 1

1

( )
( 1)
B B
B
−
+

.

C. One-sided Market Impact

One feature of the model that some may find unintuitive is that buyers and sellers

consider their market impact even when they are very small relative to the total market

size. For example on eBay, where most buyers are casual consumers and most sellers are

small and not-so-small businesses, it might be more plausible that sellers would consider

the market impact effect than that buyers would.6  Possible reasons for this would be that

the market impact of a typical buyer is so small that the buyer might round it off to zero,

                                                

6 A recent New York Times article (Guernsey, 2000) reports that one-quarter of one percent of eBay’s

registered users are responsible for over two-thirds of the items listed. These sellers had an average of

seventy items each in the process of being auctioned at any point in time.



or that buyers do not think about things enough or have enough experience to learn about

the effect.

In this subsection, we note that it is not necessary to assume that both buyers and

sellers recognize that they have a market impact to obtain our conclusions. It would

suffice for one side to do so. The proposition below establishes that there are still quasi-

equilibria with substantially different market sizes if we add the restriction that sellers

must be exactly indifferent between the two markets (as one would want to if only buyers

recognized the market impact effect.) The minimum possible fraction of agents in the

smaller market is increased from about 1
4 4

S
B

−  to 1
2 2

S
B

−  by this change. We have

chosen to add a seller indifference condition rather than a buyer indifference condition

only because the algebra is simpler that way. Which side of the market recognizes that

there is a market impact is not important.

Proposition 9

For fixed total numbers of buyers and sellers B and S with 2B S> + , for every partition

1 2( , )B B  such that for i=1,2, 1 1[ , ]
2 2 2 2

iB S S
B B B
∈ − + , there is a quasi-equilibrium

1 2 1 2( , , , )S S B B with 1 1 2 2( , ) ( , )s su S B u S B= .

Proof: See appendix.

D. Integer-valued Equilibrium

So far we have been ignoring the constraint that the numbers of buyers and sellers

in each marker should be an integer. With a small number of traders it may be that only a



few ratios of markets sizes are possible.  However, one would expect these integer

problems to become less important in large markets, and the next result shows that the

any ratio of market sizes in the interval given in Proposition 9 can be approximated by an

integer-valued equilibrium when the number of traders is sufficiently large.  Since given

“target ratios” of 1B  to B and B to S can only be approximated by integers, the statement

of the result uses α  as the “target level” of 1B
B

 and γ  as the “target level” of  /S B .

Proposition 10

For any “target market ratios” , 0α γ >  with 1 1,
2 2 2 2

γ γα  ∈ − + 
 

 and any 0ε >  there

exists B  such that for all B B>  there is an equilibrium 1 2 1 2( , , , )S S B B  with 1 2B B B+ = ,

1 /B B α ε− < , and /S B γ ε− < .

Proof:  See Appendix. The proof first constructs a quasi-equilibrium with equal prices

that approximates the target ratios, but where only 1B  and 2B  are guaranteed to be

integers; we then use this partition to construct an integer-valued partition where all of

the incentive constraints are satisfied but prices are only approximately equal.

Proposition 10 proves that when the number of buyers is large there exist equilibria

throughout the range of market sizes for which Proposition 9 shows that quasi-equilibria

with equal seller utility exist. We present this result rather than trying to show that

equilibria exist throughout the full range of market sizes for which Proposition 8 shows



that quasi-equilibria exist because accounting for the integer constraints is cumbersome,

and the algebra characterizing the equal-seller-utility equilibria is much simpler.

5. Exponentially Distributed Values

To test the robustness of our results we now consider another tractable

distribution, the exponential with ( ) exp( ) for 0f v v v= − ≥ .  As we remarked earlier, the

exponential has an unbounded support, which might be appropriate for thinking about

rare art objects.

Because of this unbounded support, we would expect that adding more buyers has

a greater effect on the size of the highest order statistic, and this is indeed the case.  Here

the mean of the rth highest of n draws is : 1
n

r n

i r
iµ −

=
=∑ , so the expected price in a market

with B buyers and S sellers is 1 1 1

1 1 1
( , )

B B S

i S i i
p S B i i i− − −

= + = =
= = −∑ ∑ ∑ .

The buyer’s expected utility is

( ): 1: 1 1 1 1

1 1 1 1 1 1

1 1 1 1S S B B S S S i
k B S B

k k i k i S k i k i k

SE i i i i
B B B B B

µ µ + − − − −

= = = = + = = = =

 − = − = = =  
∑ ∑ ∑ ∑ ∑∑ ∑∑ .

The buyer’s utility function naturally extends to the positive reals by setting

( , ) /bu S B S B=  if B S>  and ( , ) 1bu S B = if B S≤ . The seller’s utility function can be

extended to noninteger values of B and S by setting ( , ) 0su S B =  for B S≤  and

( , ) ( 1) ( 1)su S B B S= Ψ + −Ψ + for B S> , where ( )xΨ  is the digamma function. The

property of the digamma function that makes this a natural extension is that



1
1

1
( )

x

i
x iη

−
−

=
Ψ = − +∑ when x is an integer, where 0.577η ≈  is Euler’s constant.7 The

digamma function has an asymptotic expansion of the form

2 2
1

1 1( 1) ln( )
2 k k

k
x x C

x x

∞

=
Ψ + = + −∑ . When B and S are large this gives the approximation

1 1 1( , ) ln (1/ ) (1/ )
2s

Bu S B o S o B
S S B

   ≈ − − + −   
   

.8 Note that the seller’s utility increases

without bound as B increases for a given S.

The bu  and su functions clearly satisfy (A1). (A2) is also satisfied , as bu has the

desired monotonicity properties,  and su does because the digamma function is monotone

increasing.9  The fact that larger markets are more efficient implies that (A3) is satisfied

on the integers. If the seller-buyer ratio is lower in the smaller market, then buyers will

prefer the larger market. If the two markets have the same seller-buyer ratio, then buyers

are indifferent, and efficiency (Proposition 2) implies that the sellers prefer the larger

                                                

7 The standard definition of the digamma function is ( ) ( ) / ( )x x x′Ψ = Γ Γ  where 1

0
( ) x tx t e dt

∞ − −Γ = ∫ is the

gamma function.

8 The coefficient 2 kC  is the 2kth Bernoulli number divided by 2k. The first two values for these coefficients

are 2 1/12C = − and 4 1/120C = .  As a result, the approximation is quite accurate even for relatively small

values of B and S. For example, the error is approximating ( , )su S B is less than 0.01 for any B if S is at

least 3.

9 An alternate definition of the digamma function is 
1

1
( )

( 1)k

z
z

k k z
η

∞

=

−
Ψ = − +

+ −
∑ . Differentiating this

expression gives 
2

0

1
( )

( )k

z
k z

∞

=

′Ψ =
+

∑ , which is clearly positive.



one.  By monotonicity, sellers also prefer the larger market if the seller-buyer ratio is

higher in the small market. We believe that (A3) is satisfied for all noninteger B and S as

well, but have only been able to show that it holds for sufficiently large B (which is all

that is required for the proposition we give below.) To see this, note that differentiating

the asymptotic approximation to the digamma function gives

2
22 2 1

1

(1 ) 1 1( , ) 2 ( 1) .
2 ( ) ( )

k
s k k

k

d u B B kC
dB B B

γ γγ γ γ
γ γ

∞

+
=

−= + −∑

This will be positive for all B greater than some cutoff B .

For (A4), the market impact effect of adding a buyer to market 2 is

2

2 2 2( 1) 1
S

B B B B
γ γ= >

+ +
, and the market impact of adding a seller is 

2

1
1S +

.10  Holding

S
B

 fixed, buyers are exactly indifferent between a smaller and a larger market. When

1 /B B x> , the seller efficiency effect is bounded by

2 1
2 1 2 1

2 2 1 1 2 1
1 1 1

1( , ) ( , ) ( 1) ( 1) .
1

B B

s s
k

B B B Bu B B u B B B B
B k B xB

γ γ
−

=

− −− ≤ Ψ + −Ψ + = ≤ ≤
+ +∑

When B is large enough so that (A3) is satisfied, Proposition 5 implies that we can

find the range of values of 1B for which a quasi-equilibrium exists by finding the

intersection of the curves where (B1) and (S1) are exactly satisfied. In our calculations

we use the approximation to the expected price given above, and thereby find

approximate bounds on the quasi-equilibrium set for large B.

                                                

10 The digamma function always satisfies ( 1) ( ) 1/z z zΨ + −Ψ = , so this expression is exact even for

nonintegral values of B and S.



Proposition 11

For any 0ε > there exists a B  such that for all B B> the model with B buyers, Bγ

sellers and exponentially distributed values satisfies

(a) If 1 1 3,
4 4

B
B

γ γε ε− + ∈ + −  
, then there exists an 1S for which

1 1 1 1( , , , )S B S B B Bγ − −  is a quasi-equilibrium; and

(b) If 1 1
4

B
B

γ ε−< −  or 1 3
4

B
B

γ ε+> +  then there is no 1S for which

1 1 1 1( , , , )S B S B B Bγ − −  is a quasi-equilibrium.

Remark: As with the uniform case, we can get intuition for the role of S
B

γ =  in the range

of equilibrium market sizes by comparing the seller’s market impact and efficiency

effects. (Buyers are indifferent between the two markets when the buyer-seller ratios are

equal.) The price impact of adding a seller is proportional to 21/( 1)S + . Using the

approximation ( , ) ln(1/ ) (1/ 1/ ) / 2bu B B B Bγ γ λ≈ + − , the efficiency advantage of the

large market is approximately

2 1
2 2 1 1

2 2 2 2 1 2

1 1 1 1 1 1 1( , ) ( , ) .
2 2 2s s

B Bu B B u B B
B B B B B B

γγ γ
γ γ γ
    −−− ≈ − − + − =   
   

When γ  is larger, the efficiency advantage is smaller for fixed 1B  and 2B , and thus

2 1B B− can be increased without violating the constraint that the efficiency effect must be

smaller than the market impact.



Remark: Proposition 11 says that when B is large quasi-equilibrium requires that the

fraction of buyers in the small market be at least about (1 ) / 4γ− . The number of buyers

need not be very large for the “about” in this statement to be practically unimportant. For

example, we’ve examined this numerically and found that when 0.2γ =  conclusions (a)

and (b) of the proposition will be true for 0.01ε =  if B is at least eleven. For 0.8γ = , they

will be true for 0.01ε =  if B is at least eighteen.

Proof:  It suffices to show that for B sufficiently large, all intersections of the 1
1
BS  and

1
1
SS curves with 1 / 2B B<  have 1 /B B  within ε of (1 ) / 4γ− . (B1) holds with equality if

and only if 1 2

1 2 1
S S
B B

=
+

. Hence, 1 1
1 1( )

1
B BS B B

B
γ=

+
.

The set of 1B with 1 1
1 1 1 1( ) ( )B SS B S B=  is thus the set of solutions to

1 1
1 1( , ) ( 1, ) 0.

1 1s s
B Bu B B u B B B B

B B
γ γ γ− − + − =

+ +

Suppose that the LHS of this equation can be approximated by a function 1( / )f B B in the

sense that

lim ( ) ( , ) ( 1, ) 0
1 1s sB

zB zBB f z u B zB u B B B zB
B B

γ γ γ
→∞

 − + − + − = + + 

for all (0,1/ 2]z∈ . If { }1( )B B is a sequence of solutions to 1 1
1 1 1 1( ( )) ( ( ))B SS B B S B B=  for

B=1, 2, … and z  is a subsequential limit point of 1( ) /B B B  then ( ) 0.f z = Hence, it

suffices to show that for some choice of the approximating function f the unique

solution to ( ) 0f z =  in (0,1/ 2] is (1 ) / 4γ− .



We approximate the equation for (S1) holding with equality using the formula

noted earlier:

1 2
1 1 2 2

1 2 1 1 2 2

1 1 1 1 1 1 1( , ) ( 1, ) ln ln .
1 2 2 1s s

B Bu S B u S B o
S S S B S B B

         − + = − − − + − +         + +         

For 1
1 1

BS B
B

γ=
+

 we have

1 2 2 2

1 2 2 2 2 2

1 1 1 1 1ln ln ln ln .
1 1 1

B B B SB B o
S S B B B S B S Bγ γ

      + +  − = − = + +        + + +        
 Plugging in

zB for 1B , (1 )z B−  for 2B , 2 /( 1)zB Bγ +  for 1S , etc. and approximating to first order, e.g.

1(1/ ) 1/B B z= , 2
1(1/ ) ( 1) /( ) 1/ (1)B S B B zB z oγ γ= + = + , etc. gives

( )2 2 1 1 1 12 ( ( , ) ( , )) 1 .
1 1 (1 ) (1 ) (1 ) (1 )s s

zB zBB u B zB u B B B zB o
B B z z z z z z

γ γ γ
γ γ γ

− − − = + − + + − +
+ + − − − −

Setting ( )f z equal to the function on the RHS of this expression and multiplying through

by (1 )z zγ −  we find ( ) 0f z =  if and only if

2 2 (1 ) (1 ) 0,z z z z z zγ γ γ+ − − + − + − =

which reduces to (1 ) / 4.z γ= −

QED

6  Thin Markets

We have seen that a substantial range of market sizes is possible in both the

uniform and exponential cases.   We now test the robustness of that conclusion to the

possibility that markets are “thin,” in the sense of there being very few items available for

trade. Specifically, we suppose that each seller only has the good with a probability q<1,

and investigate the effect of varying q.   We suppose that buyers and sellers choose



markets before either the buyer’s uncertainty or the seller’s is resolved; we think of q  as

the probability that the seller has a good of the appropriate type to sell in the “current

period.”  Thus when S is the number of potential sellers who enter a market, the number

of actual units for sale is a random variable S that is distributed binomial (q, S).

 The exponential model is more tractable when this sort of uncertainty is

considered, so this is the only case we analyze here. As noted above, the expected utility

of a buyer in a market with B buyers and S units for sale is simply S
B

. Thus when supply

is random, if we let S  be the random number of units that are available for sale, we have

that buyer expected utility is S qSE
B B

 
= 

 
.   Since sellers only care about the price in the

event that they have a unit of the good to sell, their  expected utility conditional on having

a good to sell from being in a market with B buyers and  S-1  other sellers is

1 1

1 2
1

B S

i i
i E i− −

= =

 
− −  

 
∑ ∑ . If 0qS → , the probability that any other seller has a unit for sale

also goes to 0, and so all sellers prefer to be in the market with more buyers. More

precisely, for large B there cannot be an equilibrium with two active markets and 1 2B B≠

if 1 qS
B
> .  This is intuitive: when q is very small, each seller expects to be a monopolist,

and so prefers to be in the larger market; even if it has more sellers.

However, when 0qS →  there are vanishingly few objects offered for sale, so

this is a fairly extreme version of a thin market.  We next we consider a somewhat less

extreme version, with exactly three sellers, each of whom has an object to sell (so we go

back to 1q = .)  Here there can be two active markets even when the number of buyers is



very large.   To see this in the exponential case, let 1 1S = , 2 2S = , 1 / 3B B=  and

2 2 / 3B B= . Then buyers receive exactly the same utility in both markets and strictly

prefer not to switch. The seller’s payoff in market 1 is 
/3

1

1
1

B

i
i−

=
−∑ , which is approximately

ln 1
3
B γ + − 

 
;

the seller’s payoff in market 2 is  
2 /3

1

1
3 / 2

B

i
i−

=
−∑ , which is approximately

2ln 3 / 2
3
B γ + − 

 
.

So the sellers in the large market get a higher utility by approximately ln 2 1/ 2 0− > .

Despite this difference in utility, the partition is still an equilibrium: because of the

“crowding effect,” the seller in the small market does not wish to move to the large one.

If she did, the number of sellers there would increase to 3, and she would receive

approximately 2ln 11/ 6
3
B γ + − 

 
, which is less than her current utility because

ln 2 .693 5 / 6≈ < .

A similar exercise shows that 1 1S = , 2 2S = , 1
2( 2) 1

5
BB += −  and

2
3( 2) 1

5
BB += −  is an equilibrium of the model with uniformly distributed buyer values

for any B.

7. Related Work



There are several sets of papers that develop other sorts of models of multiple

markets.  One set is on consumers having a preference for shopping at markets with a

more diverse range of products, as in Gehrig [1998]. In this model, firms choose between

locations; all firms at given location are equally spaced on a circle that represents product

characteristics, as in Salop [1979], and in equilibrium all firms at a given location charge

the same prices.  Consumers are located on the line a la Hotelling and pay a

transportation cost to visit the markets, which are located at the endpoints.  Additionally,

as in Stahl [1982] and Wolinsky [1983], consumers prefer larger markets because they

have a finer grid of available “varieties;” in Gehrig’s model the externality arises because

a finer grid of varieties reduces the expected distance between the closest available good

and the consumer’s preferred type.  Our model abstracts away both the preference for

more varieties at a site and the exogenous difference in market “locations.”

A second set of papers is the finance literature on competing exchanges, whose

starting point is the relationship between the volume of trade and the elasticity of

demand, which is interpreted as “asset liquidity.”11 Pagano [1989] explores the

implications of this relationship in a model of competing asset markets, where agents

have identical CARA preferences, and are driven to trade because they have differing

endowments of a risky asset. As in Kyle [1989], Pagano assumes that players submit

demand functions as opposed to making simple bids, with the market outcome

determined by an implicit “auctioneer.”  He finds that if transaction costs in the two

markets are the same, the two markets can co-exist only if they are identical, but that the

                                                

11 See Kyle [1985, 89] and Admati and Pfleiderer [1988].



two markets can co-exist if the choice of market influences the variance of endowment

and if transaction costs differ across markets.12 13

Then there is a literature on competing auctions in “large” markets, for example

McAfee [1993] and Peters and Severinov [1997].  In these papers, as in our model, all

goods are identical, and all agents are risk-neutral.  However, these models assume that

each market has a single seller, and they study only equilibria where each market has the

same size. 14

We should also mention the literature on the asymptotic efficiency of double

auctions and other exchange mechanisms, e.g. Gresik and Satterthwaite [1989] and

Satterthwaite and Williams [1989].  These papers study trade in settings of two-sided

incomplete information, where we know from the Myerson-Satterthwaite theorem that no

(incentive-compatible) mechanism can be ex-post efficient, and derive bounds on the rate

at which the ex-post inefficiency disappears as the economy grows.  Our welfare results

concern a different sort of inefficiency: trade in a given market is always ex-post efficient

in that market, but as Proposition 2 shows, ex-ante welfare is increasing in market size.

8.  Ideas for Future work

We would like to develop a model that incorporates adverse selection in the

market-participation decision.  Our casual empiricism suggests that a major reason that

                                                

12 Pagano calls the  identical-market outcome for zero transaction costs a knife-edge because all traders
would prefer market A if they expect it to be even slightly larger. However, the analysis throughout ignores
terms of order 1 2/ N , which may matter for the existence and/or robustness of the two-market equilibria.
13 Cuny [1993] develops a related model in which each market trades a single, possibly different, security.
14 In  Peters and Severinov, each seller runs a separate second-price auction with a reserve price; buyers
observe the reserve prices and then choose a single auction in which to bid. The paper looks at symmetric
equilibria in which all sellers attract an equal number of buyers.  McAfee analyzes a related model that



the Amazon and Yahoo auction sites have struggled is that they tried to compete by

having zero listing fees.  This led to their listings being filled up with products being

offered by non-serious sellers with very high reserve prices.  If we suppose that there is a

cost to reading web pages, or to investigating the quality of a good and/or its seller, then

buyers will prefer to frequent sites with a high percentage of “good” listings- listings by

reputable sellers who have high-quality goods and are willing to sell them at a reasonable

price.  In this case, a market with too many “bad” sellers might collapse.  However, two

markets might be able to co-exist if sites have some background flow of captive traffic

from people who click in from Yahoo or Amazon without considering another auction

site.

The issue of reserve prices poses a problem for a would-be new market site: On

the one hand, when the market is new, sellers may not expect to get competitive bids, and

so be unwilling to participate unless they can protect themselves with a reserve price.

However, while the imposition of a uniform reserve price in a market can increase the

payoff of sellers for any fixed buyer-seller ratio, it lowers the overall efficiency of the

market, and so we would expect it to reduce the viability of the new market.

The main point of the paper is that  the “market impact  effect” of switching

markets is of the same order as the “efficiency effect” favoring  larger markets, so that

some  analysis is needed to determine which effect dominates.  We explored this idea in

the context of k+1st price sealed-bid auctions, but the same intuition should apply to other

settings as well. Consider for example  “matching markets,” where the sole objective of

both A’s and B’s is to be matched with an agent from the other group. Here too once can

                                                                                                                                                

supposes players ignore the fact that a change in one seller’s mechanism may change the distribution of



show that larger markets are more efficient, but an A moving from market 1 to market 2

lowers the probability of A’s being matched in market 2.  Moreover, while we have not

done the computations necessary to verify this, we suspect that both effects are again of

order 1/n. So here too it seems premature  to conclude that only the one market outcome

is stable. Another example is Krugman’s [1991] “Marshallian” model of location choice

by firms and workers.  This model differs from ours in that each firm hire multiple

workers, but it is similar in that the larger market is more efficient, and that there is a

market impact effect (which Krugman ignores) in finite markets.

Finally we should note that while the paper has analyzed competition between

two markets, its analysis also applies to the study of 2M markets, M “smaller” and M

“larger:”  Such a configuration will be an equilibrium provided that it is an equilibrium

for M= 1. One reason why such configurations may be less common in practice is that

our model suggests they could be quite fragile –if two or more of the markets merge, the

merged entity may be sufficiently large relative to the others so as to attract all of the

patrons of every small market. This shows that any tendency to have only two markets, as

opposed to more, must be due either to “relatively small” numbers of participants, or to

agglomerative forces not captured by our model.

                                                                                                                                                

buyers participating in other mechanisms, and thus alter buyers’ incentives to participate in them.



Appendix

Proof of Proposition 2: One way to generate a sample MY  of mB draws from F  is to first

generate a sample NY of nB i.i.d. draws, and then randomly select a subset of mB

elements; we will use this method to relate the distributions of the order statistics of the

two samples.    Let iq  be the probability that the ith highest draw from NY  is one of the

mS  highest elements of MS .  This probability is independent of the realized values of the

order statistics; it depends only on which elements of NY  are chosen. In particular, for

1i =  to mS, iq  is simply the probability that the element in question is chosen, namely

m
n

; for i = mS+1 and thereafter each subsequent iq  is strictly less than the preceding one

since this i mS j= +  will only be one of the mS highest elements if it is chosen and at

least j of the higher realizations are not. 

Then

:
: 1

( )
( , ) ( | )

nB i nB
imS mB i

q E v
w mS mB E v v v

mS
== ≥ =∑ ,

while

: :
: 1 1

( ) ( )
( , ) ( | )

nS nBi nB i nB
inS nB i i

E v Q E v
w nS nB E v v v

nS nS
= == ≥ = =∑ ∑ ,

where iQ  is an indicator function that equals 1 for i =  1 to nS and 0 otherwise.

So



: :( , ) ( , ) ( | ) ( | )mS mB nS nBw mS mB w nS nB E v v v E v v v− = ≥ − ≥

: :
1 1

:
1

( ) ( )

( )

nB nBi nB i nB
i ii i

nB i nB
ii

q E v Q E v
mS nS

c E v

= =

=

= −

=

∑ ∑

∑
,

where i i
i

nq mQc
nmS
−= .

Now for i =  1 to m, 0ic = , for  i = m+1 to n, ic  is negative, and for i n>  ic  is positive,

and 
1

n
ii

c
=∑  = 1. Since the :( )i nBE v  are monotone decreasing in i,  it follows that

:
1

( ) 0nB i nB
ii

c E v
=

<∑ .

QED

Proof of lemma 1: 1
1 1( )BS B  is well-defined because 1 1 1 1( , ) ( , 1)B Bu S B u S S B B− − − + is

continuous and monotone increasing in 1S with

1 1 1(0, ) ( , 1) ( , 1) 0B B Bu B u S B B u S B B− − + = − − + <

and 1 1 1( , ) (0, 1) ( , ) 0B B Bu S B u B B u S B− − + = > .

Let minB  be the solution to min min(0, ) ( 1, )S Su B u S B B= + − . That an unique

solution exists and is in (0, / 2)B  follows from monotonicity and the boundary conditions

1
1 10

lim (0, ) ( 1, ) ( 1, ) 0S S SB
u B u S B B u S B

→
− + − = − + <  and (0, / 2) ( 1, / 2) 0S Su B u S B− + > .

Let maxB  be the solution to max max( , ) (1, )S Su S B u B B= − . That an unique solution exists

and is in ( / 2,1)B follows similarly.



1
1
SS  is well-defined on min max[ , ]B B  because 1 1 1 1( , ) ( 1, )S Su S B u S S B B− − + −  is

continuous and monotone decreasing in 1S  with

min min
1 1(0, ) ( 1, ) (0, ) ( 1, ) 0,S S S Su B u S B B u B u S B B− + − ≥ − + − =

and max max
1 1( , ) (1, ) ( , ) (1, ) 0S S S Su S B u B B u S B u B B− − ≤ − − = .

That 1
1
BS and 1

1
SS  are monotone increasing and differentiable follows immediately

from the implicit function theorem.

1
1 1( ) / 2BS B S< follows from ( / 2, / 2) ( / 2, / 2 1) 0B Bu S B u S B B− − + > .

1
1 1( ) / 2 1/ 2SS B S= + follows immediately from the definition of 1

1 1( )SS B .

QED

Proof of Proposition 9: When prices are equal, both seller constraints are satisfied. Equal

prices also imply that 1
1

i

i

S
B

γ +=
+

 is the same in both markets, so

1 2 2 1( 1)( 1) ( 1)( 1)S B S B+ + = + + .  Then by canceling terms equal to γ  we can rewrite the

buyer constraints as

1 2

1 2

2 1

2 1

( ')
( 2)

( ')
( 2)

S Sa
B B
S Sb
B B

>
+

>
+

Rewrite (a’) and (b’) as

( 2)i j j iS B S B+ ≥ .

Add and subtract terms to obtain

( 1)( 1) ( 1)i j i jS B S B+ + + − + ≤ ( 1)( 1) ( 1)j j j jS B S B+ + − + +



Divide both sides by ( 1)( 1)i jB B+ +

(*)
1 ( )1

1 1 ( 1)( 1)
j j i j ii

i j i j

S B S S BS
B B B B

+ − + ++ ≥ −
+ + + +

Using the fact that prices are equal, (*) is equivalent to

(**) j i j iB S S B≤ + + ,

and this is equivalent to

 1
2 2

iB S
B B
≤ +  or

(***) 1 1[ , ]
2 2 2 2

iB S S
B B B
∈ − +

For any 1 2,B B  that satisfy (***), the buyer constraints are satisfied for the 1S  and

2S  that equate the expected prices in the two markets. The last step of the proof is to

show that under (***) there must exist a pair 1 2,S S  that does equate the expected prices.

Holding 1 2,B B  fixed, and setting 2 1S S S= − , the difference in expected prices is

1 1 2 2 1 1 1 1 2 1 1 2
1 1 2 2

1 2 1 2

( )( 1) ( ( ))( 1) ( 1)( ) ( 1) ( )( , ) ( , )
( 1)( 1) ( 1)( 1)

B S B B S S B B S S B S B Bp S B p S B
B B B B

− + − − − + + − − + + −− = =
+ + + +

which is a linearly decreasing function of 1S .  When 1 0S =   the difference is

proportional to 1 1 2( 1) ( )S B B B+ + − ; from (***) this is at least 1 0SB > . Similarly when

1S S=  the difference is proportional to 2 1 2 2( 1) ( ) 0S B B B SB− + + − < − < .  So there is a

solution with 1 20 ,S S S< < .

QED

Proof of Proposition 10: We will first construct an equal-price partition 1 2 1 2
ˆ ˆ( , , , )j jB B S S

that approximates the target ratios, but where only 1B  and 2B  are guaranteed to be



integers; we will then use this partition to construct an integer-valued partition

* *
1 2 1 2( , , , )B B S S  where all of the incentive constraints are satisfied but prices are only

approximately equal.

Assume that 1/ 2α < , let * ( 2)
2

B
B

γ
γ

+  =
+

, and * ( 2)
2

B
B

α
α

+  =
+

, where x    is

the largest integer less than or equal to x, and  x    is the smallest integer greater than or

equal to x.15  Note that  *γ γ≤  ,and *1 2 1 2α α− ≥ − ;  since we have already assumed that

1 2γ α> − , we know that * *1 2γ α> −  for 2
(1 2 )

B
γ α

>
− −

.   Note also that for B

sufficiently large we have * 1/ 2α < .

 Let * * *min{ ,1 2 }ν α α= − , and let *

1k
v
 =   

.   Define *
1 ( 2) 1B Bα= + − ,

2 1B B B= − .  For any non-negative integer j, define * 2
2

j j
B

γ γ= +
+

 and *

2
j j

B
γ γ= +

+
.

If * * *1 2α α ν≥ − = ,  set ( 2) 2j jS Bγ= + − , 1 1
ˆ ( 1) 1j jS Bγ= + − , and 2 2

ˆ ( 1) 1j jS Bγ= + − .

If  * *1 2α α< − , define

( 2) 2j jS Bγ= + − , 1 1
ˆ ( 1) 1j jS Bγ= + − , and 2 2

ˆ ( 1) 1j jS Bγ= + − .

   In either case, by construction 1 2,B B  and jS are integers, 1 2
ˆ ˆj j jS S S+ = ,   and

1 2

1 2

ˆ ˆ1 1
1 1

j jS S
B B

+ +=
+ +

.

                                                

15 The case 1/ 2α >  is symmetric. A separate argument is needed for 1/ 2α = ; we omit this argument

here but will provide it on request.



 If * * *1 2α α ν≥ − = ,

* * *
* *( 2) 2 ( 2) 2 2 2(1 ) 2( (1 ))[ , ]

j jS B B j k
B B B B B B

γ γ γ γγ γ+ − + − − − −= = + ∈ − + , which is

within ε  of γ  if  2kB
ε

> . If  * *1 2α α< − ,  a similar calculation shows

* *
* *1(1 ) (1 )[ , ]

jS k
B B B

γ γγ γ− − −∈ − +  ; this is also within ε  of γ  if  2kB
ε

> .

Note also that 1 1 1 * *
1 1 1 1

ˆ ˆ ( 1) ( 1) ( ) ( 2) 2j j j j j jS S B B Bγ γ γ γ α α+ + +− = + − + = − + = .

If    * *1 2α α< − ,

1 1 *
1 1 1 1

ˆ ˆ ( 1) ( 1)j j j jS S B Bγ γ α+ +− = + − + = .

 The assumption that 1 1,
2 2 2 2

γ γα  ∈ − + 
 

 and the bound on B  implies that,

*1 1 1 1[ , ]
2 2 2 2

jB
B

γα+ = ∈ −
+

.    Thus Proposition 4 implies that each partition 1 2 1 2
ˆ ˆ( , , , )j jB B S S

satisfies all four incentive constraints.  And

If 1̂
jS  is an integer for any {0,1,..., }j k∈  we are done.  If not,   and if

* * *1 2α α ν≥ − = , let m be the smallest integer j with  1
1 1

ˆ ˆj jS S −   =    . We know that

*
1 1

ˆ ˆ 2m mS S α − ≥  , so * *
1 1

ˆ ˆ 1 2m mS S α ν  − ≤ − =   . If * *1 2α α< − , let m be the largest j

integer with  0
1 1

ˆ ˆjS S <   , then  * *
1 1

ˆ ˆm mS S α ν  − ≤ =  .   In either case let  *
1 1̂

mS S =    and

* *
2 1S S S= − . We will now show that ( )* *

1 2 1 2, , ,B B S S  is an equilibrium; that is, the

deviation of the partition from exactly equal prices (which is necessary to satisfy the

integer constraint) is small enough that the  incentive constraints are still satisfied.



Since we set the number of sellers in market 1 to be slightly higher than the

number needed for equal prices, the constraints (a) - that buyers are willing to stay in

market 1- and (d)- that sellers stay in market 2- will be the easiest to check.  For (a), note

that by Proposition 4, 1 2 1 2
ˆ ˆ( , , , )m mB B S S  satisfies the constraint; the fact that *

1 1̂
mS S>

implies it is satisfied by ( )* *
1 2 1 2, , ,B B S S .   For (d), note that note that since

1 2 1 2
ˆ ˆ( , , , )m mB B S S  has equal prices, the fact that *

1 1̂
mS S>

* * *
2 2 1 1 1

2 2 1 1 1

ˆ ˆ1 1 1 1 2
1 1 1 1 1

m mS S S S S
B B B B B

+ + + + +< = < <
+ + + + +

.

The constraint ( c)  that sellers are willing to stay in market 1 requires that

* * *
1 1 2 2 2

1 2 21 2

ˆ ˆ1 1 2 1 2
ˆ ˆ1 1 11 1

m m

m m

S S S S S
B B BS S

+ + + + +≤ =
+ + ++ +

 or, using the facts that prices are equal at

1 2 1 2
ˆ ˆ( , , , )m mB B S S ,  

* *
1 2

1 2

1 2
ˆ ˆ1 1m m

S S
S S

+ +≤
+ +

.  Since * *
1 1 2 2

ˆ ˆm mS S S S− = − ,  we can rewrite this as

* *
1 1 1 1

1 2

ˆ 1
ˆ ˆ1 1

m m

m m

S S S S
S S
− − +≤
+ +

, or * 1
1 1

ˆˆ
m

m SS S
S

− ≤ .    By construction * *
1 1̂

mS S ν− ≤ , and

0 * * *
*1 1

ˆ ˆ ( 2)mS S B B
S S S S

γ α γ α α+≥ = ≥ = .

Finally we come to the constraint that buyers be willing to stay in market 2.  This

is 
* ** *

12 2 1

2 2 1 1

( 1)( 1)
( 1) ( 1)( 2)

S SS S
B B B B

++ ≥
+ + +

, which we can write as



* * *
2 2 1 1

*
2 2 1 1

1 1
1 1 2

S S B S
B B S B

 + + ≥ + + + 
i .  When we ignored the integer constraint, the term in the

brackets was equal to 1; the issue now is whether the integer partition keeps this term

close enough to 1.  Note that 
* * *
2 2 2 2

2 2 22 2

ˆ ˆ1 1 1 1 1ˆ ˆ1 1 11 1

m m

m m

S S S S
B B BS S

ν + + + += ≥ − + + ++ + 
.

Also 
*

1 1 1 1
* * *
1 1 11 1

ˆ ˆ1 1 1 1 (1 )ˆ ˆ1 1 11 1

m

m m

B B S B
S S SS S

ν+ + + += ≥ −
+ + ++ +

.

Using the fact that 2 1

2 1

ˆ ˆ1 1
1 1

m mS S
B B

+ +=
+ +

, we conclude that the incentive constraint is satisfied

if 
* * * *
2 1

*
2 12 1

1 1ˆ ˆ 21 1m

S S
B BS S

ν ν  
− − ≥   ++ +  

.

If we rewrite this as

( ) ( )
* *
2 1

2 1

1 1
2

S Sx y
B B

− − ≥
+

, where  x  and y  are defined as the two fractions insides of the

large brackets,  we see that a sufficient condition for incentive compatibility for large B

is

 ( )
* *
2 1

2 1

1
2

S S
B B

δ− >
+

 for

* *

*
12

ˆ 11m SS
ν νδ = +

++
.   Moreover,

(*)
*

( / )
(1 ) ( 2)

O B
B

νδ ε
α γα

= +
− +



By algebra similar to the proof of Proposition 4, the condition ( )
* *
2 1

2 1

1
2

S S
B B

δ− ≥
+

  is

equivalent to

(**)
* * * * *
2 1 2 1 2 1 2

2 1 2 1 2 1 2

1 1 1 1 1(1 )
1 1 1 ( 1)( 1) ( 1)( 1)

S S S B S S B
B B B B B B B

δ δ
 + + + − + + +− ≥ + − − + + + + + + + 

.

We claim that the left hand side is   at  most  
*

*(1 )( 2)B
ν

α α
−

− +
 as shown by:

* * * * *
*2 1 2 2 1 1

2 1 2 2 1 1 2 1

ˆ ˆ1 1 1 1 1 1 1 1 .
1 1 1 1 1 1 1 1 (1 )( 2)

m mS S S S S S
B B B B B B B B B

νν
α α

 + + + + + +− = − + − ≥ − + ≥ − + + + + + + + + − + 

We also know that the term 
*
2

2

1
1

S
B

 +
 + 

 in the right-hand side of  (**)  is   less thanγ .

Therefore it will be sufficient to show that

* * *
1 2 1 2

*
1 2 1 2

1 1(1 )
(1 )( 2) ( 1)( 1) ( 1)( 1)

B S S B
B B B B B

ν δγ δ
α α

− + + +− ≥ + − −
− + + + + +

.

Substituting the approximation  for δ  from (*) into the expression δγ ,  and using the

fact that (1/ )o B
B
δ =  to replace 1 δ−  by 1, it is sufficient to show that

* * *
1 2 1 2

*
1 2 1 2

2 1 1 ( / ) (1/ )
(1 )( 2) ( 1)( 1) ( 1)( 1)

S B B S O B o B
B B B B B

ν ε
α α

+ + − +≤ − + +
− + + + + +

.

The right hand side of this expression is

* *
1 2 1 2

1 2 1 2 1 2 1 2

1 1 1 1 ( / ) (1/ )
( 1)( 1) ( 1)( 1) ( 1)( 1) ( 1)( 1)

S B B S O B o B
B B B B B B B B

ε+ + + ++ − + + +
+ + + + + + + +

=



1 1 ( / ) (1/ )
(1 )( 2) ( 2) (1 )( 2) ( 2)

O B o B
B B B B

γ γ ε
α α α α

+ − + + +
− + + − + +

.

Multiplying through by (1 )Bα α− and collecting terms,  we see that for the constraint is

satisfied if

*2 1 2 ( / ) (1/ )O B B Bo Bν γ α ε≤ + − + + .

Since * 1 2ν α≤ −  and *ν γ< , we conclude that for all sufficiently small ε  (the necessary

value depending on *γ ν− ) the incentive constraint is satisfied for all sufficiently large B.   

This is sufficient to complete the proof, since we can always choose to carry out the

above construction with / 'S B γ ε ε− < <  if the exogenous ε    in the hypothesis of the

proof is too large for this last step to be valid.

QED
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Figure 1

Equal Utility Curves
10 Buyers and 5 Sellers
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Figure 2

Quasi-equilibrium Set
10 Buyers and 5 Sellers
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Figure 3

Equal Utility Curves
30 Buyers and 15 Sellers
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Quasi-equilibrium Set
30 Buyers and 15 Sellers
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