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Abstract

The presence of noise in compliance times may have a critical im-

pact on the selection of new technological standards. A technically

superior standard is not necessarily viable because an arbitrarily small

amount of noise may render coordination on that standard impossible.

The criterion for the viability of a standard is that the sum of “support

ratios” of all players must be smaller than one, where “support ratio”

is defined as the ratio of the firm’s per-period cost of supporting the

standard to the per-period gross benefit that the firm receives after

all players comply with the standard.

∗We thank Philippe Aghion, Gary Chamberlain, Joseph Farrell, Drew Fudenberg, Gau-
tam Gowrisankaran, Hans Hvide, Marc Melitz, Paul Milgrom, Markus Möbius, Stephen
Morris, Julie Mortimer, Petra Moser, Ariel Pakes, Andrew Postlewaite, Eric Rasmusen,
Alvin Roth, Dennis Yao, and seminar participants at Harvard and Indiana for comments
and suggestions.
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1 Introduction

When a firm invests in Supply Chain Management (SCM) software, it hopes

that by the time the system is deployed, its supply chain partners will have

already deployed their SCM software. In a perfect world, all partners would

pick a single date for their systems to go online, and it would be individu-

ally optimal for each firm to follow that schedule. In reality, however, even

trains do not always come on time, and it is impossible to perfectly anticipate

the exact time of SCM deployment—some firms will necessarily be later than

others. When an individual firm schedules SCM software deployment, it does

not take into account the expected negative externality of postponing its in-

vestment. Thus, deployment may happen inefficiently late or, if externalities

are sufficiently large, never.

This problem arises whenever firms schedule complementary projects or

investments. For another example, consider Bluetooth. Bluetooth is a tech-

nological standard that enables “wireless links between mobile computers,

mobile phones, portable handheld devices, and connectivity to the Inter-

net.”1 To take advantage of this technology, a firm needs to install a radio

chip in its hardware, and write software integrating the chip with the rest of

the system. This will be profitable only if by the time the design and man-

ufacture of these products are complete, there are other Bluetooth-enabled

devices from other firms to communicate with.

1http://www.bluetooth.com/
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In this paper we study such synchronization issues, when firms want to

make complementary business decisions which need advance planning. To

focus our attention, we talk about the adoption of standards, but the in-

sights are applicable in a broader context, from investments in complemen-

tary technologies to large-scale real estate development. We show that adding

a stochastic component (noise) to adoption times may have a critical impact

on the viability of a standard. Perhaps surprisingly, in a wide range of cases,

a universally desired standard may not be viable in a sense that any amount

of noise may render coordination on that standard impossible. As a result,

given several alternatives, market participants may forgo a technically su-

perior (Pareto dominant) standard in favor of an inferior one, if the former

is not viable. Propositions 1 and 5 show that the viability of a standard

depends only on “support ratios,” where “support ratio” is defined as the

ratio of the firm’s per-period cost of supporting the standard to the per-

period gross benefit that the firm receives when other firms comply with the

standard.

Let us sketch a two-player example that illustrates the model considered

herein. For simplicity, we assume that there are only two possible standards:

the status quo and the new standard that Pareto dominates the status quo.

Both firms simultaneously choose target dates for compliance with the new

standard. The actual compliance time is uncertain, it is equal to the target

time plus noise. As soon as a firm is compliant with the standard, it incurs
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a per-period cost of supporting the standard, c.2 Complying with the new

standard starts paying off only after the standard is adopted by both firms.

When (and if) this happens, each firm starts receiving a stream of net benefits

at the rate d (i.e. the gross per-period benefit is c+ d).

Without noise in compliance times, the game has a continuum of pure

strategy equilibria: any adoption time is an equilibrium as long as both

players choose that time to comply with the standard.3 Proposition 1 shows

that this multiplicity of equilibria is a knife-edge result. If there is noise

in adoption times, at most two equilibria survive. There is always a trivial

equilibrium where neither player ever adopts the new standard. The equilib-

rium where the new standard is adopted may or may not exist. Proposition

1 also establishes a necessary condition for the viability of a standard. This

condition becomes necessary and sufficient as the players’ discount rate con-

verges to one. Coordination on the new standard is impossible if the cost

of maintaining it is more than half the gross benefit that a standard yields

after adoption by both players. In other words, a standard is not viable if its

support ratio, c
c+d

, is greater than one half. This is true for any distribution

of noise in the disturbance terms.

2The cost of supporting a standard may take many forms. For example, hardware man-
ufacturers who were first to put Bluetooth communication technology into their products
incurred a waiting cost, because including a Bluetooth chip increases the manufacturing
cost and adds no value for customers unless other Bluetooth-equipped devices are avail-
able. In other situations, early adopters may incur inventory costs. All else being equal,
a firm would prefer to invest later rather than sooner due to time value of money.

3We are assuming that the new standard is Pareto dominant if when adopted it yields
a positive net benefit for all players.
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Let us sketch the intuition behind this result. First, observe that the best

outcome for both players is simultaneous adoption. From the ex-post per-

spective, a player who complies first “wishes” he had targeted a slightly later

compliance time, since that would have saved him c per period. Similarly, a

player who complies last wishes he had targeted a slightly earlier compliance

time because that would have saved him the gross benefit from the stan-

dard minus the cost of maintaining the standard (which is exactly equal to

c for a “borderline viable” standard). Thus, roughly speaking, a standard

is not viable if the benefit to the second adopter from lowering his target

compliance time is smaller than the cost to the first adopter from lowering

his target compliance time. In this case, first order conditions imply that

each player’s best response is to try to be last with probability greater than

one half—consequently the equilibrium where the new standard is adopted

disappears.

The model of the standard adoption process presented in Section 3 is

highly stylized—players only get benefits after everyone complies. It high-

lights the dramatic effects that an arbitrarily small amount of uncertainty

has on the equilibrium standard selection. In a deterministic world only

the net benefits from a standard matter (the gross benefits minus the costs

of supporting a standard); in this case the support ratio is irrelevant. If,

however, there is any amount of noise in compliance times, support ratios

become important. These effects do not go away in a more sophisticated

model where firms choose among several competing standards. Also, small
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amounts of noise continue to have a large impact on equilibrium selection

in models where network externalities gradually increase in the number of

adopters (See Section 6).4

2 Related Literature

The idea that adding noise to the model may reduce the set of equilibria has

a long history in economics. Recently, it figures prominently in the work on

global games, first introduced in Carlsson and van Damme (1993). In global

games, agents receive noisy signals about the true economic fundamentals.

This captures the lack of common knowledge about the true state of the

economy (See Morris and Shin (2002) for the most recent survey of the global

games literature).5

The strand of the global games literature closest to our results is the work

on synchronization games with asynchronous clocks. This work was preceded

by a paper by Halpern and Moses (1990), who show that asynchronous clocks

may prevent synchronization because statements about timing never become

4It is worth mentioning that adding noise to other parameters of the model, such as
the agents’ discount rate, costs of compliance with a standard and benefits of standard
adoption, does not pin down the equilibrium of the model. That is why a model of standard
adoption should capture the uncertainty about compliance times and could neglect the
uncertainty about other parameters of the model.

5Some equilibrium refinements are also based on the idea of perturbing a game.
Trembling-hand perfection is one example. However, there is a significant difference be-
tween the logic behind equilibrium refinements and global games. Both this paper and
the global games literature attempt to consider games that capture some features of the
underlying economic reality that may play an important role in the selection of equilib-
rium. Unlike equilibrium refinements, we do not seek to improve the equilibrium concept,
we seek to improve the model.

6



common knowledge. Abreu and Brunnermeier (2003) show that a bubble

may persist despite the presence of rational arbitrageurs who learn about

the existence of the bubble at different times; essentially the difficulty in

coordinating an attack on an asset is due to arbitrageurs’ clocks not being

synchronized. Morris (1995) considers a synchronization problem faced by

agents who decide when to start working. Each worker knows the time on

his watch but watches are not perfectly synchronized. Morris shows that if

clocks are not perfectly synchronized coordination may not be achieved.

The setting of Morris’s paper is very similar to ours—in both models

agents gain once everybody participates but “early arrival” is costly. How-

ever, Morris (1995) model is a global game, and the inability to coordinate

is due to agents having private information and thus lacking common knowl-

edge about timing. In contrast, in our model there is no issue of clock

synchronization, our agents have no private information, and the common

knowledge assumption is maintained. The difficulty in coordination is due

to the inability to exactly control compliance times. Thus, our model is

not a global game. Nevertheless, our results share some of the remarkable

features often encountered in global games, namely (1) without noise there

is a continuum of equilibria, adding nose to the model pins the equilibrium

down; (2) there exists an equilibrium robust to noise.6 For the discussion of

the connection between the game considered herein and potential and global

6Loosely speaking, robustness to noise means that the same equilibria are pinned down
by a small amount of noise, regardless of the exact form of the noise.
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games see Appendix D.

Basu and Weibull (2002) also study synchronization, in the context of

social norms. In their model, an individual may choose to be “punctual”

or “tardy,” and punctuality (or non-punctuality) may be just one of several

equilibria, rather than a society’s innate trait.

Our results show that in a wide range of cases a technically superior

(Pareto dominant) standard may not be viable in a sense that any amount

of noise may render coordination on that standard impossible. The failure of

a useful standard to get adopted is a common result in the standards litera-

ture. There are many possible reasons why this may happen or why an infe-

rior standard may prevail. They include ownership/sponsorship of standards,

current technical superiority and acceptance vs. future/long-term superior-

ity, and incompleteness of information (Katz and Shapiro 1985, 1986, 1994,

Farrell and Saloner 1985, Besen and Farrell 1994, Liebowitz and Margolis

1994).

On the other hand, this is the opposite of Farrell and Saloner (1985)

conclusion that if players make adoption decisions sequentially, “a somewhat

surprising result emerges: if all firms would benefit from change [to a new

standard] then all will change” (p. 71). Farrell and Saloner point out that in

most cases players make adoption decisions simultaneously. In that case their

model has multiple equilibria. However, they show that it is an equilibrium

for players to switch to the Pareto dominant standard. This result hinges

on the assumption that the adoption of a new standard by a firm is an
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instantaneous process, and thus there are no costs of imperfect coordination

of adoption times. The result of Proposition 1 of our paper implies that

in a simultaneous-move game the Pareto efficient equilibrium considered in

Farrell and Saloner (1985) may disappear if any amount of uncertainty is

present. Thus, the predictions of sequential- and simultaneous-move models

are very different: the adoption of the Pareto dominant standard is the unique

equilibrium of the sequential-move game. In contrast, in a simultaneous-move

game the adoption of the Pareto dominant standard may be impossible if any

amount of uncertainty is present. In Section 5 we reconcile the difference by

adding a dynamic aspect to the game—we make the assumption that once a

firm complies with a standard, others observe that and can begin to comply

as well. Under this assumption, for a small average compliance time (i.e.

as the expected compliance time goes to zero) the sequential-move game of

Farrell and Saloner (1985) is a valid approximation, and the Pareto efficient

outcome is an equilibrium. On the other hand, for a large average compliance

time (i.e. as the expected compliance time goes to infinity) the simultaneous-

move model considered herein is a valid approximation.

Therefore, average compliance time (or, equivalently, average time-to-

build) plays an important role in the adoption of standards. Pacheco-de-

Almeida and Zemsky (2003) find that time-to-build also has a significant

impact on investment timing and the tradeoff between flexibility and com-

mitment, firm heterogeneity, and the evolution of prices under demand un-

certainty.
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Finally, Section II of Farrell and Saloner (1986) presents a model related

to ours, where agents can switch from an old standard to a new one. Each

agent faces occasional switching opportunities, arriving randomly in an in-

dependent Poisson process. For some values of the costs and benefits of the

standards (with or without other agents complying with them), agents do

not switch to the new standard even if they unanimously favor the switch,

because each prefers others to switch first. This effect, however, is driven by

the technological infeasibility of the new standard in the absence of trans-

fers between agents—an agent who switches first is in expectation worse off

than he would be if nobody switched. In our setup, in contrast, the effect is

driven by strategic considerations and the inability of agents to commit to

their compliance times. If noise is small (i.e. the rate of the Poisson process

is high), then in the setup of Farrell and Saloner (1986) technological frictions

vanish and efficient standard gets adopted, whereas in our setup commitment

problems remain and the result is unchanged.

3 The Model

We start with a simple model where complying with a standard is only prof-

itable if all other firms comply as well. This simple model is sufficient to

illustrate the importance of noise in the process of standard adoption and

creation. In Section 6 we will consider a more general model of network ex-

ternalities. The key assumption of our model is that each firm can select the
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target time by which it expects to become compliant with a new standard.

The actual compliance time, however, is uncertain—it is equal to the tar-

get compliance time plus a disturbance term. The random disturbances are

uncorrelated across firms, and thus perfect coordination is impossible—some

firms are bound to comply earlier than others. While a firm is waiting for

others to comply, it bears waiting costs. It only gets benefits after everyone

(or, in a more general model, a sufficient number of other firms) complies.

More formally, suppose there are N firms that consider adopting a new

standard. Each firm can choose a target compliance time µi ≥ mi at which

it plans to comply with the standard (mi is an exogenous constraint—for

each firm there is some minimum time required to comply), or a firm can

choose not to comply at all, which we denote by out. All firms select their

target times simultaneously. If the firm decides not to comply, its payoff is

0. Otherwise, its actual compliance time ti is equal to µi plus a random dis-

turbance drawn from continuous probability distribution Fi independent of

other firms’ disturbances. As soon as a firm complies with the new standard,

it has to pay a cost of supporting it of ci per period. When (and if!) all firms

adopt the standard, firm i starts getting a flow of net benefits di (i.e. the

per-period gross benefit is ci +di). The adoption time, i.e. the time when all

firms comply, is denoted by t∗ = maxi {ti} (if one of the agents never adopts,

we say that t∗ =∞). For simplicity, we assume that ci and di do not change

over time. The firm’s payoff is a discounted flow of costs and benefits from

the new standard: Πi = E[
∫∞
ti
βtπi(t)dt], where πi(t) is the sum of cost and
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gross benefit accrued at time t,

πi(t) =


0 for t ≤ ti

−ci for ti < t ≤ t∗

di for t∗ < t.

Assume that the discount factor, β, is strictly less than 1. We will refer

to the game described above as Γ(β).

To analyze the equilibria of Γ(β), we construct an approximation with

no time discounting. To be able to do that, we renormalize payoffs, and

for each i subtract the net benefit after universal adoption, di, from firm i’s

instantaneous payoff in every period, i.e.

π1
i (t) =


−di for t ≤ ti

−(ci + di) for ti < t ≤ t∗

0 for t∗ < t.

More precisely, define Γ(1) as follows. Action space and probability dis-

tributions of disturbances are the same as before, but payoffs are different.

If a player chooses out, his payoff is uout
7. If player i chooses some target

compliance time and another player chooses out, player i’s payoff is −∞. If

all players choose to comply, the payoff of player i is given by the expected

value of −ci (t∗ − ti) − dit∗, where t∗ = maxi {ti}, and vector t is equal to

vector µ plus random vector ε of disturbances drawn from continuous prob-

7uout is assumed to be “sufficiently” low. The exact definition will be made clear in
the next section.
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ability distribution F1× · · · ×FN . We also define the support ratio of firm i,

si = ci
ci+di

.

To summarize the notation:

{out, [mi,+∞)} action space of firm i

µi ≥ mi target compliance time of firm i if it decides to comply

ti actual compliance time of firm i

εi firm i’s disturbance, ti − µi

Fi distribution of εi

ci per-period cost paid by firm i after it complies

di per-period net benefit received by firm i after all firms comply

β time discount factor

uout in Γ(1), payoff of a firm which decides not to comply

t∗ maxi {ti} , i.e. the adoption time

si support ratio of firm i, equals ci
ci+di

.

4 The Viability of a Standard

The following proposition characterizes the equilibrium set of Γ(β) as β → 1.

It gives a criterion of the viability of a standard, i.e. a necessary and sufficient

condition for the existence of equilibrium where the standard is adopted

provided that players are sufficiently patient. If the sum of support ratios

of all players is less than one, a standard is viable. This condition does not

depend on the distribution of noise—it only depends on the firms’ support

ratios. Also, it says that as β increases, equilibrium target compliance times

13



decrease, i.e. as players become more patient, they adopt earlier.

Proposition 1 If
∑N

i=1 si < 1, then

(i) there exists β0 < 1 such that for any β0 < β < 1 game Γ(β) has exactly

two equilibria—one in which all players choose to adopt, and one in which

all players choose not to adopt,8

(ii) lim
β→1

µ∗(β) = µ∗(1), where µ∗(·) denotes the vector of target compliance

times in the equilibrium where the standard is adopted,

(iii) for any β0 < β1 ≤ β2 ≤ 1, µ∗(β1) ≥ µ∗(β2).

(iv) If
∑N

i=1 si > 1, then there exists β′0 < 1 such that for any β′0 < β < 1

game Γ(β) has only one equilibrium, and in that equilibrium all players choose

not to adopt.

We prove this proposition in two steps. Step 1 is to characterize the

equilibria of the game with no time discounting, Γ(1)—this is done in Propo-

sition 2. Step 2 is to show that equilibria of Γ(β) converge to those of Γ(1)

as β → 1.

Step 1. First, we prove two auxiliary results.

Lemma 1 Suppose players have distributions of disturbances {Fi}. Take

any strictly positive numbers {pi} such that
∑
pi = 1. Then there exists a

vector of target times such that each player i adopts last with probability pi.

Proof. See Appendix.

8Remarkably, there are no mixed equilibria.
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Lemma 2 Suppose players have distributions of disturbances {Fi}. Take

any strictly positive numbers {pi} such that
∑
pi ≤ 1. Take any numbers

{mi}. Then there exists a vector of target times, µ, such that (i) for all i,

µi ≥ mi, (ii) each player i adopts last with probability greater than or equal

to pi, and (iii) if µi > mi, player i adopts last with probability exactly equal

to pi. If
∑
pi < 1, such vector µ is unique.

Proof. See Appendix.

Now we can state the necessary and sufficient condition for the existence

of an equilibrium of Γ(1) where firms choose to adopt. Such equilibrium

exists if and only if the sum of the probabilities with which players want to

be last is less than or equal to one.

Proposition 2 For sufficiently low values of uout, game Γ(1) has a Nash

equilibrium where players choose to participate if and only if

N∑
i=1

si ≤ 1, (1)

and when the above inequality is strict, such equilibrium is unique. Also,

there is only one other equilibrium—all players choose out.9

Proof. First, notice that if in an equilibrium at least one player plays

out with a positive probability, all of them have to play out with probability

1 (to get uout instead of −∞). Therefore, “all out” is an equilibrium and

9In particular, this proposition implies that if benefits are small relative to costs, e.g.
di = 0 for all i, there is only one equilibrium—all players choose out.
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in all other equilibria (if they exist) players have to mix among target times

and never play out.

Suppose player i takes the distribution of adoption times of other players

as given. Then, in his personal optimum, he will choose his adoption time

µi in such a way that either µi = mi and the probability of him being last

is qi ≥ si or µi > mi and the probability of him being last is qi = si. (To

see that, suppose that µi > mi and the probability of him being last is

qi > ci/(ci + di). If instead he plans to adopt slightly earlier, at µi − ε, in

expectation he gains qidiε + O(ε2) (when he is the last one to adopt) and

loses (1− qi)ciε+O(ε2) (when he is not). For µi to be optimal, it has to be

the case that qidi − (1 − qi)ci = 0 =⇒ qi = ci/(ci + di). Similar arguments

apply to the case qi < ci/(ci + di).)

If the sum of these “desired” probabilities si is greater than one, then,

since each player wants to adopt last with at least his “desired” probability,

no µ can satisfy these conditions. When
∑
si ≤ 1, by Lemma 2, such µ exists

and hence it is an equilibrium provided that each player’s expected payoff

is greater than uout. When the inequality is strict, uniqueness also follows

directly from Lemma 2.

Step 2. The proof that equilibria of Γ(β) converge to those of Γ(1) as

β → 1 is rather technical, and we present it in the Appendix. This completes

the proof of Proposition 1.

Note that it is clear from the proof that if inequality (1) is strict, then

in the equilibrium where the standard is adopted some firms comply as soon
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as they can, while for the rest the probability of being last is equal to the

support ratio.

An interesting question is what happens if we relax the assumption of

costs and benefits being constant over time. The results change little if

costs are decreasing and benefits are increasing in time—a standard can be

adopted if and only if the sum of limit support ratios is less than one. If,

however, costs and benefits vary less regularly over time, increasing over some

intervals and decreasing over others, the criteria for adoptability become more

complicated.

5 The Observability of Compliance Times

In Section 4 we showed that in a wide range of cases a technically superior

standard may not be viable. This is the opposite of Farrell and Saloner

(1985) conclusion that if players make adoption decisions sequentially, then

a Pareto superior standard gets adopted in equilibrium. In this section we

reconcile the difference by adding a dynamic aspect to the game—we make

an assumption that once a firm complies with a standard, others observe that

and can begin to comply as well. Proposition 3 shows that for small average

compliance times (i.e. as the expected compliance time goes to zero) the

sequential-move game of Farrell and Saloner is a valid approximation, and

the Pareto efficient outcome is the only equilibrium. On the other hand, for

large average compliance times (i.e. as the expected compliance time goes to
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infinity), the simultaneous-move model of Section 3 is a valid approximation

(Proposition 4), and therefore a Pareto optimal standard may be impossible

to implement.

Assume that at each time t a firm can initiate the compliance process if

it has not already done so. Once initiated, the process takes an uncertain

amount of time. Let Ti denote the expected amount of time it takes firm i to

comply; the actual compliance time (if the firm initiated the process at time t)

is thus t+Ti+εi, where εi is a random deviation. We assume that distributions

of random deviations are bounded for all players and independent of each

other. Define Tmin = mini{Ti + εi} and Tmax = maxi{Ti + εi}, where εi and εi

are the lower and the upper bounds of stochastic deviations εi of firm i. In

other words, Tmin is the shortest amount of time it takes any firm to comply,

and Tmax is the longest amount of time it takes any firm to comply once it

has initiated the compliance process. Once a firm has initiated the process,

it cannot reverse it or influence the time it is going to take.

Each firm observes when others comply, i.e. at time t each firm knows

who has complied prior to time t and when they did it. However, it does not

know who has initiated the compliance process. We also assume that the

discount rate β < 1 is held constant. Then the following propositions hold.

Proposition 3 If the new standard is strictly Pareto optimal, then as Tmax →

0, equilibrium payoffs of the players approach the payoffs they would obtain

if each firm immediately decided to comply with the standard.10

10Notice that Tmax → 0 implies that for each player both average compliance time and
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Proof. See Appendix.

Now consider a family of games with observable compliance times where

all players’ expected initiation-to-compliance times Ti are increased by the

same x ≥ 0, while holding the distributions of disturbances the same. Notice

that without observable compliance times all these games are identical, up

to multiplying all players’ payoffs by βx, and thus we can without ambiguity

talk about the corresponding simultaneous-move game without observable

compliance times.

Proposition 4 As x →∞, the game with observable compliance times has

an equilibrium where the standard is adopted if and only if there exists an

equilibrium of the corresponding simultaneous-move game where the standard

is adopted.

Proof. See Appendix.

6 Network Externalities

Up to this point we have assumed a very specific form of network externali-

ties. We now show how our results can be extended to network externalities

of a general form. We continue to assume that there are N players who

choose their target compliance times and whose actual compliance times are

independent stochastic deviations from their targets. We also assume that

the amount of noise go to zero.
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all players are identical. Firms bear per-period cost c after they comply. The

per-period net benefit of a firm that has complied with the standard is now

d(k) (i.e. the gross benefit is c + d(k)), where k is the number of firms that

have complied up to that moment, including itself; k ∈ {1, 2, . . . , N}. We

assume that d(N) > 0, i.e. the new standard is profitable if everyone adopts

it, and that d(k) is weakly increasing in k.11

Then the following result holds.

Proposition 5 For sufficiently patient players, there exists an equilibrium

where the new standard is adopted if and only if 1
N

∑
k

1
s(k)

> 1, where s(k) =

c
c+d(k)

.12

Proof. We omit the approximation part of the proof, since it is com-

pletely analogous to Step 2 of the proof of Proposition 1, and we go directly

to the case with no discounting. Notice that since players are identical, in the

equilibrium where they comply they have to target the same time. Therefore,

for a given firm, its probability of being the kth firm to comply is equal to 1
N

for any k. Therefore, its expected net benefit from delaying its compliance

by a small amount of time is proportional to c − 1
N

∑
k(c + d(k)), which is

negative if and only if 1
N

∑
k

1
s(k)

> 1.

We have to be careful with the case 1
N

∑
k

1
s(k)

= 1. Then in the game

with no discounting players do not want to deviate if all target the same
11This assumption says that externalities from technology adoption are positive. Fuden-

berg and Tirole (1985, 1986) study the timing of technology adoption under the opposite
conditions, where players impose negative externalities on each other.

12Of course, s(k) can be greater than one, since d(k) is the net benefit and can be
negative.
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compliance times. In the presence of any nontrivial discounting, however, a

player’s higher benefits are discounted at a higher rate, since they on average

happen when he complies later, and therefore he would be strictly better off

by deviating by a small amount.

The proposition states that a standard can be adopted in equilibrium

if and only if the average of inverse support ratios ( 1
N

∑
k

1
s(k)

) is greater

than one. From symmetry, it follows that in equilibrium each player has the

same probability of complying first, last, or anything in between. Thus, the

condition simply states that in expectation, the flow of benefits at the time

of compliance is greater than the flow of costs of maintaining a standard. If

that were false, a player would prefer to comply later.

The following corollary of Proposition 5 reflects the fact that the free

rider problem does not become more severe if the number of players in the

standard adoption game is increased.13

Corollary 1 Consider two games with different numbers of players but iden-

tical costs c and identical network externalities d(k). If a standard can be

adopted in an equilibrium of a game that has N players, then it can be adopted

in a game that has more than N players.

Throughout the paper we refer to players as firms, because the results

of Section 4 are relevant for standard adoption games where the number
13Suppose that in the game with N players a new standard is viable. Then if one

more player is added to the game, each player would like to target a compliance time
that is earlier or the same as in the N player game. Also, if one of the players changes
his compliance time to an earlier date, none of the players would want to increase their
compliance times.
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of participants is small and each participant may be pivotal (players are a

handful of corporations). The results of the present section are also relevant

for standards that can only succeed if adopted by millions of consumers or

other small players, even though there is no longer any uncertainty about

the share of players who have complied at any given moment. The following

corollary makes this claim formal. Assume that there is a continuum of

identical players. Let D(α) denote the per-period net benefit to a player

who is compliant with the new standard at the time when share α of the

population of players is compliant; as before, the support ratio is S(α) =

c
c+D(α)

.

Corollary 2 For sufficiently patient players, there exists an equilibrium where

the new standard is adopted if and only if
∫ 1

0
1

S(α)
dα > 1.

7 Overcoming Coordination Failure

Just like the presence of adverse selection does not necessarily imply that

markets collapse, synchronization problems do not necessarily imply that

standards will not be adopted. Rather, institutions may arise to overcome

these failures, and understanding the problems helps us better understand

the institutions.

The most straightforward way to overcome synchronization failure is to

write enforceable contracts, specifying penalties for late compliance. Ostro-

vsky and Schwarz (2002) characterize the socially optimal target compliance
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times and present incentive mechanisms that would induce players to tar-

get these times in equilibrium. In practice, however, compliance times may

be noncontractible. Partially enforceable contracts may go a long way to-

wards overcoming the synchronization failure, and figuring out what kinds

of enforceability are sufficient is an interesting area for future research.

Another way to achieve coordination is to “discretize” time and thus

eliminate the possibility of being “slightly late.” Perhaps unintentionally,

annual industry trade shows may accomplish that. A trade show provides

wide exposure to new products, and missing one may result in a year of

lost profits from the new standard. Sometimes, discretization is natural—

Christmas only comes once a year, and that’s when many consumer goods

manufacturers sell most of their merchandize. A videogame producer cannot

afford to be slightly late with the new release for a game console.

It may also be easier to adopt a standard if the compliance process is

gradual, with a firm’s costs and benefits increasing as its degree of compli-

ance, e.g. the number of compliant products, goes up. Alternatively, it may

help if the intermediate stages of the firm’s compliance process are observ-

able to outsiders—for example, a beta-version of a software package may

serve as such a signal. Also, when representatives of interested parties work

together on specifying and improving a standard, constant communication

allows the tracking of other firms’ progress and thus helps alleviate synchro-

nization issues. This is, in fact, how Internet standards are developed by
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the World Wide Web Consortium (W3C).14 The consortium includes more

than 500 entities: all major software firms, many universities, publishers,

and even the Library of Congress. When a need for a new standard is iden-

tified (e.g. MathML—a way of displaying mathematical equations on web

pages, XML Query—a way of efficiently exchanging data between web pages

and databases, and so on), a working group of interested parties’ engineers

is created to develop the standard. These engineers communicate with each

other as they work out technical specifications and documentation, and also

work with their firms’ developers on implementing the standards. Thus, by

the time a version of the standard is finalized and publicly released, there is

already a critical mass of adopters.

Assuming costs and benefits add up when firms merge, the support ratio

of a merged firm is lower than the sum of support ratios of its components.

Thus, mergers reduce the sum of support ratios of market participants and

help make standards viable. Once the standard is adopted, we may see

spinoffs. This prediction sounds far-fetched, but this is in fact what happens

quite often in large-scale real estate projects, when a single developer builds

up a piece of land and then sells or leases the parts off. Celebration, Florida15

and Santana Row in San Jose, California16 are just two recent examples of

towns built by a single developer from scratch. Residential and commercial

property in these areas was subsequently sold or leased.

14http://www.w3.org/
15http://www.celebrationfl.com/
16http://www.santanarow.com/
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8 Concluding Remarks

Our results imply some interesting corollaries. First, they say that a Pareto

improving standard is not necessarily viable. The following quotation from

the Court’s Findings of Fact in the U.S. v. Microsfot case gives a very similar

argument:

41. In deciding whether to develop an application for a new

operating system, an [Independent Software Vendor’s] first con-

sideration is the number of users it expects the operating system

to attract. Out of this focus arises a collective-action problem:

Each ISV realizes that the new operating system could attract a

significant number of users if enough ISVs developed applications

for it; but few ISVs want to sink resources into developing for the

system until it becomes established. Since everyone is waiting for

everyone else to bear the risk of early adoption, the new operating

system has difficulty attracting enough applications to generate

a positive feedback loop.17

Another setting where our results apply is the creation of standards by

various industry groups. We can view this process as a two-stage game.

17The document goes on to say that “the vendor of a new operating system cannot
effectively solve this problem by paying the necessary number of ISVs to write for its
operating system, because the cost of doing so would dwarf the expected return.” We
disagree with this claim—in our opinion, the reason for the operating system vendor’s
inability to pay the ISVs has to do with complications inherent in writing and enforcing
the necessary contracts.

25



First, an industry consortium develops and recommends a single standard

out of a large universe of technically feasible standards. Then each player

decides if and when to adopt a standard recommendation. The subgame is

modeled as a standard adoption game considered earlier. The objective of

the consortium is to select a Pareto improving standard that maximizes the

total payoff of the industry participants.18 This objective implies that the

consortium will always choose to recommend a viable standard, whenever

a viable standard is available. Thus, the equilibrium recommendation of

the consortium may be Pareto dominated by some technologically feasible

standard.

A disclaimer is in order: it is not our contention that noise in adoption

terms determines the outcome of a battle among competing standards. How-

ever, looking at support ratios may offer an insight into competition among

standards: for a standard to survive and be backed by some coalition of

players it has to be the case that its support ratios are sufficiently low.

18Nothing would change if the objective function of the consortium were to maximize
some objective function that is increasing in the profit of each player.
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A Proofs of Section 4 Lemmas

A.1 Proof of Lemma 1

Let f(µ) =
∑
|qi − pi|, where µ is a vector of target compliance times and

qi is the probability that player i complies last. Take µ∗ which minimizes

f . Suppose f(µ) > 0. Then there exists i such that q∗i > pi. Reduce

µi slightly (call the new vector µ′) so that the new q′i is between pi and q∗i .

f(µ′) = |q′i−pi|+
∑

j 6=i |q′j−pj| = f(µ∗)−|q∗i −q′i|+
∑

j 6=i(|q′j−pj|−|q∗j −pj|).

Notice that for all j 6= i, q′j ≥ q∗j and for at least one j, pj ≥ q′j. Hence,

f(µ′) < f(µ∗)− |q∗i − q′i|+
∑

j 6=i |q′j − q∗j | = f(µ∗). Contradiction.

Notice that we assumed that the minimizing µ∗ exists. When all distri-

butions are bounded, this assumption is justified by the fact that we can

restrict µ to, say, a set of vectors in which µ1 = 0 and all other µj are

bounded by the sum of the sizes of supports of all N distributions of dis-

turbances. When some distributions are not bounded, we make use of our

assumption that all pi are positive. We can choose ε > 0, 2ε < min(pi)

and approximate unbounded distributions by bounded ones so that for all

µ the difference between f(µ) for the unbounded distributions and their

bounded approximations is less than ε. Then there exists µ∗∗ such that

fbounded approximation(µ∗∗) = 0, and then arg min f(µ) exists and belongs to the

compact set {µ|µ1 = 0, fbounded approximation(µ) ≤ 2ε}.
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A.2 Proof of Lemma 2

Consider set T = {µ|∀i, µi ≥ mi, qi(µ) ≥ pi}, where qi(µ) is the probability

that player i complies last given that players choose target times µ. Take

µ∗ ∈ T which minimizes
∑

i µi in T . Then µ∗ satisfies the conditions of the

lemma. Indeed, for all i, qi ≥ pi, and we only need to show that for all i

µi > mi implies qi = pi. Suppose that is not so. Take i such that qi > pi and

µi > mi. We can slightly decrease µi so that it is still greater than mi and

qi is still greater than pi, i.e. the modified µ is still in T . But we decreased∑
i µi—contradiction!

Of course, it is necessary to prove that such minimizing µ exists. To show

that, first notice that set T is not empty as, according to Lemma 1, there

exists µ∗∗ such that q1(µ∗∗) = 1 − p2 − · · · − pN and qi(µ
∗∗) = pi for i > 1.

Second, notice that we can search for µ∗ in the intersection of sets T and

{µ|µi ≥ mi,
∑
µi ≤

∑
µ∗∗i }. The latter set is compact, the former is closed,

and so their intersection is compact and, since function
∑
µi is continuous

in µ, there exist µ∗ in that set which minimizes this function.

When
∑
pi < 1, such vector has to be unique: if there are two vectors

(µ1, µ2) satisfying the conditions, take player i with the biggest increase in

µi from µ1 to µ2; then both qi(µ
2) > pi and µ2

i > mi—contradiction.

B Proof of Proposition 1—Step 2

For simplicity, assume that distributions of disturbances Fi are bounded.
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(i) Clearly, the strategy vector where nobody complies is an equilibrium.

Let’s show that for β sufficiently close to 1, there exists exactly one other

pure equilibrium, and no mixed ones. The proof is similar to the proof of

Lemma 2.

Take a Nash Equilibrium in which player i chooses compliance time µi

with positive probability. For convenience, if player j chooses not to comply,

let tj = ∞ and tj > ti. By the same “marginal delay” reasoning as in

Proposition 2, Player i’s FOC for choosing µi is

ci

∫ ∞
−∞

βtiProb(i 6= last|ti)fi(ti − µi)dti = di

∫ ∞
−∞

βtiProb(i = last|ti)fi(ti − µi)dti

if µi > mi and

ci

∫ ∞
−∞

βtiProb(i 6= last|ti)fi(ti − µi)dti ≤ di

∫ ∞
−∞

βtiProb(i = last|ti)fi(ti − µi)dti

if µi = mi.

By adding ci
∫∞
−∞ β

tiProb(i = last|ti)fi(ti − µi)dti to both sides, we get

the equivalent FOC

ci

∫ ∞
−∞

βtifi(ti − µi)dti = (ci + di)

∫ ∞
−∞

βtiProb(ti ≥ tj∀j|ti)fi(ti − µi)dti

if µi > mi and

ci

∫ ∞
−∞

βtifi(ti − µi)dti ≤ (ci + di)

∫ ∞
−∞

βtiProb(ti ≥ tj∀j|ti)fi(ti − µi)dti
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if µi = mi.

Crucially, the ratio of the right-hand side over the left-hand side goes

up if µi goes up, unless all other players choose not to comply, and so one

and only one point on the real line can satisfy this condition. This rules out

mixing among compliance times.

Let q̂i(µ, β) be equal to

∫∞
−∞ β

tiProb(ti ≥ tj∀j|ti)fi(ti − µi)dti∫∞
−∞ β

tifi(ti − µi)dti
.

Consider set T (β) = {µ|∀iµi ≥ mi, q̂i(µ, β) ≥ ci
ci+di
}. It follows from Lemma 2

that there exists µ1 ≥ m such that qi(µ1) = q̂i(µ, 1) = Prob(ti ≥ tj∀j|µ1) >

ci
ci+di

. limβ→1 q̂i(µ1, β) = qi(µ1), and so there exists β0 such that ∀β > β0 we

have q̂i(µ1, β) > ci
ci+di

. Thus, T (β) is nonempty. Take µ∗ ∈ T which min-

imizes
∑

i µi. It satisfies the FOC above and is a Nash Equilibrium. Let’s

show that there are no other equilibria.

First, let’s show that there is no mixing between complying and not

complying. Suppose player i is indifferent between the two, and his opti-

mal compliance time is µi.
∫∞
t
βτdτ = (1/ ln β)βt. Thus, 0 = 0 ln β =

ln βE[−ci(
∫∞
ti
βτdτ) + (ci + di)(

∫∞
tlast

βτdτ)] = −ciE[βti ] + (ci + di)E[βtlast ].

But (ci + di)E[βtlast ] = (ci + di)E[βtiProb(i = last) + βtlastProb(i 6= last)] >

(ci+di)E[βtiProb(i = last)] ≥ (by FOC) ciE[βti ]—contradiction. Therefore,

there are no mixed equilibria.

The proof that there can not be two equilibrium compliance time vectors
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µ1, µ2 is the same as before—if there are, take player i with the biggest

increase in µi from µ1 to µ2; then both q̂i(µ, β) > ci/(ci + di) and µ2
i > mi—

contradiction.

(ii) Suppose µ∗(β) does not go to µ∗(1) as β goes to 1. Then there exists

a subsequence {βn} converging to 1 such that µ∗(βn) converges to some

µ̃ 6= µ∗(1) (set of µ∗(β) is bounded as β → 1). Then by continuity, µ̃ satisfies

the FOC with β = 1 and is therefore an equilibrium of game Γ(1). But we

know that Γ(1) has only one equilibrium with compliance, equal to µ∗(1).

(iii) Take β1 < β2, and suppose for some i, µ1 = µ∗i (β1) < µ2 = µ∗i (β2).

Without loss of generality, assume that i = arg maxj{µ∗j(β2) − µ∗j(β1)}. By

FOC,

(ci + di)

∫
βti1 Prob(ti = last)f(ti − µ1)dti ≥ ci

∫
βti1 f(ti − µ1)dti.

Since µ1 < µ2,

(ci + di)

∫
βti1 Prob(ti = last)f(ti − µ2)dti > ci

∫
βti1 f(ti − µ2)dti.

∫
βti1 ((ci + di)Prob(ti = last)− ci)f(ti − µ2)dti > 0.

Let t∗i be such that (ci+di)Prob(t
∗
i = last)−ci = 0. The integrand is negative

for ti < t∗i and positive for ti > t∗i . β2 > β1, and so
(
β2

β1

)t
is an increasing
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function. Therefore,

∫
βti2 ((ci + di)Prob(ti = last)− ci)f(ti − µ2)dti ≥

(
β2

β1

)t∗i ∫
βti1 ((ci + di)Prob(ti = last)− ci)f(ti − µ2)dti > 0.

But this, together with µ2 > µ1 ≥ mi, is a violation of the FOC for an

equilibrium.

(iv) To prove the last statement, assume the opposite. Then there is a

sequence {βn} converging to 1 from above such that for each βn there is

an equilibrium where players choose to comply. Then there is a subsequence

{βk} such that µ∗(βk) converges to some µ̃. But then by continuity, µ̃ satisfies

the FOC with β = 1 and is therefore an equilibrium of game Γ(1). But we

know that Γ(1) does not have an equilibrium where players comply.

C Proofs of Section 5 Propositions

C.1 Proof of Proposition 3

We prove the statement by induction on N , the number of players. For N = 1

the statement is obvious. Suppose it holds for N = k, let’s show that it also

holds for N = k+1. Suppose there is a sequence of equilibria for Tmax → 0 in

which the payoffs of players converge to something other than the payoffs of

the Pareto-efficient outcome (i.e. the immediate adoption of the standard).
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Take any player i whose equilibrium payoff in the limit is strictly less than

his payoff under the immediate adoption. If he deviates from his equilibrium

strategy, and initiates the compliance process immediately, then others will

observe that he has complied at most after Tmax. After that we are back in

the game with N − 1 players, which, by the assumption of induction, has

equilibria payoffs arbitrarily close to Pareto optimal ones as Tmax goes to 0.

But then player i’s payoff from deviating is less than the Pareto payoff by at

most the costs and foregone profits up to Tmax plus the costs and foregone

profits while the (N − 1)-player subgame takes place. But each of these

two components goes to zero as Tmax goes to zero, and so player i’s payoff

from deviating goes to his Pareto payoff—thus any equilibrium payoff has to

approach the Pareto payoff as well.

C.2 Proof of Proposition 4

Suppose the simultaneous-move game has an equilibrium where the standard

is adopted. Let x be such that mini{Ti + x + εi} is greater than maxi{Ti +

εi}. Then the equilibrium with adoption of the simultaneous-move game

remains an equilibrium of the game with observable compliance time, since

the optimal target compliance times are such that players want to initiate the

compliance process before they could have possibly observed other players’

compliance.

On the other hand, suppose the simultaneous-move game does not have

an equilibrium where the standard is adopted, but for arbitrarily large x the
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game with observable compliance times does. Notice that in an equilibrium

with adoption, for a large enough x, each player (say, player 1) has to initiate

the compliance process before observing others comply with a positive prob-

ability (otherwise the payoff of at least one of the other players is negative, as

player 1 always complies too late). Let µi(x) denote the earliest target com-

pliance time of player i in an equilibrium with delay x; subtract µ1(x) from

all µi(x)s to normalize. Now consider the sequence of vectors µ(x) as x goes

to infinity. This sequence has to be bounded—otherwise the player with the

lowest µi(x) would find it profitable to deviate and not comply at all. Thus,

it has to converge to some vector µ. By assumption, there were no equilibria

with compliance in the simultaneous-move game, and thus there is at least

one player who would find it strictly profitable to slightly increase his target

compliance time if everyone targeted µ. But then, for a large enough x, this

player would also find it profitable to do that in the observable-compliance

game with delay x.

D Robustness to Noise

Frankel, Morris, and Pauzner (2002) show that in global games, different

equilibria may be pinned down by vanishingly small noise. They also show

that a sufficient condition for an equilibrium in a global game to be robust

to the structure of noise is to be a weighted potential maximizer, provided

that the payoffs are own-action quasiconcave. These concepts are defined in
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Section 6 of FMP as follows.

Definition A complete information game g is own-action quasiconcave if

for all i and opposing action profiles a−i ∈ A−i and for all constants c, the

set {ai : gi(ai, a−i) ≥ c} is convex.

Definition Action profile a∗ is a weighted potential maximizer (WP-maximizer)

of g if there exists a vector ξ ∈ RI+ and a weighted potential function v : A→

R with v(a∗) > v(a) for all a 6= a∗, such that for all i, ai, a
′
i ∈ Ai and

a−i ∈ A−i,

v(ai, a−i)− v(a′i, a−i) = ξi[gi(ai, a−i)− gi(a′i, a−i)].

The results of Frankel, Morris, and Pauzner (2002) have parallels in our

setting. Namely, the games presented herein indeed have weighted potential

maximizers, and are own-action quasiconcave. On the other hand, changing

our setting in such a way that the game no longer has a potential leads to

the dependence of equilibrium on the structure of noise.

We focus our attention on the case with no discounting; the results do

not change if we consider β < 1, but presentation gets more complicated.
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D.1 Potentiality of “Noiseless” Γ(1)

Consider a “noiseless” version of game Γ(1), where ti = µi.

Πi(ti) = −ci(t∗ − ti)− dit∗

Π′i(ti) = ci − (ci + di)χ(player i is last),

and therefore payoffs Πi are own-action quasiconcave.

To show that this is also a weighted potential game, let v(t) =
∑
siti−t∗,

where si is the support ratio of player i. Let ξi = 1
ci+di

. Then

v(ti, t−i)− v(t′i, t−i) = [siti − t∗]− [sit
′
i − t′∗]

=
[citi − (ci + di)t∗]− [cit

′
i − (ci + di)t

′
∗]

ci + di

= ξi (Πi(ti, t−i)− Πi(t
′
i, t−i)) .

Thus, v(t) = [
∑
siti − t∗] is a weighted potential function of “noiseless”

Γ(1). If
∑
si < 1, this function is maximized at a certain value of t (since we

assume that target arrival times are bounded from below), and “noisy” Γ(1)

has a unique equilibrium with adoption. When
∑
si > 1, v is unbounded

(adding the same constant τ to all ti increases v by (
∑
si − 1) τ), and Γ(1)

has no equilibrium with adoption. When
∑
si = 1, there is a continuum of

values of tmaximizing function v (since adding the same constant to all target

arrival times ti leaves function v unchanged), and Γ(1) has a continuum of

equilibria with adoption.
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D.2 Potentiality of the Adoption Game with Gradual

Network Externalities and Identical Players

We now show that the game with identical players and gradual network

externalities considered in Section 6 also has a potential function (the proof

of its own-action quasiconcavity is very similar to the proof of Γ(1)’s own-

action quasiconcavity, and is thus omitted). Namely, let v(t) = −[d(1)t1 +

d(2)t2 + · · ·+ d(N)tN ], where t1 is the actual compliance time of the earliest

adopter, t2 is the actual compliance time of the next adopter, and so on.

Then

∂v

∂ti
= −d(1)χ(player i is first)

−d(2)χ(player i is second)

− · · ·

−d(N)χ(player i is last).

On the other hand, the expected net benefit of player i from delaying

his compliance time by an infinitesimal amount of time, ∂P ii
∂ti

, is also equal to

−d(1)χ(player i is first)−d(2)χ(player i is second)−· · ·−d(N)χ(player i is last),

and so v(ti, t−i)−v(t′i, t−i) = Πi(ti, t−i)−Πi(t
′
i, t−i). Therefore, v is a potential

function of the game with gradual network externalities and identical players.

Just like in the game Γ(1), one can verify that this potential function has

a (unique) maximizer if and only if the corresponding game has a (unique)
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equilibrium where players adopt the standard.

D.3 The Game with Gradual Network Externalities

and Different Players

A general game with gradual network externalities and different players no

longer has a weighted potential function (this can be checked by comparing

cross-derivatives ∂Πi
∂µj

), and so we do not necessarily expect equilibria to be

robust to the form of noise. Indeed, the following counterexample presents a

game with gradual network externalities and different payoffs, in which the

existence of equilibrium depends on the structure of noise.

There are three players. The net payoff of player i when he arrives kth is

equal to di(k), given in the table below.

i \ k 1 2 3

1 -1 0 1

2 -1 0 1

3 -1 -1 2

In the first case, suppose that each player’s noise is distributed uniformly

on [0, ε]. Then it is an equilibrium for all players to target the same ar-

rival time—the expected marginal benefit from deviating by an infinitesi-

mal amount (we will call this “the expected first-day payoff”) is zero for

each player (proportional to (−1 + 0 + 1)/3 = 0 for players 1 and 2 and to

(−1− 1 + 2)/3 = 0 for player 3).
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In the second case, consider the following form of noise. Players 1 and 2

either arrive very early ([0, ε]), or very late ([100ε, 101ε]), with equal proba-

bilities. Player 3’s noise, on the other hand, is still uniform on [0, ε]. Then

this game has no equilibrium.

Indeed, suppose there is an equilibrium. It has to be in pure strategies,

since, holding other players’ strategies constant, a player’s expected payoff is

concave in his target arrival time. If players 1 and 2 target the same com-

pliance time, pick any one of them; otherwise, pick the one who targets the

earlier time. Without loss of generality, assume player 1 is picked. Normalize

his earliest possible arrival compliance time to 0. Then it cannot be the case

that player 3 ever arrives later than 100ε (because that would imply that

player 3’s target compliance time is greater than 99ε and he never arrives

before ε. That, in turn, would imply that player 1 arrives first more often

than he arrives last, making his expected first-day payoff negative, which is

impossible in equilibrium). Thus, player 3 always arrives before time 100ε.

Therefore, for him to be the last one it has to be the case that both players 1

and 2 comply in the earlier of the two intervals, which happens with probabil-

ity .25. But then player 3’s first-day payoff is no more than .25∗2−.75∗1 < 0,

which is impossible in equilibrium.
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