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1. Introduction

 In repeated games with private monitoring, the players’ beliefs about past play

will gradually drift apart as the game goes on, so that an equilibrium based on common

forecasts will gradually break up.   One way to restore common belief about aspects of

past play that matter for forecasts of opponents’ strategies is for players to send “cheap-

talk” messages to one another; if the messages are truthful they will form a public state

that can be used to govern the players’ strategies.  However, one of the first results on

using communication in this way is negative: Matsushima [1991] proved that payoffs of

equilibria with truthful, incentive compatible revelation of the signals every period are

bounded away from efficiency in two-player games with independent signals.

Subsequently, Compte [1998] and Kandori and Matsushima [1998] proved a folk

theorem for two-player games with independent signals, by considering strategies that

only report truthfully every T periods, where T goes to infinity as the discount factor goes

to 1.3

This paper shows how communication can yield to a Nash-threats folk theorem in

two-player games with “almost public” information but without independent signals.4

Our proof is a combination of the idea that communication provides a public signal and

an idea from Mailath and Morris [2002]. They provided a sufficient condition for a

perfect public equilibrium of a game with public information to remain equilibrium when

the information structure is perturbed to be almost public. We build on these ideas by

introducing the possibility that the messages sent are coarser than the underlying private

signals, which extends the class of games where our information conditions are satisfied.

A key hypothesis of the Mailath and Morris folk theorem is that the equilibrium

strategies for the public information game depend only on a finite history of play. This

                                                
3 In addition, these papers, and also Ben-Porath and Kahneman [1996], proved folk theorems for games
with at least three players. With three or more players the report of a third player can be used to tell who is
misreporting. We should also note that there are a number of folk theorem and related results in the two-
player case without communication: Sekiguchi [1997], Ely and Valimaki [2002], Piccione [2002] and
Bhaskar and Obarra [2002] have all studied the prisoner's dilemma game without communication.
4 By “communication” we mean communication between the players, without the benefit of an
intermediary. Aoyagi [2002] proves a folk theorem for games with a third-party mediator who receives
private reports from the players and sends them non-binding instructions, as in the communication games
of Forges [1986] and Myerson [1986].  See Kandori [2002] for a survey of  studies of  repeated games with
private monitoring, both with and without communication.
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implies that the strategies have a finite-automaton description. Consequently, when the

information structure is close enough to public information, the current states of the

automata are almost common knowledge.  Since repeated games with perfect information

have efficient equilibria with finite memory, the Mailath-Morris result yields a folk

theorem for games of almost-perfect, almost-public information, but the hypothesis of

this theorem need not be satisfied for general games of almost-public information.

Our starting point is a game of with publicly observed signals, and the Fudenberg,

Levine and Maskin [1994] (FLM) result that a folk theorem holds if there is “sufficient”

public information. When players observe private signals but make public

announcements, there is the possibility of constructing "FLM-like" equilibria in which

the  players' actions depend only  the announcements, but the FLM techniques cannot be

immediately applied, because it is necessary for the equilibrium to  provide incentives for

the players to “report truthfully.”

The basic contribution of this paper is to show how this can be done when players

receive signals that are highly but not perfectly correlated. As in Mailath and Morris

[2002], this leads to the notion of “almost public” information – the information is not

common knowledge, but players can be fairly confident that their opponents received the

same information that they did. Although the results generalize from the two-person case,

in many respects it is an advantage to have more than two players, because it is possible

to build equilibria by comparing the reports of different players, and using “third parties”

to effectively enforce contracts. For this reason we focus here on the two-player case, and

show that even without third parties, we have a folk theorem when information is “almost

public.”

2. The Model
In the stage game, each of two players 1,2i =  simultaneously chooses an action

ia  from a finite set iA . We refer to vectors of actions, one for each player, as profiles.

Player i ’s payoff to an action profile a  is ( )ig a . In addition, each player observes a

private signal i iz Z∈  a finite set. We let 1 2( , )z z z= , 1 2Z Z Z= × .  Each action

profile 1 2 1 2( , )a a a A A A= ∈ = ×  induces a probability distribution aπ  over outcomes

z .  At the end of each stage of the game, players make announcements *iy Y∈ , where
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*Y  is a finite set that is the same for each player.5  A profile of announcements  is a

* *y Y Y Y∈ = × . A stage game strategy for player i , ( , )i i is a m= , is a choice of

stage game action ia  and a map : *i im Z Y→  from private signal to announcements.

We refer to 1 2( , )m m m=  as a message profile. We let iS  denote the space of player i ’s

stage game strategies.

In the repeated game, in each period 1,2,t = … , the stage game is played.  Both

prior to the game, and following the announcements in each period, a public

randomization [0,1]w ∈  is drawn from a uniform distribution. The public history at time

t  is

( ) ( (1), (1), (2), (2) , ( ), ( ))h t y w y w y t w t= …

The private history for player i  at time t  is

( ) ( (1), (1), (2), (2), , ( ), ( ))i i i i i i ih t a z a z a t z t= … .

A partial strategy for player i  is a sequence of maps ( )i tσ  mapping the public and

private histories ( 1), ( 1)ih t h t− −  to probability distributions over iS . A strategy is an

assignment of a partial strategy to each initial value of the public randomization. A public

strategy is a strategy that depends on ( )ih t  only through ( )h t . We denote by

(0) (0)h w=  the public history consisting only of the initial public randomization, and

(0)ih  the null private history.

Observe that for each public history ( 1)h t −  the public profile σ  induces a

partial profile over the repeated game beginning at t . We denote this by [ ]| ( 1)h tσ − .

Given a private partial profile σ , we can compute for each player i  an expected average

present value with discount factor 0 1δ≤ < . We denote this by ( , )iG σ δ . A perfect

public equilibrium is a public strategy profile σ  such that for any public history ( 1)h t −
and any private partial strategy iσ  by any player i  we have

[ ] [ ]( )( | ( 1) , ) ( , | ( 1) , )i iG h t G h tσ δ σ σ δ−− ≥ − .

Note that by standard dynamic programming arguments it is sufficient to consider

deviations to public strategies.

                                                
5 The assumption that the two players have the same sets of possible announcements is motivated by our
focus on almost-public information. Although we can always increase the size of the smaller message
space, doing so involves a loss of generality because increasing the possible messages can increase the set
of potential equilibria.
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3. The Structure of Information

Given our assumption of a common announcement space, it is convenient to think

of players agreeing if they make the same announcement as each other. We can think of

*Y  as being the subset of Y  in which 1 2y y= , and refer to this as the diagonal of Y .

Given a message profile m  the information structure π  induces a distribution over the

diagonal of announcement profiles. We denote by

 
1 1 2 2| ( ) ( ) *

( *) ( )m
a az m z m z y
y zπ π

= =
=∑ ,

the probability of the diagonal point ( *, *)y y , and by

*

( *)
( * | *)

( )

m
am

a m
ay Y

yy Y
y

ππ
π

∈

=
∑

the probability conditional on the diagonal of the joint announcement *y .  It is also

convenient to define the probability of the opponent’s message given a player’s signal

| ( )
( | ) ( | )

i i i i

m
a ai i i iz m z y
y z z zπ π

− − − −
− −=

=∑ .

Note that for this to be well defined there must be positive probability of i  receiving the

signal iz  when the players play a .

Definition 1: A game has ε public information with respect to m  if for all action

profiles a,

(1) 
*

( ) 1m m
a ay Y

yπ π ε
∈

≡ ≥ −∑

(2) if ( ) 0a zπ >  then for all 2 2 1 1( )y y m z≠ = ,  2 1 2 1( | ) ( | )m m
a ay z y zπ π>

When this condition is satisfied for some m and “small” ε we say that the game has

“almost public information.” This condition says that most of the time, each player is

fairly confident of the other player's message; in the limit case of 0-public information,

the two players’ messages are perfectly correlated, so that they are public information.

This condition is closely related to the Mailath and Morris definition of  “ ε -close to

public monitoring,” but it is weaker in two ways. First of all, Mailath and Morris suppose

that each player i’s private signal iz  lies in the same set as do the signals in the limiting
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pubic-information game; in our setting this corresponds to *# # iY Z= . Second,

suppose that in the public information limit, every signal has strictly positive probability

under every action profile, and that the distribution of each player's private signals is

close to this limit.  These conditions imply condition (1) above, and a stronger version of

condition (2), namely that for 2 2 1 1( )y y m z≠ = , 0 2 1lim ( | ) 1m
a y zε π→ = .  Given the

assumption that # * # iY Z= , their conditions are equivalent to ours, but when there are

many private signals corresponding to a given public message, our condition (2) is

significantly weaker, as it allows the private signals to differ in how informative they are

about the message the opposing player will send.

Note that our condition is easier to satisfy with coarse message maps m, and

indeed it is vacuously satisfied if 1 2and m m  are equal to the same constant; the

condition will have force when combined with the assumption that the messages “reveal

enough” about the action profile that generated the underlying signals. We will examine

more closely below an example showing how coarser message maps lead to greater

common knowledge.

To better relate our results to the literature, we will need the following auxiliary

definitions:

Definition 2: A game is ε -close to perfect monitoring if for all action profiles a there is a

signal z  such that ( ) 1a zπ ε≥ − .

Definition 3: A game has independent monitoring if for all action profiles a,

1 2 1 2( , ) ( ) ( )a a az z z zπ π π= .

In the case of the “truthful reporting” studied by previous papers on

communication in game with private monitoring, (1) of Definition 1 is satisfied whenever

the game is ε -close to perfect monitoring. However, independent monitoring is

inconsistent with condition (2) of Definition 1 except for the case of perfect monitoring,

so in particular a game does not have has ε public information with respect to truthful

reporting when it has independent and almost-perfect monitoring.

Remark: Kandori and Matsushima consider an example where players observe binary

signals. The players “babble” most of the time, and in every Tth period they send the
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message “Pass” or Fail”, with the condition for passing being that the fraction of “good”

signals in the last T periods has been sufficiently high.  If the players are constrained to

play the same action in the T periods between meaningful messages, then the law of large

numbers implies that for T large the T-period reporting game has almost perfect

monitoring, and this precision would allow the construction of approximately efficient

strategies.6  Of course players are not constrained to play the same action every period;

the independence assumption is useful in verifying that doing so is optimal.

For a given ,a m  we can consider ( | *)m
a Yπ i  as a row vector. For player i  we can

the construct a matrix ,m i
aΠ  by stacking the row vectors corresponding to ( , )i ia a−  as ia

ranges over iA .  We can further stack the two matrices corresponding to the two players

to get a ( )1 2# # # *A A Y+ ×  matrix m
aΠ . Notice that this matrix has two rows (both

corresponding to a ) that are identical.

Definition 2: A game has pure-strategy pairwise full rank with respect to m  if for every

pure  profile  a  the rank of m
aΠ is ( )1 2# # 1A A+ − .

This condition is never satisfied in games such as Green and Porter [1984], where the two

players have the same sets of feasible actions-, and the distribution of signals satisfies the

symmetry condition that ( , ) ( , )j k j kπ π= is symmetric in a, but it is satisfied for a set of

probability measures aπ  of Lebesgue measure 1.

4. The Nash Threats Folk Theorem

Let *v  be a static Nash payoff vector. We may conveniently normalize * 0v = .

Fix a sequence of games with common , , *,A Z Y g , and with signal probabilities nπ .

Theorem: Suppose there is a message profile m  such that for each n , game n has nε
public information with respect to m , that 0nε → , that these games have common

diagonal probabilities , ( | *) ( | *)m n m
a aY Yπ π⋅ = ⋅ , and that ( | *)m

a Yπ ⋅ has pure-strategy
pairwise full rank with respect to m.  Then there is a sequence 0nγ →  such that for any

feasible vector of payoffs 0v >  there exists * 1δ <  such that for any n and all *δ δ≥

                                                
6 Note that the T-period messages are still independent, so from Matsushima’s result for any fixed T the
equilibrium payoff is bounded away from efficiency even as the discount factor goes to 1. However, the
distance between this bound and the frontier goes to zero as monitoring becomes perfect.
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there is a perfect public equilibrium in the game n with payoffs nv satisfying
n nv v γ− < .

Proof:  Let Γ  be the public information game without public randomization with the

same payoff functions as in the original game, and with public signals *Y  generated by

the common diagonal probabilities.   Using the arguments from Fudenberg, Maskin and

Levine [1994], once can show that for any 0v >  there exists ˆ 1δ < , a 0K >  and a set

of payoffs V with v V∈ , and ˆ' 0iv v≥ >  for all 'v V∈ , such that, for all ˆδ δ>  and

every 'v V∈ , there is a perfect public equilibrium *σ with payoffs 'v , such that:

a) the continuation payoffs ( )w y  lie in V for all y Y∈ ,

b)  ( ) ( ') (1 )w y w y K δ− ≤ −

c)  at every history the profiles either prescribe pure strategies or the strategies of

a static Nash equilibrium with payoff 0.

d) if the strategies prescribe playing the static equilibrium given history th , they

prescribe playing that static equilibrium at all subsequent histories.

Given the base strategies, we will construct corresponding public strategies in

game n  by constructing a map χ  from public histories ( )nh t  to histories of the same

length in the public-information game Γ  , or the symbol P  (for punishment). We define

the strategies in the game n  by the action taken by the base strategy, or the static Nash

strategies respectively. The map χ  is defined as follows. We map the initial null history

to the null history. Given that all histories of length 1t −  have been mapped, we define

the map for length t  histories ( ) ( ( 1), , )n n n n
t th t h t y w= − .

Case 1: If ( )( 1)nh t Pχ − = , ( )( )nh t Pχ = , so punishment is absorbing.

Case 2: If ( )( 1)nh t Pχ − ≠  and 1 2
n n
t ty y= , use the public randomization n

tw  so that

with probability ( )nt tp y  (to be defined below) we have

( ( 1), , ) ( ( ( 1)), )n n n n n
t t th t y w h t yχ χ− = −

and ( ( 1), , )n n n
t th t y w Pχ − =  with probability 1 ( )nt tp y− .
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Case 3: If ( )( 1)nh t Pχ − ≠  and 1 2
n n
t ty y≠ , let a  be the action profile specified by the

base strategies given the history ( ( 1))nh tχ − , and use the public randomization n
tw  so

that ( ( 1), , ) ( ( ( 1)), *)n n n n
t th t y w h t yχ χ− = −  with probability ( *) ( * | *)m

atqp y y Yπ  and

( ( 1), , )n n n
t th t y w Pχ − =  otherwise, where the value of q will be chosen below.

Notice that whenever these strategies call upon players to mix, the prescribed actions

both at that time and in the future are those of the static Nash equilibrium, so incentive

compatibility (for both actions and messages) is trivial, and the average present value to

both players is 0.  We therefore need consider only payoffs and incentive compatibility

when the strategies call for a pure profile a .

Let ( ( ))iv h t  be the average present values from following the base strategies in Γ

when the discount factor is δ . Then

*
( ( 1)) (1 ) ( ) ( * | *) ( ( 1), *)m

ai iy
v h t g a y Y v h t yδ δ π− = − + −∑ .

The average present values from following the corresponding strategies in the game n

when the discount factor is δ  is

[ ]( )*

( ( 1))

(1 ) ( ) (1 ) ( *) ( * | *) ( ( 1), *)

n
i

m m m n
a a at iy

v h t

g a q p y y Y v h t yδ δ π π π

− =

− + + − −∑
Suppose that ,p q  are chosen so that for some constant nβ  independent of history and the

player

(*)
[ ]*

*

(1 ) ( *) ( * | *) ( ( 1), *)

( * | *) ( ( 1), *).

m m m
a a at t iy

n m
a iy

q p y y Y v h t y

y Y v h t y

π π π

β π

+ − − =

−

∑
∑

If
nδ δβ=

we have

*
1 1( ( 1)) (1 ) ( ) ( * | *) ( ( 1), *)

1 1
n m

an ni iy
v h t g a y Y v h t yδ δδ δβ π

δβ δβ
− −− = − + −

− −∑

from which we conclude that

1( ( 1)) ( ( 1))
1

n
ni iv h t v h tδ

δβ
−− = −

−
.
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Now consider a sequence 1nβ → . Then for ˆδ δ>  and n  sufficiently large, we

can find an equilibrium in the base game for discount factor / nδ δ β= . We then choose

,p q  consistent with nβ  so as to preserve the incentive to play ia , and to create an

incentive to send the messages im . Suppose

( *) 0tp y p≥ > .

We want to show that no combination of action and message choice in period t can

improve player i’s payoff, assuming that the player conforms to the specified strategy in

future periods.7

Step 1: First we show that for an appropriate choice of q  it is optimal to use m

regardless of the action chosen. Observe that m  maximizes the probability of agreement

by the condition 2 of the definition of nε -public information. Let us refer to choosing an

announcement other than the one chosen by m  as sending a false announcement. Let nz

denote the least decrease in the probability of agreement due to a false announcement.

Since the set of announcements is finite, 0nz > .  Sending a false announcement may

result in a better continuation equilibrium; however, since the continuation payoffs in the

public information game satisfy ( ) ( ') (1 )w y w y K δ− ≤ − , the increase in average

present value is at most

1 (1 )
1 n K

δ δ
δβ
− −

−
.

On the other hand, sending a false announcement increases the probability of punishment

by (1 ) nq µ− , resulting in an average present value loss of at least

 1 ˆ(1 )
1

n
n tq z p vδ

δβ
− −

−
.

We conclude that it is sufficient to prevent false announcements that

(1 )1
ˆn

Kq
z pv

δ−− = .

                                                
7  This is the familiar application of the principle of optimality. Although this is not a multistage game with
observed actions, the same argument that works there suffices to establish a “one stage deviation principle”
for the perfect public equilibria.
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Step 2: When it is optimal to use m  regardless of the action chosen, it is sufficient to

show that the base strategy choice of action is optimal when m  will be used.

The incentive constraints in the n  game are

[ ]
( )

' '*
{ ( (1 ) ) ( * | *) ( (1 ) ) ( * | *)

( *) ( ( 1), *)} (1 ) ( ') ( )

m m m m m m
a a a aa ay

n
t i

q y Y q y Y

p y v h t y g a g a

δ π π π π π π

δ

+ − − + − ×

− ≥ − −
∑

Substituting for niv  we get

[ ]

( )

' '{ ( (1 ) ) ( * | *) ( (1 ) ) ( * | *)

( *)
( ( 1), *)} (1 ) ( ') ( )

m m m m m m
a a a at ta a

t
n i

q y Y q y Y

p y
v h t y g a g a

δ π π π π π π

δ
β

+ − − + − ×

− ≥ − −

and in addition (*) must hold.

From the base game, we know that the incentive constraint

[ ]
( )
'*

{ ( * | *) ( * | *)

( ( 1), *)} (1 ) ( ') ( )

m m
a ay

i

y Y y Y

v h t y g a g a

δ π π

δ

− ×

− ≥ − −

∑

is satisfied. By substituting (*) and using this inequality, it is sufficient that

(**) ' ' '*

'*

( *)
( (1 ) ) ( * | *) ( ( 1), *)

( * | *) ( ( 1), *)

m m m t
n ia a ay

m
iay

p y
q y Y v h t y

y Y v h t y

π π π
β

π

+ − − ≤

−

∑
∑

for all profiles 'a ,  with equality for a .

By the pairwise full rank condition, for each player i and strategy profilea , we

may find a vector ( , *)iw a y  such that

'*
( * | *) ( , *) ( ')m

iay
y Y w a y e aπ =∑

for all '' ( , )i ia a a−= , ( ) 0e a =  and for 'a a≠  ( ) 1e a = − . If we take

( , *)( *) 1
(1 ) ( ( 1), *)

nt i
n m m

a a i

w a yp y
q v h t y

λβ π π= +
+ − −

then we have equality in (**) for 'a a= ,  and for 'a a≠
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' '
'*

' '

'*

(1 )
( * | *) ( ( 1), *)

(1 )
( (1 ) )

( * | *) ( ( 1), *)

m m
ma a

m m iay a a
n m m
a a

m
iay

q
y Y v h t y

q
q

y Y v h t y

π π
π

π π
λ π π

π

+ −
−

+ −
− + − ≤

−

∑

∑
or,

'
'*

' '

(1 )( )
( * | *) ( ( 1), *)

(1 )
( (1 ) )

m m
a ma

m iay a
n m m

ta a

q
y Y v h t y

q q
q

π π
π

π
λ π π

− −
−

− +
≤ + −

∑

and we may choose

'
,, '

'

(1 )( )
max max ( )

m m
an a

m m a i ia a
a a

q
g a

π π
λ

π π
− −

= .

Moreover,

, *max { ( , *), 0}( *) 1
ˆ(1 )min
ia ynt

n m
a a

w a yp y
q q v

λ
β π

≤ +
− +

Call the right-hand side of this expression nµ . If we choose 1/n nβ µ= , we know that

( *) 1tp y ≤ . Specifically,

'
1

, *
max { ( , *), 0}( , *)1 1( *)

ˆ(1 ) ( ( 1), *) (1 )min
i

ia yn ni
m mt
a a ai

w a yw a y
p y

q q v h t y q q v
λ λ

π π

−    = + +  − + − − +   

As 0nε →  we have 0nλ →  and 1m
aπ → , so ( *) 1tp y → , and so for some p  and

sufficiently large n  we have ( *) 0tp y p> > .

Putting this together

(1 )1 (1 min ) 1 (1 )
ˆ

n m n
an

K L
z pv

δβ π δ−≥ − − = − −

where 0nL → . Consequently we have an equilibrium with average present value

1 1
1 1n nv v

L
δ

δβ δ
− =

− +
 ,

which is the desired result.
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Remark: Notice that the proof can easily be adjusted so that the equilibrium, except when

the static Nash equilibrium is played, is strict of order (1 )Uδ− , where

,max ( )i a ig g a=  . Observe also that if we perturb the game so that 'g g ε− ≤  and

'π π ε− ≤ , then the average discounted value of particular strategies changes by at

most gε .

.

Hence if 2(1 *)ε δ≤ −  the theorem continues to hold for the perturbed game and

*δ δ= . Tracing out the equilibrium payoffs corresponding to the various histories, it

follows that the convex hull of this set is self-generating for *δ δ= , and hence by the

results of Fudenberg, Levine and Maskin [1994] for these are payoff of perfect public

equilibria for all *δ δ≥  .

 In other words, we have the following corollary

Corollary: Fix a  message profile m, and suppose that ng g→ , nπ π→ ,  that  game

n  has nε  public information with respect to m , that 0nε →  and that ( | *)m
a Yπ ⋅ , has

pure-strategy pairwise full rank with respect to m .  Then there is a sequence 0nγ →

such that for any  feasible vector of payoffs 0v >  there exists * 1δ <  such that for any

n and all *δ δ≥  there is a perfect public equilibrium in the game n with payoffs
nv satisfying n nv v γ− < .

Remark: In particular, this covers the case in which the payoffs have the form ( , )ir a z  and

the probabilities nπ π→ .

5. The Role of Public Information
A crucial element of these results is the fact that the announcements are public

information. Since there is already a folk theorem for games of public information, the

question arises as to whether or not it can be applied directly to the game with messages,

or whether in fact a separate proof is needed. Here we briefly indicate why the

Fudenberg, Levine and Maskin  (FLM) result does not apply to the announcement game.

The FLM folk theorem is limited to the convex hull of the set of profiles that

satisfy enforceability plus pairwise identifiability. Enforceability requires that there be

some continuation payoffs, feasible or not, that make it optimal for each player to play

his portion of the profile. Pairwise identifiability is a weakening of the pairwise full-rank
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condition that specifies that it is possible to statistically discriminate between a deviation

by player 1 from one by player 2.

Our goal is to establish that in the private information game with announcements,

the only profiles that satisfy enforceability plus pairwise identifiability are the static Nash

equilibrium, and so the Folk Theorem with public information does not apply.

Fix a profile, including a strategy for sending messages. This determines for each

player a probability distribution over messages sent. We refer to this as the marginal. One

thing a player could do is to is to randomize his announcements independent of his

private information, in such a way that the marginal distribution of messages is

preserved; call this “faking the marginal.”  Unless the given profile called for players to

ignore their private signals, pairwise identifiability fails, because player one faking his

marginal and player two faking hers are are observationally equivalent, so the FLM result

does not apply, and if we restrict attention to strategies where players make meaningless

reports, the only public equilibria will have a static equilibruim outcome in every period.

6. Information Aggregation
One feature of the main theorem is that it allows the possibility that players

aggregate information by making the same announcement corresponding to several

different private signals. For example, we might imagine two partners who each receive

stochastic output depending upon the effort taken by each of them. If the output is

perfectly correlated, we have a game of public information; if output is imperfectly

correlated we have a game of private information. If output occurs in discrete units, then

observing that output is 100 may not be a terribly reliable indication that the partner also

received an output of 100, but may be a good indication that output of the partner is

between 90 and 110.

A simple example with 4 levels of output shows how combining several signals

results in a better degree of public information as measured by the ε  in Definition 1.
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1 2 3 4

1 3/48 1/48 3/48 5/48

2 1/48 3/48 5/48 3/48

3 3/48 5/48 3/48 1/48

4 5/48 3/48 1/48 3/48

Table 1

Suppose that there are four levels of output 1-4, and their probabilities at some particular

action profile are given by Table 1.  Then if players “report their signals,” the probability

of *Y  is only 5/12. If players instead use a two point message space to report ranges of

output  1 to 2  or  3 to 4, then, as shown in Table 2, the probability of the diagonal

becomes 2/3.

1-2 3-4

1-2 8/48 16/48

3-4 16/48 8/48

Table 2

Notice that aggregating signals has two effects: first, it increases the degree to

which each player can forecast the other player’s message, which reduces the role of

private information. Second, it reduces the informativeness of the messages, making it

less likely that the assumption of pairwise full-rank is satisfied. However, when each

player’s signal space iZ  is at least as large as ( )1 2# # 1A A+ −  (the mimimum size

consistent with pairwise full rank) it is possible to aggregate the signals while still

allowing the messages to carry a substantial amount of information on the actions that

were played. This observation has some importance when we notice that the proof of the

Theorem remains valid even if we allow the space of private signals Z  to vary, provided

that the set *Y  remains fixed. For example in the partners case, we can allow the set of

output levels to be measured on a finer scale as we approach the limit, while continuing

to aggregate reports into a limited number of categories. Notice that when we refine the

grid, if private information is received near the boundary of the category, the probability
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the other player receives a signal in the same category may be close to ½. However, this

is consistent with part (2) of our Definition 1.
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