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1 Introduction

This paper establishes the existence of pure-strategy equilibria for large double
auctions markets with correlated private values. In these equilibria, bids are very
close to valuations, and so can be interpreted as approximately truthful reports of
the agents’ information. Thus the equilibrium we find approximates price-taking
behavior in large markets.

The idea of our proof is to use perturbations to ensure that best responses
exist, and then use a fixed point theorem for increasing functions. With correlated
private values, best responses need not be increasing in small auctions; the main
difficulty in our argument is to show that best responses are indeed increasing
when the auction is sufficiently large. We do this by first showing that, because
each agent is rarely pivotal in large auctions, best responses to strategies that
are approximately truthful are themselves approximately truthful. We then note
that the only reason why best responses may be non-monotonic is that the agent’s
valuation conveys information about opponent values and bids. We prove that the
size of this learning effect is proportional to the misrepresentation of an agent’s
bid, because the effect operates through changing the likelihood that the agent
is pivotal. Since in large auctions bids are approximately truthful, the learning
effect is small, and monotonicity obtains. So we get existence of equilibria in large
perturbed auctions, and sending the perturbations to zero completes the proof. 1

Jackson and Swinkels (2001) prove the existence of a (non-trivial) mixed-
strategy equilibrium in a variety of auctions by taking the limits of equilibria in
auctions with a discretized space of bids. Reny and Perry (2003), in an affiliated
interdependent values setting, show that all sufficiently large, discretized auctions
have an equilibrium with non-decreasing bid functions; this equilibrium approxi-
mates the rational expectations equilibrium of the continuum limit. This paper
was inspired by an early version of Reny and Perry (2003); we obtain a somewhat
stronger form of monotonicity without the use of grids and with a much shorter
proof. Rustichini, Satterthwaithe, and Williams (1994) showed that in the inde-
pendent private values case a symmetric equilibrium, if exists, must be close to
truth telling, while Cripps and Swinkels (2003) showed that in a broad class of pri-
vate value auctions all non-trivial equilibria are asymptotically efficient. Thus the
main contribution of our paper is the existence result; we also extend Rustichini,
Satterthwaithe, and Williams (1994) to correlated values.

Of course there are trade-offs between our methodology and the alternatives
in the literature, and issues that are taken for granted in the finite case, such
as continuity of best response, require more attention. On the other hand, the
approach based on grids may only lead to mixed equilibria (as in the case of

1Athey (2001)’s existence theorem for one-sided auctions also makes use of monotonicity to
appeal to a fixed point theorem; she obtains monotonicity from a single-crossing assumption.

2



Jackson and Swinkels (2001)) and needs to take extra care of ties.2 Indeed, one
main contribution of the paper by Jackson and Swinkels is their clever approach to
dealing with ties. In our case, tie breaking is resolved with a small perturbation.

Our fixed point argument requires that the best responses exist, are unique,
and are increasing. The first requirement is easier to deal with, as the only reason
that best responses may fail to exist is that ties can have positive probability. To
take care of ties, we perturb the model so that the distribution of the realized
price conditional on any bid profile is a smooth random variable. This makes the
payoffs into continuous functions of the bids, so that best responses exist. We
ensure that best responses will be unique and increasing by restricting attention
to large auctions, and to strategies that are approximately truthful. This allows
us to apply a fixed point theorem to the compact space of increasing functions.

There are also a number of technical difficulties. Prominent among these is
that even if best responses stay close to truth-telling, they need not be as close
as the opponents’ strategies, so that the best response map need not send a small
neighborhood of the diagonal (that is, a set of approximately truthful strategies)
into itself. To deal with this issue, we introduce a truncated best response map
that forces the best response bid function of any player to remain sufficiently close
to the diagonal. A related issue is that a best response does not need to be close
to truth-telling when relevant bidder has zero probability of trading. To take
care of this, we introduce a second small perturbation, namely that with small
probability ε the price is drawn from an exogenous distribution. This guarantees
that otherwise indifferent traders bid their true valuation.3

Given these modifications, we are able construct a fixed point of the “truncated
(ε, ϕ)-perturbed best response map.” Once we have the fixed point, we take the
limit as ϕ, which measures the extent of the first perturbation, goes to zero. Then
we make use of the argument in Rustichini, Satterthwaithe, and Williams (1994)
to show that the limiting profile is in fact so close to the diagonal that we were
not truncating at all. Finally, we send the magnitude of the second perturbation,
ε to zero, and this gives a symmetric, pure strategy, increasing equilibrium of the
κ-double auction.

The κ-double auction was introduced to the literature by Chatterjee and Samuel-
son (1983), and by Wilson (1985) for the multilateral case. The pure, symmetric,
increasing equilibria of the auction we consider here were studied by Rustichini,
Satterthwaithe, and Williams (1994) in the independent private values case. They
do not prove existence, but they do show that any symmetric equilibrium has to

2This may not be exclusively for technical reasons. The nature of tie-breaking can matter for
equilibrium existence in certain auctions, as pointed out by Maskin and Riley (2000). Moreover,
the McAdams (2003) example of an equilibrium with non-monotonic bids in a one-sided auction
also depends on the form of the tie-breaking rule.

3Jackson and Swinkels (2001) use a similar perturbation to avoid the no trade equilibrium.

3



be arbitrarily close to truth-telling if the number of participants is large enough.
We extend their argument to the correlated private-values setting in this paper.
Williams (1991) settles the existence question with independent private values in
the the buyer’s bid double auction. In that auction, sellers always bid their valu-
ations, which makes the existence argument easier. Finally, the Reny and Perry
(2003) and Jackson and Swinkels (2001) papers mentioned above provided exis-
tence results for more general distributions.

2 The Model

Consider the κ-double auction with m buyers and n sellers. The auction mechanism
is defined as follows. Each seller has a single unit of the indivisible good, and each
buyer wishes to purchase one unit. Sellers and buyers have correlated valuations
that are private information. The joint distribution of uncertainty, as well as the
structure of the game is common knowledge. Given her realized value, each actor
submits a bid to the market. These bids are then ordered from highest to lowest.
The market price is determined to be a weighted average of the n-th and n + 1-th
bids, with weights κ and 1 − κ respectively. Buyers whose bids are above and
sellers whose bids are below, this market price, buy or sell respectively one unit at
the prevailing price. In the case of a tie (i.e., if a bid is equal to the price) some
feasible tie-breaking mechanism is applied; the exact nature of tie breaking will
not be relevant.4 For a more detailed discussion of the κ-double auction please see
Rustichini, Satterthwaithe, and Williams (1994).

We make a number of assumptions about the joint distribution of valuations.
We focus on correlated private values. We will let s be a random variable that
captures the common component of the valuations. The distribution of s is G(s),
which is assumed to be concentrated on the unit interval (the substantive part
of this assumption is compact support) and absolutely continuous with respect to
the Lebesgue measure. Conditional on s, the valuations of all buyers and sellers
are independent. Let the conditional probability distribution of the valuation of a
buyer i be FB(vi|s), that of a seller j be FS(vj|s) and let fB(vi|s) and fS(vj|s) be
the corresponding densities. All valuations are concentrated on the unit interval,
with density uniformly bounded away from zero for all s. From these distributions
one can calculate the “inverse conditionals.” Define Hi(s|vi) to be the conditional
distribution of s given vi for player i (who can be either a buyer or a seller) and let
hi(s|vi) be the corresponding density. We assume that Hi(s|vi) is absolutely con-
tinuous with respect to the Lebesgue measure, with full support on the set of values
s assumes. Moreover, the density hi(s|vi) is assumed to be uniformly Lipschitz in

4This mechanism is equivalent to constructing the piecewise linear demand and supply curves
from buyers’ and sellers’ bids and then finding one of the many possible market clearing prices.
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vi and bounded away from zero. Note that this specification of correlated values
includes the independent private values case (see Rustichini, Satterthwaithe, and
Williams (1994) and Williams (1991)).

In the rest of the paper, we would like to prove that for a large enough number
of participants, this auction game has a symmetric Bayesian equilibrium in pure
strategies. We need to formalize the notion of large enough auctions. The idea is
to increase n and m simultaneously, such that the ratio γ = n/(n + m) remains
bounded away from both zero and one. For convenience, we will use the notation
N = n+m. Whenever we use the term ”for large enough auctions”, what we have
in mind is increasing N while keeping γ bounded away from zero and one. Just
how large the auction needs to be depends on how tight these bounds are.

We attack the problem by first finding equilibria of slightly different games.
Fix 1 > ε, ϕ ≥ 0, and let us introduce the (ε, ϕ)-perturbed auction. In that game,
payoffs are defined as follows: with probability ε the price p̃ is independent of the
bids, and is drawn from a uniform distribution on [0, 1]. In this event, the expected

payoff of a buyer making bid bi is
∫ bi

0
(vi − p) dp and the expected payoff of a seller

is
∫ 1

bi
(p− vi) dp. With remaining probability 1 − ε the mechanism is as follows.

The preliminary price p is determined by the standard κ-double auction but the
actual price p̃ will be a smooth random variable which is ϕ-close to the preliminary
price. Formally, the perturbed price p̃ is defined as

p̃(p, ωϕ) =


2p(ωϕ − 1

2
) + p if p < ϕ

2ϕ(ωϕ − 1
2
) + p if ϕ ≤ p < 1− ϕ

2(1− p)(ωϕ − 1
2
) + p if 1− ϕ ≤ p < 1

(1)

where ωϕ is a uniform random variable on the unit interval. The price perturbation
has the following properties: (1) the random variable p̃ is smooth (absolutely
continuous) conditional on the preliminary price p and is always in the unit interval;
(2) the function p̃(p, ωϕ) is continuous in p; (3) p̃(p, 1

2
) = p; (4) the perturbed price

p̃(p, ωϕ) is strictly increasing in both p and ωϕ except when p = 0 or p = 1; (5) the
perturbed price is ϕ-close to the preliminary price, i.e., |p̃(p, ωϕ)− p| < ϕ always
holds. Any other perturbation which satisfies these five properties is suitable for
our purposes. Properties (1), (2) and (4) make the expected payoffs a continuous
function of the bids. Property (3) guarantees says that the median perturbation is
zero. Property (4) also ensures that the event {ωϕ|p̃(p, ωϕ) < b} is shrinking as p
increases. Property (5) lets the perturbed game converge to the undisturbed game
when we later first take ϕ to zero and then ε to zero. Note that all agents are
allowed to make their desired trades at the actual price which need not result in a
feasible outcome of the unperturbed game.

The ε perturbation ensures that bidding above one’s private value is strictly
dominated for a buyer because there is a positive probability that the actual price
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lies between the private value and the bid in which case the buyer suffers a loss.
Likewise, sellers will never submit offers below their private value.

The way the uncertainty is structured in the perturbed auction is as follows.
There is a probability space (Ωs, µs) which generates the common signal s. For
each agent i there is an independent uniform draw (Ω0,i, µ0,i) from the unit interval
which generates the value vi = vi(ωs, ω0,i) of agent i. There is another probability
space (Ωε, µε) that generates the ε probability event and the uniform price draw.
Finally, (Ωϕ, µϕ) is a uniform draw from the unit interval, that generates the ϕ-
perturbation and the perturbed price p̃ = p̃(p, ωϕ). The complete probability space
is denoted with (Ω, µ) where Ω =

∏
i Ω0,i×Ωs×Ωϕ×Ωε and µ =

∏
i µ0,i×µs×µϕ×

µε. Elements of Ω are referred to with ω. We will frequently use the conditional
measure µvi of agent i who knows her private value vi and which is defined as

µvi (A) =
µ (A ∩ {ω|vi = vi(ω)})

µ ({ω|vi = vi(ω)})
. (2)

We will denote the probability of some event A conditional on vi with P vi(A) =∫
A

dµvi(ω) and the conditional expectation over some random variable X(ω) with
Evi(X) =

∫
X(ω)dµvi(ω).

Formally, the strategy of agent i (buyer or seller) with private value vi is referred
to as xi(.) where bi = xi(vi) is the bid of agent i. The vector of all agents’ strategies
is denoted with x(.) and x−i(.) refers to the strategies of all players except player
i. Given the realization of uncertainty ω an agent i who makes bid bi faces a price
p(bi, x−i(.), ω). To simplify notation we will sometimes suppress the dependence
of the price on other players’ bidding strategies and write p(bi, ω) or simply p(bi).

Finally, throughout the analysis we require that buyers play strategies that
are not greater than their valuations, and similarly, we require that sellers play
strategies that are not smaller than their valuations. This restriction is used to
ensure that a best response exists for any strategy profile of the opponents. Since
the strategies thus ruled out are weakly dominated for both buyers and sellers by
bidding their true valuations, the equilibrium we find under the restriction will
also be an equilibrium without the restriction.

3 Results

Our goal is to establish the following theorem:

Theorem 1 The κ-double auction with correlated private values has a symmetric
equilibrium in increasing pure strategies for all N large enough. In particular,
there exists an equilibrium profile where each bid is of order 1/N close to being
fully revealing.
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We begin by summarizing the main argument.

Fixed point. In order to use Schauder’s fixed point theorem for Banach spaces,
we need to use a continuous map defined from a compact, convex set of a Banach
space to the same set. We choose the space to be L1[0, 1]. Compactness is ensured
if all relevant functions are increasing and the ϕ-perturbation implies that the
best response map is continuous. However, the best-response map need not map
a given set of increasing strategies into itself, because a player’s best response can
be further away from truth telling then the opponents’ strategies are. In order to
deal with this difficulty, we introduce the truncated best response map; Schauder’s
fixed point theorem gives a fixed point of that map.

Symmetry. We now take ϕ to zero and consider a sequence of fixed points. This
sequence has a limit by compactness. The limit turns out to be strictly increasing
everywhere for two reasons. In the regions where trade takes place with positive
probability, the limit is strictly increasing because of the symmetry of the profile.
In the no-trade regions the limit is strictly increasing because of the ε-perturbation.
Because of this strict monotonicity no ties are possible. It follows that the best
response property is preserved under taking the limit. Therefore we can find a
fixed point of the truncated best response mapping of the ε-perturbed auction.

Relaxing the truncation. Given a symmetric fixed point of the truncated best
response mapping, we show that in the fixed point truncation is in fact never
used. The argument applied here is borrowed from Rustichini, Satterthwaithe, and
Williams (1994), who prove that any symmetric equilibrium stays close enough to
truth telling (in the independent private values case). Using the logic of that paper,
we show that our truncated fixed point never gets far enough from the diagonal
for the truncation to become effective.

Taking ε to zero. Given a symmetric equilibrium for all ε, we can select a
convergent subsequence. Because of symmetry, the limit will continue to be strictly
increasing at all points where trade takes place with positive probability. At values
where trade has zero probability, this need not be so. To check whether a limit
profile is an equilibrium, we only need to verify the best response property at
points where trade has positive probability; and at those points it is guaranteed
by the no ties condition.

3.1 Best response of the perturbed game

Lemma 1 In the (ε, ϕ)-perturbed κ-double auction, for ϕ > 0 a best response to
any opponent profile exists.

Proof: Fix a buyer i with valuation vi, and consider the function W (b, c) =
Pr(p(b) < c) where b = bi is the bid of buyer i. We begin by showing
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that W (b, c) is continuous in both b and c. Note that

W (b, c) = εc + (1− ε)

∫
p0∈[0,1]

Pr(p̃(p0, ωϕ) < c) dQ0(p0; b)

where p0 is the preliminary price, Q0(.; b) is the distribution of p0 given that
buyer i bids b (and all opponents use their strategies) and p = p̃(., .) is the
ϕ-perturbed price used to calculate payoffs.

The function p̃(., .) is by definition continuous and strictly increasing in both
arguments, except when p0 equals zero or one. It follows that Pr(p̃(p0, ωϕ) <
c) is continuous in c for each p0 6= 0, 1. But the preliminary price is almost
surely different from zero and one by our assumption that all opponent buyers
and sellers bid weakly below, respectively above, their valuations. Hence the
integral is also continuous in c. To check continuity in b, note that the
map b → Q0(.; b) from bids to distribution functions is continuous in the
weak topology, because the preliminary price is a continuous function of
bids. Because Pr(p̃(p0, ωϕ) < c) is a bounded, continuous function (in p0), it
follows that the integral is continuous in b.

Since W (b, c) is continuous in both arguments and increasing in c, it is easy
to see that for bk → b, we have W (bk, .) → W (b, .) in the uniform topology.
The payoff of i from bidding b equals∫

p∈[0,1]

vi − p dW (b, p)

which is easily shown to be continuous in b, by the uniform convergence of
the functions W (b, .). A symmetric argument applies for a seller j.5 ♦

This lemma has shown the importance of the ϕ-perturbation: it guarantees that
a best response exists. We now show that a best response to “almost truthful”
strategies is also “almost truthful”, where the “modulus of continuity” depends on
the number of agents.

Theorem 2 In the (ε, ϕ)-perturbed auction, with ε, ϕ > 0, for any M > 0 there
exists M ′ > 0 such that in a large enough auction, if ϕ and ε are small enough
and the opponents’ strategies are M ′ close to the diagonal, then the best response
of any buyer is at least M close to the diagonal.

Proof: See appendix A.

5In the following we will only present proofs for buyers. All seller proofs are analogous.
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The only reason why a player would bid differently from her valuation is to try
to influence the price. If all players’ bid functions are close to the diagonal and
there are many players, then any bid is unlikely to be pivotal, so the best response
must be close to the diagonal as well, though perhaps not as close as the original
profile was. We also need that the best response not only stays close but is also
increasing. The proof of this requires a simple lemma about the relation between
the conditional expectations of a function given a value vi and the conditional
expectation given a different value v′i.

Lemma 2 There exists a constant K such that for any positive function u(s)∫
s

u(s) |h(s|v′i)− h(s|vi)| ds ≤ K ·∆v ·
∫

s

u(s) h(s|vi) ds. (3)

Proof: We have
|h(s|v′i)− h(s|vi)| ≤ K ·∆vi · h(s|vi)

for any s and vi, v
′
i because h(.|.) is uniformly Lipschitz in the second argu-

ment and bounded away from zero. This completes the proof. ♦

Theorem 3 In the (ε, ϕ)-perturbed auction, with ε, ϕ > 0, if vi−xi(vi) < 1/4K(K+
1), then the best response to any opponent strategy profile is weakly increasing.

Proof: See appendix B.

To get some intuition for this theorem we consider the first-order condition of a
buyer i

T (bi, vi) = (vi − bi) r (bi, vi)− κR (bi, vi) = 0, (4)

where r(bi, vi) is the density of the n-th highest bid at bi of all other agents except
i, and R(bi, vi) is the probability that i has the n-th highest bid (and is therefore
pivotal). The first terms captures the gain from raising a bid by a small amount
(and becoming pivotal in the process) and the second term captures the cost of
doing so. We next replace bi with xi(vi) and take the first derivative of the first
order condition with respect to vi (that is, we use the Implicit Function Theorem)
to obtain

∂T

∂bi

x′i(vi) +
∂T

∂vi

= 0. (5)

We know that ∂T
∂bi

≤ 0 because this is the second-order condition for a local max-

imum. Therefore, we only have to show that ∂T
∂vi

> 0 to get increasingness of i’s
best response xi(vi). We can calculate

∂T

∂vi

= r (bi, vi)︸ ︷︷ ︸
Term I

+ (vi − bi)
∂r

∂vi︸ ︷︷ ︸
Term II

− κ
∂R

∂vi︸ ︷︷ ︸
Term III

. (6)

9



Also, note that

r(bi, vi) =

∫ 1

0

r(bi, s)h(s|vi)ds

R(bi, vi) =

∫ 1

0

R(bi, s)h(s|vi)ds (7)

where r(bi, s) is the conditional density for some fixed s and R(bi, s) is the con-
ditional pivotal probability. Lemma 2 implies that the partial derivatives ∂r

∂vi
and

∂R
∂vi

are of the same order of magnitude as r(bi, vi) and R(bi, vi). By the first order
condition (4) R(bi, vi) is the same order of magnitude as (vi − bi) r (bi, vi). There-
fore, as long as vi− bi is small, both terms II and III are small while term I is large
and determines the sign of the partial derivative ∂T

∂vi
which is indeed positive.6

Given this result and Theorem 2, we can choose C such for n large enough,
if all opponents’ strategies are at most C away from the diagonal, then any best
response is weakly increasing. Fix such a C.

Theorem 4 For n large enough, the best response to any profile that is at most
C far from the diagonal is unique and increasing.

Proof: We have just seen increasingness. For uniqueness, suppose that a buyer
i has two best response functions, xi(vi) and x′i(vi). If these differ on a set
of positive measure, then there is a point of continuity v0 of both xi and x′i
inside the unit interval where they differ (because both are increasing), say
xi(v0) > x′i(v0). But then there is a neighborhood of v0 where this inequality
continues to hold. Define x′′i to be equal to x′i to the left of v0, and equal to
xi to the right of v0. Clearly x′′i is a best response, since it is a best response
for almost every valuation vi. However, x′′i is not increasing; to the left of v0

it approaches xi(v0), and to the right of v0 it approaches x′i(v0). Thus x′′i is
a non-increasing best response. This is a contradiction. ♦

3.2 Fixed point

We now introduce the truncated best response mapping of the perturbed game.
For the C fixed above, let X be the set of weakly increasing functions defined on
the unit interval with values in the C wide corridor around the diagonal. Formally,

X = {xi : [0, 1] → [0, 1] | xi(vi) ≤ xi(v
′
i) if vi ≤ v′i, and |xi(vi)− vi| ≤ C ∀vi, v

′
i} .

6In the special case of independent private values terms II and III are zero - therefore the best
response of player i is always increasing in vi.
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Furthermore, define XB and XS to be the subsets of X corresponding to profiles
that are (weakly) below, respectively above, the diagonal, that is

XB = X ∩ {xi : [0, 1] → [0, 1] | xi(vi) ≤ vi}

and
XS = X ∩ {xi : [0, 1] → [0, 1] | xi(vi) ≥ vi} .

When all opponents play strategies in X the best response of any player is unique
and increasing, but it need not be in X. The truncated best response map just
truncates this best response by setting it equal to the bound of the corridor at
points vi where it is outside. Formally, if the best response of a buyer is xi(vi), the
truncated best response at vi is equal to max(xi(v), vi − C, 0). Importantly, the
truncated best response is still increasing, since it is the max (min in the case of a
seller) of increasing functions.

Lemma 3 X, XB and XS are compact, convex subsets of the Banach space L1[0, 1].

Proof: The L1 topology restricted to X is the same as convergence in measure.
Indeed, a set of uniformly bounded functions converge to a limit in L1 if
and only if they converge in measure. In addition X is also compact: By
Helly’s theorem (see Billinglsley (1999)), X is compact in the weak topology,
so from any sequence of functions in X we can select a subsequence that is
converging to some limit function in all of its points of continuity. But this
implies almost everywhere convergence, and that implies convergence in L1

by Lebesgue’s dominated convergence theorem, since all function involved are
in X. Since XB and XS are convex and closed subsets of X, the conclusion
follows for them too. ♦.

In the rest of the paper we will focus on symmetric profiles, that is, all buyers
respectively all sellers using the same bidding function. Therefore we only have
to keep track of the pair x = (xB(.), xS(.)) of the buyer’s and the seller’s strategy.
Then we have x ∈ XB ×XS.

It is clear that XB × XS is a compact, convex subset of the product Banach
space L1[0, 1] × L1[0, 1]. Now for any positive (ε, ϕ) we have the truncated best
response map TBRε,ϕ(.) : XB ×XS → XB ×XS. Then TBRε,ϕ(xB, xS) is the pair
of truncated best responses for any buyer respectively seller, when all opponent
buyers play xB(.), and all opponent sellers play xS(.). We are interested in a fixed
point of this map. To get one, first we need continuity.

We will now consider a sequence of perturbed games for k = 1, 2, .... Game
k will have perturbations (εk, ϕk). Suppose the strategies played in game k are
xk = (xk

B, xk
S), and assume that yk = (yk

B, yk
S) is a best response to xk in game

k. We are interested in whether the best response property is preserved as k goes
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to infinity. Note that this framework incorporates continuity of the best response
map if the sequence (εk, ϕk) is constant.

Fix a player i with value vi. If the player bids bi in the k-th game the price
is denoted with pk(bi) which is a random variable. The price in the limit game is
denoted by p(bi).

Lemma 4 Suppose xk → x in measure, and yk ∈ BRk(xk) converges in
measure to y. Assume for all players i with value vi and bid bi = xk

i (vi) (1)
opponents play strategies xk

−i(.); (2) the price pk(bi) converges in probability to
p(bi); (3) the distribution of p(bi) has no atom at bi. Then y ∈ BR(x).

Proof: See appendix C.

The intuition for this result is the following. Suppose player i is a buyer, and denote
the payoff to this buyer with value vi and bid bi in the k-th game by Πk(vi, bi). If
pk(bi) converges in probability, it also converges in distribution to p(bi). Hence in
particular the distribution function of pk(bi) converges to that of p(bi) at all points
of continuity of the latter, in particular at bi. In addition, the payoff function to
bidding bi equals

Πk(vi, bi) =

∫
p<bi

vi − p dRk(p(bi))

where Rk(p(bi)) is the price distribution in game k where our buyer bids bi. By
weak convergence, this payoff converges to the limit payoff

Π(vi, bi) =

∫
p<bi

vi − p dR(p(bi)).

Note that the integrand is not everywhere continuous, so we cannot directly apply
the weak convergence result; however, the limit distribution function is continuous
at bi, so the point of discontinuity of the integrand at bi does not cause a problem.

The lemma will have a number of applications regarding continuity of the best
response map and taking the limit as ϕ and ε are going to zero. In order to
state these applications, we need to introduce a concept that we call “ positive
probability of trade.” We say that a player i in the (ε, ϕ)-perturbed game with
opponent profile x−i has positive probability of trade at value vi and bid bi, if in
the 1−ε probability event when the price is not drawn from a uniform distribution,
there is positive probability that the player gets a positive payoff (gets to trade).

This is equivalent to her expected payoff being strictly larger than ε ·
∫ bi

0
(vi − p) dp

in case of of a buyer, or strictly larger than ε ·
∫ 1

bi
(p− vi) dp in the case of a seller.

Corollary 1 Suppose that either
(a) ϕk = ϕ > 0 and εk = ε > 0 fixed, or
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(b) ϕk → 0, εk = ε > 0 is fixed, and x is strictly increasing, or
(c) ϕk = 0, εk → 0, yk = xk and x is strictly increasing for each player i at all

values v where there is positive probability of trade.
Then y ∈ BR(x).

Proof: We will use the previous lemma. The convergence in probability of the
conditional prices is obvious in all three cases, given that the bid functions
converge in measure, and that the perturbations are continuous. Fixing a
buyer, we only need to check whether the limiting price p(bi) has a distri-
bution that is atomless at bi. This is obvious in case (a) because the price
distribution is completely atomless by the perturbation. In case (b), it fol-
lows from the fact that all opponent profiles are strictly increasing. Indeed,
any atom that p(bi) may have at bi has to come from some opponent bidding
bi with positive probability; this is ruled out.

In case (c), suppose bk
i converges to bi, and bi is not a best response in the

limit game, so b′i does better. We can assume that no opponent bids b′i with
positive probability, otherwise we could have chosen b′′i that is a little bit
larger than b′i, and still get a higher payoff than that earned by bi. Therefore,
by the argument of the lemma, Πk(vi, b

′
i) → Π(vi, b

′
i). Now if no other player

bids b with positive probability, then by the argument of the lemma we also
have that Πk(vi, b

k
i ) → Π(vi, bi), which yields a contradiction. Thus the only

problem we may have is that some opponent bids bi with positive probability
in the limit game. If this opponent is a buyer, then by assumption (c) no
trade takes place for a buyer with bid b in the limit game. But then as k goes
to infinity, the payoff to bidding bk

i must be vanishingly small. If the payoff to
bidding b′i is positive in the limit game, then by Πk(vi, b

′
i) → Π(vi, b

′
i) bidding

b′i for k large enough is better than bidding bk
i . This is a contradiction.

If the opponent who bids bi with positive probability is a seller, then that
seller faces no trade in the limit game. Thus all buyers have to bid below bi

with probability one. But note that bi = yB(vi) = xB(vi). By assumption,
xB(vi) is increasing here, because buyers trade with positive probability at
this stage. So xB(vi+1

2
) > xB(vi) = bi, but then our seller who bids b should

get to trade with positive probability. This is a contradiction.

Note how this final argument hinges on the fact that the xk profiles were
already equilibria of game k. ♦

Corollary 2 In the (ε, ϕ)-perturbed auction, with ε, ϕ > 0, the truncated best-
response map is continuous.

It follows that TBRε,ϕ(.) is a continuous self-map of a compact, convex subset
of a Banach space.
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Theorem 5 The truncated best response map TBRε,ϕ(.) for ε, ϕ > 0 small enough
and all large enough auctions has a fixed point.

Proof: Immediate from Schauder’s fixed point theorem. ♦

3.3 Taking ϕ to zero

Lemma 5 Let zk be a fixed point of TBRεk,ϕk and suppose zk → z. If (εk, ϕk) are
such that either

(a) εk = ε and ϕk → 0, or
(b) εk → 0 and ϕk = 0.
then z is strictly increasing at all points where there is positive probability of

trade in the limiting game.

Proof: Suppose not, and let [vi, v
′
i] be an interval where the buyer’s bid function

is constant bi. Then this has to be a region where the truncated and the
non-truncated best responses are the same. Then for k large, the k-th bid
function will be δ close to this plateau. Because there is positive probability
of trade, for k large enough, with probability bounded away from zero there
is a seller’s bid below bk

i (vi). Then it is an event with probability bounded
away from zero that all buyers have values in [vi, v

′
i] and all sellers bid below

bk
i (vi).

But then by increasing her bid by 2δ, a buyer of value vi could get an incre-
mental probability of winning that is bounded away from zero. For δ small,
the cost of this bid increment in terms of price impact is arbitrarily small.
Thus for k large bidding bk

i (vi) cannot be optimal for a buyer of value vi.
This is a contradiction. ♦

The firs part of the Lemma allows us to show that the (ε, 0)-perturbed double
auction has a (truncated) fixed point.

Corollary 3 In a large enough auction, the truncated best response map TBRε,ϕ(.)
with φ = 0 and ε small enough has a fixed point.

Proof: Now fix ε > 0 and pick a sequence ϕk → 0, and let zk be a fixed point of
TBRk. By compactness, the sequence zk has a convergent subsequence. By
relabelling, we can assume that zk converges to z. Now at all points where
there is positive probability of trade, z is strictly increasing. At a point
where there is zero probability of trade, as k goes to infinity there had to
be vanishingly small probability of trade. But then the ε probability event
would gradually overrule any other consideration. Thus at points with zero
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probability of trade, bidders have to bid their own value. It follows that z is
everywhere strictly increasing.

Then by the above lemma, we have that z ∈ TBR(z). To see why, note that
wk = BRk(zk) also has a convergent subsequence. The limit of that sequence,
w, has to be a best response to z because z is everywhere strictly increasing.
But then the limit of TBRk(zk) = T (wk) has to be T (w) as truncation is
a continuous operation. On the other hand, TBRk(zk) = T (wk) = zk, thus
the limit of zk, which is z, is equal to T (w). It follows that z = T (w), in
other words, z is indeed a truncated best response to z. ♦

3.4 Relaxing the Truncation

Theorem 6 In the (ε, 0)-perturbed double auction for all sufficiently large N any
fixed point of the truncated best response map is a Bayesian Nash equilibrium.

We prove this result by showing that for all sufficiently large auctions the truncation
|vi − xi(vi)| ≤ C does not bind.

Consider a fixed point of the ε-perturbed auction. We denote bi = xB(vi) =
xS(vS). The first-order condition of a buyer i with valuation vi becomes

(1− ε)

∫
s

[
(vi − bi)

(
nKs

n,m (bi)
fS(vS|s)
x′S(vS)

+ (m− 1) Ls
n,m (bi)

fB(vi|s)
x′B(vi)

)
−

− κM s
n,m (bi)

]
dH(s|vi) + ε (vi − bi) = 0 (8)

where:

Ks
n,m (bi) ≡

the probability that bid bi lies between the nth and
(n+1)th highest bid in a sample of m − 1 buyers not
including buyer i and n − 1 sellers and conditional on
the common signal s

Ls
n,m (bi) ≡

the probability that bid bi lies between the nth and
(n+1)th highest bid in a sample of m − 2 buyers not
including buyer i and n sellers and conditional on the
common signal s

M s
n,m (bi) ≡

the probability that bid bi lies between the (n-1)th and
nth highest bid in a sample of m−1 buyers not including
buyer i and n sellers and conditional on the common
signal s

These probabilities are defined for the special case of independent private values as
formulae A.6 to A.8 in the appendix of Rustichini, Satterthwaithe, and Williams
(1994). For correlated private values we simply replace FB(vi) with FB(vi|s) and
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FS(vS) with FS(vS|s). Equation 8 consists of two parts: with probability 1− ε the
price in the auction is determined according to the double auction rules. In this
case a slight increase in the bid bi gives the buyer a chance to win an object and
gain v − bi. There are n sellers he can surpass and m buyers and the density of
a seller’s/ buyer’s offer at bi is fS(vS |s)

x′
S(vS)

and fB(vi|s)
x′

B(vi)
respectively. The probabilities

Ks
n,m and Ls

n,m are the respective probabilities that the other seller and buyers
valuations are ordered accordingly. The cost to buyer i of increasing her bid bi is
increasing the price if she is just pivotal which happens with probability M s

n,m (bi).
The second part of equation 8 is the marginal benefit to buyer i of increasing her
bid if the price is a uniform draw from the unit interval.

It follows that

vi − bi ≤
κ(1− ε)

∫
s
M s

n,m (bi) dH(s|vi)

(m− 1)(1− ε)
∫

s
Ls

n,m (bi) fB(vi|s)dH(s|vi) + ε
x′B(vi)

v − bi ≤
κ

∫
s
M s

n,m (bi) dH(s|vi)

(m− 1)
∫

s
Ls

n,m (bi) fB(vi|s)dH(s|vi)
x′B(vi) (9)

Now define Fmin(v) = mins,i Fi(v|s) and Fmax(v) = maxs,i Fi(v|s). Similarly,
define fmax = maxi,s,vi

fi (vi|s) and fmin = mini,s,vi
fi (vi|s). Note, that 0 < fmin <

fmax < ∞.

Lemma 6 The ratio M v
n,m(bi)/L

v
n,m(bi) satisfies

M v
n,m(bi)

Lv
n,m(bi)

≤ 2Fmax(vi) +
2n

m

(1− Fmin(vi)) Fmax(vi)

1− Fmax(vi)
< D (10)

for some constant D and vi ∈ [0, 1].

Proof The proof for the independent private values case can be found in the
appendix of Rustichini, Satterthwaithe, and Williams (1994) (proof of in-
equality 3.12). The proof for correlated private values is exactly the same -
we simply integrate all expressions over s. ♦

We also know that fB(vi|s) ≥ fmin > 0 by assumption. Hence we obtain:

vi − bi <
κD

fmin(m− 1)
x′B(vi) (11)

This implies that for large enough auctions, the truncated best response remains
arbitrarily close to the diagonal at all points vi where the truncation is not effective.
Indeed, at points where x′B(vi) is less then 1 this follows from the above inequality.
At points where x′B(vi) is greater than one, this follows because at those points the
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trajectory xB(vi) is actually getting closer to the diagonal! The same argument
extends to seller.

If the truncated best response stays closer than C/2 at all point where trun-
cation is ineffective then truncation can never apply. At the no trade region for
buyers with low values of vi, the truncated best response is just bidding one’s valu-
ation as we have seen. Once we enter the trade region, the only way the truncated
best response can start to be truncated is if it hits the truncation border vi − C.
But this never happens, as before hitting the border the above inequality applies,
and it guarantees that the trajectory does not even get below the vi−C/2 border.
♦

3.5 Taking ε to zero

The only remaining step is to take ε to zero. Consider a sequence εk going to zero,
and let zk be an equilibrium of the εk-perturbed game. As usual, we can select a
convergent subsequence with a limit z. By Lemma 5 (b), at all points v that have
positive probability of trade, z is increasing. By part (c) of Corollary 1, the best
response property is preserved under the limit.

For the sake of completeness, here we show that if at value vi the limiting bid
xi(vi) is such that no trade occurs, then no trade would occur for this buyer no
matter what her bid would be (given her value is vi). One might think that a
bid higher than xi(vi) (still not greater than vi) may actually secure trade with
positive probability. But in that case, she should have bid higher for k large
enough, because bidding close to her current bid gives vanishingly small utility,
whereas e.g., bidding vi would have given her utility bounded away from zero for
k large. This is a contradiction.

It follows that the limiting profile z is a symmetric, increasing equilibrium of
the κ-double auction. We have just proved Theorem 1.

4 Conclusion

Independent private values. This case has been studied in Rustichini, Satterth-
waithe, and Williams (1994) and Williams (1991) among others. For that auction
the best responses are automatically increasing, so we do not need to truncate the
best response functions to apply our fixed point argument, and we can show that
equilibria exist for any n. Of course, the part of our argument that shows that
equilibrium is approximately truthful does depend on n being large, as in small
auctions each agent has some market power.

Relaxing symmetry. Our proof relies on all buyers respectively all sellers being
identical, and on the symmetric nature of the equilibrium. This assumption can
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be relaxed: Our techniques apply to auctions with j classes of buyers and k classes
of sellers, where all agents of a given type have identically distributed values and
use the same strategies.

Affiliated values We would like to extend our analysis to the affiliated values
case, where the analog of ”bidding truthfully” is ”bidding one’s value conditional
on being pivotal.” We conjecture that this extension is feasible; the main diffi-
culty that we see is in providing the appropriate extension of the Rustichini et al
characterization.
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A Proof of Theorem 2

The proof of the theorem requires the following Lemma.

Lemma 7 In the (ε, ϕ)-perturbed auction, with ε, ϕ > 0, if opponents’ strategies
are M ′ close to the diagonal, then the following inequality holds:

Pr(bi is the n + 1-st bid) · fmax

fmin

· bi + 3M ′

1− bi − 3M ′ · C ≥ Pr(bi is the n-th bid).

Proof: Fix the common part of all valuations, s, and a set of n players i1,...,in.
Suppose the state of the world (conditional on s) is such that exactly these
players have bids above bi. Denote the probability of this event by

P i1,...,in .

Now pick one of these n players, say i1, and consider the event when i1 bids
below bi, while i2,...,in are the players who bid above bi. Call the corre-
sponding new event the transformed event. This event has a probability of
at most

P i1,...,in · fmax

fmin

· bi + 3M ′

1− bi − 3M ′ .

Indeed, given s, individual bids are independent. If player i1 has value greater
than bi + 2M ′, then she certainly bids above bi, because bids are M ′ close to
valuations. Thus the conditional probability that i1 bids above bi is at least
fmin · (1− bi − 3M ′). Likewise, the conditional probability that bids i1 bids
below bi is at most fmax · (bi + 3M ′).

Next pick instead player i2, and let her bid below bi, while the others continue
to bid above. We can estimate the probability of this event the same way as
above; adding up these bounds for all players gives

n · P i1,...,in · fmax

fmin

· bi + 3M ′

1− bi − 3M ′ ≥ Q(i1, ..., in).

Here Q(i1, ..., in) denotes the probability of the event where exactly one of
the players in the set i1,...,in bids below bi (all the others in the set bid above,
and the rest of the players also bid below).

Summing this last inequality for all subsets i1,...,in yields

n · Pr(bi is the n + 1-st bid) · fmax

fmin

· bi + 3M ′

1− bi − 3M ′ ≥
∑

Q(i1, ..., in).
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The sum on the right hand side covers all states of the world where there
are exactly n− 1 bids above bi, and moreover that it counts each such state
m times. It is clear that any such state of the world is covered, because
there is at least one i1,...,in set that can give rise to it. More importantly, a
state appears in the summation when one of the bids currently below bi is
shifted there from above bi. There are exactly m bids below b; thus there are
m different P i1,...,in cases that give rise to this particular state of the world
through the event transformation. This proves that

n·Pr(bi is the n+1-st bid | s)·fmax

fmin

· bi + 3M ′

1− bi − 3M ′ ≥ m·Pr(bi is the n+1-st bid | s)

and integrating over s gives

Pr(bi is the n + 1-st bid) · fmax

fmin

· bi + 3M ′

1− bi − 3M ′ ·
n

m
≥ Pr(bi is the n-th bid).

Since n/m is bounded away from zero and infinity the claim follows. ♦

To prove the theorem, define M = kM ′. We need to find a k such that the
theorem holds. Suppose a buyer i has optimal bid bi, and bi < vi −M (otherwise
we are done). We consider whether the buyer would prefer to bid instead bi +4M ′.
If yes, that would be a contradiction, showing that the optimal bid in fact has to
be at least M close to the diagonal.

Note that for any opponent bidding function xj(.) satisfying the condition of
lemma 7, we have the set inclusion

x−1
j ((bi, bi + 3M ′)) ⊇ (bi + M ′, bi + 2M ′).

This is because any value in the interval on the right hand side would induce a
bid (both in the case of a buyer and a seller) that is contained in the interval
(bi, bi + 3M ′).

Assume that the buyer bids bi +4M ′. Her gain will be an increased probability
of winning. This gain is realized for example if her bid was the n + 1-th highest
previously, the ϕ-perturbation biased the final price upwards, and by increasing
the bid, she overtook some opponent by sufficient distance so that even the ϕ-
perturbation cannot make her lose. The size of the gain in this case is at least the
distance between her current bid and her value vi, minus possibly ϕ. Therefore
the following formula is a lower bound for the expected gain from raising the bid

1

2
Pr(bi is the n+1-st bid and ∃ opponent value in (bi +M ′, bi +2M ′)) · (k−5)M ′.

To see why, note that with probability 1/2 the ϕ perturbation is biased upwards.
Now if there is an opponent value in (bi + M ′, bi + 2M ′), that leads to a bid no
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greater than bi + 3M ′. If ϕ is small enough relative to M ′, then the realized
price will still be lower than bi + 4M ′, thus our buyer wins. She wins at least
(k − 4)M ′ − ϕ > (k − 5)M ′. This proves the above inequality.

Next note that the probability in this formula will be arbitrarily close to Pr(bi

is the n + 1-st bid) as the auction size increases in the sense that

Pr(bi is the n + 1-st bid and ∃ opponent value in (bi + M ′, bi + 2M ′))

Pr(bi is the n + 1-st bid )
→ 1.

Therefore the gain is bounded from below by

Pr(bi is the n + 1-st bid) · (k − 5)M ′

4

for a large enough auction.
Next consider the loss from increasing the bid. A loss will take place when bi

was exactly the n-th bid; the size of the loss is bounded from above by 4M ′. Thus
the total expected loss is not more than

Pr(bi is the n-th bid) · 4M ′.

We need to compare our bounds for the gain and the loss. This involves comparing
the probability terms in the two formulas. Lemma 7 shows that

Pr(bi is the n + 1-st bid) · fmax

fmin

· bi + 3M ′

1− b− 3M ′ · C ≥ Pr(bi is the n-th bid)

when C is an appropriate constant that does not vary with the size of the auction.
Thus the gain will be greater than the loss if

Pr(bi is the n+1-st bid)·(k − 5)M ′

4
≥ Pr(bi is the n+1-st bid)·fmax

fmin

· bi + 3M ′

1− bi − 3M ′4M
′

or
(k − 5)

4
≥ 4

fmax

fmin

· bi + 3M ′

1− bi − 3M ′

which is implied by
(k − 5)

4
≥ 4

fmax

fmin

·
(

2

kM ′ − 1

)
for k large enough. For k large, this condition is satisfied when

k2 ≥ 64
fmax

fmin

· 1

M ′ .

We can choose k large so that this final inequality holds. Moreover, we can choose
k such that kM ′ = M is still going to zero as M ′ is going to zero (because k is of
order M ′−1/2).

For the appropriately chosen M the above argument shows that bi + 3M ′ is a
better bid than bi. This completes the proof. ♦

21



B Proof of Theorem 3

We show the claim by contradiction. Assume there is an agent i and two private
values vi < v′i with corresponding best responses bi and b′i such that bi > b′i.

Incentive compatibility implies

P vi(p(bi, ω) < bi)E
vi [vi − p(bi, ω)|p(bi, ω) < bi] ≥

P vi(p(b′i, ω) < b′i)E
vi [vi − p(b′i, ω)|p(b′i, ω) < b′i] (12)

and

P v′
i(p(b′i, ω) < b′i)E

v′
i [v′i − p(b′i, ω)|p(b′i, ω) < b′i] ≥

P v′
i(p(bi, ω) < bi)E

v′
i [v′i − p(bi, ω)|p(bi, ω) < bi] . (13)

We can rewrite these conditions as follows

0 ≥

[∫
p(b′

i,ω)<b′
i

(vi − p(b′i, ω)) dµvi(ω)−
∫

p(bi,ω)<bi

(vi − p(bi, ω)) dµvi(ω)

]

0 ≥ −

[∫
p(b′

i,ω)<b′
i

(v′i − p(b′i, ω)) dµv′
i(ω)−

∫
p(bi,ω)<bi

(v′i − p(bi, ω)) dµv′
i(ω)

]
.

We introduce the notation ∆vi = vi − v′i as well as the operators ∆vi
A(ṽ) =

A(vi)− A(v′i) and ∆bi
A(b̃) = A(bi)− A(b′i). We now add the two inequalities and

organize terms to obtain

−∆vi

[∫
p(b′

i,ω)<b′
i

dµv′
i(ω)−

∫
p(bi,ω)<bi

dµv′
i(ω)

]
≥ (14)

∆vi

[∫
p(b′

i,ω)<b′
i

(vi − p(b′i, ω)) dµṽ(ω)−
∫

p(bi,ω)<bi

(vi − p(bi, ω)) dµṽ(ω)

]
.

Further reorganization yields

∆vi∆bi
P v′

i

(
p(b̃, ω) < b̃

)
≥ (15)

∆vi


∫

p(b′
i,ω)<b′

i

(p(bi, ω)− p(b′i, ω)) dµṽ(ω)︸ ︷︷ ︸
Term I

−
∫

p(bi,ω)<bi

p(b′
i|ω)≥b′

i

(vi − p(bi, ω)) dµṽ(ω)︸ ︷︷ ︸
Term II

 .

On the right-hand side we made use of the monotonicity of the disturbance ϕ which
ensures that the ω-set p(bi, ω) < bi is larger than p(b′i, ω) < b′i (note that bi > b′i by
assumption).
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Term I is non-negative for all ω. By the argument in lemma 2 , we have∣∣∣∣∣∆vi

∫
p(b′

i,ω)<b′
i

(p(bi, ω)− p(b′i, ω)) dµṽ(ω)

∣∣∣∣∣ ≤
K · |∆vi| ·

∫
p(b′

i,ω)<b′
i

|p(bi, ω)− p(b′i, ω)| dµvi(ω) (16)

for some constant K which is independent of vi, v
′
i, bi, b

′
i. Now (12) is easily seen

to imply that∫
p(b′

i,ω)<b′
i

(p(bi, ω)− p(b′i, ω)) dµvi(ω) ≤
∫

p(bi,ω)<bi

p(b′
i,ω)≥b′

i

(vi − p(bi, ω)) dµvi(ω)

Furthermore, lemma 2 also allows us to bound term II∣∣∣∣∣∣∆vi

∫
p(bi,ω)<bi

p(b′
i,ω)≥b′

i

(vi − p(bi, ω)) dµṽ(ω)

∣∣∣∣∣∣ ≤ K · |∆vi| ·
∫

p(bi,ω)<bi

p(b′
i,ω)≥b′

i

(vi − p(bi, ω)) dµvi(ω).

It follows from all of these above that the right hand side RHS of (15) can be
estimated as

|RHS| ≤ 2K |∆vi|
∫

p(bi,ω)<bi

p(b′
i,ω)≥b′

i

(vi − p(bi, ω)) dµvi(ω) (17)

The integral is evaluated over an ω-set where the inequality vi > bi > p(bi, ω) >
p(b′i, ω) > b′i holds. We therefore know that vi − p(bi, ω) < vi − b′i. This allows us
to simplify the above inequality further

|RHS| ≤ 2K |∆vi| (vi − b′i)

∫
p(bi,ω)<bi

p(b′
i,ω)≥b′

i

dµvi(ω) (18)

By Lipschitz continuity we know that

|h(s|vi)− h(s|v′i)| ≤ Kh(s|v′i).
(19)

This allows us to simplify the inequality further to get

|RHS| ≤ 2K(K + 1) |∆vi| (vi − b′i)

∫
p(bi,ω)<bi

p(b′
i,ω)≥b′

i

dµv′
i(ω)

= 2K(K + 1) |∆vi| (vi − b′i) ∆bi
P v′

i

(
p(b̃, ω) < b̃

)
. (20)
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Now note that |∆vi| = −∆vi such that we can plug it back into (15) and obtain

∆vi∆bi
P v′

i

(
p(b̃, ω) < b̃

)
≥ 2K(K + 1)∆vi (vi − b′i) ∆bi

P v′
i

(
p(b̃, ω) < b̃

)
(21)

which yields

∆vi∆bi
P v′

i

(
p(b̃, ω) < b̃

)
[1− 2K(K + 1)(∆vi + v′i − b′i)] ≥ 0. (22)

We can actually choose ∆vi < 1
4K(K+1)

because if agent i’s best response function

is non-monotonic then we can find v and v′ arbitrarily close such that vi < v′i and
bi > b′i. Therefore the final inequality implies that as long as

v′i − b′i <
1

4K(K + 1)
(23)

holds we have
∆bi

P v′
i

(
p(b̃|ω) < b̃

)
≤ 0. (24)

But this implies bi ≤ b′i which is a contradiction. ♦

C Proof of Lemma 4

The argument in the main text shows that the payoff to bidding bi in the k-th game
converges to that of bidding bi in the limit game. That is, the payoff function is
convergent pointwise. However, this is not quite enough to show that the maximum
also converges. For this we need a stronger result, which is the following.

Let bk
i → bi. Then

Πk(vi, b
k
i ) → Π(vi, bi),

that is, the payoff from bidding bk
i in game k converges to that of bidding bi in

the limiting game. To see why, rewrite the payoff as an integral on the probability
space:

Πk(vi, b
k
i ) =

∫
{pk(bk

i )<bi}
vi − pk(bk

i , ω)dµvi (ω)

where pk(bk
i , ω) is the price (a random variable) in game k. Denote the domain

of integration in the above formula by Zk = {ω|pk(bk
i , ω) < bk

i }, and fix δ a small
positive number. Then

Πk(vi, b
k
i ) =

∫
{p(bi)<bi−δ}∩Zk

vi − pk(bk
i , ω)dµvi (ω) +

+

∫
{bi−δ≤p(bi)≤bi+δ}∩Zk

vi − pk(bk
i , ω)dµvi (ω) +

+

∫
{p(bi)>bi+δ}∩Zk

vi − pk(bk
i , ω)dµvi (ω) .
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Because the distribution of p(bi) is atomless, the middle term can be made arbi-
trarily small by an appropriate choice of δ. Fix a δ. We also have that pk(bk

i , ω)
converges to p(bi, ω) in probability; therefore for k large enough (given δ), outside
of a small probability event we will have that ω ∈ {p(bi) < bi − δ} implies ω ∈ Zk.
Therefore, controlling for the small approximation error, the first term can be con-
sidered to be integrated over {p(bi) < bi − δ}. Likewise, for k large, the domain of
integration of the final term will have arbitrarily small measure. Therefore we can
write that

Πk(vi, b
k
i ) = small(δ) + small(k, given δ) +

∫
{p(bi)<bi−δ}

v − pk(bk
i , ω)dµvi (ω) .

Furthermore, because the price distribution is atomless, the domain of integration
in this formula can be replaced by {p(bi) < bi}; that introduces approximation
errors smaller than what we currently have. Finally, because pk(bk

i , ω) converges
in probability to p(b, ω), we can write that

Πk(vi, b
k
i ) = small(δ) + small(k, given δ) +

∫
{p(bi)<bi}

v − p(bi, ω)dµvi (ω) =

= small(δ) + small(k, given δ) + Π(vi, bi).

This is what we wanted to prove. By choosing δ small enough, and then accordingly
k large enough, we can show that Πk(vi, b

k
i ) gets arbitrarily close to Π(vi, bi).

To get the statement of the lemma, assume that bk
i is the best response in

game k, but bi, the limit, is not a best response in the limiting game. Then there
is a b′i that does better then bi, so that Π(vi, bi) < Π(vi, b

′
i). However, in game

k it has to be the case that Πk(vi, b
k
i ) ≥ Πk(vi, b

′
i). Taking k to infinity, the left

hand side converges to Π(vi, bi), and the right hand side to Π(vi, b
′
i), thus giving

Π(vi, bi) ≥ Π(vi, b
′
i). This is a contradiction. ♦
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