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Abstract
This paper introduces and formally models the variable value environment and proposes
an auction mechanism appropriate for it. In the variable value environment, bidders’
private values may change over time as a result of both private actions and exogenous
shocks. Examples of private actions and exogenous shocks are complementary
investments and exogenous changes in bidder's business, respectively. We consider a
three-period model of the variable value environment where agents receive signals about
their values in the first and the third periods and in the second period they take actions.
This setting captures essential features of auctions of objects available for use at a future
date (e.g., a sale of a military base scheduled to close in a few years). We study
mechanisms that lead to efficient allocations, i.e. those in which the final value of the
object to the winning bidder net of the total cost of private actions undertaken by all
agents is maximized. We characterize the first best allocation, and propose a mechanism
that yields the first best allocation in equilibrium. This mechanism has an inefficient
pooling equilibrium along with an efficient separating equilibrium. To rule out the
pooling equilibrium, we introduce a class of ε-efficient mechanisms that force players to
coordinate on the separating equilibrium. We prove that one can always choose an ε-
efficient mechanism that yields an efficient allocation with probability arbitrarily close to
one.
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1 Introduction

Auction environments investigated in the economic literature can be viewed

as a mixture of three basic types of auctions: common value auctions, private

value auctions, and multi-unit auctions where objects may be complements

or substitutes.1 The above-mentioned environments assume that the value

of an object for each bidder is determined exogenously. These environments

do not allow the bidder’s private value to be in‡uenced by private actions

taken prior to the …nal stage of the auction.

Consider a problem of allocating an object that will be available for use

at some future date, for example a sale of a hypothetical military base that

is scheduled to close in twenty years. What is an e¢cient mechanism for

selling it? Waiting with the sale for twenty years and auctioning o¤ the

base immediately before it becomes available probably creates an ine¢ciency,

because the winning bidder might have missed opportunities to invest in

assets complementary to the base ownership. In other words, private actions

that a bidder chooses prior to the actual sale may in‡uence her private value.

If a bidder thinks that her likelihood of winning the object is su¢ciently low,

she would choose not to take costly actions that increase her valuation of

the object.2 On the other extreme, selling the base twenty years before it

becomes available seems absurd, because the expected value of the object for

1Klemperer (2000) is the most comprehensive collection of both classical and recent

papers in auction theory, including private and common value environments. E¢cient

auctions with bidders having interdependent value are studied most recently in Ausubel

(1998), Perry and Reny (1999), Dasgupta and Maskin (2000), Jehiel and Moldovanu

(2000), and others.
2Alternatively, a bidder may be able to take a free action that increases her value for

the object, but decreases her utility from not getting the object. For example, a bidder

may sign a contract that is very pro…table if the base belongs to the …rm, but unpro…table

otherwise. Formally, a costly action increasing the value of the asset is equivalent to a free

action that lower the reservation utility conditional on not getting an object.
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each bidder is likely to change over time; thus, e¢ciently allocating an object

a long time before it becomes available for use is an unlikely possibility.3 In

other words, as long as there are privately observed exogenous shocks to

private values that are revealed over time, auctioning o¤ the object well

in advance (before the exogenous shocks are observed) may be ine¢cient.

One may argue that as long as there is resale opportunity the object should

be auctioned o¤ as early as possible and then “the market will allocate it

e¢ciently”. However, this argument is ‡awed on two counts: First, the seller

will set a reservation price that is “too high” to be e¢cient (e.g., Myerson

and Satterthwaite, 1983). Second, and most importantly for the current

analysis, selling the object early counting on the original buyer to re-allocate

the object simply moves the burden of designing an allocation mechanism

from one party to the other.

Changes in private values due to private actions and exogenous shocks are

ubiquitous. We will refer to an auction environment where individual values

may change over time as a result of both private actions and exogenous shocks

as the variable value environment. Private actions, for instance complemen-

tary investments, change the private value of an object; and so do exogenous

shocks ranging from changes in demand and input prices to changes in tax

laws and regulatory environment. In fact, a sale of almost any object or

service available for use at some known future date is an example of the

variable value environment. (Examples of variable value setting range from

leasing a building or a military base to renting a dance club for New Year’s

Eve.) A sale of an object in a market where search is important inevitably

has elements of the variable value environment. Indeed, consider the sale

of house A that is scheduled to be auctioned o¤ in 20 days. Before house

A becomes available bidders may have opportunities to buy other houses,

3Bidders’ expected value of an object is likely to change over time depending on the

developments in the bidders’ business.
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essentially removing themselves from the market. Thus, we can consider an

action consisting of “not buying some other reasonably priced house” as an

action that boosts the value of the house. A second price auction (or any

other single-round auction mechanism) is bound to be ine¢cient in a mar-

ket with search because in the variable environment information revelation

is necessary for achieving e¢ciency. The model of the variable value envi-

ronment not only explains why auctions are rare in markets where search

matters, the theory of the variable value environment developed herein also

o¤er insight into auction design for these markets.4

To the best of our knowledge, a variable value environment has never

been introduced or investigated in the economic literature. In fact, the time

dimension central for variable value environment is essentially absent from

the auction literature. Although in many auction models bidders use bid

history for updating their beliefs, this does not introduce time dimension

into the auction environment. Indeed, the multi-period updating is due to a

mechanism selected for the auction, and it is the process of the auction that

in‡uences the bidders values in these models and not the passage of time.

An auction where participants bid for packages of goods in multiple rounds is

another example of an auction where a time line is a part of the mechanism

but not a part of the auction environment (for a recent example of such a

4Even a sale of consumer items via Internet auction houses may have a variable value

component. Consider a consumer who is considering bidding for an object on an auction

that ends in …ve days. Such a consumer may take private actions that in‡uence her private

value of the object. For example, a consumer considering bidding for some item may forego

opportunities to bid for other similar or complimentary items. Possibly, Internet auction

houses such as e-Bay and Amazon incorporated features that allow bidders to buy an

object instantly at a su¢ciently high price (set by the seller) in order to avoid some of the

ine¢ciencies of using second price auction in the variable value environment. Of course,

the use of Buy-It-Now feature in Internet auctions might, perhaps, be explained by factors

other than variable value features of the environment. Still, this seems to be a natural

explanation.
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mechanism, see Milgrom, 2000, Perry and Reny, 1998, etc).

Auction mechanisms with entry costs are related to the variable value

environments: Mathematically, decision to pay for costly entry into an auc-

tion is equivalent to an action that boosts the private value of the agent.

However, there is a number of signi…cant di¤erences. Most importantly, an

entry fee is a feature of the mechanism, rather than of the environment. In

contrast, ability of agents to take actions in‡uencing the value of the object is

a feature of the environment. Entry costs are investigated in various contexts

by Milgrom (1981), McAfee and McMillan (1987), Levin and Smith (1994),

Fullerton and McAfee (1999), and Lixin (2000).

The present work attempts to o¤er insight into auction design for the

variable value environment. We start by proposing a formal model of the

variable value environment with three periods. In the …rst period, each party

receives a private signal s about its private value for the object. In the second

period, a party can take a private, unobservable action at cost c (cost) that

increases the value of the object by b (bene…t) (of course, only the case

where b > c is of interest). In the third period, bidders receive independent

exogenous shocks v to their private values of the object. For ith bidder,

the …nal reservation price for the object is the sum of signals (si and vi)

regarding the value obtained in the …rst and third periods plus the bene…t b

from taking an action if the bidder took the action (si + vi + b). Otherwise,

the private value of the object is the sum of signals regarding the value

obtained in the …rst and third periods (si + vi). The identity of the bidder

with the highest value can only be established after the third period signals

vi are observed. Thus, an e¢cient allocation mechanism requires that the

ownership of the object is assigned after the third period. It is easy to see

that conducting a second price auction after the third period is not e¢cient

(in a world where …rst period signals are privately observed), since it forces

agents to take decisions regarding second period actions in ignorance of the
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expected private values of other agents. The following example illustrates

this simple but essential point.

Example. Let the number of participants be N = 2; assume that si are

privately observed signals independently drawn from the uniform distribution

on [0; 1]. For simplicity, assume that there is no third period signal, vi ´ 0:5
In a symmetric equilibrium with no revelation of the …rst-period signals, each

agent acts if her probability of winning conditional on her own type is higher

than c
b
: That is, agent i acts if si ¸ s¤ = c

b
: If s¤ = 3

4
, then with probability 1

16

both agents act (which is ine¢cient), and with probability 9
16
no agent acts

(which is ine¢cient as well). Therefore, on average there are too few actions

(1
2
instead of 1). If s¤ = 1

4
, the situation is reverse: with probability 9

16
both

agents act, and with probability 1
16
no agent acts. On average, there are too

many actions (3
2
instead of 1). This is hardly surprising: without signaling,

there are too few actions, when actions are relatively costly (c
b
= 3

4
), and

there are too many actions, when actions are relatively cheap (c
b
= 1

4
).

This paper focuses on a model with three periods and private values, since

it is su¢ciently rich to yield interesting insights into auctions in the variable

value environment. A model of variable value environment extending for

a large number of periods can also be considered. Our model can also be

extended by introducing a common value component to third-period signals.

We consider a problem of designing an e¢cient mechanism for allocating

the object in the environment where signals about bidder’s private values

(si, and ºi) are private signals. First, the concept of allocation needs to

5Note that in the special case of all vi’s equal to zero; an e¢cient allocation rule can

be implemented by assigning the ownership of the object by conducting a Vickrey auction

at the end of the …rst period after si’s are privately learned. Also note that for any non-

degenerate distribution of third-period signals, assigning the ownership of the object at

the end of the …rst period is no longer e¢cient. Of course, the ine¢ciency of allocating

the object at the end of the third period demonstrated by the example does not go away

when vi’s are not equal to zero.
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be generalized for the variable value environment. For the variable value

environment an allocation is de…ned as the identity of the bidder who receives

the object and the list of private actions taken by bidders. The objective of

the social planner is to implement an e¢cient allocation, i.e. to maximize the

social surplus, which equals to the expected sum of all bidder’s surpluses net

of the cost of actions. After the social planner observes the …rst-period signals

si obtained by bidders, she has to decide which bidders should act in the

second period and which should abstain from actions. Since the exogenous

shock of the third period is not known in the second period (when decisions

to take actions are made), it may be e¢cient to have more than one bidder

taking an action or to have no bidders at all taking actions.6 Theorem 1

establishes that if the social planner orders an agent with the …rst-period

value si to act, then she also orders all agents with value greater than si to

act.

Of course, an all-knowing and well-intentioned social planner is rarely

available in the real world. What happens if there is no social planner but

all the information is common knowledge, i.e. signals obtained by a bidder

about her private value are observed by all players? Theorem 2 establishes

that the e¢cient allocation can be achieved in a decentralized case. (This is

the same …rst-best allocation that can be achieved by the social planner.)

The above mentioned results rely on bidders’ private values being com-

mon knowledge. A more realistic case, where bidders privately observe their

valuations, is of primary interest. Can an e¢cient allocation be achieved in

that case? It is straightforward that an e¢cient allocation can not be at-

tained without revelation of bidders’ private signals (si) prior to the second

period. If the object is allocated to the bidder with the highest value follow-

6Indeed, for a given distribution of the third-period exogenous shock, it becomes ine¢-

cient for anybody to undertake an action as the cost of action approaches the bene…t. On

the other extreme, if the cost of action approaches zero it becomes e¢cient for more than

one agent to undertake an action.
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ing the third period (using, say, a second price sealed bid auction) adding a

cheap talk stage following the …rst period will not result in any information

revelation and thus would lead to an ine¢cient outcome (allocation).7 In the

cheap talk stage each bidder would claim to be “the high type” because the

higher is the perceived type of a bidder the less likely are the other bidders

to undertake actions and thus the lower are the subsequent bids for the ob-

ject by other players. Theorem 3 and Theorem 5 show that there exists an

e¢cient mechanism, where private information is revealed in the …rst round

and the object is assigned in the second round. The …rst round (also called

signaling round) takes place after private signals si are received by agents.

In the …rst round bidders reveal their private signals si by making signaling

payments (we show that the higher is the private signal si; the higher is the

agent’s willingness to pay for signaling to other agents that the value of her

private signal si is high). The second round (also called the …nal auction)

consists of a second price sealed bid auction conducted after signals vi are

received.

As long as private signals si are truthfully revealed in the …rst round, the

subgame corresponding to the second round is identical to the complete in-

formation game. Theorem 3 establishes that the mechanism described above

has an e¢cient separating equilibrium. Unfortunately, this mechanism also

has an ine¢cient pooling equilibrium. To rule out the pooling equilibrium,

we propose a class of mechanisms that force players to coordinate on the sep-

arating equilibrium. We refer to mechanisms from this class as “"¡e¢cient
mechanisms.” We prove that one can always choose an "¡e¢cient mech-
anism which yields an e¢cient allocation with probability arbitrarily close

7The condition that the object is allocated to the bidder with the highest value following

the third period is a necessary, but not su¢cient condition for e¢cient allocation in the

variable value environment. This is because e¢ciency of an allocation depends on the set

of players that take actions in the second period. As we mentioned before, the winning

bidder might have forgone investment opportunities enhancing the value of the object.
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to one. An "¡e¢cient mechanism consists of two rounds. The …rst round

takes place after private signals si are received by agents: a non-transferable

discount for amount " is sold via a sealed bid all pay auction. After the all

pay auction all bids are made public. The " discount can only be used in the

second round auction. In the second round the object is sold using a Vickrey

auction (if the winner of the Vickrey auction is a holder of the " discount, she

pays the second highest bid minus "). Note that for " = 0 this mechanism

is identical to the e¢cient signaling mechanism described above. Theorem

6 shows that an arbitrarily small positive " forces agents to coordinate on

a separating equilibrium that yields an e¢cient allocation with probability

converging to one as " converges to zero.

The rest of the paper is organized as follows. In Section 2, we introduce

the formal model of the variable value environment. In Section 3, an ef-

…cient mechanism that has a fully separating Bayesian-Nash equilibrium is

described. Section 4 introduces the "¡e¢cient mechanism and establishes

that it has a unique robust equilibrium. Section 5 concludes. The Appendix

contains mathematical details and proofs.

2 The Environment

The variable value environment is an environment, where bidders’ expected

value of the object changes stochastically over time. One can think of the

object as an asset that will become available for use at a known future date

or a good or service that has to be consumed at a particular time. Prior to

the date when the object becomes available, bidders’ expected values of the

object ‡uctuate due to exogenous shocks and private actions. This paper

focuses on a three period model of the variable value environment: it is the

simplest possible model that exhibits essential features of the variable value

environment and o¤ers insights into auction design in such an environment.
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There are N identical agents. In the …rst and the third periods, agents

receive independent signals about their private values of the object. In the

second period, each agent has an opportunity to take a costly action that

increase her private value of the object.

Timing

Period 1. Each agent receives a signal si ¸ 0 about her private values,

drawn independently from the same atomless distribution:We shall consider

cases where the …rst-period signal is common knowledge, as well as the case

where the …rst-period signal is a private signal.

Period 2. Each agent i has an opportunity to take an unobservable action,

i.e. choose ai 2 f0; 1g; which increases the agent’s private value by bai and
costs cai ¸ 0 (obviously, only the case of b > c is of interest). When ai = 1
we say that the agent i undertakes the action or simply ‘acts’; if ai = 0 we

say the agent i abstains from acting or skips the action.8

Period 3. Agents receive independent signals vi ¸ 0 about their private

values. The third period signals are independent from signals observed in

the …rst period and actions taken in the second period. v0is are independently

drawn from an atomless distribution.

Agent’s i private value of the object equals qi = si + bai + vi; the sum

of her …rst and third period signals plus the bene…t from taking an action.

Thus the utility of the agent is given by:

ui =

½
si + (b¡ c)ai + vi ¡ paidi; if the agent i wins the object
¡cai ¡ paidi; otherwise,

where paidi denotes the total amount of payments made by the agent i within

a mechanism (i.e. not including c). Note that paidi need not be equal to

zero for loosing bidders.

We will explore possibilities of e¢ciently allocating the object within the

model of the variable value environment formulated above. First, we need to

8Our results also hold for the case of observable actions.
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extend the concepts of allocation, e¢ciency, and social surplus to the variable

value environment.

De…nition 1 Social surplus is the value of the object to the agent that gets

the object minus the cost of actions taken by all agents: S = sj + baj + vj ¡PN
i=1 cai = qj ¡ c

PN
i=1 ai; where j is the identity of the agent that receives

the object.

De…nition 2 Allocation is a vector consisting of the list of agents who took

actions and the identity of the agent who received the object.9

An allocation needs to specify the identities of agents who took actions

because actions a¤ect the social surplus.

De…nition 3 An equilibrium strategy pro…le of a mechanism (e.g., an auc-

tion) is referred to as an allocation rule. If a mechanism has multiple equi-

libria, each equilibrium strategy pro…le de…nes an allocation rule.

Note that an allocation rule induces a probability distribution over values

of social surplus induced by a mechanism or by a social choice rule adopted

by the social planner. Allocation rules can be ranked in terms of e¢ciency

by comparing corresponding expected values of the social surplus.

De…nition 4 An allocation rule is e¢cient (…rst-best), if it yields the same

expected social surplus as the maximum expected social surplus that can be

achieved by the social planner, who observes all signals received by agents,

orders agents to take or not to take actions, and, …nally, assigns the object.

For convenience of the reader, below we list notation used in the paper.

9We can think of allocation as a vector of N + 1 components. The …rst N component

are given by the vector a of actions taken by all agents and the last component is the

identity of the agent receiving the object.
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Notation

s = (s1; :::; sN) = (si; s¡i) agents’ …rst-period signals

v = (v1; :::; vN) agents’ third-period signals

a = (a1; :::; aN) action pro…le, ai 2 f0; 1g
b bene…t from action (applies if the object is won)

c cost of action

S social surplus

Gi change in expected social surplus due to i’s action

gi change in agent’s i expected pay-o¤ due to action

a(m) actions pro…le: agents with m highest si’s actbs = (bs1; :::; bsN) = (bsi;bs¡i) agents’ reports of their …rst-period signals

hi; Hi payments making agent’s i report credible

¼i(si; ŝi; s¡i) agent’s i pay-o¤ net of signaling costs

X; Y;Z generic random variables (in the Appendix)

3 E¢cient Mechanism in The Variable Value

Environment

In this section, we study mechanism design in the variable value environment.

We start with considering a benchmark case of the e¢cient mechanism for

allocating the object that can be achieved by a social planner who knows all

the private information available to bidders. Then we consider a mechanism

that allocates the object e¢ciently in the incomplete information case.

3.1 The Social Planner’s Problem

Let us start by characterizing the solution to the social planner problem.

After observing the …rst period signals, the social planner decides which

agents should act in the second period. Formally, there is a mapping of a

vector of the …rst period signals into a vector of the second period actions

11



a¤ = a¤(s).10 At the end of the third period the social planner assigns the

object, thus mapping a triplet of vectors (s; a;v) into a number between 1

and N . The …nal assignment of the object is easily characterized. The social

surplus maximization calls for assigning the object to the agent with the

highest ex-post private value: if the e¢cient allocation assigns the object to

the agent j; then for any i 6= j; we have sj + baj + vj ¸ si + bai + vi. Thus,
assigning the object before agents have learned their …nal values of the object

is likely to be ine¢cient. Obviously, in the variable value environment, giving

the object to the agent with the highest ex-post value is necessary, but not

su¢cient for e¢ciency. It remains to characterize the function a¤(s) that

describes the second period actions. We would like to …nd a vector of actions

a¤(s) that maximizes the expected social surplus, given s: By de…nition, the

social surplus is given by:

Ev[Sjs;a] = Evmax
i
fsi + bai + vig ¡ c

NX
j=1

aj: (1)

So, the social planner’s problem might be written as follows:

max
a
Ev[Sjs; a] = max

a

(
Evmax

i
fsi + bai + vig ¡ c

NX
j=1

aj

)
:

Before proceeding to general results, let us illustrate this problem with a

simple example.

Example. This is essentially a continuation of the Example from the intro-

duction. Suppose thatN ¸ 2: If there is no third-period uncertainty (vi ´ 0),
then the social planner chooses exactly one agent to act – the one with the

highest …rst-period signal. On the other extreme, if there is no …rst-period

signal (si ´ 0); and the cost of action is relatively cheap, c
b
< 1

N
; then the

social planner would assign all agents to act.
10In the most general case, the social planner may assign mixed strategies to the agents.

We show later that almost surely, the social planner problem has a unique pure strategy

solution. Consequently, we focus on pure strategies of the social planner.

12



It is useful to introduce a function Gi(s; a¡i) representing the di¤erence

in the expected social surplus that results from the agent i acting and not

acting (keeping the actions of other agents unchanged):

Gi(s; a¡i) = Ev[Sjs;a¡i; ai = 1]¡ Ev[Sjs; a¡i; ai = 0]: (2)

Since the social planner maximizes social surplus, the expected surplus in

the above formula should be computed under assumption that after the third

period the social planner allocates the object to the agent with the highest

value. The social planner faces the following trade-o¤: each additional agen-

t’s act increases the expected private value of the agents who receives the

object, but is associated with the cost of c: Let a(m) = a(m; s) denote the

vector of actions, where the agents with the highest m …rst-period signals

act, while the other N ¡m agents skip action.

Theorem 1 For a given vector of the …rst-period private signals s, there

exists a threshold r¤ = r¤(s) such that the social planner assigns agents with

the highest r¤ …rst-period signals to act.11

Proof. To prove Theorem 1, we need to establish the following Lemma.

Lemma 1 Consider vectors of actions a and a0 such that
P

i ai=
P

i a
0
i; ai =

a0i for all i 6= j; k, and let aj = 1, ak = 0; a0j = 0; and a0k = 1: If sj ¸ sk; then
the expected social surplus from a is greater than that from a0.

A proof of the Lemma is in the Appendix.

The above Lemma shows that a vector of actions maximizing the expected

social surplus must be of the form a(m) for some m; 0 · m · N: Since there
is a …nite number of possible m’s, there exists some r¤ such that a(r¤) is the

11r¤ is determined almost uniquely: The event that the expected social surplus is max-

imized by more than one action vector of the form a(r¤) and a(r¤¤) where r¤ 6= r¤¤ has
zero probability.
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global maximizer of the expected social surplus. This completes the proof of

Theorem 1.¥

De…nition ofGi(s;a¡i) implies that an action vector maximizing the social

surplus must satisfy Gi(s;a¡i) ¸ 0 when ai = 1 and Gi(s;a¡i) · 0 when

ai = 0.

3.2 Complete Information

Now we turn to a world without an all-knowing and well-intentioned social

planner. We consider the case, where agents act non-cooperatively, given

that the …rst-period signals are common knowledge. This is an essential step

towards mechanism design for the incomplete information case.

One might expect that in the decentralized case too many or too few

players may take actions, since they may not fully internalize the e¤ect of

their private actions on other players. We show that an e¢cient allocation

can be achieved in a decentralized case, when bidders know each other’s …rst-

period signals. Theorem 2 states that in this case there exists an equilibrium

outcome of a second price auction conducted at the end of the third period

that yields an e¢cient allocation. It is the same allocation as the …rst best

obtained by the social planner.

Theorem 2 If …rst-period signals s are public knowledge, there exists a so-

cially e¢cient Subgame Perfect Bayesian-Nash equilibrium of a second price

sealed bid auction conducted at the end of the third period. In this equilib-

rium, agents take unobservable actions as if they were assigned by the social

planner resulting in the allocation rule characterized in Theorem 1.

The basic intuition is as follows: the expected increase in an agent’s

utility from taking an action is exactly equal to the change in the expected
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social surplus due to her action.12 Then the fact that a(r¤) is the social

planner’s optimal choice ensures that a(r¤) is an equilibrium vector of actions

in the non-cooperative game.

Proof of Theorem 2. We introduce a function gi(s; a¡i) de…ned as the

change in the expected utility of the agent i as a result of taking an action

instead of skipping it, and prove the following assertion.

Lemma 2 gi(s;a¡i) = Gi(s; a¡i).

The proof of Lemma 2 is in the Appendix.

Now observe that if a is a solution to the social planner’s problem, then

Gi(s; a¡i) ¸ 0 when ai = 1 and Gi(s; a¡i) · 0 when ai = 0: Indeed, if

Gi(s; a¡i) < 0 when ai = 1, the agent’s i switch from acting to non-acting

would strictly increase the expected social surplus, contradicting the choice

of a: Similarly, Gi(s; a¡i) · 0 when ai = 0: Then Lemma 2 asserts that for
the change in private bene…ts we have gi(s; a¡i) ¸ 0 for agents that act,

and gi(s; a¡i) · 0 for others: Thus, no agent has incentives to deviate, and
Theorem 2 is proven.¥

Here and in the rest of the paper the term ‘equilibrium’ is reserved for

a subgame-perfect Bayesian-Nash equilibrium. The e¢cient equilibrium de-

scribed in Theorem 2 seems to be a natural focal point. However, the game

has a coordination component: there are other Bayesian equilibria that are

not e¢cient. For example, if there are only two players, there might be two

equilibria: one with the highest-ranked agent acting and the other abstaining,

and another one with the second-ranked agent acting and the highest-ranked

abstaining.

12The logic behind the result is similar to the one that insures e¢cient entry in McAfee

and McMillan (1987) and Levin and Smith (1994).
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3.3 Incomplete Information: Ex-post E¢cient Signal-

ing Equilibrium

Now we are ready to investigate the incomplete information case. Here we

consider a three-period model of the variable value environment similar to

the one considered in the preceding section: the only di¤erence is that here

bidders’ signals regarding their private values (s and v) are observed pri-

vately. Now a mechanism consisting of an auction conducted after the third

period no longer leads to an e¢cient allocation, since under such mechanism

agents take second-period actions without knowledge of the private signals

obtained by other players.13 Obviously, an e¢cient allocation rule can not

always assign the …nal ownership of the object prior the end of the third

period.

Is it possible to allocate an object e¢ciently in the variable value envi-

ronment of incomplete information? This question is answered a¢rmatively

by Theorem 3. We explicitly construct an e¢cient allocation mechanism.

The mechanism consists of two rounds: The private information is revealed

by signaling in the …rst round that takes place after the …rst-period-private-

signals are observed; the ownership of the object is assigned in the second

round that takes place after the third period private signals are observed by

bidders.
13For the sake of completeness, one can consider the no-signalling case, where an auction

is conducted after the third period and no signaling takes place before the second period.

(Note that cheap talk communication following the …rst stage is not credible because

everybody has an incentive to exaggerate his signal.) To describe the symmetric equilibria

of this game, one can show that there exists a unique constant s¤ such that any agent

acts if her …rst-stage value si is higher or equal to s¤; and abstains from acting otherwise.

In the equilibrium, the expected number of actions is N (1¡ Fs(s¤)) : So, in some cases,
there are too few actions, while in others there are too many. This is a generalization of

the Example from the Introduction. Also, there are a number of asymmetric equilibria.

Of course, an asymmetric equilibrium can not lead to an e¢cient allocation rule.
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Rounds of the Signaling Mechanism:

1.a Part a of the …rst round takes place at the end of the …rst period (after

the private signals s have been received by agents). In part a of the …rst

round, all agents make simultaneous announcements bsi about their private
values si (the announcements are publicly observed).

1.b Part b of the …rst round immediately follows part a. Each agent volun-

tarily selects a payment amount, hi ¸ 0; that depends on the announcements
of other agents, as well as her own announcement. (Payments hi(bs) are nec-
essary to make announcements credible.)

2. The second round takes place at the end of the third period, after agents

observe their private signals vi: In the second round, the ownership of the

object is assigned using a second-price sealed-bid auction.

Theorem 3 There exists a subgame perfect Bayesian-Nash equilibrium of

the Signaling Mechanism that yields an e¢cient allocation rule.

Proofs of Theorem 3 and all subsequent results are relegated to the Ap-

pendix. Here, let us discuss the logic behind the result. First, note that

if the …rst period signals are revealed truthfully, the remaining subgame is

identical to the game where …rst-period signals s are common knowledge.

Theorem 2 established that an e¢cient allocation is an equilibrium of that

game. Consequently, in order to establish existence of an e¢cient allocation

mechanism it su¢ces to show that for some signaling payment schedule hi(bs);
truthful reporting is an equilibrium, when agents anticipate that the equilib-

rium characterized in Theorem 2 will be played in the remaining subgame.

The intuition behind the possibility of truthful revelation is as follows. The

higher is the …rst period signal si received by an agent i; the higher is that

agent’s relative willingness to pay in order to signal that her value of si is

high. Agents are willing to pay in order to reveal their …rst period signals,

because this information discourages other agents from taking actions, thus
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increasing the probability of winning for the agent i and decreasing the ex-

pected price that she will pay for the object (in the subsequent second price

auction) conditional on winning. The expected price decrease a¤ects agents

with di¤erent private values di¤erently. For instance, someone with a very

low …rst-period signal is unlikely to win the object, thus her willingness to

pay for sending a signal that depress the price of the object is lower than

that of an agent with a relatively high …rst-period signal about her private

value. This observation, which is critical to the existence of a separating

signaling equilibrium, is formalized in Lemma 3. This Lemma establishes

an appropriate analog of the single-crossing property for the pay-o¤s in the

subgame.14

Lemma 3 Let E¼i(si; ŝi; s¡i) be bidder i’s expected pay-o¤ gross of hi(bs),
when her true private signal is si; while other agents believe that the vector

of …rst-period private signals is (ŝi; s¡i). For any s¡i and any ŝ0i > ŝi; and

any s0i > si;

E¼i(s
0
i; ŝ

0
i; s¡i)¡E¼i(s0i; ŝi; s¡i) ¸ E¼i(si; ŝ0i; s¡i)¡ E¼i(si; ŝi; s¡i): (3)

In the above Lemma, E¼i(si; ŝi; s¡i) is the expected pay-o¤ of agent i

in the mechanism described in Section 3.2, when the …rst period private

signals are given by (si; s¡i) and player i plays the best response to the action

pro…le of players ¡i given by a(r¤(ŝi; s¡i)): (The action pro…le a(r¤(ŝi; s¡i))
is characterized in Theorem 1.) Essentially, E¼i(si; ŝi; s¡i) is the pay-o¤

received by agent i in the subgame computed under an assumption that

all …rst round announcements are believed to be truthful, and that agent i

reported ŝi; while her true private value is si.

Lemma 3 states that the same change in announcement (from ŝi to ŝ0i)

brings more in expected surplus to the agent with relatively high true signal,

14Note that the notion of single-crossing used in this paper is di¤erent from (is stronger

than) that of Athey (1999) and Milgrom and Shannon (1994).
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s0i. Note that E¼i(si; ŝi; s¡i) is not the same as the expected utility of agent

i; because it does not include the payments hi made in the …rst round of the

mechanism. The agent’s utility is given by E¼i(si; ŝi; s¡i)¡ hi. Thus, truth-
ful reporting si is consistent with an equilibrium, if there exists a payment

schedule h(ŝi; s¡i) such that incentive compatibility and individual rational-

ity constraints are satis…ed. Namely, for any agent i and all (si; ŝi; s¡i) the

payments should satisfy the following conditions:

E¼i(si; si; s¡i)¡ h(si; s¡i) > E¼i(si; ŝi; s¡i)¡ h(ŝi; s¡i) (IC)

E¼i(si; si; s¡i)¡ h(si; s¡i) > E¼i(si; ŝi = 0; s¡i) (IR)

Note that …nding h(ŝi; s¡i) that satis…es the above constraints is su¢cient

for proving the claim of Theorem 3. Such payment schedule hi(ŝi; s¡i) is

characterized in Theorem 4. Before proceeding to Theorem 4, we need to

introduce one more de…nition.

Consider the e¢cient allocation rule characterized in Theorem 1. It im-

plies that for any vector of the …rst period private signals s¡i; there exists a

sequence 0 = ¹si(k
¤
i ) · ¹si(k

¤
i ¡ 1) · ::: · ¹si(1) · ¹si(0) < 1; where ¹si(k) is

de…ned to be the minimal type of i such that exactly k highest-ranked agents

(di¤erent from the agent i herself) act in the subgame equilibrium described

in Theorem 2. Let k¤i = k
¤
i (0; s¡i) be the number of agents acting, when i

has the lowest possible type (zero). Within each segment described above,

an agent’s i report is irrelevant to the other agents’ decisions on whether or

not to act.

As above, let a(m) denote the vector of actions, where the agents with

the highest m …rst-period signals act, while the other N ¡ m agents skip

action. Note that a(m) is a function of the vector of …rst-period signals s:

Theorem 4 The following signaling payments are consistent with an e¢-

cient equilibrium of the Signaling Mechanism. For any i;

hi(ŝi; ŝ¡i) = 0; whenever ¹si(k¤i ) · ŝi · ¹si(k¤i ¡ 1); (4)
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hi(ŝi; ŝ¡i) = hi(¹si(k); ŝ¡i) + E¼i(¹si(k); a(k))¡ E¼i(¹si(k); a(k + 1));

whenever ¹si(k) < ŝi · ¹si(k ¡ 1); k < k¤i :

Theorem 4 shows that for any agent i; the payment schedule satis…es

incentive compatibility and individual rationality (IC and IR, respectively)

constraints. Then, if agents in the set ¡i report their type truthfully, ŝ¡i =
s¡i; the payment scheme for the agent i given by (4) induces her to report

her type truthfully, ŝi = si: The proof of Theorem 3 is based on combining

Theorem 2 and Theorem 4.

In the equilibrium described above, each agent reports her type truthfully

regardless of the other agents’ types given that these types are reported

truthfully.15 This is a kind of an ex-post equilibrium (Perry and Reny,1999),

where no agent regrets her announcement after learning the other agents’

types; thus, this mechanism is similar in spirit to the well-known Vickrey-

Clarke-Groves mechanism (e.g., Vickrey, 1961, Krishna and Perry, 1998).

However, unlike the Vickrey-Clarke-Groves mechanism, this is a two-round

mechanism, where payments made in the signaling round of the mechanism

have no direct impact on allocating of the object — these payments in‡uence

the allocation of object indirectly by shaping beliefs about …rst period signals.

3.4 Ex-ante Signaling Equilibrium

The mechanism described above provides an ex-post e¢cient ex-post equi-

librium. In such an equilibrium, agents’ payments may depend on the other

agents’ announcements. Below we show that the Signaling Mechanism de-

scribed in the previous section also has an ex-ante e¢cient separating equilib-

rium. In this equilibrium, agents make no announcements (or make uninfor-

mative announcements) in the cheap talk stage of the Signaling Mechanism.

15As usual, the revelation principle (Myerson, 1979) allows us to assume that agents

report their types directly, rather than conveying information via a special set of signals.
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In the stage 1b they simultaneously make publicly observable payments Hi

(obviously, an agent decides on the payment size without knowing the private

signals of other agents). We will show that there exists a fully separating

equilibrium where there is a unique payment corresponding to each private

signal si. Consequently, agents no longer need to make announcements, be-

cause the announcements of their private signals are “contained” in the size

of payments Hi that they make.

Theorem 5 There exists an e¢cient equilibrium in the Signaling Mecha-

nism where all agent simultaneously make signaling payments H(si) that

depend only on agent’s private information si. Equilibrium signaling pay-

ments are given by Hi(ŝi) = Es¡ihi(ŝi; s¡i); where hi(ŝi; s¡i) are equilibrium

payments de…ned in Lemma 4.

Let us discuss the intuition behind the proof of Theorem 5. According to

Theorem 2 an e¢cient allocation can be obtained if the …rst period signals

si are common knowledge. It remains to show that the signaling mechanism

proposed above is incentive compatible when an e¢cient equilibrium is chosen

in the subgame following the signaling stage. More formally we need to show

that for any s¡i;

si 2 argmax
ŝi

©
Es¡i;v¼i(si; ŝi; s¡i)¡Hi(ŝi)

ª
(note that here expectation is taken with respect to s¡i and v): This re-

sult is a straightforward corollary to the existence of an ex-post equilibrium

established in Lemma 4. Existence of this ‘ex-ante’ separating equilibrium

essentially follows from the fact that if the agent’s i truth-telling is a best

reply to any vector s¡i of other agents’ signals, than it is a best reply on the

average as well.

Although existence of ex-ante equilibrium follows from existence of an

ex-post equilibrium, existence of an ex-ante equilibrium is a useful result. It
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shades some light on the maneuvering that bidders often make prior to an

auction: for example, …rms preparing to participate in a large-scale privatiza-

tion auction or competing for a procurement contract might engage in costly

signaling in order to discourage potential rivals. For example, let us consider

the history of bidding for Los Angeles licence in 1995 broadband auction

for mobile-phone licenses.16 One bidder, Paci…c Telephone, possibly started

with a higher private value than other bidders due to experience in California

market and possible synergies between its wireline and wireless businesses.

There were a number of important decisions (actions) that each bidder had

to make before the auction for Los Angeles license, these included forming

alliances, making investments and formulating strategies for other markets.

It appears that Paci…c Telephone signaled to other bidders (and would-be

bidders) that it anticipates winning California. Paci…c Telephone made pub-

lic statements like ‘If somebody takes California away from us, they’ll never

make any money’.17 To make these statement credible, Paci…c Telephone

made investments that were of little value without winning Los Angeles li-

cense18. As a result, some potential bidders (including the industry giants

such as Bell Atlantic, GTE, and MCI) were discouraged from participating

in the auction. (Thus failing to undertake an action, in our interpretation).

In fact, GTE and Bell Atlantic took actions that made them ineligible for the

auction. As a result, revenues were quite low compared to initial estimates.19

16We thank Paul Milgrom for suggesting this example of the variable value environment.
17Wall Street Journal, October 31, 1994.
18Some of the investments made by Paci…c Telephone might be interpreted as actions

and others as signals. Essentially, running a PR campaign aimed at signaling that Paci…c

Telephone is determined to win Los Angeles license can be interpreted as signaling. In

contrast, making unobservable arrangements made to expedite creation of the wireless

service in Southern California can be interpreted as an action.
19Granted, this is not the only possible interpretation of the 1995 auction for Los Angeles

licence. Klemperer (2000) considers the history of this auction and suggests that the

winner’s curse played an important role because the winner’s curse is particularly powerful

in auctions where one bidder has an advantage. For a theoretical argument that uses this
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Applying the logic of our model highlights the importance of signaling that

discourages competitors from taking actions that increase the value of the

prize for them.

In the above example the signaling costs have not been captured by the

auctioneer. In general, there is no reason why bidders would opt to signal

their types by writing checks to the auctioneer and not by burning money

in some other way. Also, the game considered above has an ine¢cient pool-

ing equilibrium along with an e¢cient separating one. Thus, there is no

guarantee that an e¢cient equilibrium is selected. In the following section

we introduce "¡e¢cient mechanism, which is similar to the ex-ante equilib-
rium considered here, but free of its main disadvantages. First, "¡e¢cient
mechanism insures coordination on the e¢cient equilibrium in the subgame.

Second, it allows seller to capture the signaling costs of bidders. The sacri…ce

that must be made in order to gain robustness and capture signaling costs is

an arbitrarily small loss in e¢ciency.

4 Robust "-E¢cient Auction Mechanism

The e¢cient mechanism described in the previous section can be viewed as

a two-stage auction. The signaling stage, where agents simultaneously make

payments that reveal their types, can be replaced with a sealed bid all pay

auction where the object being sold is worth nothing (zero). Theorem 5

established existence of an e¢cient Bayesian-Nash equilibrium of this two

stage auction. Unfortunately, this is not a unique equilibrium: a pooling

equilibrium, where everybody bids zero in the signaling stage, is a natural

logic, see also Bulow, Huang, and Klemperer (1999). The outcome of that auction was

probably determined by a constellation of a large number of factors. Revenue in the

auction for Los Angeles licence were low in comparison with spectrum auction in Chicago;

however, it is not clear if asymmetry among bidders and the winner curse were more severe

in California.
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focal point. Nevertheless, introducing an arbitrarily small ine¢ciency into

the auction design can force bidders to coordinate on an e¢cient separating

equilibrium. We will refer to such a mechanism as an "¡e¢cient mecha-
nism. We start with describing an "¡e¢cient mechanism and then proceed

to establish e¢ciency properties of this mechanism in Theorem 6.

Rounds of "¡E¢cient Auction
1. The …rst (signaling) round takes place at the end of the …rst period (after

the private signals s have been received by agents, but before agents take

actions). In this round one coupon is sold via all pay sealed bid auction.20

All bids are announced at the end of the round. The coupon sold in the

signaling round entitles its owner to a discount of size " for the price in the

…nal auction (the discount coupon is not-transferable, only the winner of the

…nal auction can bene…t from having the coupon).

2. The second round (…nal) auction takes place at the end of the third period,

after agents observe private signals v: In the second round the ownership of

the object is assigned using a second price sealed bid auction. (If the highest

bidder in the …nal round is the owner of the "¡coupon, then she pays the
second highest bid minus ".)

There are two rounds and three decision nodes in an "-e¢cient mecha-

nism. At the …rst decision node, agents make bids in an all-pay auction, i.e.

the i’s actions space is fHijHi ¸ 0g. The information set of agent i at the …rst
decision node is given by si: The …rst round strategy is described by the prob-

ability distribution ½i(¢; si) over the set of pure strategies fHijHi ¸ 0g. At the
second decision node, agents make a decision to act or not to act. The infor-

mation set of agent i at the second decision node is given by (si; Hi;H¡i;w),

20In an all pay sealed bid auction every agent submits a sealed bid. All agents have to

pay the amount of their bids regardless of whether or not they won the object. The agent

with the highest bid receives the object. (In case of a tie the winner is randomly chosen

from the set of highest bidders.) Fullerton and McAfee (1999) use an all-pay auction in

their ’contestant selection auction’.
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where w is an N -dimensional vector with wk = 1 if the agent k won the

coupon in the all pay auction, and wk = 0 otherwise. (There is a unique

vector w consistent with vector of payments H; unless there is a tie). The

probability that agent i acts (ai = 1) is denoted by pi(si;Hi;H¡i;w): At the

third decision node, agents submit bids in the second price sealed-bid auc-

tion. At this moment, the information sets are (si; Hi;H¡i;w; ai; vi). It is

well known that in an equilibrium in weakly dominant strategies of a private

value Vickrey auction bidders bid their true values. Thus, equilibrium bids

are given by si+ vi + aib+ "wi.

Clearly, an "-e¢cient mechanism has multiple equilibria. Some of these

equilibria are highly implausible. In order to rule out such equilibria we

introduce a restriction on strategies in the spirit of ‘intuitive’ criteria such as

D1 of Cho and Kreps (1987) or stability of Kohlberg and Mertens (1986).

De…nition 5 A strategy of an agent j is monotonic, if two vectors H¡j and

H0
¡j di¤er only in component i so that Hi > H

0
i; then pj(sj ;Hj ;H¡j ;w) ·

pj(sj ;Hj ;H
0
¡j;w

0).

In words, a well-behaved strategy of an agent j assumes that for any

history, the probability that the agent j takes an action is non-increasing in

the size of the payment that some agent i; i 6= j makes in the signaling stage.
As we will see, the requirement that the strategies are well-behaved rules

out the ‘bizarre’ equilibrium, where all agents bid zero in the signaling stage

and an agent who bids a positive amount is perceived to be of the lowest type.

Basically, there are two reasons why an equilibrium strategy may not be well-

behaved: First, perverse beliefs may sustain an equilibrium in strategies that

are not well-behaved. An example of such ‘unnatural’ beliefs is as follows:

The more an agent bids for a discount coupon, the lower is her perceived si.

Obviously, this is counter-intuitive: the higher is an agent’s si; the more she

values the discount coupon. The second possibility stems from coordination

aspect of the game. If bids in the signaling stage are used as coordination
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devices for selecting a Bayesian-Nash equilibrium in the remaining subgame,

an equilibrium resulting from these beliefs may include strategies that are

not well-behaved.

De…nition 6 Robust equilibrium of an "¡e¢cient mechanism is any sym-

metric subgame-perfect Bayesian-Nash equilibrium in monotonic strategies.

Theorem 6 For an "-e¢cient mechanism, the following is true:

(i) There exists a robust equilibrium.

(ii) The robust equilibrium is unique.

(iii) The probability that the robust equilibrium yields an e¢cient alloca-

tion converges to one as "! 0:

Let us sketch the intuition behind this result. A pooling equilibriumwhere

everybody bids zero for the coupon is not robust. Indeed, if everybody bids

zero for the discount, it can be purchased for an arbitrarily small amount.

Thus, the pooling equilibrium is sustainable only if bidders are discouraged

from bidding a positive amount by a belief that a positive bid would encour-

age other bidders to act more aggressively in the action stage. However, this

belief is inconsistent with strategies being monotonic. The same argument

applies to any partially pooling equilibrium. We will show that there are no

equilibria in mixed strategies, because the willingness to pay for the discount

is an increasing function of the bidder’s signal. E¢ciency of a robust equilib-

rium follows from Theorem 5 that establishes that for " = 0; there exists an

e¢cient symmetric equilibrium. To prove asymptotic e¢ciency of a robust

equilibrium we will show that when " approaches 0; the robust equilibrium

converges to the equilibrium described in Theorem 5.21

Let us consider an example illustrating that the all pay auction part of

the "-e¢cient mechanism is crucial for insuring that any robust equilibrium

is separating and nearly e¢cient.
21Also, if the "-e¢cient mechanism yields an ine¢cient outcome, e¢ciency losses are of

magnitude ":
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Example. Suppose the all-pay auction is replaced with a second-price

sealed-bid auction. When a su¢ciently small discount is auctioned o¤ via a

second price auction, the following ine¢cient pooling equilibrium is robust:

all agents bid " for the discount of size ":

Sketch of a Proof. We need to specify beliefs that support this equi-

librium. If an agent deviates by bidding less than "; she is perceived to have

the lowest possible signal si: Thus, there are no incentives to bid less than ";

provided that " is su¢ciently small. If an agent bids more than "; the beliefs

of other agents about her type are the same as if she bids ": Thus, bidding

more than " is a bad strategy: If there are N agents bidding " each in a

second-price auction, each of them has a 1
N
chance of getting the discount.

Note that the winner of the discount “envy” the bidders who did not win the

discount, and thus do not have to pay anything in the signaling stage. By

bidding more than "; an agent insures that she wins the discount and will

have to pay for it, thus, making herself worse o¤. ¥
In contrast, there are no robust pooling equilibrium of the "-e¢cient

mechanism (by Theorem 6). For instance, if all agents bid " for the discount,

bidding slightly more than " is a pro…table deviation.

5 Conclusion

This section discusses applications and examples as well as directions for

further research. Our model captures essential features of the variable value

environment. The model describes the sale of an object available for use at

some future date (such as a military base scheduled to close in two years).

Suppose several …rms from di¤erent industries are considering buying the

base in order to convert it into a manufacturing facility. In this case, in-

vestments complementary with ownership of the base are modeled as actions

and demand shocks, and unexpected developments in bidder’s business are
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modeled as exogenous shocks. We put forth an e¢cient mechanism for allo-

cating an object in such environment (Theorems 3 and 6). At least in theory,

the "-e¢cient auction proposed herein has several important advantages un-

der this environment. First, it has a unique robust equilibrium. Second,

this equilibrium yields e¢cient allocation with near certainty (see Theorem

6). An "-e¢cient auction seems simple and intuitive enough to have vi-

able practical applications; albeit, no amount of theorizing can guarantee

that it performs well with human decision makers. Thus, comparison of "-

e¢cient auction and other types of auctions may be a high pay-o¤ project

for an experimental economist. Note that "-e¢cient auction is preferable to

a Vickrey auction even if it is not certain whether or not the environment

has a variable value component. Indeed, Vickrey auction is a subgame of

"-e¢cient auction. In general, a fully separating equilibrium collapses, if the

…rst period signals have a large common value component.22 In the extreme

case where no information revelation takes place in the signaling round an

"-e¢cient auction yields a negligibly small loss in e¢ciency relative to one

round Vickrey auction. However, as long as information revelation occurs in

the signaling round of the "-e¢cient auction, the additional information is

likely to improve performance of the Vickrey auction conducted in the second

round relative to a standard Vickrey auction. Note that it is straightforward

to show that "-e¢cient auction is e¢cient in independent private value en-

vironment. Obviously, in an independent private value case using a simpler

e¢cient mechanism is more practical, however, it is reassuring that using "-

e¢cient auction does no harm even if the environment has no variable value
22Note that in a variable value setting each agent would like to convince other bidders

that her signal is high in order to discourage other bidders from taking actions; in contrast,

if …rst period signals have a large common value component agents would like to convince

other bidder’s that their signals are low in order to depress the price in the …nal auction.

Thus, if the common value component is large the information revelation in the signaling

round can be limited or even non-existent.
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features. In short, "-e¢cient auction seem to o¤er substantial bene…ts with

a minimum downside.

The model considered in this paper is su¢ciently rich to o¤er insight into

understanding of the variable value environment. However, many important

examples of the variable environment may be better captured by variations

of our models. Markets where search matters are a particularly signi…cant

examples of the variable value environment. For instance, consider a sale of

house A. Suppose it is scheduled to be sold in thirty days via Vickrey auction.

This is an example of an auction in the variable value environment; the e¢-

ciency of allocation may be improved by adding information revelation stage

some time before the …nal auction. The bidders private values for house A

may change depending on what else they see on the market. An event when

a buyer encounters another house that seems to …t him well can be modeled

as an exogenous shock in bidder’s private value for house A. House B suitable

for one of the buyers may be sold …fteen days before the auction for house A,

the decision of a bidder to buy or not to buy house B may be modeled as a

private action (obviously, if a bidder purchases house B her private value for

house A decreases essentially removing him from the market.)23 Thus, mar-

kets with search are examples of the variable value environment. The theory

23Note that we assume that bidders for house A are not competing for other houses, it is

probably approximately true in large cities. Also note that there are many other exogenous

shocks in markets with search. For instance, consider a new bidder who becomes aware

that house A is on the market; we can model this event as an exogenous shock that boosts

the private value of this bidder (naturally if a bidder is unaware that a house is on the

market, she will not bid for the house, thus not knowing that a house is on the market is

mathematically identical to having a private value of zero.) Similarly, when a house liked

by a particular bidder unexpectedly disappears from the market, the willingness of this

bidder to pay for house A increase. This is again an example of an exogenous shock in

a market with search. The most important private action in the market with search is

a purchase of a substitute good: this typically reduces private value of the bidder to the

extent that she is essentially removed from the market.
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of the variable value environment developed herein explains why sellers in

such an environment are reluctant to use auctions. Indeed, we established

that in the variable value environment (e.g. the housing market) standard

auction mechanisms, such as Vickrey auction or …rst price auction, are ine¢-

cient. The signaling mechanism and "-e¢cient auction proposed in this paper

inform our intuition for mechanism design in the variable value environments

ranging from market for capital equipment to the housing market.
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Appendix
The Appendix consists of two parts. Part A contains technical lemmas

needed to prove main Theorems and necessary de…nitions. Part B contains

proofs of Theorems and Lemmas formulated in the body of the paper.

A Technicalities

Random variables X1; :::; XN are symmetrically distributed if their joint cu-

mulative distribution function F (x1; :::; xN ) is symmetric, i.e. for any per-

mutation ¼; F (x1; :::; xN) = F (x¼(1); :::; x¼(N)): A random variable X (…rst-

order) stochastically dominates a random variable Y (denoted X º Y ) if

and only if for cumulative density functions, one has FX(t) · FY (t) for any
t 2 R: An equivalent condition is that Eh(X) ¸ Eh(Y ) for any increasing
function h (e.g., Levy, 1992).

For any number (function) x; let x+ = maxfx; 0g:

Lemma 4 For any numbers x; y; and z;maxfx; yg = (x¡ y)+ + y:

Proof. Straightforward.¥

Lemma 5 For any random variables X and Y such that X stochastically

dominates Y , and any constant z ¸ 0;

E(X + z)+ ¡EX+ ¸ E(Y + z)+ ¡ EY +:

Proof. For any z ¸ 0; the function hz(x) = (x + z)+ ¡ x+ is a bounded
increasing function of x: Therefore, the de…nition of stochastic dominance

yields that Ehz(X) ¸ Ehz(Y ):¥

Lemma 6 For random variablesX1; :::; XN ; and non-negative constants z1; :::; zN ;

maxifXi + zig º maxifXig:
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Proof. Straightforward.¥

Lemma 7 LetX1; :::;XN be symmetrically distributed random variables, and

Yi = Xi+ zi; i = 1; :::; N; where zi are constants: Then for any j; k such that

zj ¸ zk;
Yj ¡max

i6=j
Yi º Yk ¡max

i6=k
Yi:

Proof. Let Z = maxi6=j;k Yi. We must show that

Xj + zj ¡max fXk + zk; Zg º Xk + zk ¡max fXj + zj; Zg : (5)

Suppose that zj = zk: In this case, (5) is trivially true, since the righ-hand

side and left-hand side of the equation are symmetric in Xj and Xk and thus

identically distributed:

Xj + zk ¡max fXk + zk; Zg º Xk + zk ¡max fXj + zk; Zg :

Then we observe that

Xj + zj ¡max fXk + zk; Zg º Xj + zk ¡max fXk + zk; Zg ;
Xk + zk ¡max fXj + zk; Zg º Xk + zk ¡max fXj + zj; Zg ;

since zj ¸ zk: It remains to note that stochastic dominance is transitive (by
de…nition). ¥

Lemma 8 LetX1; :::;XN be symmetrically distributed random variables, and

Yi = Xi+zi; i = 1; :::;N; where zi are constants: Then for any constant z ¸ 0
and any j; k such that zj ¸ zk;

Emax
i6=j

fYj + z; Yig ¸ Emax
i6=k

fYk + z; Yig :

Proof. Let Zi = maxj 6=i Yj : Using the formula maxfx; yg = (x ¡ y)+ + y;
which is true for any numbers x; y (Lemma 4), we obtain

Emax
i
Yi = E(Yi ¡ Zi)+ + Zi
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and

Emax
l 6=i

fYi + z; Ylg = E(Yi + z ¡ Zi)+ + Zi:

Then

Emax
l 6=i

fYi + z; Ylg ¡ Emax
l
Yl = E(Yi ¡ Zi + z)+ ¡ E(Yi ¡ Zi)+: (6)

To prove the claim of our Lemma, it su¢ces to show that if zj ¸ zk;

Emax
l6=j

fYj + z; Ylg ¡Emax
l
Yl ¸ Emax

l 6=k
fYk + z; Ylg ¡Emax

l
Yl:

Above, it was proved that this is equivalent to

E(Yj ¡ Zj + z)+ ¡E(Yj ¡ Zj)+ ¸ E(Yk ¡ Zk + z)+ ¡E(Yk ¡ Zk)+:

Next, note that Yj ¡ Zj º Yk ¡ Zk by Lemma 7. Now Lemma 5 completes
the proof.¥

Using standard technique, Lemma 8 can be easily generalized as follows.

Theorem 7 Let X1; :::;XN be symmetrically distributed random variables,

and Yi = Xi + zi; i = 1; :::; N; where constants zi are such that z1 ¸ z2 ¸
::: ¸ zN : Let ¢k = f± = (±1; :::; ±N)j0 · ±i · 1;

P
i ±i = 1g be an (N ¡ 1)-

dimensional simplex. Then for any random variable Z ¸ 0; independent of
Xi;

±¤ = (1; 0; :::; 0) 2 argmax
±2¢

Emax
i
fYi + ±iZg :

Note that we do not require X1; :::; XN to be independent. Clearly, if

some random variables are independent, they are symmetrically distributed.

However, it would not be su¢cient to assume that X1; :::; XN are identically

distributed. The following simple example illustrates the point.

Example. Let X1; X2 be identically distributed discrete random variables,

X1; X2 2 f0; a; 2g; where a < 1: Joint probabilities are as follows: P (0; 0) =
P (0; 2) = P (a; 0) = P (a; a) = P (2; a) = P (2; 2) = 1

6
and P (0; a) = P (a; 2) =
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P (2; 0) = 0: Then maxfX1 + 1; X2g º maxfX1; X2 + 1g: If Y1 = X1 and

Y2 = X2 + "; where " > 0 is su¢ciently small, the last inequality remains to

be true, contradicting the above Lemma.

Also, we note that for two symmetrically distributed variables, it is not

true that maxfX1+D;X2g stochastically dominates maxfX1+ D
2
;X2+

D
2
g:

Indeed, if there are two independent random variables X1; X2 2 f0; 3g with
P (Xi = 0) = P (Xi = 3) =

1
2
; then maxfX1+2; X2g ² maxfX1+1; X2+1g:

B Proofs of Main Results

Proof of Lemma 1. Let ea be a vector of actions with eaj = eak = 0 andeai = ai = a0i for all i 6= j; k: Apply Lemma 8 to symmetrically distributed

random variables vi and constants si + beai; i = 1; :::;N to prove our claim.¥

Proof of Lemma 2. Let Z = maxj 6=i fsj + baj + vjg); and X = si+ vi: By

de…nition,

gi(s; a¡i) = E(X + b¡ Z)+ ¡ E(X ¡ Z)+:

Using the formula maxfx; yg = (x¡ y)+ + y (Lemma 4), we get

Gi(s;a¡i) = EmaxfX + b; Zg ¡EmaxfX;Zg
= E(X + b¡ Z)+ + EZ ¡ (E(X ¡ Z)+ + EZ)
= E(X + b¡ Z)+ ¡ E(X ¡ Z)+ = gi(s; a¡i);

as claimed.¥

Proof of Lemma 3. First, we claim that for any i; and for any s and ~s

such that s¡i · ~s¡i and si = ~si; a
¤
i (~s) · a¤i (s): Indeed, let Xi(s) = si + vi

and Zi(s) = maxj 6=i
©
sj + ba

¤
j + vj

ª
:

We should only care about situations with a¤j(si; s¡i) = a
¤
j(si;~s¡i) for all

j 6= i: Indeed, if a switch from 1 to 0 occurred with an agent that ends up

higher than i as a result of increase from s¡i to ~s¡i; then it is de…nite that
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a¤i (~s) = 0; and thus a
¤
i (~s) · a¤i (s) for any a¤i (s): Otherwise (if a change have

occurred with an agent ranked lower than the agent i), a¤i (s) = 1.

If ~s¡i ¸ s¡i and a¤j(si; s¡i) = a¤j(si;~s¡i) for all j 6= i; then

Xi(si; s¡i)¡ Zi(si; s¡i) º Xi(si;es¡i)¡ Zi(si;es¡i)
by Lemmas 6 and 7. To prove that gi(s) ¸ gi(~s), we use recall that

gi(s) = E (Xi(s) + b¡ Zi(s))+ ¡ E (Xi(s)¡ Zi(s))+ ;

and then apply Lemma 5 to prove the claim. By de…nition gi(s) ¸ gi(~s)

implies that a¤i (~s) · a¤i (s):
Second, we claim that the function gi increases with si: The …rst claim

shows, in particular, that if si increases, while s¡i is constant, the number

of agents acting (weakly) decreases. Thus, the random variable Xi(si; s¡i)¡
Zi(si; s¡i) raises in terms of stochastic dominance, and the whole argument

of Lemma 5 applies.

Now let d = s0i ¡ si > 0. Precisely, we shall prove that

E¼i(si + d; ŝ
0
i)¡ E¼i(si; ŝ0i) ¸ E¼i(si + d; ŝi)¡E¼i(si; ŝi);

which is equivalent to (3).

De…ne Xi = si + vi; Yi = maxj 6=i
©
sj + ba

¤
j(ŝi; s¡i) + vj

ª
; and Y 0i =

maxj 6=i
©
sj + ba

¤
j(ŝ

0
i; s¡i) + vj

ª
: The two claims proved above yield that Xi¡

Yi º Xi ¡ Y 0i :

E¼i(si + d; ŝi)¡ E¼i(si; ŝi) = E(Xi + d¡ Yi)+ ¡ E(Xi ¡ Yi)+:
E¼i(si + d; ŝ

0
i)¡ E¼i(si; ŝ0i) = E(Xi + d¡ Y 0i )+ ¡ E(Xi ¡ Y 0i )+:

Using Lemma 5 completes the proof.¥

Proof of Theorem 4. Let si be the true agent’s i …rst-period signal, and

consider k such that ¹si(k) < ŝi · ¹si(k¡ 1): Since ŝ¡i is …xed throughout the
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argument, we suppress the notation. Truthful reporting brings the expected

utility of

E¼i(si; a(k))¡hi(si) = E¼i(si; a(k))¡hi(¹si(k))¡E¼i(¹si(k);a(k))+E¼i(¹si(k); a(k+1)):

First, we prove that the agent i has no incentives to under-report her …rst-

period signal, i.e. to report ŝi < si: Consider incentives the agent i with the

…rst-period signal ¹si(k) faces. For any " such that ¹si(k)¡ ¹si(k + 1) > " > 0;
she is indi¤erent between reporting ¹si(k) and reporting ¹si(k) ¡ ": Indeed,
the ’credibility payment’ is the same and the number of acting rivals is the

same (k+1). The single-crossing condition (3) assures that if the agent with

¹si(k) is indi¤erent between reporting ¹si(k) to reporting ¹si(k) ¡ "; then the
agent with si > ¹si(k) (weakly) prefers reporting ¹si(k) to reporting ¹si(k)¡ ":
Thus, ŝi can not be less than ¹si(k): (To rule out reports below ¹si(k+1); one

can consider incentives the ¹si(k+1)-agent faces.) It remains to show that ŝi

(weakly) exceeds ¹si(k): So, we need to prove that

E¼i(si; a(k))¡hi(¹si(k))¡E¼i(¹si(k); a(k))+E¼i(¹si(k);a(k+1)) ¸ E¼i(si; a(k+1))¡hi(¹si(k));

or equivalently,

E¼i(si;a(k))¡ E¼i(si; a(k + 1)) ¸ E¼i(¹si(k);a(k))¡ E¼i(¹si(k);a(k + 1));

but this is true by the single-crossing condition (3). Since the agent i having

the signal si is indi¤erent between reporting si and reporting any signal that

is larger than ¹si(k) and does not exceed si; the proof that the agent i has no

incentives to under-report her signal is complete.

The proof that there is no incentives to over-report the signal is somewhat

symmetric. The si¡agent is indi¤erent between reporting the true signal
and reporting ¹si(k¡1): Indeed, the mechanism assumes that the agents with
reports si and ¹si(k ¡ 1) pay the same amount. Now, for any " such that
¹si(k ¡ 2)¡ ¹si(k ¡ 1) > " > 0; the agent with ¹si(k ¡ 1) is indi¤erent between
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reporting the true signal and reporting ¹si(k ¡ 1) + ": To see this, note that

E¼i(¹si(k ¡ 1); a(k))¡ hi(¹si(k ¡ 1)) = E¼i(¹si(k ¡ 1);a(k ¡ 1))¡ hi(¹si(k ¡ 1))
¡E¼i(¹si(k ¡ 1); a(k ¡ 1)) + E¼i(¹si(k ¡ 1);a(k)):

By the single-crossing condition (3),

E¼i(¹si(k¡1); a(k¡1))¡E¼i(¹si(k¡1); a(k)) ¸ E¼i(si;a(k¡1))¡E¼i(si;a(k)):

Thus, if the ¹si(k¡1) is indi¤erent between reporting the truth and reporting
¹si(k¡1)+"; the si-agent (weakly) prefers to report ¹si(k¡1) (which is pay-o¤
equivalent to reporting the truth), than to report ¹si(k¡1)+": To show, that
ŝi would not exceed ¹si(k¡2); one should consider the incentives the ¹si(k¡2)-
agent faces, etc. Therefore, the agent i has no incentives to over-report her

…rst-period signal.¥

Proof of Theorem 3. Lemma 4 proves that the payment schedule described

in Lemma 4 induces truthful reporting by agent i, provided that all other

agents’ reports are truthfull. The beliefs supporting the equilibrium in the

signaling stage are straightforward: if a payment by an agent i is de…ned by

(4), then the agents …rst-period signal is perceived to lie within the respective

range. In the subgame that starts after the …rst-period signals are revealed,

agents play according to the strategies described in Theorem 2.¥

Proof of Theorem 5. It su¢ces to observe that

si 2 argmax
ŝi
fEv¼i(ŝi; s¡i)¡ hi(ŝi; s¡i)g

for any s¡i and any si; and take sum over all s¡i:

Then note that all hi(ŝi; s¡i) and thus the function H(si) increase in the

bidder’s i …rst-period signal si: This allows to use H(si) to report the true

value of si: Beliefs are straightforward.¥

Proof of Theorem 6.
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(i) The proof of existence is mostly analogous to the proof of Theorem 3.

Construction of an ex-ante equilibrium in the previous section used existence

of an ex-post equilibrium in a mechanism, where signaling payments are

allowed to be functions of announcements. Here we will use the same idea.

As an intermediate step for proving existence of robust equilibrium in an

"¡e¢cient mechanism, we consider a mechanism, where the discount is not
auctioned o¤ using an all pay auction, but rather bidders announce their

types in the signaling stage (much like in the signaling mechanism described

in Section 3). After the announcement, bidders make payments hi(bsi;bs¡i) to
make the announcement credible, the bidder with the highest announced si

receives the "¡discount.
Rounds of the “intermediate”mechanism:

Round 1. After each agent privately learns si, all agents simultaneously

announce their types in the cheap talk stage. Afterwards, each agent must

make a payment of hi(bsi;bs¡i): The agent with the highest …rst period an-
nouncement bs receives the discount coupon (ties are broken using a lottery).
Agents take action after observing announcements bs:
Round 2. After the third period signals v are revealed the object is sold

in a second price sealed bid auction.

We shall show that there exists a payment schedule hi(bsi;bs¡i) such that
truthfull reporting supported by paying hi(bsi;bs¡i) is an ex-post equilibrium.
The private value of the bidder with the highest …rst-period signal is

essentially boosted by the amount equal to discount ": We can introduce a

vector es(s;bs) of “adjusted” private value signals, where esi = si + " if bsi >bsj = sj for all j 6= i; otherwise esi = si. (We are assuming bs¡i = s¡i;

and study the ith agent incentives to misreport the true signal si:) If all

the equilibrium reports bsi are truthful, then the subgame after " discount is
assigned is identical to the game considered in Section 3.1. The equilibrium

expected pay-o¤ of agent i of the subgame, which does not include signaling
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payments hi; is denoted by Ee¼i(si; ŝi; s¡i). One can express Ee¼i(si; ŝi; s¡i)
in terms of E¼i(si; ŝi; s¡i) using “adjusted” private signals. (For de…nition of

E¼i(si; ŝi; s¡i); see Lemma 3.) Let bes denote a vector of perceived “adjusted”
signals of agents; the ith component of bes is besi = besi(si; bsi;bs¡i) = esi+(si¡ bsi).
Essentially, es is a vector of “adjusted” private value signals and bes is public
perception about es: Now we can write Ee¼i(si; ŝi; s¡i) = E¼i(esi;besi;es¡i).
To prove that the separating ex-post equilibrium exists, we need to for-

mulate a single-crossing condition similar to (3).

Claim. For any N ¡ 1-tuple of truthfull reports s¡i; and any ŝ0i ¸ ŝi;

s0i ¸ si;

Ee¼i(s0i; ŝ0i; s¡i)¡ Ee¼i(s0i; ŝi; s¡i) ¸ Ee¼i(si; ŝ0i; s¡i)¡ Ee¼i(si; ŝi; s¡i) (7)

To prove the claim, we need to consider three cases: (a) the agent wins

the " discount if she makes announcement ŝ0i but not ŝi; (b) an agent wins

the discount for either announcement ŝ0i or ŝi; (c) neither ŝ
0
i nor ŝi are high

enough to win the discount.

For (b) and (c), (7) follows immediately from Lemma 3. It remains

to show that it also holds for case (a). Let us denote s¡i = (sm¡i; s
¡m
¡i ),

where sm¡i is the largest component of the vector s¡i and s
¡m
¡i is an N ¡ 2-

dimensional vector that consists of all components of vector s¡i other than its

largest component sm¡i: Applying the new notation, one gets Ee¼i(si; ŝi; s¡i) =
Ee¼i(si; ŝi; sm¡i; s¡m¡i ). In case (a), we have es¡m¡i = s¡m¡i : Therefore, one can re-
write (7) as follows:

E¼i(s
0
i+"; ŝ

0
i; s

m
¡i)¡E¼i(s0i; ŝi; sm¡i+") ¸ E¼i(si+"; ŝ0i; sm¡i)¡E¼i(si; ŝi; sm¡i+"):

(8)

Let d = s0i ¡ si > 0. Precisely, we shall prove that

E¼i(si+"+d; ŝ
0
i; s

m
¡i)¡E¼i(si+"; ŝ0i; sm¡i) ¸ E¼i(si+d; ŝi; sm¡i+")¡E¼i(si; ŝi; sm¡i+"):

which is equivalent to (8).
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Let

X = si + "+ vi ¡max
j 6=i

©
sj + ba

¤
j(ŝ

0
i; s

m
¡i; s

¡m
¡i ) + vj

ª
; and

X 0 = si + "+ vi ¡max
j 6=i

©
sj + ba

¤
j(ŝi; s

m
¡i + "; s

¡m
¡i ) + vj

ª
:

As above, X 0 º X: Then

E¼i(si + "+ d; ŝ
0
i; s

m
¡i)¡E¼i(si + "; ŝ0i; sm¡i) = E(X + d)+ ¡ EX+;

E¼i(si + d; ŝi; s
m
¡i + ")¡E¼i(si; ŝi; sm¡i + ") = E(X 0 + d)+ ¡EX 0+:

Using Lemma 5 completes the proof of (8).

Since (8) holds, there exists an ex-post separating equilibrium in the “in-

termediate mechanism”. Using existence of an ex-post equilibrium, we can

apply the same argument as in the proof of Theorem 5 to establish existence

of ex-ante separating signaling mechanism, where agents make signaling pay-

ments that are strictly increasing in their signals. This completes the proof

of existence.

Now we shall prove that any robust equilibrium is unique, fully separating,

and ’almost e¢cient’.

Step 1. In an equilibrium, the probability of any particular bid value H

in the signaling stage is zero. Indeed, if there is a positive mass of agents

that plays some Hmass with positive probability, then there is a positive

probability of a tie. Then an agent playing Hmass can increase the likelihood

of winning the discount " > 0 by increasing her bid by an in…nitesimal

amount. Since the strategies are well-behaved, none of the agents would

increase their likelihood of taking actions. Thus, such a deviation would be

pro…table.

Step 2. Probability that players in the set ¡i take actions is denoted here
as p¡i: Let ¦(si;p¡i; s¡i) denote the pay-o¤ of player i in the subgame after

signaling payments H’s are sunk. We want to show that if p¡i ¸ p0¡i then
for every s0i > si we have

42



¦(s0i;p¡i; s¡i)¡ ¦(si;p0¡i; s¡i) · ¦(s0i;p¡i; s¡i)¡¦(si;p
0
¡i; s¡i): (9)

Essentially this condition says that any decrease in “…nal” private values

of player in the set ¡i is more valuable for player i with a larger …rst period
private signal. Inequality (9) follows from the proof of the single-crossing

condition of Lemma 3.

Step 3. Let us show that all robust equilibria are separating. In a robust

equilibrium, actions taken by players depend on their private signals and the

announcements of other players. Thus, we can write p¡i = p¡i(s¡i;H¡i; Hi)

and p0¡i = p¡i(s¡i;H¡i; H 0
i): (According to Step 1 a tie is a measure zero

event; and thus have no impact on expected payo¤s.) For well-behaved

strategies p¡i ¸ p0¡i for H 0
i > Hi (the inequality holds for all components).

Inequality (9) implies that H(s) is weakly increasing in s: Combining this

fact with result of Step 1, we conclude that H(s) is strictly increasing in s

(expect perhaps for a measure-zero set).

Step 4. Let us show that in equilibrium, pi(H¡i; Hi(si); si) is non decreas-

ing in si: Indeed, p¡i = p¡i(s¡i;H¡i; Hi) is weakly decreasing in Hi. Thus,

according to single crossing condition, if agent with a …rst period signal si

acts with positive probability pi(H¡i; Hi(si); si) > 0; then any agent with a

signal s0i > si strictly prefers to act, and pi(H¡i; Hi(s0i); s
0
i) = 1.

Step 5. From Step 4, it follows that there exists a unique equilibrium in

the subgame that is consistent with a robust equilibrium strategy pro…le. In

this equilibrium, all agents with private values exceeding some critical value

s¤(H) act.

Step 6. From Step 5 and Theorem 2, it follows that "¡e¢cient mechanism
yields an e¢cient allocation with probability converging to one as " converges

to zero.

To establish uniqueness of the robust equilibrium, we use a standard

argument (e.g., Klemperer, 1999). Single-crossing condition (9) implies that
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dH(s)
ds

is the same in any robust equilibrium. In Step 5, we showed that there

is a unique robust equilibrium in the subgame following the all-pay auction.

It remains to show that H(0) = 0: Suppose otherwise, say H(0) = H0 > 0:

For a player with si = 0, H(0) = 0 is a pro…table deviation: Indeed, after

this she does not change the perception of her type (she is correctly perceived

to have si = 0). It was demonstrated in Step 4 that in a robust equilibrium

each player either acts with probability one or zero (except perhaps for a

set of measure zero). Thus, the above mentioned deviation can only cause

other players to increase the probability with which they act; however, given

the set of players that act, non of the players that do not act in a robust

equilibrium would choose to act. ¥
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