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A TALE OF TWO TAILS: PEAKEDNESS PROPERTIES IN
INHERITANCE MODELS OF EVOLUTIONARY THEORY

Rustam Ibragimov1

Department of Economics, Yale University

ABSTRACT

In this paper, we study transmission of traits through generations in multifactorial inheritance models with

sex- and time-dependent heritability. We further analyze the implications of these models under heavy-tailedness

of traits’ distributions. Among other results, we show that in the case of a trait (for instance, a medical or

behavioral disorder or a phenotype with significant heritability affecting human capital in an economy) with not

very thick-tailed initial density, the trait distribution becomes increasingly more peaked, that is, increasingly

more concentrated and unequally spread, with time. But these patterns are reversed for traits with sufficiently

heavy-tailed initial distributions (e.g., a medical or behavioral disorder for which there is no strongly expressed

risk group or a relatively equally distributed ability with significant genetic influence). Such traits’ distributions

become less peaked over time and increasingly more spread in the population.

In addition, we study the intergenerational transmission of the sex ratio in models of threshold (e.g., polygenic

or temperature-dependent) sex determination with long-tailed sex-determining traits. Among other results, we

show that if the distribution of the sex determining trait is not very thick-tailed, then several properties of these

models are the same as in the case of log-concave densities analyzed by Karlin (1984, 1992). In particular, the

excess of males (females) among parents leads to the same pattern for the population of the offspring. Thus,

the excess of one sex over the other one accumulates with time and the sex ratio in the total alive population

cannot stabilize at the balanced sex ratio value of 1/2. We further show that the above properties are reversed

for sufficiently heavy-tailed distributions of sex determining traits. In such settings, the sex ratio of the offspring

oscillates around the balanced sex ratio value and an excess of males (females) in the initial period leads to an

excess of females (males) offspring next period. Therefore, the sex ratio in the total living population can, in

fact, stabilize at 1/2. Interestingly, these results are related, in particular, to the analysis of correlation between

human sex ratios and socioeconomic status of parents as well as to the study of the variation of the sex ratio

due to parental hormonal levels.

The proof of the results in the paper is based on the general results on majorization properties of heavy-tailed

distributions obtained recently in Ibragimov (2004) and several their extensions derived in this work.

Keywords and phrases: Multifactorial inheritance models; Phenotypic traits; Heritability; Sex ratio; Human

capital.
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1 Introduction and discussion of the results

1.1 Motivation and review of the literature

In recent years, there has been a growing interest in inheritance models and related problems in economics.

This strand of research is motivated, in part, by significant influence of an individual’s genetic endowment on

achievable economic outcomes and strong dependence of the distribution of human capital on the distribution

of abilities and rates of illness in population and on the transmission of genes through generations (see, among

others, Becker, 1993, Ch. 4, 5, Currie, 2000, Frank and McGuire, 2000, Haveman and Wolfe, 2000, and

Zak, 2002, and references therein). It was demonstrated in a number of studies that heritability is significant

and often exceeds environmental effects for many human psychological, psychiatric and neurological phenotypes

affecting human capital in an economy (e.g., Ehrman and Parsons, 1977, the contributions in Fuller and Simmel,

1983, Plomin, deFries and McClearn, 1990, Plomin, Owen and McGuffin, 1994, Rowe, 1994, and Gilger, 2000).

Significant heritability has been found for such traits as intelligence (IQ), scholastic achievement, risk-taking

behavior, learning and learning disabilities, socioeconomic status, memory, nonverbal thinking skills, aggressive

behavior, delinquent or criminal behavior, for many behavioral and mental disorders including, e.g., autism,

schizophrenia, depression, Alzheimer’s disease and reading disability as well as for smoking behavior and drug

and alcohol abuse and dependence. Additionally, significant genetic influence was found for a number of medical

disorders, for example, for hypertension, ischemic heart disease, tuberculosis, arterial hypertension, bronchial

asthma, rheumatoid arthritis, peptic ulcer and epilepsy and predisposition to at least several types of cancer (see

Ehrman and Parsons, 1977, Plomin et. al., 1994, Lichtenstein, Holm, Verkasalo, et. al., 2000, and Risch, 2001).

Motivated by the analysis of economic effects of behavioral traits and their evolution and intergenerational

transmission, many authors have focused on the study of models in economics with altruism, inequity aversion

and standards of fairness as well as of evolution of risk attitudes underlying strategic behavior (see Becker,

1974, 1976, Kahneman, Knetsch and Thaler, 1986, Bernheim and Ray, 1987, Simon, 1990, 1993, Samuelson

(1993), Bergstrom, 1995, 2002, Robson, 1995, 2002, and references therein). Moreover, a series of studies in

economics analyzed closely related models of intergenerational mobility in various contexts (see, among others,

Goldberger, 1989, Peters, 1992, Zimmerman, 1992, Becker, 1993, Ch. 10, and Mulligan, 1999).

Formally, Galtonian-type multifactorial (polygenic) inheritance models (e.g., Karlin, 1984, 1992, and Karlin

and Lessard, 1986) with sex- and time-dependent heritability have the form

Xt+1(λ, κ) = λtX
p
t + κtX

m
t + (1− λt − κt)εt, (1)

t = 0, 1, ..., where Xt+1 is the trait value of the offspring; and Xp
t and Xm

t , t = 0, 1, 2, ..., are, respectively,

paternal and maternal contributions, εt, t = 0, 1, 2, ..., is an independent residual (environmental) contribution

of mean 0 and λ = {λt}∞t=0 and κ = {κt}∞t=0 are sequences of nonnegative numbers such that 0 ≤ λt + κt ≤ 1,

t = 0, 1, ... (several patterns of the models considered in this paper are more general than those in Karlin, 1984,

1992, and Karlin and Lessard, 1986, and our notations differ from those in the above works). The parameters λt

and κt are sex-dependent heritability coefficients; we assume that heritability can change with time t. Note that

in the standard case when Xp
t and Xm

t do not depend on the future values of λs and κs, s = t + 1, t + 2, ..., the
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trait values Xt+1 depend on the ”histories” λ(t) = (λ0, λ1, ..., λt) and κ(t) = (κ0, κ1, ..., κt) of the coefficients of

λ and κ up to time t. In the case of symmetric and time-independent heritability, λt = κt = h2/2, t = 0, 1, 2, ...,

where h2 is the heritability coefficient of Galton (1886) given by the coefficient at the regression of an offspring

on the midparent value at an equilibrium (see Roughgarden, 1979, Ch. 9, Bulmer, 1980, Ch. 6, and Becker,

1993, Ch. 10). Models (1) with λt 6= κt represent asymmetric transmission from parents. The case λt + κt = 1

describes the model of purely parental transmission

Xt+1(λ) = λtX
p
t + (1− λt)Xm

t (2)

In what follows, we denote λ = (1/2, 1/2, ...). Process (2) with λt = 1/2, t = 0, 1, 2, ... (that is, with λ = λ),

corresponds to the Galtonian blending model

Xt+1(λ) = (Xp
t + Xm

t )/2. (3)

Let, for t = 0, 1, 2, ..., X ′
t and X ′′

t denote independent copies of the random variable (r.v.) Xt = Xt(λ) and

let the trait X0 have a sex-independent distribution in the population at time t = 0. In the case when

(Xp
t , Xm

t ) = (X ′
t, X

′′
t ) a.s., (4)

t = 0, 1, 2, ..., time series (2) model transmission through generations of the trait X0 with time-dependent and

asymmetric heritability.

Models (1) with2 λt = 0, t = 0, 1, 2, ... (or with Xp
t = Xm

t = Xt a.s., t = 0, 1, 2, ...) have exactly the same

form as the models of intergenerational mobility Xt+1 = h2Xt + εt, t = 0, 1, 2, ..., where Xt is the measure of

economic status such as earnings or income and εt is an independent error term3.

A problem of interest in inheritance models (1) and, in particular, in models (2), (4) is how the distributional

characteristics of the trait X transmit through generations. In particular, the question as to whether the trait

X becomes increasingly more peaked (concentrated) about some value µ ∈ R over time is important - for

instance, whether there appears to be a risk group for a trait representing a behavioral or medical disorder or

whether genetic diversity or inequality in the distribution of a phenotype affecting human capital in an economy

increases with time.

Bulmer and Bull (1982), Karlin (1984) and Karlin and Lessard (1986) used models (3) with the parental

contributions Xp
t and Xm

t given by independent r.v.’s with the cdf’s

P (Xp
t ≤ x) = P (Xt ≤ x|Xt > K), P (Xm

t ≤ x) = P (Xt ≤ x|Xt ≤ K), (5)

K ∈ R, t = 0, 1, ..., to model polygenic (multifactorial) and environmental sex determination. Under poly-

genic sex determination, a large number of factors (loci) contribute to sex expression; such mechanism of sex

determination is exhibited by, e.g., several fish species (see Bacci, 1965, and Karlin and Lessard, 1986). Envi-

ronmental mechanisms of sex determination are defined as those instances where an offspring sex is determined
2In mathematical evolutionary theory, such models represent intergenerational transmission of a phenotype maternally affecting

itself, see Roff (1997, pp. 250-254).
3Note that the case of shocks εt with Eεt = µ ∈ R, contains the mobility models with the usually included intercept term µ

that represents the growth in income or earnings across generations.
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by environmental conditions after conception (e.g., Bulmer and Bull, 1982, Karlin, 1984, Karlin and Lessard,

1986, and Janzen and Paukstis, 1991). For example, in several reptile species sex determination mechanism is

temperature dependent: the sex of an embryo is determined by incubation temperature (see Bull, 1981, Cherfas

and Gribbin, 1985, Ch. 5, Bull and Charnov, 1989, and Janzen and Paukstis, 1991). In many turtles embryos

hatch as males in cool and as females in warm conditions, with a sharp transition from all-male to all-female

broods. Alligators, crocodiles and some lizards exhibit the opposite pattern in sex determination: males develop

at warm and females at cool temperatures. Some theories have suggested that environmental sex-determination

could have been the cause of dinosaur extinction. If sex determination mechanism in dinosaurs was temperature-

dependent, like in modern reptiles, then they might have gone extinct because one sex was no longer produced

due a major temperature change on Earth (Cherfas and Gribbin, 1985, Ch. 5). One should note here that,

since the length of the temperature interval at which both sexes are produced might be as small as 8 degrees C,

as in the case of turtles, a relatively small change in environmental conditions might be sufficient for extinction

of some species. This is particularly important for conservation of threatened species living today (see Cherfas

and Gribbin, 1985).

The cases considered by Bulmer and Bull (1982), Karlin (1984) and Karlin and Lessard (1986) model a

situation where a sex response trait is determined by a continuous phenotype or environmental variable X

(such as size, fitness, exposure to sunlight, food resources, temperature, humidity, etc.). An individual with

X = x̃ becomes a male if the value of x̃ is greater than the threshold level K, and a female otherwise.

Many studies have found evidence that mammalian and, in particular, human, sex ratios at birth are partially

controlled by parental hormone levels at the time of conception, high levels of androgens and oestrogens and low

levels of gonadotrophin and progesterone being associated with male offspring (see James, 1995, 1997, Grant,

1996, and the reviews in James, 1994, 1996). These studies have suggested that hormone levels are responsible

for the association between the sex ratios of the offspring in humans and parental dominance, occupation of

parents, psychological stress, several illnesses, including Non-Hodgkin’s lymphoma, prostatic cancer and multiple

sclerosis, and, partly, parental socioeconomic status found in numerous works. In addition, dependence of the

sex ratio of the offspring on the hormone levels of parents was suggested to account for the rise in the human

sex ratios during and just after the war in belligerent countries, in part because of the stress associated with

a shortage of partners (see James, 1995, 1996, and Edlund, 1999). With respect to the trait of social ranking,

we also note that a large number of studies have found positive correlation between socioeconomic status and

maleness of offspring (see Trivers and Willard, 1973, James, 1994, and Edlund, 1999), however, prenatal sex

determination and sex selective abortion and postnatal discrimination appear to have a larger order of magnitude

in affecting the observed variations in the sex ratio in humans than the parental hormone levels (see Edlund,

1999, and references therein). One should further indicate here that human sex ratios, parental sex preferences

and gender control were emphasized by several authors as being of significant importance in economic models

(see Samuelson, 1985, Pollak, 1990, Davies and Zhang, 1997, and Edlund, 1999). For example, as Edlund

(1999) has shown, if parents prefer children who reproduce and sons to daughters, prenatal sex determination

and offspring sex choice can consistently result in the birth of daughters into low-status families and sons into

high-status families, thus resulting in the propagation of a female underclass and, possibly, a caste structure.
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Furthermore, according to Edlund (1999), under these assumptions, the pattern of complete segregation with

sons born to the upper class and daughters to the underclass is possible to appear.

Models (2) with the parental contributions given by (5) can be used as first approximations in the analysis

of the part of the variation of sex ratio in humans controlled by parental hormonal levels as well as in the study

of the properties of extreme cases of dependence of sex determination on such traits as, e.g., socioeconomic

status or parental income, with complete segregation in the choice of sex of the offspring (in the above cases,

the threshold values K represent cut-off points of the parental hormonal levels, wealth or income).

Similar to general time series (1), a crucial issue in models of threshold sex determination (3), (5) is how the

sex ratio rt given by the tail probability rt = P (Xt(λ) > K) changes with time. Karlin (1984, 1992) studied

the following questions for the above models: under what conditions r0 < 1/2 (the excess of females over males

among parents at time t = 0) implies r1 < 1/2 (the excess of females over males among the offspring at time

t = 1) or r1 > 1/2 (the excess of males over females among the offspring). Based on the results of Proschan

(1965) on peakedness of linear combinations of log-concavely distributed r.v.’s (that is, r.v.’s with log-concave

densities) given by Proposition 2 in Appendix A1 in this paper, Karlin (1984) obtained the following result.

Proposition 1 (Karlin, 1984, Proposition 8.1). Consider model (3) with the cdf’s of the parental contributions

given by (5). Let X0 be a symmetric r.v. with a density f(x) such that the function logf(x) is concave in x ∈ R.

If r0 < 1/2 (equivalently, K > 0), then r1 < 1/2. If r0 > 1/2 (equivalently, K < 0), then r1 > 1/2.

Proposition 1 implies that if the initial distribution of the phenotype trait X0 that determines the sex of the

offspring has a log-concave density and thus is extremely light-tailed (see Corollary 1 in An, 1998, and Section

2 in this paper), then the excess of males (females) among parents leads to the same pattern for the population

of the offspring. In particular, one arrives at the conclusion that if the life of parents is greater than one period

then the excess of one sex over the other one accumulates with time and thus the sex ratio in the total alive

population cannot stabilize at the balanced sex-ratio value of r = 1/2.

In recent years, a number of studies in human genetics and psychology found departures from normality

assumptions in many phenotypic data, including (moderate) thick-tailedness of distribution of many human

traits, in particular, of different achievement and psychometric measures (see Micceri, 1989, and the discussion in

Allison et. al., 1999, and Allison et. al., 2000) as well as sex differences in the distribution of extreme outliers for

several traits related to, e.g., intellectual abilities (see Hedges and Nowell, 1995). These findings prompted many

authors to focus on developing statistical procedures for biometric data robust to non-Gaussianity and heavy-

tailedness assumptions, including robust techniques for detection of genes influencing complex quantitative

traits (see Allison et. al., 1999, and Allison et. al., 2000, and references therein).

In the studies based on models incorporating fat-tailed r.v.’s, it is usually assumed that the distributions

of the r.v.’s belong to the class of stable laws. Although there are several alternatives to the stable modelling

of heavy-tailed data (e.g., the use of Pareto distributions), focusing on stable distribution models is justified

in many cases and has a number of advantages, as discussed in, e.g., Adler, Feldman and Gallagher, 1998.

In particular, the statistical methods for stable laws work as well for the data in the domain of attraction of
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stable distributions. Furthermore, stable laws and the long-tailed distributions in the domain of their attraction

behave similarly at the tails of the distributions which is usually the region of interest for heavy-tailed techniques.

Finally, there are few reliable approaches available in the case of heavy-tailed r.v.’s not in a stable domain of

attraction (Adler, Feldman and Gallagher, 1998).

We emphasize here that distributions with log-concave densities cannot be used to model heavy-tailed

phenomena since any such density has at most an exponential tail and thus all its moments are finite (see An,

1998, and Section 2 in the present paper).

1.2 Discussion of the results

In this paper, we study transmission of the distributional properties of traits through generations in polygenic

inheritance models and analyze implications of these models under heavy-tailedness of traits. We obtain results

concerning the transmission of peakedness (concentration) properties of fat-tailed traits in general inheritance

model (2) with sex- and time-dependent heritability. For instance, from our results it follows that the following

conclusions hold (see Theorem 1 and Remark 2 following Theorem 2).

Consider model (2) with the parental contributions given by (4). Let the distribution of X0−µ be a convo-

lution of symmetric log-concave distributions and symmetric stable distributions4 with characteristic exponents

in the interval [1, 2). Then for all t = 0, 1, 2, ..., the r.v. Xt+1(λ) is more peaked about µ than is Xt(λ), but is

less peaked than is Xt+1(λ). That is, P (|Xt+1(λ) − µ| > x) ≤ P (|Xt+1(λ) − µ| > x) ≤ P (|Xt(λ) − µ| > x) for

all x ≥ 0 and all t = 0, 1, 2, ... Suppose now that the distribution of X0−µ is a convolution of symmetric stable

distributions with characteristic exponents in the interval (0, 1]. Then for all t = 0, 1, 2, ..., the r.v. Xt+1(λ)

is less peaked about µ than is Xt(λ), but is more peaked than is Xt+1(λ). That is, P (|Xt(λ) − µ| > x) ≤
P (|Xt+1(λ)− µ| > x) ≤ P (|Xt+1(λ)− µ| > x) for all x ≥ 0 and all t = 0, 1, 2, ...

According to the above results, if the initial distribution of the trait X (say, a behavioral or medical disorder

or an ability for which heritability is significant) in the population is not extremely heavy tailed, then the trait

distribution becomes increasingly more peaked over time. Roughly speaking, concentration of the distribution

of the disorder about some risk group in the population and inequality in the distribution of the ability becomes

increasingly more pronounced. Furthermore, at any given time, peakedness of the trait is maximal (the spread

of the trait in the population is minimal) in the case of symmetric heritability. In the case of a trait with an

extremely heavy-tailed initial distribution (say, a medical or behavioral disorder for which there is no strongly

expressed risk group or a relatively equally distributed ability with significant genetic influence), the situation is

reversed: the trait distribution becomes less peaked with time and increasingly more spread in the population.

Moreover, peakedness of the trait is minimal (the spread of the trait in the population is maximal) in the case

of symmetric heritability.

In addition, we show inter alia that Karlin’s (1984) results on the transmission of sex ratio through genera-

tions under threshold (e.g., polygenic or temperature-dependent) sex determination (3), (5) given by Proposition

4So that X0 is symmetric about µ.
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1 remain valid for not very heavy-tailed distributions, as modelled by convolutions of stable distributions with

(different) characteristic exponents in the interval (1, 2) and log-concave distributions (Theorem 3).

We also show that the results by Karlin (1984) concerning the evolution of the sex ratio r in models of

threshold sex determination (3), (5) are reversed under sufficiently fat-tailed distributions of the initial trait

X0. More specifically, we show that the following result holds (see Theorem 4):

Let in model (3) with the parental contributions given by (5), X0 be a r.v. with a distribution which is a

convolution of symmetric stable distributions with indices of stability in the interval (0, 1). If r0 < 1/2, then

r1 > 1/2. If r0 > 1/2, then r1 < 1/2.

It is interesting to point out that (see Remark 1 following Theorem 4) if the distribution of the initial trait

X0 is Cauchy, then the value of the sex ratio in the population of the offspring (period t = 1) stabilizes at the

balanced sex ratio level r1 = 1/2 regardless of the value of the sex ratio r0 among parents (period t = 0).

According to the above results, in contrast to threshold sex determination model (3), (5) with log-concavely

distributed phenotypic value X0, in the case of very heavy-tailed initial distributions of the trait X, the sex ratio

of the offspring oscillates5 around the balanced sex ratio value r = 1/2. That is, an excess of males (females) in

the initial period leads to an excess of female (male) offsprings next period. This means that the sex ratio in the

total living population can, in fact, stabilize at the balanced sex ratio value r = 1/2 for some models (3), (5) if

parents live longer than one period. For example, we show that if the initial trait X0 has a sufficiently fat-tailed

distribution, namely, a symmetric stable distribution with the index of stability less than 1/2, then the value of

the sex-ratio in the total population at period t = 1 stabilizes at the balanced sex-ratio value 1/2 for some values

of the sex-ratio among parents r0 (conclusion (18) in Theorem 5). We also obtain results on the magnitude of

intergenerational changes in the distances from the sex-ratios rt to the balanced sex-ratio value in the case of

arbitrary symmetric stable distributions of the initial trait X0. Our results demonstrate, in particular, that for

all the above distributions of X0, the sex-ratio among offspring (and, therefore, the sex-ratio in the total alive

population) at t = 1 becomes closer to the value r = 1/2, if the sex-ratio among parents (t = 0) is sufficiently

far from it (relation (15) in Theorem 5). The same holds if the distribution of X0 is symmetric and stable with

the index of stability greater than 1/2 and the sex ratio in period 0 is close to 1/2 (relation (16)). However,

if the distribution of the initial trait is symmetric and stable with the characteristic exponent less than 1/2,

and the sex-ratio value among parents r0 is sufficiently close to r = 1/2, then the oscillations in the sex-ratio rt

about the balanced sex-ratio value are increasing in the magnitude (conclusion (17) of Theorem 5).

Similarly, we obtain analogues of our results on multifactorial inheritance models in a more general setting

with traits’ distributions given by convolutions of a wide class of transforms of stable r.v.’s.

The proof of the main results is based on the results on majorization properties of linear combinations of

heavy-tailed r.v.’s recently obtained in Ibragimov (2004) and several their generalizations derived in this paper.

To our knowledge, the results in Ibragimov (2004) are the first ones available in the literature that show that

general majorization properties of convex combinations of symmetric log-concavely distributed r.v.’s derived by
5Interestingly, similar patterns of oscillations are also found for firm sizes in firm growth models with extremely heavy-tailed

signals, see Ibragimov (2004).
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Proschan (1965) are reversed for certain classes of distributions, see the discussion in Ibragimov (2004). These

results provide the key to reversals of implications of several inheritance models built upon the log-concavity

assumption, similar to a number of economic models in Ibragimov (2004).

In this work, we focus on the analysis of multifactorial inheritance models (2) with purely parental trans-

mission of phenotypes through generations. However, the approach developed in the paper can also be applied

in the study of models (1) involving both parental and environmental contributions as well as of models of in-

tergenerational mobility. Generalizations of the results in the case of those models are left for further research.

The paper is organized as follows: Section 2 contains notations and definitions of classes of distributions

used throughout the paper and reviews their basic properties. In Section 3, we present the main results on the

properties of polygenic inheritance models under heavy-tailedness of traits’ distributions. Appendix A1 reviews

peakedness properties of log-concavely distributed r.v.’s derived by Proschan (1965) and their analogues for

thick-tailed distributions obtained in Ibragimov (2004). Finally, Appendix A2 contains proofs of the main

results obtained in the paper.

2 Notations and classes of distributions

In this section, we introduce certain classes of distributions we will be dealing with throughout the paper. The

notations for these classes are similar to those in Ibragimov (2004).

We say that a r.v. X with density f : R → R and the convex distribution support Ω = {x ∈ R : f(x) > 0}
is log-concavely distributed if log f(x) is concave in x ∈ Ω, that is, if for all x1, x2 ∈ Ω, and any λ ∈ [0, 1],

f(λx1 + (1− λ)x2) ≥ (f(x1))λ(f(x2))1−λ. (6)

(see An, 1998). A distribution is said to be log-concave if its density f satisfies (6).

Examples of log-concave distributions include (see, for instance, Marshall and Olkin, 1979, p. 493) the

normal distribution N (µ, σ2), the uniform density U(θ1, θ2), the exponential density, the logistic distribution,

the Gamma distribution Γ(α, β) with the shape parameter α ≥ 1, the Beta distribution B(a, b) with a ≥ 1 and

b ≥ 1; the Weibull distribution W(γ, α) with the shape parameter α ≥ 1.

If a r.v. X is log-concavely distributed, then its density has at most an exponential tail, that is, f(x) =

o(exp(−λx)) for some λ > 0, as x →∞ and all the power moments E|X|γ , γ > 0, of the r.v. exist (see Corollary

1 in An, 1998).

For 0 < α ≤ 2, σ > 0, β ∈ [−1, 1] and µ ∈ R, we denote by Sα(σ, β, µ) the stable distribution with the

characteristic exponent (index of stability) α, the scale parameter σ, the symmetry index (skewness parameter)

β and the location parameter µ. That is, Sα(σ, β, µ) is the distribution of a r.v. X with the characteristic

function

E(eixX) =

{
exp {iµx− σα|x|α(1− iβsign(x)tan(πα/2))} , α 6= 1,

exp {iµx− σ|x|(1 + (2/π)iβsign(x)ln|x|} , α = 1,
(7)
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x ∈ R, where i2 = −1 and sign(x) is the sign of x defined by sign(x) = 1 if x > 0, sign(0) = 0 and sign(x) = −1

otherwise. For a detailed review of properties of stable distributions the reader is referred to, e.g., the monograph

by Zolotarev (1986).

In what follows, we write X ∼ Sα(σ, β, µ), if the r.v. X has the stable distribution Sα(σ, β, µ).

A closed form expression for the density f(x) of the distribution Sα(σ, β, µ) is available in the following cases

(and only in those cases): α = 2 (Gaussian distributions); α = 1 and β = 0 (Cauchy distributions); α = 1/2

and β ± 1 (Lévy distributions). Degenerate distributions correspond to the limiting case α = 0.

The index of stability α characterizes the heaviness (the rate of decay) of the tails of stable distributions.

In particular, if X ∼ Sα(σ, β, µ), then there exists a constant C > 0 such that

lim
x→+∞

xαP (|X| > x) = C. (8)

This implies that the p−th absolute moments E|X|p of a r.v. X ∼ Sα(σ, β, µ), α ∈ (0, 2) are finite if p < α

and are infinite otherwise. The symmetry index β characterizes the skewness of the distribution. The stable

distributions with β = 0 are symmetric about the location parameter µ. In the case α > 1 the location parameter

µ is the mean of the distribution Sα(σ, β, µ). The scale parameter σ is a generalization of the concept of standard

deviation; it coincides with the standard deviation in the special case of Gaussian distributions (α = 2).

As in Ibragimov (2004), we denote by LC the class of symmetric log-concave distributions6.

Further, we consider the class CS of distributions which are convolutions of symmetric stable distributions

Sα(σ, 0, 0) with characteristic exponents7 α ∈ [1, 2] and σ > 0. That is, CS consists of distributions of r.v.’s

X such that, for some k ≥ 1, X = Y1 + ... + Yk, where Yi, i = 1, ..., k, are independent r.v.’s such that

Yi ∼ Sαi(σi, 0, 0), αi ∈ (1, 2], σi > 0, i = 1, ..., k.

By CSLC, we denote the class of convolutions of distributions from the classes LC and CS. That is, CSLC
is the class of convolutions of symmetric distributions which are either log-concave or stable with characteristic

exponents greater than one8. In other words, CSLC consists of distributions of r.v.’s X such that X = Y1 + Y2,

where Y1 and Y2 are independent r.v.’s with distributions belonging to LC or CS.

CS stands for the class of distributions which are convolutions of symmetric stable distributions Sα(σ, 0, 0)

with indices of stability9 α ∈ (0, 1) and σ > 0. That is, CS consists of distributions of r.v.’s X such that,

for some k ≥ 1, X = Y1 + ... + Yk, where Yi, i = 1, ..., k, are independent r.v.’s such that Yi ∼ Sαi(σi, 0, 0),

αi ∈ (0, 1), σi > 0, i = 1, ..., k.

Let R+ = [0,∞). Throughout the paper, M denotes the class of differentiable odd functions f : R → R

such that f is concave and increasing on R+ and M denotes the class of odd functions f : R → R such that f

is convex and increasing on R+.

6LC stands for ”log-concave”.
7Here and below, CS stands for ”convolutions of stable”; the overline indicates relation to stable distributions with indices of

stability greater than the threshold value 1.
8CSLC stands for ”convolutions of stable and log-concave”.
9The underline indicates relation to stable distributions with indices of stability less than the threshold value 1.
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By10 CT SLC, we denote the class of convolutions of log-concave distributions and distributions of transforms

f(Y ), f ∈ M , of symmetric stable r.v.’s Y ∼ Sα(σ, 0, 0) with characteristic exponents α ∈ (1, 2] and σ > 0.

That is, CT SLC consists of distributions of r.v.’s X such that, for some k ≥ 1,

X = γY0 + f1(Y1) + ... + fk(Yk), (9)

where γ ∈ {0, 1}, fi ∈ M , i = 1, ..., k, and Yi, i = 0, 1, ..., k, are independent r.v.’s such that Y0 ∼ LC and

Yi ∼ Sαi
(σi, 0, 0), αi ∈ (1, 2], σi > 0, i = 1, ..., k.

We note that (see Ibragimov, 2004) the class CS of convolutions of symmetric stable distributions with

different indices of stability α ∈ (1, 2] is wider than the class of all symmetric stable distributions Sα(σ, 0, 0)

with α ∈ (1, 2] and σ > 0. Similarly, the class CS is wider than the class of all symmetric stable distributions

Sα(σ, 0, 0) with α ∈ (0, 1) and σ > 0.

Clearly, one has LC ⊂ CSLC, CS ⊂ CSLC and CSLC ⊂ CT SLC. Note also that the class CSLC is wider

than the class of (two-fold) convolutions of log-concave distributions with stable distributions Sα(σ, 0, 0) with

α ∈ (1, 2] and σ > 0.

In some sense, symmetric (about 0) Cauchy distributions S1(σ, 0, 0) are at the dividing boundary between

the classes CS and CSLC.

In what follows, we write X ∼ LC (resp., X ∼ CSLC, X ∼ CS or X ∼ CT SLC) if the distribution of the

r.v. X belongs to the class LC (resp., CSLC, CS or CT SLC).

3 Main results

The following concept of peakedness of r.v.’s was introduced by Birnbaum (1948).

Definition 1 (Birnbaum, 1948, see also Proschan, 1965, and Marshall and Olkin, 1979, p. 372). A r.v. X is

more peaked about µ ∈ R than is Y if P (|X − µ| > x) ≤ P (|Y − µ| > x) for all x ≥ 0. If these inequalities are

strict whenever the two probabilities are not both 0 or both 1, then the r.v. X is strictly more peaked about µ

than is Y. A r.v. X is said to be (strictly) less peaked about µ than is Y if Y is (strictly) more peaked about µ

than is X.

In the case µ = 0, we simply say that the r.v. X is (strictly) more or less peaked than Y.

Roughly speaking, a r.v. X is more peaked about µ ∈ R than is Y, if the distribution of X is more

concentrated about µ than is that of Y.

Theorem 1 below provides results on the peakedness properties of the distribution of the trait X in general

model (2) with the parental contributions determined by (4) and sex- and time-dependent heritability. Let, as

10CT SLC stands for ”convolutions of transforms of stable and log-concave”.
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in the introduction, for t = 0, 1, 2, ..., λ(t) = (λ0, λ1, ..., λt) be the vectors of ”histories” of the coefficients in

model (2) up to time t. Further, for t = 0, 1, 2, ..., denote λ
(t)

= (1/2, 1/2, ..., 1/2) ∈ Rt+1.

Theorem 1 Consider model (2) with the parental contributions determined by (4). Let µ ∈ R, t ∈ {0, 1, 2, ...}
and let λt /∈ {0, 1} and λ(t) 6= λ

(t)
. If X0 ∼ Sα(σ, β, µ) for some σ > 0, β ∈ [−1, 1] and α ∈ (1, 2], or X0 = µ+Y,

where Y ∼ CSLC, then the r.v. Xt+1(λ) is strictly more peaked about µ than is Xt(λ), but is strictly less peaked

than is Xt+1(λ). That is,

P (|Xt+1(λ)− µ| > x) < P (|Xt+1(λ)− µ| > x) < P (|Xt(λ)− µ| > x) (10)

for all x > 0. If X0 ∼ Sα(σ, β, µ) for some σ > 0, β ∈ [−1, 1] and α ∈ (0, 1), or X0 = µ + Y, where Y ∼ CS,

then the r.v. Xt+1(λ) is strictly less peaked about µ than is Xt(λ), but is strictly more peaked than is Xt+1(λ).

That is,

P (|Xt(λ)− µ| > x) < P (|Xt+1(λ)− µ| > x) < P (|Xt+1(λ)− µ| > x) (11)

for all x > 0.

According to the following theorem, in the case of Galtonian blending model (3) with symmetric heritability,

peakedness comparisons in (10) continue to hold in the case of the more general class CT SLC of thick-tailed

initial distributions of the phenotype X than the class CSLC in Theorem 1.

Theorem 2 Consider model (3) with the parental contributions determined by (4). Let µ ∈ R and t ∈
{0, 1, 2, ...}. If X0 = µ + Y, where Y ∼ CT SLC, then the r.v. Xt+1(λ) is strictly more peaked about µ than

is Xt(λ). That is,

P (|Xt+1(λ)− µ| > x) < P (|Xt(λ)− µ| > x) (12)

for all x > 0.

The following Theorems 3 and 4 give analogues and generalizations of Proposition 1 in the case of heavy-

tailed initial distributions of the phenotype X. Theorem 3 is a generalization of the proposition to the case of

not too thick-tailed distributions of X0.

Theorem 3 Consider model (3) with the cdf’s of the parental contributions given by (5). Let X0 ∼ CT SLC or

X0 = f(Y0), where f ∈ M and Y0 ∼ Sα(σ, 0, 0), α ∈ (1, 2], σ > 0. If r0 < 1/2 (equivalently, K > 0), then

r1 < 1/2. (13)

If r0 > 1/2 (equivalently, K < 0), then

r1 > 1/2. (14)
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From the discussion at the end of Section 2 we get that Theorem 3 holds, in particular, for traits X with

the initial distribution from the class CSLC.

According to Proposition 1 and Theorem 3, in the case of symmetric log-concave or not very heavy-tailed

symmetric initial distributions of the phenotype X in model (3), (5), an excess of females over males or males

over females in the population of parents in period t = 0 leads to the same phenomena for the population of the

offspring in period t = 1. As the following Theorem 4 shows, the results given by Proposition 1 and Theorem 3

are reversed in the case of sufficiently heavy-tailed symmetric initial distributions of the phenotype X. In that

case, according to the theorem, the sex ratio r exhibits a pattern of oscillation around the balanced sex ratio

case r = 1/2, namely, an excess of females over males among parents leads to an excess of males over females

among the offspring and vice versa.

Theorem 4 Consider model (3) with the cdf’s of the parental contributions given by (5). Let X0 ∼ CS or

X0 = f(Y0), where f ∈ M and Y0 ∼ Sα(σ, 0, 0), α ∈ (0, 1), σ > 0. If r0 < 1/2 (equivalently, K > 0), then (14)

holds. If r0 > 1/2 (equivalently, K < 0), then (13) holds.

Remark 1. The proof of Theorems 3 and 4 shows that analogues of the theorems hold for transforms of

skewed stable distributions Sα(σ, β, 0) of the initial trait X0 as well. Namely, if X0 = f(Y0) and Y0 ∼ Sα(σ, β, 0)

for some σ > 0, β ∈ [−1, 1] and α ∈ (0, 2], then (13) holds in the case when K > 0, f ∈ M and α ∈ (1, 2] and

when K < 0, f ∈ M and α ∈ (0, 1). Similarly, (14) holds if K < 0, f ∈ M and α ∈ (1, 2] or if K > 0, f ∈ M

and α ∈ (0, 1). In the case of the symmetry index β 6= 0, however, the above conditions K < 0 and K > 0

are not equivalent to the conditions r0 < 1/2 and r0 > 1/2. It should also be noted that from the proof of

Theorems 3 and 4 it follows that in the case of the Cauchy-type S1(σ, β, 0) initial distribution of the phenotype

X, the sex-ratio r1 next period stabilizes at the balanced sex-ratio value r1 = 1/2, regardless of the values of

the threshold K and the sex-ratio r0 at the initial period.

Let us denote by dt = |rt−1/2|, t = 0, 1, ..., the distances of the values of the sex-ratio among parents (t = 0)

and among the offspring (t = 1) from the balanced sex-ratio value r = 1/2 in model (3), (5). Further, assuming

that parents live longer than one period, we denote by R = (r0 +r1)/2 the sex-ratio in the total population alive

at time t = 1. The following theorem gives results on the magnitude of intergenerational changes in the distances

dt in the case of symmetric stable distributions of the initial trait X0. In particular, according to the theorem,

for all above distributions of X0, the sex-ratio among offspring (and, therefore, the sex-ratio in the total alive

population) at t = 1 becomes closer to the value r = 1/2, if the sex-ratio among parents (t = 0) is sufficiently

far from it. This, however, is not the case if the distribution of the initial trait is extremely heavy-tailed, as

modelled by symmetric stable distributions with indices of stability less than 1/2, and the sex-ratio value among

parents r0 is sufficiently close to r = 1/2. If such patterns are present, then the oscillations in the sex-ratio rt

about the balanced sex-ratio value are increasing in the magnitude. Furthermore, if the initial trait X0 has a

symmetric stable distribution with characteristic exponent less than 1/2, then the value R of the sex-ratio in

the total population at period t = 1 stabilizes at the balanced sex-ratio R = 1/2 for some values of the distance

d0 from r0 to r = 1/2.
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Theorem 5 Consider model (3) with the cdf’s of the parental contributions given by (5) and the initial trait

X0 ∼ Sα(σ, 0, 0), σ > 0, α ∈ (0, 2], α 6= 1. There exists d
(1)
0 ∈ (0, 1/2) such that

d1 < d0 for d0 ≥ d
(1)
0 . (15)

Further, if α ∈ (1/2, 2], then there exists d
(2)
0 ∈ (0, 1/2) such that

d1 < d0, for d0 ≤ d
(2)
0 . (16)

If α ∈ (0, 1/2), then there exist d
(3)
0 , d

(4)
0 ∈ (0, 1/2) such that

d1 > d0, for d0 ≤ d
(3)
0 , (17)

R = 1/2 (equivalently, d1 = d0) for d0 = d
(4)
0 . (18)

Remark 2. From Remark 3 in Appendix A1 and the proof of the theorems in this section it follows that

Theorems 1 and 4 continue to hold for convolutions of the distributions in the classes CS and CSLC with

symmetric Cauchy distributions S1(σ, 0, 0); Theorems 2 and 3 continue to hold for (two-fold) convolutions of

distributions in the class CT SLC with the distributions of transforms X0 ∼ f(Y1) of symmetric Cauchy r.v.’s

Y0 ∼ S1(σ, 0, 0), where f ∈ M is strictly concave on R+.

Appendix A1: Majorization properties of log-concave and
heavy-tailed distributions

For a vector a ∈ Rn, denote by a[1] ≥ . . . ≥ a[n] its components in decreasing order.

Definition 2 (Marshall and Olkin, 1979). Let a, b ∈ Rn. The vector a is said to be majorized by the vector b,

written a ≺ b, if
∑k

i=1 a[i] ≤
∑k

i=1 b[i], k = 1, ..., n− 1, and
∑n

i=1 a[i] =
∑n

i=1 b[i].

The relation a ≺ b implies that the components of the vector a are more diverse than those of b. In this

context, it is easy to see that, for all a ∈ Rn
+, the following relations hold:

( n∑

i=1

ai/n, ...,

n∑

i=1

ai/n
) ≺ (a1, ..., an) ≺ ( n∑

i=1

ai, 0, ..., 0
)
. (19)

Definition 3 (Marshall and Olkin, 1979). A function φ : A → R defined on A ⊆ Rn is called Schur-convex

(resp., Schur-concave) on A if (a ≺ b) =⇒ (φ(a) ≤ φ(b)) (resp. (a ≺ b) =⇒ (φ(a) ≥ φ(b)) for all a, b ∈ A. If,

in addition, φ(a) < φ(b) (resp., φ(a) > φ(b)) whenever a ≺ b and a is not a permutation of b, then φ is said to

be strictly Schur-convex (resp., strictly Schur-concave) on A.

Proschan (1965) obtains the following seminal result concerning majorization properties of tail probabilities

of linear combinations of log-concavely distributed r.v.’s:
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Proposition 2 (Proschan, 1965). If X1, ..., Xn are i.i.d. symmetric log-concavely distributed r.v.’s, then the

function ψ(a, x) = P
( ∑n

i=1 aiXi > x
)

is strictly Schur-convex in a = (a1, ..., an) ∈ Rn
+ for x > 0 and is strictly

Schur-concave in a = (a1, ..., an) ∈ Rn
+ for x < 0.

Clearly, from Proposition 2 it follows that
∑n

i=1 aiXi is strictly more peaked than
∑n

i=1 biXi if a ≺ b and a

is not a permutation of b.

Proschan (1965) notes that Proposition 2 also holds for (two-fold) convolutions of log-concave distributions

with symmetric Cauchy distributions and obtained results on peakedness properties of averages (f(Y1)+f(Y2))/2

of transforms of symmetric Cauchy r.v.’s Y1 and Y2 for f ∈ M and f ∈ M (see Lemmas 2.7 and 2.8 in Proschan,

1965).

The following Lemmas 1 and 2 concerning general majorization properties of arbitrary convex combinations

of heavy-tailed r.v.’s were obtained in Ibragimov (2004) (see Theorems 4.3 and 4.4 and Remark 4.1 in that

paper). According to Lemma 1, peakedness properties of linear combinations of r.v.’s with not too heavy-tailed

distributions are the same as in the case of log-concave distributions in Proschan (1965).

Lemma 1 (Ibragimov, 2004). Proposition 2 holds if X1, ..., Xn are i.i.d r.v.’s such that X1 ∼ Sα(σ, β, 0) for

some σ > 0, β ∈ [−1, 1] and α ∈ (1, 2], or X1 ∼ CSLC.

According to Lemma 2, the peakedness properties given by Proposition 2 and Theorem 1 above are reversed

in the case of r.v.’s with very heavy-tailed distributions, as modelled by convolutions of stable distributions

with indices of stability not greater than one.

Lemma 2 (Ibragimov, 2004). If X1, ..., Xn are i.i.d. r.v.’s such that X1 ∼ Sα(σ, β, 0) for some σ > 0,

β ∈ [−1, 1] and α ∈ (0, 1), or X1 ∼ CS, then the function ψ(a, x) in Proposition 2 is strictly Schur-concave in

(a1, ..., an) ∈ Rn
+ for x > 0 and is strictly Schur-convex in (a1, ..., an) ∈ Rn

+ for x < 0.

The following lemmas generalize Lemmas 2.7 and 2.8 in Proschan (1965) and provide new results on

peakedness properties of averages of transforms of arbitrary stable r.v.’s and their convolutions. For r.v.’s

X1, X2, ..., and n ≥ 1, we denote by Xn the sample mean Xn = (1/n)
∑n

i=1 Xi (in particular, X2 denotes

X2 = (X1 + X2)/2).

Lemma 3 If X1 and X2 are i.i.d r.v.’s such that X1 = f(Y1), where f ∈ M and Y1 ∼ Sα(σ, β, 0), α ∈ (1, 2],

σ > 0, β ∈ [−1, 1], then P (X2 > x) < P (X1 > x) for x > 0 and P (X2 > x) > P (X1 > x) for x < 0. If

n = 2k, k ≥ 1, and X1, ..., Xn are i.i.d r.v.’s such that X1 ∼ CT SLC, then Xn is more peaked than Xn/2, that

is, P (|Xn| > x) < P (|Xn/2| > x) for all x > 0.

Lemma 4 If X1 and X2 are i.i.d r.v.’s such that X1 = f(Y1), where f ∈ M and Y1 ∼ Sα(σ, β, 0), α ∈ (0, 1),

σ > 0, β ∈ [−1, 1], then P (X1 > x) < P (X2 > x) for x > 0 and P (X1 > x) > P (X2 > x) for x < 0.
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Remark 3. If r.v.’s X1, ..., Xn have a symmetric Cauchy distribution S1(σ, 0, 0) (with α = 1) which is, as

discussed in Section 2, exactly at the dividing boundary between the class the class CSLC in Theorem 1 and the

class CS in Theorem 2, then the function ψ(a, x) in the theorems depends only on
∑n

i=1 ai and x and so is both

Schur-concave and Schur-convex in a ∈ Rn
+ for all x ∈ R (see Proschan, 1965, and Remark 4.1 in Ibragimov,

2004). As noted in Ibragimov (2004), this implies that Theorems 1 and 2 continue to hold for convolutions of

distributions from the classes CSLC and CS with symmetric Cauchy distributions. As follows from Proschan

(1965), Lemma 3 holds for i.i.d. r.v.’s X1, X2, ... such that X1 = f(Y1), where Y1 has the Cauchy (α = 1)

distribution Y1 ∼ S1(σ, 0, 0) and f ∈ M is strictly concave on R+, and Lemma 4 holds for i.i.d. r.v.’s X1, X2

such that X1 = f(Y1), where Y1 ∼ S1(σ, 0, 0) and f ∈ M is strictly convex on R+. As in Proschan (1965),

this implies that Lemma 3 continues to hold for convolutions of distributions from the class CT SLC with the

distributions of transforms f(Y1), f ∈ M, of symmetric Cauchy r.v.’s Y1 ∼ S1(σ, 0, 0), where f is strictly concave

on R+.

Appendix A2: Proofs

Proof of Theorems 1 and 2. Let X0 ∼ Sα(β, σ, µ) for some σ > 0, β ∈ [−1, 1] and α ∈ (0, 1) or X0 = µ+Y, where

Y ∼ CS. For t = 0, 1, ..., denote Nt = 2t, 0(t) = (0, 0, ..., 0) ∈ RNt and a(t) = (1/Nt, 1/Nt, ..., 1/Nt) ∈ RNt . Let

us define recursively the following vectors. Set a(0) = (1) ∈ R1. For t = 1, 2, ..., let b(t) = (a(t−1), 0(t−1)) ∈ RNt

and c(t) = (0(t−1), a(t−1)) ∈ RNt be the vectors with the components b
(t)
i = a

(t−1)
i , c

(t)
i = 0, i = 1, 2, ..., Nt−1;

b
(t)
i = 0, c

(t)
i = a

(t−1)
i−Nt−1

, i = Nt−1 + 1, ..., Nt. Moreover, let a(t) = λtb
(t) + (1 − λt)c(t) be the vector with the

components a
(t)
i = λtb

(t)
i = λta

(t−1)
i , i = 1, 2, ..., Nt−1, a

(t)
i = (1−λt)c

(t)
i = (1−λt)a

(t−1)
i−Nt−1

, i = Nt−1 +1, ..., Nt.

Let Y1, Y2, ..., YNt be independent copies of the r.v. X0. Denote Y (t) = (Y1, Y2, ..., YNt). It is not difficult to see

that, for t = 0, 1, 2, ...,

Xt(λ) = a(t)(Y (t))′, (20)

Xt(λ) = a(t)(Y (t))′. (21)

Since for t = 1, 2, ...,
∑Nt

i=1 a
(t)
i = λt

∑Nt−1
i=1 a

(t−1)
i + (1 − λt)

∑Nt−1
i=1 a

(t−1)
i =

∑Nt−1
i=1 a

(t−1)
i = ... = a

(0)
1 = 1

(a(0)
1 = 1 is the only component of the vector a(0)), from relations (19) in Appendix A1 it follows that

a(t) ≺ a(t). (22)

Since the components of the vector c(t) are permutations of those of b(t), one has c(t) ≺ b(t). Further, evidently,

b(t) ≺ b(t). Since for any b ∈ Rn, the set {b̃ ∈ Rn : b̃ ≺ b} is convex (see, e.g., Proposition 4.C.1 in Marshall and

Olkin (1979)), from the above majorization comparisons we get

a(t) = λtb
(t) + (1− λt)c(t) ≺ b(t). (23)

Lemma 2 in Appendix A1 and relations (20) and (22) imply that, for all t = 0, 1, 2, ..., and all x > 0,

P (|Xt(λ)− µ| > x) = P (|a(t)(Y (t))′ − µ| > x) < P (|a(t)(Y (t))′ − µ| > x) = P (|Xt(λ)− µ| > x), (24)
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if λ(t) 6= λ
(t)

. Similarly, from Lemma 2 and relations (21) and (23) it follows that, for all t = 0, 1, 2, ..., and

x > 0,

P (|Xt+1(λ)− µ| > x) = P (|a(t+1)(Y (t+1))′ − µ| > x) > P (|b(t+1)(Y (t+1))′ − µ| > x) =

P (|(a(t), 0(t))(Y (t+1))′ − µ| > x) = P (|a(t)(Y (t))′ − µ| > x) = P (|Xt(λ)− µ| > x), (25)

λt /∈ {0, 1}. Relations (24) and (25) thus imply that inequalities (11) hold. Inequalities (10) might be proven in

a similar way, with the use of Lemma 1 instead of Lemma 2. Thus, Theorem 1 holds. Using Lemma 3 instead

of Lemma 2, we obtain Theorem 2. The proof is complete.

Proof of Theorems 3 and 4. Let X0 ∼ CS or X0 = f(Y0), where f ∈ M and Y0 ∼ Sα(σ, β, 0), α ∈ (0, 1),

σ > 0, β ∈ [−1, 1]. Let Xp
0 and Xm

0 be independent r.v.’s with the cdf’s (5). Further, let r0 = P (X0 > K)

be the sex-ratio in period t = 0 and let X ′
0 and X ′′

0 be independent copies of X0. Define the following events:

A0 = {(X ′
0 +X ′′

0 )/2 > K}, A1 = {X ′
0 > K, X ′′

0 ≤ K}, A2 = {X ′
0 ≤ K, X ′′

0 > K}, A3 = {X ′
0 ≤ K,X ′′

0 ≤ K} and

A4 = {X ′
0 > K, X ′′

0 > K}. It is not difficult to see (see Karlin, 1984, p. 263) that the sex ratio r1 = P (X1 > K)

at period t = 1 equals to

r1 = P (A0|A1) = P (A0 ∩A1)/P (A1). (26)

It is easy to see that A0 ∩A3 = ∅ and A4 ⊆ A0. Therefore,

2P (A0 ∩A1) = P (A0 ∩A1) + P (A0 ∩A2) =
4∑

i=1

P (A0 ∩Ai)− P (A0 ∩A3)− P (A0 ∩A4) = P (A0)− P (A4). (27)

From independence of the r.v.’s X ′
0 and X ′′

0 it follows that

P (A1) = P (X ′
0 > K)P (X ′′

0 ≤ K) = P (X0 > K)(1− P (X0 > K)) = r0(1− r0), (28)

P (A4) = P (X ′
0 > K)P (X ′′

0 > K) = r2
0. (29)

Using relations (26)-(29) we get

r1 = (P (A0)− P (A4))/(2P (A1)) = (P (A0)− r2
0)/(2r0(1− r0)). (30)

Lemmas 2 and 4 in Appendix A1 imply that, for K > 0,

P (A0) = P ((X ′
0 + X ′′

0 )/2 > K) > P (X0 > K) = r0. (31)

Relations (30) and (31) imply that r1 > (r0− r2
0)/(2r0(1− r0)) = 1/2 for K > 0. Similar to the above, one gets

that r1 < 1/2 if K < 0. Therefore, Theorem 4 holds. Furthermore, using Lemma 3 instead of Lemmas 2 and

4, we obtain, similar to the above, that if X0 ∼ CT SLC or X0 = f(Y0), where f ∈ M and Y0 ∼ Sα(σ, β, 0),

α ∈ (1, 2], σ > 0, β ∈ [−1, 1], then r1 < 1/2 in the case K > 0 and r1 > 1/2 in the case K < 0. This proves

Theorem 3. The proof is complete.
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Proof of Theorem 5. Let X0 ∼ Sα(σ, 0, 0), σ > 0, α ∈ (0, 1)∪ (1, 2]. Further, let, as in the proof of Theorems

3 and 4, X ′
0 and X ′′

0 be independent copies of X0 and let A0 = {(X ′
0 + X ′′

0 )/2 > K}. Since, as it is not difficult

to see, (X ′
0 + X ′′

0 )/21/α ∼ Sα(σ, 0, 0), we have P (A0) = P (X0 > 21−1/αK). This, together with property (8) in

Section 2 and asymptotic expansions for stable densities (2.4.6) and (2.5.1) in Zolotarev (1986, pp. 89, 95)11

implies that there exist constants C1, C2 > 0 such that r0 = P (X0 > K) ∼ C1/Kα, P (A0) ∼ C1/(2α−1Kα),

K → +∞; r0 ∼ 1−C1/|K|α, P (A0) ∼ 1−C1/(2α−1|K|α), K → −∞; r0 ∼ 1/2−C2K, P (A0) ∼ 1/2−21−1/αC2K,

K → 0. We get, therefore, that d0 = |r0− 1/2| ∼ 1/2−C1/|K|α, K → ±∞, and d0 ∼ C2|K|, K → 0. Similarly,

since, by (30), d1 = |r1−1/2| = |P (A0)−r0|/(2r0(1−r0)), one has that d1 ∼ |1/2−1/2α|−|1/2−1/2α|C1/|K|α,

K → ±∞, and d1 ∼ C2|(2 − 22−1/α)K|, K → 0. Using the above relations and the fact that d0 is increasing

in |K|, it is not difficult to check that relations (15)-(17) indeed hold. Relation (18) follows from (15) and (17)

and continuity of d1 − d0 in K ∈ R.

Proof of Lemmas 3 and 4. Let α1 ∈ (1, 2], α2 ∈ (0, 1), and let f1 ∈ M, f2 ∈ M. For j = 1, 2, let Y
(j)
1 and Y

(j)
2

be i.i.d. r.v.’s such that Y
(j)
i ∼ Sαj

(σ, β, 0), σ > 0, β ∈ [−1, 1], i = 1, 2, and let X
(j)
i = fj(Y

(j)
i ), i = 1, 2, j = 1, 2.

As in the proof of Lemmas 2.7 and 2.8 in Proschan (1965), we have |f1((y1 + y2)/2)| ≥ |(f1(y1) + f1(y2))/2|,
|f2((y1 + y2)/2)| ≤ |(f2(y1) + f2(y2))/2| for all y1, y2 ∈ R. Since the functions |fj(x)| are increasing in |x|, we

get that |f1((y1 + y2)/21/α1)| ≥ |(f1(y1) + f1(y2))/2|, |f2((y1 + y2)/21/α2)| ≤ |(f2(y1) + f2(y2))/2|, with strict

inequalities for y1+y2 6= 0. Since 2−1/α1(Y (1)
1 +Y

(1)
2 ) ∼ Sα1(σ, β, 0) and the function f1 is odd, this implies that,

for all x > 0, P ((X(1)
1 + X

(1)
2 )/2 > x) = P ((f1(Y

(1)
1 ) + f1(Y

(1)
2 ))/2 > x) < P (f1((Y

(1)
1 + Y

(1)
2 )/21/α1) > x) =

P (f1(Y
(1)
1 ) > x) = P (X(1)

1 > x) and, for all x < 0, P ((X(1)
1 + X

(1)
2 )/2 > x) = 1− P ((f1(Y

(1)
1 ) + f1(Y

(1)
2 ))/2 <

x) > 1 − P (f1((Y
(1)
1 + Y

(1)
2 )/21/α1) < x) = 1 − P (f1(Y

(1)
1 ) < x) = P (X(1)

1 > x). Similarly, we get that

P ((X(2)
1 + X

(2)
2 )/2 > x) < P (X(2)

1 > x) for all x > 0 and P ((X(2)
1 + X

(2)
2 )/2 > x) > P (X(2)

1 > x) for all x < 0.

This proves Lemma 4 and the first part of Lemma 3.

Let now n = 2k, k ≥ 2, and let X1, ..., Xn be i.i.d. r.v.’s such that X1 ∼ CT SLC. By definition of the class

CT SLC, there exist i.i.d. r.v.’s Yij , j = 0, 1, ..., k, i = 1, ..., n, and functions fj ∈ M, j = 1, ..., k, such that

Yi0 ∼ LC and Yij ∼ Sαj (σj , 0, 0), αj ∈ (1, 2], σj > 0, j = 1, ..., k, and Xi = γYi0+f1(Yi1)+...+fk(Yik), γ ∈ {0, 1},
i = 1, ..., n. From the above we have that for all i = 1, ..., n/2 and j = 1, ..., k, the r.v. (fj(Yij)+ fj(Yn/2+i,j))/2

is strictly more peaked than fj(Yij). In addition, by Proposition 2, (Yi0 + Yn/2+i,0)/2 is strictly more peaked

than Yi0.

According to Theorem 2.7.6 in Zolotarev (1986, p. 134) and Theorem 1.10 in Dharmadhikari and Joag-Dev

(1988, p. 20), the densities of the r.v.’s Yij , j = 0, 1, ..., k, i = 1, ..., n, are symmetric and unimodal. This

implies, as it is not difficult to see, symmetry and unimodality of the densities of the r.v.’s fj(Yij), fj ∈ M,

j = 1, ..., k, i = 1, ..., n. By Theorem 1.6 in Dharmadhikari and Joag-Dev (1988, p. 13), we get, in turn, that the

densities of the r.v.’s (Yi0 + Yn/2+i,0)/2 and (fj(Yij) + fj(Yn/2+i,j))/2, j = 1, ..., k, i = 1, ..., n, are symmetric

and unimodal.

From Lemma in Birnbaum (1948) and its proof it follows that if V1, V2 and W1,W2 are independent absolutely

continuous symmetric unimodal r.v.’s such that, for i = 1, 2, Vi is more peaked than Wi, then V1 + V2 is more
11Note that the second term in relation (2.4.4) in Zolotarev (1989, p. 89) that implies asymptotic expansion (2.4.6) on the same

page in the book should read −1/2α′(1 + β′) instead of 1/2α′(1 + β′).
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peaked than W1 + W2; furthermore, this peakedness comparison is strict if V1 is strictly more peaked than W1

or V2 is strictly more peaked than W2. This implies by induction (see also Theorem 1 in Birnbaum, 1948, and

Theorem 2.C.3 in Dharmadhikari and Joag-Dev, 1988) that Xn = (1/n)
∑n/2

i=1[γ(Yi0 + Yn/2+i,0) + (f1(Yi1) +

f1(Yn/2+i,1))...+(fk(Yik)+ fk(Yn/2+i,k))] is strictly more peaked than Xn/2 = (2/n)
∑n/2

i=1[γYi0 + f1(Yi1)+ ...+

fk(Yik)]. This completes the proof of Lemma 3.
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