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Abstract

A decision maker needs to schedule several activities that take
uncertain time to complete and are only valuable together. Some ac-
tivities are bound to be finished earlier than others, thus incurring
waiting costs. We show how to schedule activities optimally, how to
give independent agents performing them incentives that implement
the efficient schedule, how to form teams, and how to optimally re-
duce uncertainty when it is possible to do so at a cost. The paper of-
fers insights into important economic decisions such as planning large
projects and coordinating product development activities.

∗We thank Christopher Avery, Keith Chen, Katia Epshteyn, Drew Fudenberg, Paul
Milgrom, Markus Möbius, Alvin Roth, Martin Weitzman and Muhamet Yildiz for com-
ments and suggestions.
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1 Introduction

This paper introduces and studies synchronization problems. In a variety
of settings, several agents or components need to come together at a point
in time. Often perfect coordination is impossible because some agents are
bound to be ready earlier than others, thus incurring a waiting cost. For an
example of a synchronization problem, consider hikers meeting at a parking
lot. The exact time of the meeting does not matter, but everyone dislikes
waiting for others. Define efficiency in the parking lot problem as minimiz-
ing the total waiting time. We characterize the optimal solution for this
and other synchronization problems. A remarkable property of the optimal
solution is that the probability that an agent arrives last is independent of
the probability distribution representing the distribution of stochastic dis-
turbances to agents’ arrival times. This remains true even when agents face
different distributions of stochastic disturbances. Important economic deci-
sions such as planning large projects and coordinating product development
activities can be modeled as synchronization problems.
Another example of a synchronization problem is the process of writing

a handbook. Each of N contributors submits a survey of his subfield. The
handbook is published as soon as all surveys are finished. Each contributor
can control the time when he expects to finish his survey. We refer to this time
as contributor’s target arrival time. The actual time of finishing the survey
is a random variable referred to here as the arrival time. We refer to the
difference between the actual and the target arrival times as the disturbance
term. A contributor can shift the distribution of arrival times to the right
by postponing the time when he starts writing the survey. Note that perfect
coordination is not possible, there is always one survey that arrives last.
The difference between the meeting time and the arrival time of a particular
survey is the waiting time. Waiting is costly because readers value current
surveys. We assume that waiting cost is linear in waiting time.
In Section 2.1 we consider socially efficient choices of target arrival times,

i.e. the choices of target arrival times that minimize the total waiting time
(we assume here that per period cost of waiting is the same for all surveys).
Note that this is purely a synchronization problem. The meeting time is
unimportant, only minimization of the sum of waiting times matters for
achieving efficiency.1

1There is a somewhat related literature on reliability in operations research. See, for
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Proposition 1 establishes that a necessary and sufficient condition for
efficiency is that each contributor has the same probability of being last.
This remains true even if contributors face different disturbance terms or if
they can alter distributions of disturbance terms.
Proposition 4 establishes that for N ≥ 3, target arrival times among

agents with uniform disturbances are decreasing in variance. Perhaps sur-
prisingly, this claim does not hold for N = 2. In fact, Corollary 3 shows
that in a synchronization problem with two agents each with different but
symmetric distribution of the disturbance terms both contributors will target
the same arrival time.
The applications of synchronization problems reach beyond “the hand-

book coordination problem.” Design and manufacturing of products as dis-
similar as cars and buildings can often be viewed as a synchronization prob-
lem similar to the above example. The waiting cost may correspond to depre-
ciation of a component or to the cost of capital tied up in a component. Thus,
per period waiting costs are likely to be different for different components.
In many instances, the total payoff may be higher if the project is completed
sooner rather than later even if all waiting times are unchanged,2 we can
think of a cost of delay as a forgone profit that a project yields per period
upon completion. Consequently, there is a cost of delay separate from the
cost of waiting. In Section 2.2 we allow for positive delay costs and different
waiting costs for different components. Fortunately, it is straightforward to
generalize the results of the “handbook coordination problem” for this model
(see Proposition 6).
In Section 3 we describe mechanisms that implement the socially effi-

cient outcome when agents internalize their own waiting and delay costs,
but not the costs of others. In Section 4 we show that the total waiting
cost is submodular in standard deviations of the agents’ arrival times, and

example, Harris (1970) and Grosh (1989). The basic framework of reliability problem is
the following: a system consisting of N components is useful until one of the components
breaks. An engineer chooses the optimal expected lifetime of individual components of the
system, given that increasing the expected life of the system is desirable but boosting the
mean duration of each component is costly. Thus, there is a similar coordination problem.
However, there is an essential difference–reliability literature is primarily concerned with
estimating expected product life given limited data on reliability. In contrast, we assume
that the distribution of disturbance terms is known and focus on characterizing the efficient
strategy and implementing it.

2Adding a constant to all arrival times leaves all waiting times unchanged, while in-
creasing delay.
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discuss implications. Section 5 considers a model where agents can change
the standard deviations of their arrival times at a cost. Section 6 shows that
our stylized model is a valid approximation of a more realistic model with
time discounting, provided that agents are sufficiently patient. Section 7
concludes.

2 The Model

The basic model of a synchronization problem is as following. There are N
components (or agents). Target arrival time for component i is denoted by µi,
and the difference between the actual arrival time (ti) and the target arrival
time (µi) is the disturbance term. Disturbances are drawn from continuous
probability distribution F1×· · ·×FN (the disturbance terms are independent
but not necessarily identical). The earliest possible target arrival time for
component i is mi ≥ 0. The per-period cost of waiting associated with
component i is ci. The per-period cost of delay associated with component
i is di, and d ≡

P
di is the aggregate per-period cost of delay. The decision

maker selects target arrival times. The action space of the decision maker is
given by {µ : µ = (µ1, . . . , µN) ∈ RN , µi ≥ mi for all i}.
The total payoff is given by−

µ
NP
i=1

ci (t∗ − ti) + dt∗
¶
,where t∗ = max

i∈[1..N ]
{ti} .

The goal is to find the vector of target arrival times that maximizes the total
payoff.
To summarize the notation:
N number of components
µi ≥ mi target arrival time of component i
ti actual arrival time of component i
Fi distribution of ti − µi
ci per-period waiting cost associated with component i
di per-period cost of delay associated with component i
d the total per-period cost of delay, ≡P di
t∗ max

i∈[1..N ]
{ti} , i.e. arrival time of the last component

We begin by characterizing the socially efficient strategy profile–the pro-
file that maximizes the total payoff in the synchronization problem. There
are three reasons for our interest in social efficiency: (1) a synchronization
problem is often a single player decision problem. For example, a director of
a project may be in a position to set target arrival times for the components
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of the project. (2) reputational concerns may compel agents to follow an
efficient strategy even if it is not an equilibrium of a single period game.3 (3)
in a variety of settings a mechanism of transfer payments may be used that
leads to an efficient outcome, as we show in Section 3.
In the following section we consider the case where all per period waiting

costs ci are identical and the cost of delay d is equal to zero. Then in Section
2.2 we relax these assumptions.

2.1 Social Optimum for the Case of Equal Waiting
Costs and No Cost of Delay

Suppose all components’ (or agents’) per period waiting costs are equal,
and the cost of delay is zero. This corresponds to the case where the actual
meeting time does not matter. In this case the objective becomes to minimize

the total waiting time
NP
i=1

(t∗ − ti) . Since there is no cost of delay, this is just a
synchronization problem, where adding the same constant to all components’
arrival times does not change the value of the objective function. Hence, we
can ignore the restriction on the earliest arrival time of each component.
According to Proposition 1, a necessary and sufficient condition for an

optimal strategy is for each agent or component to arrive last with probability
1/N , regardless of distributions of disturbances {Fi(·)}.

Proposition 1 There exists an N-tuple µ = {µ1, . . . , µN} of target arrival
times that minimizes the expected total waiting time. For any such mini-
mizing N-tuple the probability of each agent arriving last is 1

N
. Conversely,

all N-tuples in which each agent arrives last with probability 1
N
are identical

up to adding the same constant to all target arrival times, and are therefore
optimal.

Proof. Existence is straightforward: the total waiting time is continuous
in µ. Without loss of generality we assume µ1 = 0, then the domain of
interest becomes bounded–no µi can be greater than the expected total
waiting time for µ = 0.
The proof of the second statement of the proposition is not hard either,

but it is more interesting. Namely, suppose that for an optimal µ, for some
3A finite discretization of this game has a product structure and thus satisfies the

conditions of Theorem 7.1 in Fudenberg, Levine, and Maskin (1994)
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agent (say, i = 1), the probability of arriving last is p < 1
N
. By assumption,

all probability distributions are continuous, and if we let µ1 grow arbitrarily
large holding other agents’ expected arrival times fixed, then the probability
of agent 1 arriving last approaches 1. Therefore, we can increase µ1 by a
small ² > 0 such that the probability of agent 1 arriving last is some value
q such that p < q < 1

N
(of course, other agents’ probabilities of arriving last

will change also).
Now let τ be a random variable drawn from (µ1+F1)× · · ·× (µN +FN),

and τ ² = τ +(², 0, . . . , 0). By construction, probability that in both τ and τ ²

agent 1 arrives last is p, probability that he arrives last in neither of them is
1−q, and probability that he arrives last in τ ² but not in τ is q−p. In the first
case, the total waiting time is increased in τ ² vs. τ by (N−1)², in the second
case it is increased by −² (i.e. decreased), and in the last case it is increased
by less than (N − 1)². Hence, by adding ² to µ1, expected waiting time is
increased by less than p(N −1)²− (1− q)²+(q−p)(N −1)² = (Nq−1)² < 0
since q was chosen to be less than 1

N
. Therefore, by adding ² to µ1 we

decreased expected total waiting time, and so µ was not optimal.
To prove the converse, suppose that there are two N-tuples, µ and µ0, in

which each agent arrives last with probability 1
N
. Suppose not all (µ0i−µi) are

the same. Let j be an agent with the largest (µ0i−µi). Then, relative to him,
some agents target the same arrival time in µ0 as in µ, and some target an
earlier arrival time. But this implies that the probability of agent j arriving
last increases as we move from µ to µ0, which contradicts our assumption
that it is 1

N
in both cases.

Corollary 2 If distributions F1, . . . , FN are identical, then in the optimum
all agents target the same arrival time. If for some subset [1..I] of agents
all F1, . . . , FI are identical, then in any optimum agents 1..I target the same
arrival time.

Corollary 3 If N=2 and distributions F1, F2 are symmetric around zero (but
not necessarily identical), then it is optimal for both agents to target the same
arrival time.

Corollary 3 is contrary to the intuition that high variance components
should target earlier arrival time. It is not hard to reconcile the result of
Corollary 3 with this intuition. When N = 2 one of the two components
will be the last one to arrive. Note that the social cost of arriving early vs.
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arriving late is symmetric. In contrast, for N ≥ 3 “arriving late is socially
more costly than arriving early” because at least two components wait for
the component that is the last to arrive. Thus, for N ≥ 3 the conclusion
of Corollary 3 does not hold. The following proposition provides a sufficient
condition under which components with higher variance of the disturbance
term target earlier arrival times.

Proposition 4 Suppose there are at least three agents, and two of them
have zero-mean uniform distributions of disturbances F1 and F2. Suppose
V (F1) > V (F2). Then in the optimum agent 1’s target arrival time is less
than or equal to agent 2’s. If, additionally, we assume that each agent’s
distribution of disturbances is continuous and has connected support, then in
the optimum agent 1 targets a strictly earlier time than agent 2.4

Proof. See Appendix.
The following is a straightforward corollary of Proposition 4.

Corollary 5 If all agents have zero-mean uniform distributions of distur-
bances, in the optimum agents with larger variances will aim at earlier times
than agents with smaller variances.

2.2 Social Optimum for the Case of Different Waiting
Costs and Positive Cost of Delay

In the previous section we assumed that the cost of delay is zero and the per
period waiting costs are the same for all components. Let us now consider
the general model, where the cost of delay is allowed to be positive and the
waiting costs are allowed to differ across agents (ci > 0 for all i). Note
that when the per period cost of delay is positive, other things being equal
an earlier meeting time is preferable. Consequently, the constraint µi ≥
mi becomes binding for some agents. In the following proposition we show
that since per period costs of waiting are different, agents for whom the

4The following example shows that the connectedness of other agents’ distributions is
a necessary condition for the strict inequality. There are 3 agents. Agent 1 has uniform
distribution of disturbances on [−1, 1]. Agent 2 has uniform distribution on [−2, 2]. Agent
3’s distribution consists of two parts–uniform on [200, 202] with probability 1

3 and uniform
on [−101, 100] with probability 2

3 . In this case it is optimal for all agents to aim at the
same time 0.
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above constraint is not binding will arrive last with unequal probabilities
proportional to their waiting costs.

Proposition 6 There exists an N-tuple µ of target arrival times minimizing
the expected total waiting cost subject to µi ≥ mi,∀i. For any such minimizing
N-tuple the following property is satisfied: for every i, if µi > mi, then the
probability of agent i arriving last is equal to ciP

cj+d
, and if µi = mi, then

the probability of agent i arriving last is greater than or equal to ciP
cj+d

. If
d is positive, then such minimizing N-tuple is unique and it is the only one
that satisfies the property above; if d = 0, then all minimizing N-tuples are
identical up to adding a constant and are the only ones satisfying the property.

Proof. See Appendix.
As an example, consider design of a new high tech product. A product

can go into production as soon as the design of each module is complete.
For an obvious reason, delay in releasing a product is costly. Finishing a
component early is often costly as well because over time better and better
designs become feasible. For example, design of a new car normally takes
several years. For many components of a car, waiting costs are negligible,
because the technological progress is relatively slow. Little is lost if the
design of seats is complete two years earlier than necessary. In contrast, an
opportunity to use a more current technology is lost, if the design of an on
board computer is finished two years earlier than necessary. In the case of
product design we can think of waiting costs as being determined by the cost
of components and the rate of technological progress. Consequently, if the
rate of technological progress is the same for two components then per period
waiting costs are proportional to the price of a component. Proposition
6 predicts that other things being equal, the probability that a design of
a particular component is finished last is proportional to the price of the
component.5 For the same reason, other things being equal, components
based on rapidly evolving technology are more likely to be ready last.

5Of course, this statement only applies to components for which target arrival times
do not correspond to a corner solution. There is a simple test that identifies components
for which target arrival time is not at a corner solution. The target arrival time does not
correspond to a corner solution for any component for which development starts later than
the earliest possible time (i.e. the time when product development starts).
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3 Mechanisms for Implementing the Socially
Optimal Outcome

If each agent internalizes his own waiting and delay costs, but not those of
others, the self-interest of agents will fail to generate the efficient choice of
target arrival times (unless the agents’ costs of delay are so large relative to
their costs of waiting that they all target µi = mi).6 To achieve the optimum,
agents must have external incentives. In this section we present mechanisms
which implement the optimal target arrival times.
It is easy to show by using Proposition 6 that Vickrey-Clark-Groves piv-

otal mechanism has a unique pure strategy equilibrium where players choose
finite arrival times. This equilibrium implements efficient target arrival times.
In this mechanism only the player who arrives last makes a non-zero transfer
payment equal to the externality he imposes on others.
Namely, define game Γ0 as following. There are N players. Each player’s

action is his target arrival time µi ≥ mi. The payoff of player i is given by
the expected value of −ci (t∗ − ti)− dit∗ + γi, where t∗ = max

i∈[1..N ]
{ti}, vector

t is equal to µ plus a random vector of disturbances drawn from continuous
probability distribution F1×· · ·×FN , and γi is the transfer to agent i within

the VCG mechanism. When player i is last, γi = −w
³P

j 6=i (cj + dj)
´
,

where w is the difference between his arrival time and the next-to-last player’s
arrival time; when player i is not last, γi = 0. It is easy to see that Γ

0 has
one pure strategy equilibrium7, and this equilibrium is the socially optimal
vector of target arrival times.

Proposition 7 For a synchronization problem where ci and di are positive8,
6By Proposition 6, in the optimum unconstrained agent i arrives last with probability
ciP
cj+d

. Using similar logic, his individual optimization implies that he arrives last with
probability ci

ci+di
. For these two probabilities to be equal, waiting and delay costs of all

other agents have to equal 0, which of course does not hold generally. See Ostrovsky and
Schwarz (2002, in progress) for a more formal treatment of individual incentives of agents
and resulting equilibria.

7For the sake of completeness we should mention that this mechanism also has a set of
equilibria in mixed strategies. It is easy to see that a strategy profile is a mixed strategy
Nash Equilibrium if and only if at least two agents randomize among target arrival time
in such a way that their expected arrival times are equal to infinity. In any mixed strategy
equilibrium expected payoff of each agent is negative infinity.

8If delay cost is zero game Γ0 has multiple pure strategy equilibria that implement the
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the corresponding game Γ0 has exactly one pure strategy equilibrium. In this
equilibrium each player chooses a socially optimal target arrival time.
Proof. See Appendix.

When there are no costs of delay, i.e. ∀i, di = 0, there is also a simple
mechanism which guarantees that the sum of all payments is zero: the player
who arrives last pays other players half of their waiting costs.9 Another way
to get a mechanism where the sum of all payments is zero is to make every
player pay the difference between the average total (delay + waiting) cost of
all players and his own total cost (when this difference is negative, the player
receives a payment).
Vickrey-Clark-Groves mechanism makes each player’s payment depen-

dent on the actual arrival times of other players. Such mechanisms may be
hard to implement in practice–for example, a subcontractor would proba-
bly agree to a contract specifying a schedule of fines if he is late, but quite
possibly would not sign a contract in which his fine depends on performance
of other subcontractors. We can eliminate the above mentioned problems
by modifying the mechanism so that transfer payments of each player de-
pend only on his actual arrival time and not on the actual arrival time of
other players. In the modified mechanism each player pays a fine equal to
the expected externality that he caused computed based on his arrival time
under the assumption that other players select socially optimal target ar-
rival times. More formally, let game Γ00 be the same as game Γ0, except
for the form of the transfer payment γi. The transfer payment is given by

γi(ti) = −E[{w
³P

j 6=i (cj + dj)
´
if player i is last, 0 otherwise}|ti], where

w is the difference between ti and the next-to-last player’s arrival time, and
expectation is taken assuming socially optimal behavior by other players.
Each player’s individual incentives (in equilibrium) do not change, and so

our previous equilibrium result holds. Interestingly, the resulting fine −γi(ti)
is convex.

Proposition 8 The transfer payment −γi(ti) in game Γ00 is convex. The
game has one equilibrium, which is socially optimal.

socially optimal outcome. Adding a constant to all target arrival times in one socially
optimal Nash Equilibrium generates another socially optimal Nash Equilibrium profile.

9See Appendix for the proof and also for a generalization of this mechanism to the case
where costs of delay may be positive.
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Proof. Each player’s optimal strategy is independent of other players,
and, by construction, is the same as his equilibrium strategy in game Γ0. To
show that −γi(ti) is convex, notice that for small ², the difference (−γi(ti +
²)) − (−γi(ti)) is equal to (probability that player i is last if he arrives at
ti)×

³P
j 6=i(cj + dj)

´
+ o(²). Hence, (−γ0i(ti)) = (probability that player i is

last if he arrives at ti)×
³P

j 6=i(cj + dj)
´
, which is increasing in time.

Consequently, we may expect to find contracts with late penalty increas-
ing faster than linearly in time.

4 Forming Teams of Agents with Different
Distributions of Disturbances

We have shown how a decision maker should schedule different agents’ target
arrival times, and how he can give them incentives to stick to that schedule.
Another task that planners often face is how to put agents in teams to work
on several different projects. In this section we show that expected waiting
time is submodular in standard deviations of agents’ arrival times, and so it
is better to put agents with similar variances together, rather than mix. For
manufacture of complex products consisting of many subcomponents, this
result is similar in spirit to Kremer’s (1993) O-Ring model, although along
a different dimension. The O-Ring model of production function describes a
process consisting of several tasks; workers implementing these tasks some-
times make mistakes. Higher probability of mistakes by a worker decreases
productivity of other workers by reducing the value of the composite good.
As a result, it is optimal to put high-quality (low probability of mistakes)
workers with other high-quality workers.
Another important economic implication is that reducing uncertainty in

one part of the production process makes reducing uncertainty in another
part more profitable. This is parallel to Milgrom and Roberts (1990), who
list several variables which determine a firm’s profitability, and find comple-
mentarities among them by showing that the profit function is supermodular
in these variables. Since waiting cost is submodular in standard errors of
agents’ arrival times, the profit function is supermodular (we can model the
profit function as a constant minus the total cost of waiting).
Formally, suppose there are two agents, i = 1, 2. Their distributions of

disturbances belong to a family of zero-mean distributions parameterized by
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standard deviation, i.e. Fσ(x) = F1(x/σ). Also, for simplicity, assume that
agents’ costs of delay are equal to 0 and costs of waiting are equal to 1.
Let w(σ1,σ2) be the expected total waiting time when agents have standard
deviations σ1,σ2 and choose their expected arrival times optimally.

Proposition 9 For uniform and normal families of distributions of distur-
bances, reducing σ1 is complementary to reducing σ2, i.e. function w(σ1,σ2)
is submodular.

Proof. See Appendix.

5 Social Optimum for the Case of Endoge-
nous Variance

In the previous sections we consider a model where each agent’s action con-
sists of the choice of the target arrival time. We assumed that the distribution
of the disturbance term is entirely outside of an agent’s control. This need
not necessarily be the case–in many situations agents can also control the
shape of their distributions of disturbances, at some cost. In the present
section we consider a particular case where agents can control variances of
their arrival times.10

Suppose each agent can reduce the variance of his arrival time at a cost.
Namely, agent i chooses both target arrival time µi and standard deviation
σi of his distribution of disturbances Fi(·).11 His payoff is −ci(t∗ − ti) −
dit∗ − g(σi), where t∗ is the latest arrival time of all agents, ti is agent i’s
arrival time, and g(σi) is the cost of variance of agent i. We assume that
function g(σ) is differentiable and g0(σ) < 0. The social planner’s objective is
to choose vectors µ and σ so as to maximize the expected sum of the agents’
payoffs. Notice that Proposition 1 still holds.
10A common way of reducing variance at a cost is giving an employee several tasks with

different deadlines. Then by adjusting the proportion of time spent on each of them the
employee is able to reduce variance of completion time. On the other hand, constantly
switching from project to project is quite taxing for many people–this is the cost of
reducing variance.
11Again, we assume that changing the standard deviation is equivalent to stretching the

distribution along the time dimension: Fσ(x) = F1(x/σ) and that E[F ] = 0. Zero-mean
normal and uniform families of distributions satisfy these requirements.
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As in Section 4, we assume that all agents’ costs of delay are equal to 0
and costs of waiting are equal to 1. However, we now allow for n agents. Let
w(σ1, . . . ,σn) be the expected total waiting time when agents have standard
deviations σ1, . . . ,σn and choose their expected arrival times optimally. No-
tice that our restrictions on the families of disturbance distributions imply
that function w is homogeneous of degree 1.

Definition 10 Call family of distributions Fσ(·) submodular if for any n
function w(σ1, . . . ,σn) is submodular.

Lemma 11 When agents’ distributions of disturbances are submodular, in
the optimum they all choose the same variance and aim at the same arrival
time.

Proof. Suppose in the optimum agents choose σ1, . . . ,σn, which are not
all the same. Take n2 agents: n with variance σ1, n with variance σ2, etc.
Since agents’ distributions are submodular, nw(σ1, . . . ,σn) > w(σ1, . . . ,σ1)+
· · ·+w(σn, . . . ,σn), and so n[w(σ1, . . . ,σn)+g(σ1)+· · ·+g(σn)]> [w(σ1, . . . ,σ1)+
ng(σ1)] + · · ·+ [w(σn, . . . ,σn)+ng(σn)]. But then for some i,w(σi, . . . ,σi)+
ng(σi) < w(σ1, . . . ,σn) + g(σ1) + · · ·+ g(σn).
An interesting feature of Lemma 11 is that it places no restrictions on the

form of cost function g(·)–e.g. regardless of whether it is convex, concave,
etc. the agents still (in the optimum) choose equal variances.
Let’s now see what happens to each agent’s expected waiting time in the

optimum as the number N of agents goes to infinity.

Proposition 12 Suppose agents’ distributions of disturbances are submod-
ular. If they are unbounded (on the right), then as the number of agents N
goes to infinity, in the optimum the expected waiting time of each agent goes
to − limσ→0+ σg0(σ). If distribution of disturbances is bounded, each agent’s
expected waiting time goes to a positive constant.

Proof. See Appendix.
For example, if g(σ) = −σa

a
, then as the number of agents N goes to

infinity, each agent’s expected waiting time goes to 0 (if a > 0) or to +∞
(if a < 0). If g(σ) = − ln(σ), each agent’s expected waiting time goes to 1
(in fact, as is clear from the proof of the proposition, it is equal to 1 for any
number of agents).
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It is clear that asN increases, it makes sense to reduce variance of individ-
ual components. Proposition 12 implies that (depending on the cost function
g(·)) it may pay to reduce variance so much that the average waiting time of
an individual component also goes down as the number of components goes
up.

6 Time Discounting

In the previous sections we considered stylized models where agents were
infinitely patient, i.e. their time discount coefficient β was equal to 1. This
allowed us to derive simple and intuitive results. The current section shows
that our results are robust to small changes in β, i.e. for a sequence of
discount factors converging to 1, the optimal arrival times converge to the
ones derived in Section 2. Roughly, this also says that if disturbances are
small, a planner can ignore time discounting.
Define synchronization problem Γ(β) for 0 < β < 1 as follows. There are

N agents. Each agent i can choose his target arrival time µi ≥ mi. His actual
arrival time ti is equal to µi plus a random disturbance drawn from continuous
probability distribution Fi independent of other agents’ disturbances. Once
he arrives, he has to pay his waiting cost ci until the last agent arrives. When
all agents arrive, agent i starts getting benefit di forever. (An equivalent way
to think about this model is to say that once the agent arrives, he has to pay
ci forever, and when all agents arrive, he starts getting gross benefit (ci+di),
also forever.) The agent’s payoff Πi = E[

R∞
ti

βtπi(t)dt], where πi(t) is the
sum of cost and benefit received at time t, and the total payoff is the sum of
all agents’ payoffs.
Define Γ(β = 1) as the general synchronization problem from Section 2,

with no discounting. The following proposition says that as β → 1, the strat-
egy profile that maximizes the total payoff in Γ(β) goes to the strategy profile
that maximizes the total payoff in Γ(1). Also, it says that as β increases,
optimal target arrival times decrease, i.e. as agents become more patient, it
is optimal for them to arrive earlier.

Proposition 13 Consider decision problem Γ(β) and let µ∗(β) be the vector
of target arrival times maximizing the total expected payoff. Then (i) as
β → 1, µ∗(β)→ µ∗(1) and (ii) for any 0 < β1 ≤ β2 ≤ 1, µ∗(β1) ≥ µ∗(β2).
Proof. See Appendix.
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7 Concluding Remarks

This paper introduces and studies “synchronization problems.” In a variety
of settings, several agents or components need to come together at a point in
time. The actual time of arrival of each component is its target arrival time
plus a noise term. In this case perfect coordination is impossible because some
agents are bound to be ready earlier than others, thus incurring waiting and
delay costs. We show that each agent’s optimal probability of being last is
independent of the probability density function of the noise term. We provide
a simple operable formula for comparing optimal probabilities of being late
for components with different costs of waiting.
Our model readily lends itself to empirical testing. An econometrician

only needs to observe the frequency with which each component in a large
project is finished last, the cost of waiting for each component, and the cost
of delay. He does not need to estimate the distribution of disturbances,
which would presumably be very hard. Neither does he need to observe
the components’ planned completion dates. Alternatively, if in a particular
application it is reasonable to assume that arrival times are chosen optimally,
the model can be used to estimate relative magnitudes of delay and waiting
costs of different components in a project.
The present paper investigates synchronization problems in cooperative

setting, and so our results are directly applicable to synchronization problems
that emerge within a firm, such as management of large projects or coordi-
nation of product development activities. When coordination of actions of
different firms is concerned, a non-cooperative model of synchronization may
be more appropriate (if “arrival times” are not contractible and the need for
coordination is not recurrent, agents will act in their own interests, which
generally leads to inefficient outcomes). We explore non-cooperative models
of synchronization in the context of adoption of standards in Ostrovsky and
Schwarz (in progress).
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A Proof of Proposition 4

Before we begin the proof of Proposition 4, let’s prove the following

Lemma 14 Let X1 and X2 be independent random variables distributed
uniformly on positive-length intervals [a1, b1] and [a2, b2], respectively, and
suppose E[X1] ≥ E[X2] and V [X1] ≥ V [X2]. Take any point z. Then
P (X1 = max{X1,X2, z}) ≥ P (X2 = max{X1, X2, z}), the inequality becomes
strict if E[X1] > E[X2].

Proof. Without loss of generality assume z = 0. Our conditions on
means and variances of X1 and X2 can be reformulated in equivalent terms
as a1 + b1 ≥ a2 + b2 and b1 − a1 ≥ b2 − a2. This in turn implies that
b1 > b2 (if b1 = b2 then we necessarily have a1 = a2 and the claim becomes
obvious). If b2 is negative or equal to 0, the claim of the lemma is clearly
true. If at least one of a1 or a2 is non-negative, then 0 is never equal to
max{X1,X2, 0}, and the claim of the lemma is also true since it becomes
equivalent to P (X1 > X2) ≥ (>)12 ⇔ E[X1] ≥ (>)E[X2].
So the only interesting case left to prove is when a1 and a2 are negative

and b1 and b2 are positive.

P1 = P (X1 = max{X1, X2, 0}) = b1 − b2
b1 − a1+

b2
b1 − a1

µ
1

2
· b2
b2 − a2 +

−a2
b2 − a2

¶
.

P2 = P (X2 = max{X1, X2, 0}) = b2
b2 − a2

µ
1

2
· b2
b1 − a1 +

−a1
b1 − a1

¶
.
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P1 − P2 = b1 − b2
b1 − a1 −

a2b2
(b1 − a1)(b2 − a2) +

a1b2
(b1 − a1)(b2 − a2) =

(b1 − b2)(b2 − a2) + (a1 − a2)b2
(b1 − a1)(b2 − a2) .

Rearranging the inequality for the means, a1 − a2 ≥ −(b1 − b2), so

P1 − P2 ≥ (b1 − b2)(b2 − a2)− (b1 − b2)b2
(b1 − a1)(b2 − a2) =

−a2(b1 − b2)
(b1 − a1)(b2 − a2) > 0.

Let us now prove Proposition 4.
Proof. We know from Proposition 1 that in the optimum all agents

should arrive last with equal probabilities. Let G be the probability distri-
bution of the latest arrival time of agents 3, . . . , N (x = max{t3, t4, ..., tN},
x ∼ G(·)). Then Pi = P (agent i is last) =R
P (agent i is last | latest arrival time of agents 3, . . . , N = x)dG(x), where

i ∈ {1, 2}.
If E(F1) > E(F2), then from the previous lemma we know that ∀x,

P (agent 1 is last|x) > P (agent 2 is last|x). But then P1 > P2, which contra-
dicts our assumption of all agents arriving last with equal probabilities, and
so E(F1) ≤ E(F2).
Now suppose that other agents distributions’ supports are connected and

suppose E(F1) = E(F2). Since uniform distributions are also connected,
this and the fact that every agent can arrive last with positive probability
implies that there exists an interval such that each agent’s probability density
function is positive on this interval. Consequently, G0 is positive on this
interval. Take points a, b inside the interval.

P1 − P2 ≥
Z b

a

(P (agent 1 is last|x)− P (agent 2 is last|x))dG > 0,

which contradicts our assumptions, and so E(F1) < E(F2).

B Proof of Proposition 6

The proof is completely analogous to the proof of Proposition 1, so we’ll be
brief. An optimal µ exists because the total cost is continuous in µ and the
“relevant” range is compact. Take an optimal µ. If µi is greater than mi,
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then the idea that a small disturbance doesn’t change the expected total cost
(up to the first order) gives us qi(

P
j 6=i cj + d) = (1 − qi)ci, where qi is the

probability that agent i arrives last. If µi = mi, small increase in µi can not
decrease the total cost, and so qi(

P
j 6=i cj + d) ≥ (1 − qi)ci. To show that

there is no more than one µ satisfying this condition, suppose there are two,
µ1 and µ2. Take i such that µ1i > µ

2
i and µ

1
i −µ2i is the biggest such increase

(if such i does not exist, there exists one such that µ2i > µ
1
i , which case can

be dealt with completely analogously). Then at µ1 the probability of agent
i being last is strictly greater than the bound given in proposition, and also
µ1i is greater than mi–contradiction.

C Mechanisms

C.1 Proof of Proposition 7

By construction, socially optimal arrival times form an equilibrium. Now,
suppose there are two different equilibrium vectors of target arrival times,
µ1 and µ2. By construction, the system of first order conditions for the
players’ choices of target arrival times is the same as in the optimum, and the
probabilities of being last are also the same (for the unconstrained players).
Take player i for whom µ1i − µ2i is the highest among all players and is
positive (this is w.l.o.g.–if necessary, consider µ2i −µ1i instead). Then (a) he
is unconstrained in vector µ1 and (b) his probability of being last is strictly
higher in µ1 than µ2, and is therefore strictly greater than ciP

(cj+dj)
. This

contradicts his first order condition, which has to bind for the unconstrained
players.
As a side note, there are many mixed equilibria in this game. In this equi-

libria players get infinite negative payoffs. For example, it is an equilibrium
for each player to come at time 2 with probability 1/2, 4 with probability
1/4, etc.

C.2 Generalization of the “Pay (Waiting Cost)/2”Mech-
anism

Proposition 15 In addition to our basic setup, suppose that the player who
arrives last has to pay every player j amount equal to wjrj+ t∗sj, where t∗ is
the time of arrival of the last player, wj = t∗−tj, rj = cj

2
, and sj = dj−

P
dk

2N−2 .
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Then this game has a unique equilibrium, and this equilibrium is socially
optimal.

Proof. Let qi be player i’s desired probability of being last in this setup.
We need to show that this qi is the same as in the optimum, i.e. is equal to
ci/(

P
(cj+dj)). Analyzing player i’s FOCwe get qi(di+

P
rj−ri+

P
sj−si) =

(1−qi)(ci−ri)⇔ qi(di+
P cj

2
− ci

2
+ N−2
2N−2

P
dj−di+ 1

2N−2
P
dj) = (1−qi)( ci2 )⇔ qi(

P
cj − ci +

P
dj) = (1− qi)ci ⇔ qi(

P
cj +

P
dj) = ci.

D Proof of Proposition 9

D.1 Normal Disturbances

Suppose we have agents with normal distributions of disturbances with stan-
dard deviations a and b. From Corollary 3 we know that in the optimum in
each group both agents target the same arrival time. Hence, the difference
between their arrival times is distributed normally with variance a2+b2. The
expected waiting time is just the expectation of the absolute value of the
difference between the arrival times, which is equal to a constant multiplied
by the standard deviation of the distribution, i.e. c

√
a2 + b2. So, to show

that waiting time is submodular, we need to show that the function
√
a2 + b2

has a non-positive 2nd cross-derivative (Milgrom-Roberts 1990, Theorem 2).
This derivative is equal to −ab(a2 + b2)−3/2 ≤ 0.

D.2 Uniform Disturbances

In the uniform case, it is easier to parameterize the distribution by the sup-
port size rather than the standard error; notice that it’s just a proportional
rescaling. Suppose the agents’ distributions have supports of sizes a and b,
a ≤ b. w(a, b) = a

b
· a
3
+ b−a

b
· a+b

4
= 1

12
· a2
b
+ b

4
. w00ab(a, b) = −16 ab2 ≤ 0.

E Proof of Proposition 12

Let wN(σ) = w(σ, . . . ,σ) with N agents. Then the total cost, with N agents,
isNg(σ)+wN(σ). The first order condition on σ impliesNg0(σ)+w0N(σ) = 0.
Since w is homogeneous of degree 1, w0N(σ) = wN(1). Expected waiting time
of one agent is wN(σ)/N = σ(wN(1)/N) = −σg0(σ). If the distribution is
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unbounded, then asN goes to infinity, wN(1)/N goes to infinity, and so σ goes
to zero. If the distribution is bounded, then as N goes to infinity, wN(1)/N
goes to a positive constant, and so σ goes to a constant and σ(wN(1)/N)
goes to a constant.

F Proof of Proposition 13

For simplicity, assume that distributions of disturbances Fi are bounded.
(i) Suppose β < 1. By the same “marginal delay” reasoning as in Propo-

sition 1, agent i’s FOC for choosing µi when we optimize social welfare is

ci

Z ∞

−∞
βtiProb(i 6= last|ti)fi(ti − µi)dti = (

X
j 6=i
cj+

X
dj)

Z ∞

−∞
βtiProb(i = last|ti)fi(ti − µi)dti

if µi > mi and

ci

Z ∞

−∞
βtiProb(i 6= last|ti)fi(ti − µi)dti ≤ (

X
j 6=i
cj+

X
dj)

Z ∞

−∞
βtiProb(i = last|ti)fi(ti − µi)dti

if µi = mi.
By adding ci

R∞
−∞ βtiProb(i = last|ti)fi(ti − µi)dti to both sides, we get

the equivalent FOC

ci

Z ∞

−∞
βtifi(ti − µi)dti =

X
(cj + dj)

Z ∞

−∞
βtiProb(ti ≥ tj∀j|ti)fi(ti − µi)dti

if µi > mi and

ci

Z ∞

−∞
βtifi(ti − µi)dti ≤

X
(cj + dj)

Z ∞

−∞
βtiProb(ti ≥ tj∀j|ti)fi(ti − µi)dti

if µi = mi.

Crucially, both sides are continuous in β and for β = 1 become (we only
write the equation for µi > mi)

ci

Z ∞

−∞
fi(ti − µi)dti =

X
(cj + dj)

Z ∞

−∞
Prob(ti ≥ tj∀j|ti)fi(ti − µi)dti

m
ciP

(cj + dj)
= Prob(i = last),

20



which is the FOC for the social optimum with no discounting.

Now suppose µ∗(β) does not go to µ∗(1) as β goes to 1. Then there exists
a subsequence {βn} converging to 1 such that µ∗(βn) converges to some
µ̃ 6= µ∗(1) (set of µ∗(β) is bounded as β → 1). Then by continuity, µ̃ satisfies
the FOC with β = 1 and is therefore an optimum of decision problem Γ(1).
But we know that Γ(1) has only one optimum, equal to µ∗(1).
(ii) Take β1 < β2, and suppose for some i, µ1 = µ

∗
i (β1) < µ2 = µ

∗
i (β2).

Without loss of generality, assume that i = argmaxj{µ∗j(β2) − µ∗j(β1)}. By
FOC,X

(cj + dj)

Z
βti1 Prob(ti = last)f(ti − µ1)dti ≥ ci

Z
βti1 f(ti − µ1)dti.

Since µ1 < µ2,X
(cj + dj)

Z
βti1 Prob(ti = last)f(ti − µ2)dti > ci

Z
βti1 f(ti − µ2)dti.Z

βti1 (
X
(cj + dj)Prob(ti = last)− ci)f(ti − µ2)dti > 0.

Let t∗i be such that
P
(cj + dj)Prob(t

∗
i = last) − ci = 0. The integrand is

negative for ti < t∗i and positive for ti > t∗i . β2 > β1, and so
³
β2
β1

´t
is an

increasing function. Therefore,Z
βti2 (

X
(cj + dj)Prob(ti = last)− ci)f(ti − µ2)dti ≥

µ
β2
β1

¶t∗i Z
βti1 (

X
(cj + dj)Prob(ti = last)− ci)f(ti − µ2)dti > 0.

But this, together with µ2 > µ1 ≥ mi, is a violation of the FOC for the
optimum.
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