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Abstract

We de�ne and analyze "strategic topologies" on types, under which two types are

close if their strategic behavior will be similar in all strategic situations. To oper-

ationalize this idea, we adopt interim rationalizability as our solution concept, and

de�ne a metric topology on types in the Harsanyi-Mertens-Zamir universal type space.

This topology is the coarsest metric topology generating upper and lower hemiconti-

nuity of rationalizable outcomes. While upper strategic convergence is equivalent to

convergence in the product topology, lower strategic convergence is a strictly stronger

requirement, as shown by the electronic mail game. Nonetheless, we show that the

set of "�nite types" (types describable by �nite type spaces) are dense in the lower

strategic topology.
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1 Introduction

The universal type space proposed by Harsanyi (1967/68) and constructed by Mertens

and Zamir (1985) shows how (under some technical assumptions) any incomplete information

about a strategic situation can be embedded in a single "universal" type space. As a practical

matter, applied researchers do not work with that type space but with smaller subsets of

the universal type space. Mertens and Zamir showed that �nite type spaces are dense under

the product topology, but under this topology the rationalizable actions of a given type may

be very di¤erent from the rationalizable actions of a sequence of types that approximate

it.1 This leads to the question of whether and how one can use smaller type spaces to

approximate the predictions that would be obtained from the universal type space.

To address this question, we de�ne and analyze "strategic topologies" on types, under

which two types are close if their strategic behavior is similar in all strategic situations. There

are three ingredients that need to be formalized in this approach: how we vary the "strategic

situations", what "strategic behavior" do we consider (i.e., what solution concept), and what

we mean by "similar."

To de�ne "strategic situations," we start with a given space of uncertainty, �, and a

type space over that space. Holding these �xed, we then consider all possible �nite action

games where payo¤s depend on the actions chosen by the players and the state � of Nature.

Thus we vary the game while holding the type space �xed. This is at odds with a broader

interpretation of the universal type space which describes all possible uncertainty� including

payo¤ functions and actions: see the discussion in Mertens, Sorin and Zamir (1994, Remark

4.20b). According to this latter view one cannot identify "higher order beliefs" independent

of payo¤s in the game. In contrast, our de�nition of a strategic topology relies crucially on

making this distinction. We start with higher-order beliefs about abstract payo¤-relevant

states �, then allow payo¤s to vary by changing how payo¤s depend on �. We are thus

implicitly assuming that any "payo¤ relevant state" can be associated with any payo¤s

and actions. This is analogous to Savage�s assumption that all acts are possible, and thus

implicitly that any "outcome" is consistent with any payo¤-relevant state. This separation

is natural for studying the performance of di¤erent mechanisms under various informational

1This is closely related to the di¤erence between common knowledge and mutual knowledge of order n

that is emphasized by Geanakoplos and Polemarchakis (1982) and Rubinstein (1989).
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assumptions.2

Our notion of "strategic behavior" is the set of (correlated) interim rationalizable ac-

tions that we analyzed in Dekel, Fudenberg and Morris (2005). The rationalizable actions

are those obtained by the iterative deletion of all actions that are not best responses given

a type�s beliefs over others� types and Nature and any (perhaps correlated) beliefs about

which actions are played at a given type pro�le and payo¤-relevant state. Under correlated

interim rationalizability, a player�s beliefs allow for arbitrary correlation between other play-

ers�actions and the payo¤ state; in the complete information case, this de�nition reduces to

the standard de�nition of correlated rationalizability (e.g., as in Brandenburger and Dekel

(1987)).

One might be interested in using equilibrium behavior, as opposed to rationalizability,

as the benchmark for rational play. However, the restriction to equilibrium only has bite

when additional structure, such as a common prior, is imposed. This is because the set of

interim rationalizable actions for a given type ti is equal to the set of actions that might be

played in some equilibrium in a larger type space by a type that has the same beliefs and

higher order beliefs about Nature as type ti.3 Thus, while one might be interested in using

equilibrium behavior, as opposed to rationalizability, as the benchmark for rational play, the

restriction to equilibrium only has bite when additional structure, such as a common prior,

is imposed. Moreover, the set of interim rationalizable actions depends only on types�beliefs

and higher-order beliefs about Nature.4

It remains to explain our notion of "similar" behavior. Our goal is to �nd a topology on

types that is �ne enough that the set of correlated rationalizable actions has the continuity

properties that the best response correspondences, rationalizable actions, and Nash equilibria

2Wilson (1987) argued that an important task of mechanism design is to identify mechanisms that perform

well under a variety of informational assumptions, and a number of recent works have pursued this agenda,

see, e.g., Neeman (2004) and Bergemann and Morris (2004).
3See Dekel, Fudenberg and Morris (2005); this is analogous to the property identi�ed by Brandenburger

and Dekel (1987) in the context of complete information.
4As noted by Dekel, Fudenberg and Morris (2005) and Ely and Peski (2005), the set of independent

interim rationalizable actions can vary across types with the same beliefs and higher order beliefs about

Nature. This is because redundant types may di¤er in the extent they believe that others� actions are

correlated with payo¤ relevant states.
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all have in complete-information games, while still being coarse enough to be useful.5 A

review of those properties helps clarify our work. Fix a family of complete information

games with payo¤ functions u that depend continuously on a parameter �, where � lies in

a metric space �. Because best responses include the case of exact indi¤erence, the set of

best responses for player i to a �xed opponents�strategy pro�le aj, denoted BRi(aj; �), is

upper hemi-continuous but not lower hemi-continuous in �, i.e. it may be that �n ! �; and

ai 2 BRi(aj; �); but there is no sequence ani 2 BRi(aj; �n) that converges to ai. However, the
set of "-best responses,6 BRi(aj; "; �); is well behaved: if �

n ! �; and ai 2 BRi(aj; "; �); then
for any ani ! ai there is a sequence "n ! 0 such that ani 2 BRi(aj; "+ "n; �n). In particular,
the smallest " for which ai 2 BRi(aj; "; �) is a continuous function of �. Moreover the same
is true for the set of all "-Nash equilibria (Fudenberg and Levine (1986)) and for the set of

"-rationalizable actions.7 That is, the " that measures the departure from best response or

equilibrium is continuous. Our goal is to �nd the coarsest topology on types such that the

same property holds.

Thus for a �xed game and action, we identify for each type of a player, the smallest

" for which the action is rationalizable. The distance between a pair of types (for a �xed

game and action) is the di¤erence between those smallest ". Our strategic topology requires

that, for any convergent sequence, this distance tends to zero pointwise for any action and

game. We identify a metric for this topology. The strategic topology requires both a lower

hemi-continuity property (the smallest " does not jump down in limit) and an upper hemi-

continuity property (the smallest " does not jump up in the limit). We show that the upper

convergence is equivalent to convergence in the product topology (theorem 2) and that lower

convergence implies product convergence, and thus upper convergence (theorem 1).

Our main result is that �nite types are dense in the strategic topology (theorem 3). Thus

�nite type spaces do approximate the universal type space, so that the strategic behavior of

5Topology P is �ner than topology P 0 if every open set in P is contained in an open set in P 0. The use of

a very �ne topology such as the discrete topology makes continuity trivial, but it also makes it impossible to

approximate one type with another; hence our search for a relatively coarse topology. We will see that our

topology is the coarsest mertrizable topology with the desired continuity property; this leaves open whether

there are other, non-metrizable, topologies that have this property
6An action is an "-best response if it gives a payo¤ within " of the best response.
7This can be shown by using the equivalence between rationalizable actions and a posteriori equilibria

(Brandenburger and Dekel (1987)) and then applying the result for Nash equilibrium.
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any type can be approximated by a �nite type. However, this does not imply that the set of

�nite types is large. In fact, while �nite types are dense in the strategic topology (and the

product topology), they are small in the sense of being category 1 in the product topology

and the strategic topology .

Our paper follows Monderer and Samet (1996) and Kajii and Morris (1997) in seeking to

characterize "strategic topologies" that yield lower and upper hemi-continuity of strategic

outcomes. The earlier papers de�ned topologies on common prior information systems with

a countable number of types, and common p-belief was central to the characterizations.8

This paper performs an analogous exercise on the set of all types in the universal type space

without the common prior assumption. We do not have a characterization of this strategic

topology in terms of beliefs, so we are unable to pin down the relation to these earlier papers.

The paper is organized as follows. Section 2 reviews the electronic mail game and the

failure of lower hemicontinuity (but not upper hemicontinuity) of rationalizable outcomes

with respect to the product topology. The universal type space is described in section 3 and

the incomplete information games and interim rationalizable outcomes we will analyze are

introduced in section 4. The strategic topology is de�ned in section 5 and our main results

about the strategic topology are reported in section 6. The concluding section, 7, contains

some discussion of the interpretation of our results, the "genericity" of �nite types and an

alternative stronger uniform strategic topology on types.

2 Electronic Mail Game

To introduce the basic issues we use a variant of Rubinstein�s (1989) electronic mail game

that illustrates the failure of lower hemi-continuity in the product topology (de�ned formally

below). Speci�cally, we will use it to provide a sequence of types, tik, that converge to a type

ti1 in the product topology, while there is an action that is rationalizable for ti1 but is not

"k-rationalizable for tk for any sequence "k ! 0. Thus the set "blows up" at the limit, and

the lower-hemicontinuity property discussed in the introduction is not satis�ed. Intuitively,

for rationalizable play, the tails of higher order beliefs matter, but the product topology is

8For Monderer and Samet (1986), an information system was a collection of partitions on a �xed state

space with a given prior. For Kajii and Morris (1997), an information system was a prior on a �xed type

space.
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insensitive to the tails.

On the other hand the set of rationalizable actions does satisfy an upper hemi-continuity

property with respect to the sequence of types t1k converging in the product topology to

t11: �x any sequence "k ! 0 and suppose some action is "k-rationalizable for type t1k for

all k; then that action is 0-rationalizable for type t11. In section 6 we show that product

convergence is equivalent to this upper hemi-continuity property in general.

Example: Each player has two possible actionsA1 = A2 = fN; Ig ("not invest" or "invest").
There are two payo¤ states, � = f0; 1g. In payo¤ state 0, payo¤s are given by the following
matrix:

� = 0 N I

N 0; 0 0;�2
I �2; 0 �2; 2

In payo¤ state 1, payo¤s are given by:

� = 1 N I

N 0; 0 0;�2
I �2; 0 1; 1

Player i�s types are Ti = fti1; ti2; ::::g[fti1g. Beliefs are generated by the following common
prior on the type space:

� = 0 t21 t22 t23 t24 � � � t21

t11 (1� �)� 0 0 0 � � � 0

t12 0 0 0 0 � � � 0

t13 0 0 0 0 � � � 0

t14 0 0 0 0 � � � 0
...

...
...

...
...

. . .
...

t11 0 0 0 0 � � � 0
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� = 1 t21 t22 t23 t24 � � � t21

t11 0 0 0 0 � � � 0

t12 (1� �)� (1� �) (1� �)� (1� �)2 0 0 � � � 0

t13 0 (1� �)� (1� �)3 (1� �)� (1� �)4 0 � � � 0

t14 0 0 (1� �)� (1� �)5 (1� �)� (1� �)6 � � � 0
...

...
...

...
...

. . .
...

t11 0 0 0 0 � � � �

where �, � 2 (0; 1). There is an intuitive sense in which the sequence (t1k)1k=1 converges
to t11. Observe that type t12 of player 1 knows that � = 1 (but does not know if player 2

knows it). Type t13 of player 1 knows that � = 1, knows that player 2 knows it (and knows

that 1 knows it), but does not know if 2 knows that 1 knows that 2 knows it. For k � 3,

each type t1k knows that � = 1, knows that player 2 knows that 1 knows... (k � 2 times)
that � = 1. But for type t11, there is common knowledge that � = 1. Thus type t1k agrees

with type t11 up to 2k � 3 levels of beliefs. We will later de�ne more generally the idea of
product convergence of types, i.e., the requirement that kth level beliefs converge for every

k. In this example, (t1k)
1
k=1 converges to t11 in the product topology.

We are interested in the "-rationalizable actions in this game. We will provide a formal

de�nition shortly, but the idea is that we will iteratively delete an action for a type at round

k if that action is not an "-best response for any belief over the action-type pairs of the

opponent that survived to round k � 1.
Clearly, both N and I are 0-rationalizable for types t11 and t21 of players 1 and 2,

respectively. But action N is the unique "-rationalizable action for all types of each player i

except ti1, for every " < 1+�
2�� (note that

1+�
2�� >

1
2
). Clearly, I is not "-rationalizable for type

t11, since the expected payo¤ from action N is 0 independent of player 2�s action, whereas

the payo¤ from action I is �2. Now suppose we can establish that I is not "-rationalizable
for types t11 through t1k. Type t2k�s expected payo¤ from action I is at most

1� �

2� �
(1) +

1

2� �
(�2) = �1 + �

2� �
< �1

2
.

Thus I is not "-rationalizable for type t2k. A symmetric argument establishes if I is not

"-rationalizable for types t21 through t2k, then I is not "-rationalizable for type t1;k+1. Thus

the conclusion holds by induction. �
We conclude that strategic outcomes are not continuous in the product topology. Thus
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the denseness of �nite types in the product topology does not imply that they will be dense

in our strategic topology. However, this version of the e-mail game is not a counterexample

to the denseness of �nite types, since the limit type t11 is itself a �nite type.

3 Types

In games of incomplete information, a player�s chosen action can depend not only on

the player�s payo¤ function, but also on his beliefs about the opponents�payo¤s, his beliefs

about the opponents�beliefs, and so on: in short, on the in�nite hierarchy of beliefs. To

model this, we look at type spaces that are subsets of the "universal type space" constructed

by Mertens and Zamir (1985).9

There are two agents, 1 and 2; we denote them by i and j = 3� i.10 Let � be a �nite set
representing possible payo¤-relevant moves by Nature.11 Throughout the paper, we write

�(S) for the set of probability measures on the Borel �eld of any topological space S. Let

X0 = �

X1 = X0 ��(X0)
...

Xk = Xk�1 ��(Xk�1)
...

where�(Xk) is endowed with the topology of weak convergence of measures (i.e. the "weak"

topology) and each Xk is given the product topology over its two components. A type t is

a hierarchy of beliefs t = (�1; �2; :::) 2 �1k=0�(Xk). We are interested in the set of belief

9See also Brandenburger and Dekel (1993), Heifetz (1993), and Mertens, Sorin and Zamir (1994). Since

� is �nite, the construction here yields the same universal space with the same �-�elds as the topology-free

construction of Heifetz and Samet (1998); see Dekel, Fudenberg and Morris (2005, Lemma 1). Since we

are interested in �nding a topology, the Heifetz and Samet topology-free approach is more suitable than

assuming a topology for this construction. But since the measure-theoretic properties of the two approaches

are equivalent we present our work using the more familiar topological constructions.
10We restrict the analysis to the two player case for notational convenience. We do not think that there

would be any di¢ culties extending the results to any �nite number of players.
11We choose to focus on �nite � as here the choice of a topology is obvious, while in larger spaces the

topology on types will depend on the underlying topology on �.
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hierarchies in which it is common knowledge that the marginal of beliefs �k on any level Xk0,

for k0 � k� 1 is equal to �k0+1. We write T � for the set of all such types and denote by �k (t)
the kth coordinate of t = (�1; �2; :::). Mertens and Zamir (1985) characterize and prove the

existence of induced beliefs for each type over T � � �, denoted �� : T � ! �(T � ��); the
universal type space is (T �i ; �

�
i )
2
i=1.

We will focus on types which give rise to distinct hierarchies of beliefs, and ignore the

possibility of what Mertens and Zamir (1985) labelled "redundant types"� i.e., types who

agree about their higher order beliefs and disagree only in their beliefs over others�redundant

types. Previous work (Bergemann and Morris (2001), Battigalli and Siniscalchi (2003),

Dekel, Fudenberg, and Morris (2005), Ely and Peski (2005)) has emphasized that redundant

types matter for certain solution concepts (such as Nash equilibrium, correlated equilibrium

and independent interim rationalizability). In contrast, Dekel, Fudenberg, and Morris (2005)

show that two types with the same hierarchy of beliefs, i.e., that map to the same point in

the universal type space, have the same set of (correlated) interim rationalizable actions.

This is the reason that we use (correlated) interim rationalizability as the solution concept.

Our main result will concern "�nite types," meaning types in the universal type space

that belong to �nite belief-closed subset of the universal type space. To de�ne them more

precisely, we need to de�ne �nite type spaces and discuss how they can be embedded in the

universal type space.

De�nition 1 A �nite type space is any collection T = (Ti; �i)
2
i=1, where each Ti is �nite

and each �i : Ti ! �(Tj ��).

For any �nite belief-closed type space (Ti; �i)
2
i=1 ; and any ti 2 Ti, we can calculate the

in�nite hierarchy of i�s beliefs about �, beliefs about beliefs, etc. Thus each type ti can be

identi�ed with a unique type t 2 T �. Formally, for each k = 1; 2; :::, we can de�ne kth level
beliefs iteratively as follows. Let b�i1 : Ti ! �(�)

be de�ned as: b�i1 [ti] (�) = X
tj2Tj

b�i [ti] (tj; �) ;
Thus b�i1 : Ti ! �(X0). Now inductively let

b�ik : Ti ! �(Xk�1)
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be de�ned as: b�ik [ti] (�j;k�1; �) = X
ftj2Tj :b�j;k�1(tj)=�j;k�1g

b�i [ti] (tj; �) ;
Thus b�ik : Ti ! �(Xk�1). Let b��i (ti) = (b�ik (ti))1k=1, so b��i : Ti ! T �.

We say that a type t 2 T � is "�nite" if there exists a �nite type space T containing a

type ti with the same higher-order beliefs as t (i.e., b��i (ti) = t). That is, a type is �nite if it

belongs to a �nite belief-closed subset of the universal type space.

The most commonly used topology on the universal type space is the "product topology"

on the hierarchy:

De�nition 2 tni !� ti if, for each k, �ik (tni )! �ik (ti) as n!1.

Here, the convergence of beliefs at a �xed level in the hierarchy, represented by !, is with
respect to the topology of weak convergence of measures. This notion of convergence gen-

erates a topology that has been the most used in the study of the universal type space.

See, for example, Lipman (2003) and Weinstein and Yildiz (2003). However, our purpose

is to construct a topology that re�ects strategic behavior, and as the electronic mail game

suggests, the product topology is too coarse to have the continuity properties we are looking

for.

4 Games and Interim Rationalizability

Our interest is in the implications of these types for play in the family of games G de�ned
as follows. A game G consists of, for each player i, a �nite set of possible actions Ai and a

payo¤ function gi, where gi : A��! [�M;M ] and M is an exogenous bound on the scale

of the payo¤s. Here we restate de�nitions and results from our companion paper, Dekel,

Fudenberg and Morris (2005). In that paper, we varied the type space and held �xed the

game G being played and the """ in the de�nition of "-best response. In this paper, we �x

the type space to be the universal type space (and �nite belief-closed subsets of it), but we

vary the game G and parameter ", so we make the dependence of the solution on G and "

explicit.

For any subset of actions for all types, we �rst de�ne the best replies when beliefs over

opponents� strategies are restricted to those actions. For any measurable strategy pro�le

10



of the opponents, �j : T �j � � ! �(Aj), where throughout j 6= i, and any belief over

opponents�types and the state of Nature, ��i (ti) 2 �
�
T �j ��

�
, denote the induced belief

over the space of types, Nature and actions by � (��i (ti) ; �j) 2 �
�
T �j ��� Aj

�
, where for

measurable F � T �j ; � (�
�
i (ti) ; �j) (F � f�; ajg) =

R
F
�j (tj; �) [aj]� ��i (ti) [dtj; �].

De�nition 3 The correspondence of best replies for all types given a subset of actions for

all types is denoted BR :
��
2Ai
�T �i �

i2I
!
��
2Ai
�T �i �

i2I
and is de�ned as follows. First,

given a speci�cation of a subset of actions for each possible type of opponent, denoted by

Ej =
��
Etj
�
tj2T �j

�
j 6=i
, with Etj � Aj for all tj and j 6= i, we de�ne the " best replies for ti

in game G as

BRi (ti; Ej) =

8>>>>>>><>>>>>>>:
ai 2 Ai

�������������

9� 2 �
�
T �j ��� Aj

�
such that

(i) � [f(tj; �; aj) : aj 2 Ejg] = 1
(ii) margT ���� = ��i (ti)

(iii)
R

(tj ;�;aj)

"
gi (ai; aj; �)

�gi (a0i; aj; �)

#
d� � �" for all a0i 2 Ai

9>>>>>>>=>>>>>>>;
Remark 1 In cases where Ej is not measurable, we interpret � [f(tj; �; aj) : aj 2 Ejg] = 1
as saying that there is a measurable subset E 0 � Ej such that v [�� E 0] = 1:

The solution concept and closely related notions with which we work in this paper are

given below.

De�nition 4 1. The interim rationalizable set, R =
�
(Ri (ti))ti2T �i

�
i2I

�
�
AT

�
i

�
i2I , is

the largest �xed point of BR.

2. R0 � �i
�
A
T �i
i

�
; Rk � BR (Rk�1), and R1 � \1k=1Rk.

3. Let S = (S1; S2), where each Si : T � ! 2Ai
�
?; S is a best-reply set if for each ti and

ai 2 Si (ti), there exists a measurable � 2 �
�
T �j ��� Aj

�
such that

(i) � [f(tj; �; aj) : aj 2 Sjg] = 1
(ii) margT ���� = ��i (ti)

(ii)
R

(tj ;�;aj)

"
gi (ai; aj; �)

�gi (a0i; aj; �)

#
d� � �" for all a0i 2 Ai
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Arguments in Dekel, Fudenberg and Morris (2005) establish that these sets are well-

de�ned, and the relationships among them. These are restated in the following results that

are taken from that work.

Result 1 1. Ri;k (ti) = Ri;k (t
0
i) if �k (ti) = �k(t

0
i). That is, types with the same k

th-order

beliefs have the same kth-order rationalizable sets.

2. If STc for all c in some index set C are best-reply sets then [cSTc is a best-reply set.

3. The union of all best-reply sets is a best reply set. It is also the largest �xed point of

BR.

4. R equals R1.

5. Ri;k and Ri;1 are measurable functions from Ti ! 2Ai=;, and for each action ai and
each k the sets ft : ai 2 Ri;k (t)g and ft : ai 2 Ri;1 (t)g are closed.

In de�ning our strategic topology, we will exploit the following closure properties of

"-rationalizable sets as a function of ":

Lemma 1 For each k = 0; 1; :::, if "n # " and ai 2 Rki (ti; G; "
n) for all n, then ai 2

Rki (ti; G; ").

Proof. We will prove this by induction. It is vacuously true for k = 0

Suppose that it holds true up to k � 1. Let

	ki (ti; �) =

8>>>>><>>>>>:
 2 �(Aj ��) :

 (aj; �) =
R
T �j
� [dtj; �; aj]

for some � 2 �
�
T �j ��� Aj

�
such that

�
��
(tj; �; aj) : aj 2 Rk�1j (tj; G; ")

	�
= 1

and margT ���� = ��i (ti)

9>>>>>=>>>>>;
.

The sequence 	ki (ti; "
n) is decreasing (under set inclusion) and converges (by �-additivity)

to 	ki (ti; "); moreover, in Dekel, Fudenberg and Morris (2005) we show that each 	
k
i (ti; "

n)

is compact. Let

�ki (ti; ai; �) =

8<: 2 �(Aj ��) :X
aj ;�

 (aj; �)

"
gi (ai; aj; �)

�gi (a0i; aj; �)

#
� �� for all a0i 2 Ai

9=; .
12



The sequence �ki (ti; ai; "
n) is decreasing (under set inclusion) and converges to �ki (ti; ai; ").

Now ai 2 Rki (ti; G; "n) for all n

) 	ki (ti; "
n) \ �ki (ti; ai; "n) 6= ? for all n

) 	ki (ti; ") \ �ki (ti; ai; ") 6= ?

) ai 2 Rki (ti; G; ") ,

where the second implication follows from the �nite intersection property of compact sets.

Proposition 1 If "n # " and ai 2 Ri (ti; G; "n) for all n, then ai 2 Ri (ti; G; ").

Proof.

ai 2 Ri (ti; G; "
n) for all n

) ai 2 Rki (ti; G; "n) for all n and k

) ai 2 Rki (ti; G; ") for all k, by the above lemma

) ai 2 Ri (ti; G; ") .

Corollary 1 For any ti, ai and G

min f" : ai 2 Ri (ti; G; ")g

exists.

5 The Strategic Topology

Our goal is to �nd the coarsest topology on types so that the "-best-response correspon-

dence and "-rationalizable sets have continuity properties such as those satis�ed by "-Nash

equilibrium and "-rationalizability in complete information games with respect to the pay-

o¤s. For any �xed game and action, we de�ne the distance between a pair of types as the

di¤erence between the smallest " that would make that action "-rationalizable in that game.

Thus

hi (tijai; G) = minf" : ai 2 Ri (ti; G; ")g

d (ti; t
0
ijai; G) = jhi (tijai; G)� hi (t

0
ijai; G)j

We will write Gm for the collection of games where each player has at most m actions.

13



De�nition 5 (Upper Strategic Convergence) ((tni )
1
n=1 ; ti) satisfy the upper strategic con-

vergence property (written tni !U ti) if 8m, 9 "n ! 0 s.t. hi (tijai; G) < hi (t
n
i jai; G)+ "n for

all n; ai; G 2 Gm.

This implies that if "n ! 0 and ai 2 Ri (tni ; G; "n) for each n, then ai 2 Ri (ti; G; 0).12

We do not require convergence uniformly over all games, since an upper bound on the

number of actions m is �xed before the approximating sequence "n is chosen. Requiring

uniformity over all games would considerably strengthen the topology, as brie�y discussed

in Section 7.2. On the other hand, it will be clear from our arguments that our results

would not be changed if we dropped the "partial" uniformity in the de�nition and simply

required pointwise convergence, i.e., for all ai; G 2 G, there exists "n ! 0 s.t. hi (tijai; G) <
hi (t

n
i jai; G)+"n. But it is more convenient to state the upper strategic convergence property

in the form of our de�nition.

De�nition 6 (Lower Strategic Convergence) ((tni )
1
n=1 ; ti) satisfy the lower strategic con-

vergence property (written tni !L ti) if 8m, 9 "n ! 0 s.t. hi (tni jai; G) < hi (tijai; G) + "n for
all n; ai; G 2 Gm.

This implies that if ai 2 Ri (ti; G; 0), then there exists "n ! 0 such that ai 2 Ri (t
n
i ; G; "

n)

for each n. This is simply the mirror image of the upper strategic convergence property and

requires that hi (tni jai; G) does not drop in the limit for all values of hi (tijai; G) (not just for
hi (tijai; G) = 0).
Now consider the following notion of distance between types:

d (ti; t
0
i) =

X
m

�m sup
ai;G2Gm

d (ti; t
0
ijai; G) (1)

where 0 < � < 1.

Lemma 2 The distance d is a metric:

12It is possibly stronger than this property since upper convergence requires that hi (tni jai; G) does not
jump in the limit for all values of hi (tijai; G) (not just for hi (tijai; G) = 0). We have not veri�ed if it is

strictly stronger.

14



Proof. First note d is symmetric by de�nition. To see that d satis�es the triangle inequality,

note that for each action ai and game G,

d (ti; t
00
i jai; G) = jhi (tijai; G)� hi (t

00
i jai; G)j

� jhi (tijai; G)� hi (t
0
ijai; G)j+ jhi (t0ijai; G)� hi (t

00
i jai; G)j

= d (ti; t
0
ijai; G) + d (t0i; t

00
i jai; G)

hence

d (ti; t
00
i ) =

X
m

�m sup
ai;G2Gm

d (ti; t
00
i jai; G)

�
X
m

�m sup
ai;G2Gm

(d (ti; t
0
ijai; G) + d (t0i; t

00
i jai; G))

�
X
m

�m
�
sup

ai;G2Gm
d (ti; t

0
ijai; G) + sup

ai;G2Gm
d (t0i; t

00
i jai; G)

�
=

X
m

�m sup
ai;G2Gm

d (ti; t
0
ijai; G) +

X
m

�m sup
ai;G2Gm

d (t0i; t
00
i jai; G)

= d (ti; t
0
i) + d (t0i; t

00
i ) .

Theorem 1 below implies that d (ti; t0i) = 0) ti = t0i.

Lemma 3 d (tni ; ti)! 0 if and only if tni !U ti and tni !L ti.

Proof. Suppose d (tni ; ti)! 0. Fix m and let

"n = ��md (tni ; ti) .

Now for any ai and G 2 Gm,

�m jhi (tni jai; G)� hi (tijai; G)j �
X
m

�m sup
a0i;G

02Gm
d (tni ; tija0i; G0) = d (tni ; ti) ;

so

jhi (tni jai; G)� hi (tijai; G)j � ��md (tni ; ti) = "n;

thus tni !U ti and tni !L ti.

Conversely, suppose that tni !U ti and tni !L ti. Then 8m, 9 "n (m)! 0 and "n (m)!
0 s.t. for all ai; G 2 Gm,

hi (tijai; G) < hi (t
n
i jai; G) + "n (m)

and hi (tni jai; G) < hi (tijai; G) + "n (m) .

15



Thus

d (tni ; ti) =
X
m

�m sup
ai;G2Gm

d (tni ; tijai; G)

�
X
m

�mmax ("n (m) ; "n (m))

! 0 as n!1.

De�nition 7 The strategic topology is the topology generated by metric d.

The strategic topology is thus a metric topology where sequences converge if and only if

they satisfy upper and lower strategic convergence. In general, the closed sets in a topology

are not determined by the convergent sequences, and extending the convergence de�nitions

to a topology can introduce more convergent sequences. However, since metric spaces are

�rst countable, convergence and continuity can be assessed by looking at sequences (Munkres

(1975), p.190), and so this must also be the coarsest metric topology with the desired con-

tinuity properties. We now illustrate the strategic topology with the example discussed

earlier.

5.1 The E-Mail Example Revisited

We can illustrate the de�nitions in this section with the e-mail example introduced

informally earlier. We show that we have convergence of types in the product topol-

ogy, t1k !� t11, corresponding to the upper-hemicontinuity noted in section 2, while

d (t1k; t11) 6! 0, corresponding to the failure of lower hemi-continuity.

Writing bG for the payo¤s in the example, we observe that beliefs can be de�ned as follows:
�� (t11) [(t2; �)] =

(
1, if (t2; �) = (t21; 0)

0, otherwise

�� (t1m) [(t2; �)] =

8>><>>:
1

2�� , if (t2; �) = (t2;m�1; 1)
1��
2�� , if (t2; �) = (t2m; 1)

0, otherwise

, for all m = 2; 3; ::::

�� (t11) [(t2; �)] =

(
1, if (t2; �) = (t21; 1)

0, otherwise

16



�� (t21) [(t1; �)] =

8>><>>:
1

2�� , if (t1; �) = (t11; 0)
1��
2�� , if (t2; �) = (t12; 1)

0, otherwise

�� (t2m) [(t1; �)] =

8>><>>:
1

2�� , if (t1; �) = (t1m; 1)
1��
2�� , if (t2; �) = (t1;m+1; 1)

0, otherwise

, for all m = 2; 3; ::::

�� (t21) [(t1; �)] =

(
1, if (t1; �) = (t11; 1)

0, otherwise

Thus we have product convergence, t1k ! t11.

Now for any " < 1+�
2�� ,

R01

�
t1; bG; "� = fN; Ig for all t1

R02

�
t2; bG; "� = fN; Ig for all t2

R11

�
t1; bG; "� =

(
fNg , if t1 = t11

fN; Ig , if t1 2 ft12; t13; :::g [ ft11g

R12

�
t2; bG; "� = fN; Ig

R21

�
t1; bG; "� =

(
fNg , if t1 = t11

fN; Ig , if t1 2 ft12; t13; :::g [ ft11g

R22

�
t2; bG; "� =

(
fNg , if t2 = t21

fN; Ig , if t2 2 ft22; t23; :::g [ ft21g

R31

�
t1; bG; "� =

(
fNg , if t1 2 ft11; t12g
fN; Ig , if t1 2 ft13; t14; :::g [ ft11g

R32

�
t2; bG; "� =

(
fNg , if t2 = t21

fN; Ig , if t2 2 ft22; t23; :::g [ ft21g

R2m1

�
t1; bG; "� =

(
fNg , if t1 2 ft11; :::; t1mg
fN; Ig , if t1 2 ft1;m+1; t1;m+2; :::g [ ft11g

R2m2

�
t2; bG; "� =

(
fNg , if t2 2 ft21; :::; t2mg
fN; Ig , if t2 2 ft2;m+1; t2;m+2; :::g [ ft21g

17



for m = 2; 3; :::

R2m+11

�
t1; bG; "� =

(
fNg , if t1 2 ft11; :::; t1;m+1g
fN; Ig , if t1 2 ft1;m+2; t1;m+3; :::g [ ft11g

R2m+12

�
t2; bG; "� =

(
fNg , if t2 2 ft21; :::; t2mg
fN; Ig , if t2 2 ft2;m+1; t2;m+2; :::g [ ft21g

for m = 2; 3; ::::; so

R1

�
t1; bG; "� =

(
fNg , if t1 2 ft11; t12; :::g
fN; Ig , if t1 = t11

R2

�
t2; bG; "� =

(
fNg , if t2 2 ft21; t22; :::g
fN; Ig , if t2 = t21

Now observe that

h1

�
t1k

���I; bG� =
8>><>>:
2, if k = 1
1+�
2�� , if k = 2; 3; :::

0, if k =1

(while h1
�
t1k

���N; bG� = 0 for all k). Thus d (t1k; t11) � 1+�
2�� for all k = 2; 3; :: and we do not

have d (t1k; t11)! 0.

6 Results

6.1 The relationships among the notions of convergence

We �rst demonstrate that both lower strategic convergence and upper strategic conver-

gence imply product convergence.

Theorem 1 Upper strategic convergence implies product convergence. Lower strategic con-

vergence implies product convergence.

These results follow from a pair of lemmas. The product topology is generated by the

metric ed(ti; t0i) =X
k

�k edk(ti; t0i)
18



where 0 < � < 1 and edk is a metric on the kth level beliefs that generates the topology of weak
convergence. One such metric is the Prokhorov metric, which is de�ned as follows. For any

metric space X; let F be the Borel sets, and for A 2 F set A = fx 2 Xj infy2A jx�yj � g:
Then the Prokhorov distance between measures � and �0 is �(�; �0) = inffj�(A) � �0(A)+

for all A 2 Fg, and ~dk(ti; t0i) = �(�k(ti); �k(t
0
i)):

Lemma 4 For all k and c > 0 , there exist " > 0 and m s.t. if edk(ti; t0i) > c, 9ai; G 2 Gm

s.t. hi (t0ijai; G) + " < hi (tijai; G).

Proof. To prove this we will construct a variant of a "report your beliefs" game, and show

that any two types whose kth order beliefs di¤er by � will lose a non-negligible amount by

taking the (unique) rationalizable action of the other type.

To de�ne the �nite games we will use for the proof, it is useful to �rst think of a very large

in�nite action game where the action space is the type space T �. Thus the �rst component

of player i�s action is a probability distribution over �: a1i 2 �(�). The second component
of the action is an element of �(���(�)), and so on. The idea of the proof is to start with
a proper scoring rule for this in�nite game (so that each player has a unique rationalizable

action, which is to truthfully report his type), and use it to de�ne a �nite game where the

rationalizable actions are �close to truth telling.�

To construct the �nite game, we have agents report only the �rst k levels of beliefs, and

impose a �nite grid on the reports at each level. Speci�cally, for any �xed integer z1 let A1

be the set of probability distributions a1on � such that for all � 2 �; a1(�) = j=z1 for some

integer j; 1 � j � z. Thus A1 = fa 2 Rj�j : a� = j=z for some integer j; 1 � j � z1;P
� a� = 1g; it is a discretization of the set �(�) with grid points that are evenly spaced in

the Euclidean metric.

Let D1 = ��A1. Note that this is a �nite set. Next pick an integer z2 and let A2 be the
set of probability distributions on D1 such that a2(d) = j=z2 for some integer j; 1 � j � z2.

Continuing in this way we can de�ne a sequence of �nite action sets Aj, where every element

of each Aj is a probability distribution with �nite support. The overall action chosen is a

vector in A1 � A2 � :::� Ak.

We call the am the "mth-order action." Let the payo¤ function be

gi (a1; a2; �) = 2a
1
i (�)�

X
�0

�
a1i (�

0)
�2
+

kX
m=2

2642ami �a1j ; ::; am�1j ; �
�
�

X
ea1j ;::;eam�1j ;e�

�
ami

�ea1j ; ::;eam�1j ;e���2
375 .
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Note that the objective functions are strictly concave, and that the payo¤ to the mth-order

action depends only on the state � and on actions of the other player up to the (m � 1)th

level (so the payo¤ to a1i does not depend on player j�s action at all). This will allow us

to determine the rationalizable sets recursively, starting from the �rst-order actions and

working up.

The rationalizable �rst-order action(s) for type ti with �rst-order beliefs �1 is the point

or points a�1(�1) 2 A1 that is closest to �1. Picking any other point involves a loss, so for

each grid size z1 there is an " > 0 such that no other actions are "�rationalizable for t.
Moreover, any type whose �rst-order beliefs are su¢ ciently di¤erent from �1(t) will want to

pick a di¤erent action. Thus for all c > 0, if ed(�1(ti); �1(t0i)) > c, there are "1 > 0 and z1

such that

hi (t
0
ija�1(t0i); G) + "1 < hi (tij��1(t0i); G) :

This proves the claim for the case k = 1.

Now let �2(ti) 2 �(���(�)) be the second-order belief of ti. For any �xed �rst-
level grid z1, we know from the �rst step that there is an "1 > 0 such that for any �1;

the only "1-rationalizable �rst-order actions are the point or points a�1 in the grid that are

closest to �1: Suppose that player i believes player j is playing a �rst-order action that is

"1-rationalizable. Then player i�s beliefs about the �nite set D1 = ��A1 correspond to the
�nite-dimensional measure ��2, where the probability of measurable X � ��A1 is ��2 (X) =
�2 (f(�1; �) : (�; a�1(�1)) 2 Xg). That is, for each �1 that i thinks j could have, i expects that
j will play an element of the corresponding a�1(�1). Because A

2 is a discretization of �(D1);

player i may not be able to chose a2 = ��2. However, because of the concavity of the objective

function, the constrained second-order best reply of i with beliefs �2 is the point a�2 2 A2 that
is closest to ��2 in the Euclidean metric, and choosing any other action incurrs a non-zero loss.

Moreover, a�2 is at (Euclidean) distance from ��2 that is bounded by the distance between grid

points, so there is a bound on the distance that goes to zero as z2 goes to in�nity, uniformly

over all ��2.

Next we claim that if there is a c > 0 such that d2(ti; t0i) > c; then ��2(ti) 6= ��2(t
0
i) for all

su¢ ciently �ne grids A1 in �(�1). To see this, note from the de�nition of the Prokhorov

metric, if ed2(ti; t0i) > c there is a Borel set A in ���(�) such that �2(ti)(A) > �2(t
0
i)(A

c)+c.

Because the �rst-order actions a�1 converge uniformly to �
�
1 as z

2 goes to in�nity, (�; a�1 (�1)) 2
Ac for every (�; �1) 2 A, so for all  such that c=2 >  > 0 there is a �z2 such that �

�
2(ti)(A

c) �
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��2(ti)(A) > �2(ti)(A)� > �2(t
0
i)(A

c)�+c � ��2(t
0
i) (A

c)�2+c > ��2(t
0
i) (A

c), where the �rst

inequality follows from set inclusion, the second and fourth from the uniform convergence of

the a�1, and the third from ed2(ti; t0i) > c.

From the previous step, this implies that when d2(ti; t0i) > c there is a �z2 and "2 > 0 such

that

hi (t
0
ija�2(t0i); G) + "2 < hi (tij��2(t0i); G)

for all z2 > �z2.

We can continue in this way to prove the result for any k.

Lemma 5 Suppose that ti is not the limit of the sequence tni in the product topology, then

(tni ; ti) satis�es neither the lower convergence property nor the upper convergence property.

Proof. Failure of product convergence implies that there exists k such that edk (tni ; ti) does
not converge to zero, so there exists � > 0 such that (for some subsequence)

edk (tni ; ti) > �

for all n.

By lemma 4, there exists " and m such that, for all n,

(a) 9ai; G 2 Gm s.t. hi (tijai; G) + " < hi (t
n
i jai; G) and

(b) 9ai; G 2 Gm s.t. hi (tni jai; G) + " < hi (tijai; G) :
Now suppose that the lower convergence property holds. Then there exists �n ! 0 such

that

hi (t
n
i jai; G) < hi (tijai; G) + �n

for all ai; G 2 Gm. This combined with (a) gives a contradiction.
Similarly, upper convergence implies that there exists �n ! 0 such that

hi (tijai; G) < hi (t
n
i jai; G) + �n

for all ai; G 2 Gm. This give a contradiction when combined with (b).
Lemma 5 immediately implies theorem 1.

Theorem 2 Product convergence implies upper strategic convergence.
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Proof. Suppose that tni product-converges to ti. If upper strategic convergence fails there is

an m; ai; G 2 Gm s.t. for all "n ! 0 and N , there is n0 > N such that

hi (tijai; G) > hi

�
tn

0

i jai; G
�
+ "n

0
.

We may relabel so that tni is the subsequence where this inequality holds. Pick � so that

hi (tijai; G) > hi (t
n
i jai; G) + �

for all n. Since, for each n and tni , ai 2 Ri (t
n
i ; G; hi (tijai; G)� �), there exists �n 2

�
�
T �j ��� Aj

�
s.t.

(i) �n [f(tj; �; aj) : aj 2 Rj (tj; G; hi (tijai; G)� �) for all j 6= ig] = 1
(ii) margT ����

n = �� (tni )

(iii)
R

(tj ;�;aj)

"
gi (ai; aj; �)

�gi (a0i; aj; �)

#
d�n � �hi (tijai; G) + � for all a0i 2 Ai

Since under the product topology, T � is a compact metric space, and since Aj and � are

�nite, so is T � � � � Aj. Thus �(T � ��� Aj) is compact in the weak topology, so the

sequence �n has a limit point, �.

Now since (i), (ii) and (iii) holds for every n and � = limn �
n, we have

(i*) � [f(tj; �; aj) : aj 2 Rj (tj; G; hi (tijai; G)� �)g] = 1
(ii*) margT ���� = �� (ti)

(iii*)
R

(tj ;�;aj)

"
gi (ai; aj; �)

�gi (a0i; aj; �)

#
d� � �hi (tijai; G) + � for all a0i 2 Ai

where (i*) follows from the fact that f(tj; �; aj) : aj 2 Rj (tj; G; hi (tijai; G)� �)g is closed.
This implies ai 2 Ri (ti; G; hi (tijai; G)� �), a contradiction.

Corollary 2 Lower strategic convergence implies convergence in the strategic topology.

Proof. We have tni !L ti ) tni !� ti (by theorem 1); tni !� ti ) tni !U ti (by theorem 2);

and tni !L ti and tni !U ti ) d (tni ; ti)! 0 (by lemma 3).
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6.2 Finite types are dense in the strategic topology

Theorem 3 Finite types are dense under d.

Given corollary 2, the theorem follows from lemma 6 below, which shows that, for any

type in the universal type space, it is possible to construct a sequence of �nite types that

lower converge to it. The proof of lemma 6 is long, and broken into many steps. In outline,

we �rst �nd a �nite grid of games that approximate all games with m actions. We then

map types onto their "epsilons" for action/game pairs from this �nite set, impose a grid

on these epsilons, and de�ne a belief hierarchy for a �nite type by arbitrary taking the

belief hierarchy of one of the types that is mapped to it. This gives us a �nite type space.

We show that this map "preserve the epsilons": ai 2 Ri (ti; g; ") ) ai 2 Ri (fi (ti) ; g; ").

Finally we show that for any type in the universal space there is a sequence of these �nite

types that "lower converge" to it. Our proof thus follows Monderer and Samet (1996) in

constructing a mapping from types in one type space to types in another type space that

preserves approximate best response properties. Their construction worked for equilibrium,

while our construction works for rationalizability, and thus the approximation has to work

for many conjectures over opponents�play simultaneously. We assume neither a common

prior nor a countable number of types, and we develop a topology on types based on the

play of the given types as opposed to a topology on priors or information systems.13

A distinctive feature of our work is that we identify types in our constructed type space

with sets of "-rationalizable actions for a �nite set of " and a �nite set of games. The recent

paper of Ely and Peski (2005) similarly identi�es types with sets of rationalizable actions,

although for their di¤erent purpose (constructing a universal type space for the independent

interim rationalizability solution concept), no approximation is required.

Lemma 6 For any ti, there exists a sequence of �nite types tni such that [(t
n
i )
1
n=1 ; ti] satisfy

lower strategic convergence.

For the �rst part of the proof, we will restrict attention to m action games with A1 =

A2 = f1; 2; :;mg. Having �xed the action sets, a game is parameterized by the payo¤

13It is not clear how one could develop a topology based on the equilibrium distribution of play in a setting

without a common prior. At a technical level, the fact that the strategic topology is not uniform over the

number of actions requires extra steps to deal with the cardinality of the number of actions. (See Section

7.2 for a brief discussion of uniformity.)
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function g : A1 � A2 � � ! [�M;M ]2. For a �xed m, we will write g for the game

G = (f1; 2; :;mg ; f1; 2; :;mg ; g). Let

D (g; g0) = sup
i;a;�

jgi (a; �)� g0i (a; �)j .

Some preliminary lemmas are proved in the Appendix. There is a �nite grid of games

with m actions such all games are within " of a game in the grid:

Lemma 7 For any integer m and " > 0, there exists a �nite collection of m action games

G such that, for every g 2 Gm, there exists g0 2 G such that D (g; g0) � ".

The rationalizability of an action (hi (tijai; g)) is close to the rationalizability of that
action in nearby games:

Lemma 8 For all i, ti, ai, g and g0,

hi (tijai; g) � hi (tijai; g0) + 2D (g; g0)

for all i, ai.

So the rationalizability of an action is close to the rationalizability of that action in a

nearby game in the grid:

Lemma 9 For any integer m and " > 0, there exists a �nite collection of m action games

G such that, for every g 2 Gm, there exists g0 2 G such that

jhi (tijai; g)� hi (tijai; g0)j � ".

for all i, ti, ai, g and g0.

The main step of the proof of lemma 6 is then the construction of a �nite type space that

replicates the "-rationalizability properties all games in the grid of m action games if " is in

some �nite grid.

Lemma 10 Fix any �nite collection of m action games G and � > 0. There exists a �nite
type space (Ti; b�i)i=1;2 and functions (fi)i=1;2, each fi : T � ! Ti, such that Ri (ti; g; ") �
Ri (fi (ti) ; g; ") for all ti 2 T � and " 2 f0; �; 2�; ::::g.
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Proof. Write hxi� for the smallest number in the set � = f0; �; 2�; g greater than x. Let

fi : T
� !

nbti : G � A!
n
0; �; ::::; h2Mi�

oo
be de�ned by

fi (ti) [g; ai] = hhi (tijai; g)i�

for all ai and g 2 G. Let Ti �
nbti : G � A!

n
0; �; ::::; h2Mi�

oo
be the range of fi. Note

that Ti is �nite set by construction.

De�ne b�i : Ti ! �(Tj ��) as follows. For each bti 2 Ti, �x any ti 2 T � such that

fi (ti) = bti. Label this type � i �bti� and let
b�i �bti� ���btj; ��	� = ��i

�
� i
�bti�� ��(tj; �) : fj (tj) = btj	� .

Fix " 2
n
0; �; ::::; h2Mi�

o
. Let Si

�bti� = Ri
�
� i
�bti� ; g; "�.

We argue that S is an "-best response set on the type space (Ti; b�i)i=1;2. To see why,
observe that

ai 2 Ri
�
� i
�bti� ; g; "�

implies that there exists � 2 �(T � ��� Aj) such that

� [f(tj; �; aj) : aj 2 Rj (tj; g; ")g] = 1

margT ���� = ��i
�
� i
�bti��Z

(tj ;�;aj)

"
gi (ai; aj; �)

�gi (a0i; aj; �)

#
d� � �" for all a0i 2 Ai

Now de�ne b� 2 �(Tj ��� Aj) by

b� �btj; �; aj� = �
��
(tj; �; aj) : fj (tj) = btj	�

By construction,

b� ���btj; �; aj� : aj 2 Sj �btj�	� = 1

margTj��b� = b�i �bti�X
ai;aj ;btj ;�

"
gi (ai; aj; �)

�gi (a0i; aj; �)

#b� �btj; �; aj� � �" for all a0i 2 Ai
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So ai 2 BRi (S) (ti).
Since S is an "-best response set on the type space (Ti; b�i)i=1;2, Si �bti� � Ri

�bti; g; "�.
Thus ai 2 Ri (ti; g; ")) ai 2 Ri (fi (ti) ; g; ").
Now the same �nite type space constructed in the proof of lemma 10 can then be shown

to approximately replicate the "-rationalizability properties of all games in the grid of m

action games for all ":

Lemma 11 Fix any �nite collection of m action games G and � > 0. There exists a �nite
type space (Ti; b�i)i=1;2 and functions (fi)i=1;2, each fi : T � ! Ti, such that hi (fi (ti) jai; g) �
hi (tijai; g) + � for all ti, g 2 G and ai.

And the same �nite type space approximately replicates the "-rationalizability properties

of all m action games:

Lemma 12 Fix the number of actions m and � > 0. There exists a �nite type space

(Ti; b�i)i=1;2 and functions (fi)i=1;2, each fi : T � ! Ti, such that hi (fi (ti) jai; g) � hi (tijai; g)+
� for all ti, g 2 Gm and ai.

Now the proof of lemma 6 can be completed as follows. Lemma 12 implies that for any

integer m, there exists a �nite type btmi such that
hi
�btmi jai; G� � hi (tijai; G) +

1

m

for all ai and G 2 Gm. Now �x any m and let

"n =

(
2M , if n � m
1
n
, if n > m

.

Observe that "n ! 0,

hi
�btni jai; G� � hi (tijai; G) + 2M = hi (tijai; G) + "n

for all ai and G 2 Gm if n � m and

hi
�btni jai; G� � hi (tijai; G) +

1

n
= hi (tijai; G) + "n

for all ai and G 2 Gm if n > m.
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7 Discussion

The key implication of our denseness result is that there are "enough" �nite types to

approximate general ones. If there is some strategic behavior that arises in some game on

the universal type space, then there exists a �nite type for which that behavior arises. In

this section we discuss some caveats regarding the interpretation of this result.

� First, we show that there is a sense in which the set of �nite types is small.

� Then we discuss a topology that is uniform over all games. The denseness result does

not hold with such a topology, and hence the same �nite type cannot approximate

strategic behavior for an in�nite type in all games simultaneously. However, the ap-

proximation does hold for all games with a bounded number of actions. Moreover,

we believe that in cases where arbitrarily large action spaces are of interest, there is

usually a natural metric on actions that makes nearby actions similar.

� Then we discuss relaxing the uniform bound on payo¤s that we have used throughout

the paper.

� Last, we emphasize the caution needed in working with �nite types despite our result.

7.1 Is the set of �nite types "generic"?

Our denseness result does not imply that the set of �nite types is "generic" in the universal

type space. While it is not obvious why this question is important from a strategic point of

view, we nonetheless brie�y report some results showing that the set of �nite types is not

generic in either of two standard topological senses.

First, a set is sometimes said to be generic if it is open and dense. But the set of �nite

types is not open. To show this, it is enough to show that the set of in�nite types is dense.

This implies that the set of in�nite types is not closed and so the set of �nite types is not

open.

We write T �n be the collection of all types that exist on �nite belief closed subsets of the

universal type space where each player has at most n types. The set of �nite types is the

countable union TF = [nT �n . The set of in�nite types is the complement of TF in T �.
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Theorem 4 If #� � 2, in�nite types are dense under the product topology and the strategic
topology.

Proof. It is enough to argue that for an arbitrary n and t� 2 T �n , we can construct a sequence
tk which converges to t� in the strategic topology (and thus the product topology) such that

each tk =2 TF . Let T1 = T2 = f1; :::; ng and b�i : f1; :::; ng ! �(f1; :::; ng ��). Without loss
of generality, we can identify t� 2 T �n with type 1 of player 1.
The strategy of proof is simply to allow player i to have an additional signal about Tj��

(which will require an in�nite number of types for each player) but let the informativeness

of those signals go to zero. Thus we will have a sequence of types not in TF but converging

to t� in the strategic topology (and thus the product topology).

Let us suppose each player i observes an additional signal zi 2 f1; 2; :::g, so eTi = Ti �
f1; 2; :::g, with typical element (ni; zi). Fix � 2 (0; 1) and for each k = 1; 2; :::, choosee�ki : eTi ! �

�eTj ��� to satisfy the following two properties:���e�ki ((nj; zj) ; �j (ni; zi))� (1� �)�zj�1b�ki (nj; �jni)��� � 1

k
(2)

for all nj; zj; �; ni; zi; andX
nj ;zj

e�ki ((nj; zj) ; �j (ni; zi)) 6=X
nj ;zj

e�ki ((nj; zj) ; �0j (n0i; z0i)) (3)

for all (�; ni; zi) 6= (�0; n0i; z0i).
Let tk 2 T � be the type in the universal type corresponding to type (1; 1) in the type

space
�eTi; e�ki �

i=1;2
.14

Now (3) implies that each tk =2 TF .
We will argue that the sequence tk converges to t� in the strategic topology. To see why, let

Si (ni; zi) = Ri (ni; G; �) (i.e., the set of �-rationalizable actions of type ni of player i in game

G on the original type space). First observe that S is an �-best-response set in game G on the

type space
�eTi; e�1i �

i=1;2
. This is true because the type space

�eTi; e�1i �
i=1;2

is equivalent to the

original type space (Ti; b�i)i=1;2, where it is common knowledge that each player i observes a
14Strictly speaking we have only de�ned the universal type space and �nite type spaces so far. The

de�nition of a countable type space, the hierarchy of beliefs it induces (and hence the mapping of a type in

such a space into a type in the universal type space) are the obvious and trivial modi�cations of de�nition

1 and the constructions that follow it.
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conditionally independent draw with probabilities (1� �)�zi�1 on f1; 2; ::g. But now by (2),
S is an �+ 2M

k
best response set for G. Thus if ai 2 Ri (t�; G; �), then ai 2 Ri

�
tk; G; � + 2M

k

�
.

Thus the sequence
�
tk; t�

�
satis�es the lower strategic convergence property. By corollary 2,

this implies strategic convergence. By theorem 1, we also have product convergence.

Thus the "open and dense" genericity criterion does not discriminate between �nite and

in�nite types. A more demanding topological genericity criterion is that of "�rst category".

A set is �rst category if it is the countable union of closed sets with empty interiors. In-

tuitively, a �rst category set is small or "non-generic". For example, the set of rationals is

dense in the interval [0; 1] but not open and not �rst category.

Theorem 5 If #� � 2, the set of �nite types is �rst category in T � under the product

topology and under the strategic topology.

Proof. Theorem 4 already established that the closure of the set of in�nite types is the whole

universal type space. This implies that each T �n has empty interior (in the product topology

and in the strategic topology). Since the set of �nite types is the countable union of the T �n ,

it is then enough to establish that each T �n is closed, in the product topology and thus in the

strategic topology.

Suppose tk !� t and tk 2 T �n for all k. By Mertens and Zamir (1985),!� corresponds to

the weak topology on the compact set T �, and hence the support of the limit of a sequence

of convergent measures with support on n points cannot be larger. Let S1 (t) � T � be the

support of �� (t) projected onto T �. For each j = 2; 3; :::, let Sj (t) � T � be the union of the

supports of ��(t) for all t0 2 Sj�1 (t). We will show by induction that for all j, Sj (t�) has at
most n elements.

Suppose that S1 (t�) has n0 > n elements. Then there exists m such that �m (t�) has

support with n0 elements. But �m
�
tk
�
has support with at most n elements, for each k.

Thus we cannot have �m
�
tk
�
! �m (t

�), a contradiction.

Now suppose that Sj (t�) has at most n elements for all j � J . Suppose that SJ+1 (t�)

has n0 > n elements. Then there exists m such that the union of the supports of �m (t), for

all t 2 SJ (t�), has n0 elements. But �m
�
tk
�
has support with at most n elements, for each

k. Thus we cannot have �m
�
tk
�
! �m (t

�), a contradiction

Thus t 2 T �n and T �n is closed in the product topology.
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Thus the set of �nite types is not generic under two standard topological notions of

genericity.

Heifetz and Neeman (2004) use the non topological notion of "prevalence" to discuss

genericity on the universal type space. Their approach builds in a restriction to common

prior types, and it is not clear how to extend their approach to non common prior types.

However, it is clear that �nite common prior types will be a shy (i.e., non-generic) set in

their setting.

7.2 A Strategic Topology that is Uniform on Games

The upper and lower convergence conditions we took as our starting point are not uni-

form over games. We focussed on a class of games with uniformly bounded payo¤s because

we believe that the set of all games with arbitrarily large action spaces and arbitrary payo¤s

is not of signi�cant economic interest: when arbitrarily large action spaces seem appropriate,

there is usually a natural metric on actions that makes nearby actions are similar, i.e. a con-

straint on the set of admissible payo¤ functions. Despite this, it seems useful to understand

how our results would change if we did ask for uniformity over games.

A distance on types that is uniform in games is:

d� (ti; t
0
i) = sup

ai;G
d (ti; t

0
ijai; G) . (4)

This metric yields a topology that is �ner than that induced by the metric d, so the topology

it is �ner than necessary for the upper and lower convergence properties that we took as our

goal. The proof of our denseness result does not extend to this metric, and we believe that

the result itself fails. One reason for this belief is that we conjecture that convergence in this

topology is equivalent to convergence in the following uniform topology on beliefs:

d�� (ti; t
0
i) = sup

k
sup
f2Fk

jE (f j�� (ti))� E (f j�� (t0i))j , (5)

where Fk is the collection of bounded functions mapping T � � � that are measurable with
respect to kth level beliefs. We sketch an argument. First, suppose that d�� (ti; t0i) � ". Then

in any game, any action that is �-rationalizable for ti will be � + 4"M -rationalizable for t0i.

This implies d� (ti; t0i) � � + 4"M . On the other hand, if d�� (ti; t0i) � ", then by lemma

4, we can construct a game G and action ai such that d (ti; t0ijai; G) � "
2
.
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An argument of Morris (2002) implies that �nite types are not dense in the uniform

topology on beliefs.15

7.3 Bounded versus Unbounded Payo¤s

We have studied topologies on the class of games with uniformly bounded payo¤s. If

arbitrary payo¤ functions are allowed, we can always �nd a game in which any two types

will play very di¤erently, so the only topology that makes strategic behavior continuous is the

discrete topology. From this perspective, it is interesting to note that full surplus extraction

results in mechanism design theory (Cremer and McLean (1985), McAfee and Reny (1992))

rely on payo¤s being unbounded. Thus it is not clear to us how the results in this paper can

be used to contribute to a debate on the genericity of full surplus extraction results.16

7.4 Interpreting the denseness result

That any type can be approximated with a �nite type provides only limited support

for the use of simple �nite type spaces in applications. The �nite types that approximate

arbitrary types in the universal type space are quite complex. The approximation result

shows that �nite types could conceivably capture the richness of the universal type space,

and does not of course establish that the use of any particular simple type space is without

loss of generality.

In particular, applying notions of genericity to the belief-closed subspace of �nite types

must be done with care. Standard notions of genericity for such �nite spaces will not in

general correspond to strategic convergence. Therefore, results regarding strategic interac-

tions that hold on such "generic" subsets of the �nite spaces need not be close to the results

that would obtain with arbitrary type spaces. For example, our results complement those

of Neeman (2004) and Heifetz and Neeman (2004) on the drawbacks of analyzing genericity

15Morris (2002) shows that �nite types are not dense in the topology of uniform convergence of higher

order expectations. Convergence in the metric d�� implies uniform convergence of higher order expectations.
16Bergemann and Morris (2001) showed that both the set of full surplus extraction types and the set of

non full surplus extraction types are dense in the product topology among �nite common prior types, and

the same argument would establish that they are dense in the strategic topology identi�ed in this paper.

But of course it is trivial that neither set is dense in the discrete topology, which is the "right" topology for

the mechanism design problem.
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with respect to collections of (in their case, priors over) types where beliefs about � deter-

mine the entire hierarchy of beliefs, as is done, for instance, in Cremer and McLean (1985),

McAfee and Reny (1992), and Jehiel and Moldovanu (2001).

8 Appendix

Lemma 7: For any integer m and " > 0, there exists a �nite collection of m action games

G such that, for every g 2 Gm, there exists g0 2 G such that D (g; g0) � ".

Proof of Lemma 7. For any integer N , we write

GN =
(
g : f1; :::;mg2 ��!

�
�M;�M +

1

N
;�M +

2

N
; :::;M � 1

N
;M

�2)
.

For any game g, choose g0 2 GN to minimize D (g; g0). Clearly D (g; g0) � 1
2N
.

Lemma 8: For all i, ti, ai, g and g0,

hi (tijai; g) � hi (tijai; g0) + 2D (g; g0)

for all i, ai.

Proof of Lemma 8. By the de�nition of R, we know that R (g0; �) is a �-best response

set for g0. Thus R (g0; �) is a (� + 2D (g; g0))-best response set for g. So Ri (ti; g0; �) �
Ri (ti; g; � + 2D (g; g

0)). Now if ai 2 Ri (ti; g
0; �), then ai 2 Ri (ti; g; � + 2D (g; g

0)). So � �
hi (tijai; g0) implies � + 2D (g; g0) � hi (tijai; g). So hi (tijai; g0) + 2D (g; g0) � hi (tijai; g)
Lemma 9: For any integer m and " > 0, there exists a �nite collection of m action games

G such that, for every g 2 Gm, there exists g0 2 G such that

jhi (tijai; g)� hi (tijai; g0)j � ".

for all i, ti, ai, g and g0.

Proof of Lemma 9. By lemma 7, we can choose �nite collection of games G such that, for
every g 2 Gm, there exists g0 2 G such that D (g; g0) � "

2
. Lemma 8 now implies that we also

have

hi (tijai; g) � hi (tijai; g0) + "

and

hi (tijai; g0) � hi (tijai; g) + ".
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Lemma 11: Fix any �nite collection of m action games G and � > 0. There exists a �nite
type space (Ti; b�i)i=1;2 and functions (fi)i=1;2, each fi : T � ! Ti, such that hi (fi (ti) jai; g) �
hi (tijai; g) + � for all ti, g 2 G and ai.

Proof of Lemma 11. We will use the type space constructed in the lemma 10, which had

the property that

Ri (ti; g; ") � Ri (fi (ti) ; g; ") (6)

for all " 2 f0; �; 2�; ::::g. By de�nition,

ai 2 Ri (ti; g; hi (tijai; g)) .

By monotonicity,

ai 2 Ri
�
ti; g; hhi (tijai; g)i�

�
.

By (6),

Ri

�
ti; g; hhi (tijai; g)i�

�
� Ri

�
fi (ti) ; g; hhi (tijai; g)i�

�
Thus

hi (fi (ti) jai; g) � hhi (tijai; g)i� � hi (tijai; g) + �.

Lemma 12: Fix the number of actions m and � > 0. There exists a �nite type space

(Ti; b�i)i=1;2 and functions (fi)i=1;2, each fi : T � ! Ti, such that hi (fi (ti) jai; g) � hi (tijai; g)+
� for all ti, g 2 Gm and ai.

Proof of lemma 12. Fix m and � > 0. By lemma 9, there exists a �nite collection of

m-action games G such that for every �nite-action game g, there exists g0 2 G such that

hi (tijai; g) � hi (tijai; g0) +
�

3
(7)

and hi (tijai; g0) � hi (tijai; g) +
�

3
(8)

for all i, ti and ai. By lemma 11, there exists a �nite type space (Ti; b�i)i=1;2 and functions
(fi)i=1;2, each fi : T

� ! Ti, such that

hi (fi (ti) jai; g) � hi (tijai; g) +
�

3
(9)
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for all ti, g 2 G and ai.
Now �x any i, ti, ai and g. By (7), there exists g0 such that

hi (tijai; g0)� hi (tijai; g) �
�

3

and

hi (fi (ti) jai; g)� hi (fi (ti) jai; g0) �
�

3
.

By (9),

hi (fi (ti) jai; g0)� hi (tijai; g0) �
�

3
.

So

hi (fi (ti) jai; g)� hi (tijai; g) �

8>><>>:
(hi (fi (ti) jai; g)� hi (fi (ti) jai; g0))
+ (hi (fi (ti) jai; g0)� hi (tijai; g0))
+ (hi (tijai; g0)� hi (tijai; g))

9>>=>>;
� �.
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