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ABSTRACT

Recent results in value at risk analysis show that, for extremely heavy-tailed risks with unbounded distribution

support, diversification may increase value at risk, and that, generally, it is difficult to construct an appropriate

risk measure for such distributions. We further analyze the limitations of diversification for heavy-tailed risks. We

provide additional insight in two ways. First, we show that similar nondiversification results are valid for a large class

of risks with bounded support, as long as the risks are concentrated on a sufficiently large interval. The required

length of the support depends on the number of risks available and on the degree of heavy-tailedness. Second, we

relate the value at risk approach to more general risk frameworks. We argue that in financial markets where the

number of assets is limited compared with the (bounded) distributional support of the risks, unbounded heavy-tailed

risks may provide a reasonable approximation. We suggest that this type of analysis may have a role in explaining

various types of market failures in markets for assets with possibly large negative outcomes.

KEYWORDS: value at risk, coherent measures of risk, heavy-tailed risks, portfolios, riskiness, diversification,

catastrophe insurance, risk bounds

JEL Classification: G11



1 Introduction

1.1 Background

Recently, Ibragimov (2004a,b, 2005) developed a unified approach to analyzing portfolios of risks with heavy-tailed

distributions, using new majorization theory for linear combinations of thick-tailed random variables (r.v.’s).2 Those

works showed that the stylized fact of portfolio diversification always being preferable is reversed for extremely heavy-

tailed risks, with infinite first moments and unbounded distribution support (see Proposition 1 in Subsection 3.1 of

this paper). Specifically, for such distributions, the value at risk (VaR) is a strictly increasing function in the degree

of diversification.

Value at risk and the closely related safety-first principle are frequently used in models in economics, finance and

risk management,3 providing alternatives to the traditional expected utility framework. For extremely heavy-tailed

distributions the expected utility framework is not readily available, since it typically involves assumptions on the

existence of moments for the risks in consideration. The safety-first and VaR approaches to portfolio selection have

thus, in many regards, been the only ones available in the presence of extreme thick-tailedness.4

This has also meant that the relationship between traditional diversification results that are based on expected

utility and thin tails, and the non-diversification results that are based on VaR and thick tails have been somewhat

unclear. Specifically, one may ask whether non-diversification strictly depends on the asymptotic behavior of the

distributions far out in the tails. If this is the case, the theoretical results may have few applications in a world,

in which distributions may have bounded support. Furthermore, one may ask whether the VaR non-diversification

results are due to imperfections of VaR as a risk measure, and how they relate to expected utility based risk

measures, e.g. stochastic dominance. In this paper, we suggest that the non-diversification results may be robust to

such objections.

1.2 Main contributions of paper

The main results of this paper are provided in Theorems 1-4 and Table 1. First, we demonstrate that the above VaR

results continue to hold for a wide class of bounded risks5 concentrated on a sufficiently large interval (Theorem 1).

We also study how the length of distributional support needed for our results to hold depends on the number of

risks in the portfolio and the degree of heavy-tailedness of the unbounded distributions.

2The majorization relation is a formalization of the concept of diversity in the components of vectors. Over the past decades,
majorization theory, which focuses on the study of the majorization ordering and functions that preserve it, has found applications in
disciplines ranging from statistics, probability theory and economics to mathematical genetics, linear algebra and geometry (see the
discussion in Ibragimov, 2004a, b).

3See, e.g., Fabozzi, Focardi and Kolm (2006) for a review of Roy’s (1952) safety-first approaches to portfolio selection, value at risk
and other measures of risk.

4One should note here that several recent papers (see among others, Acerbi and Tasche, 2002, and Tasche, 2002) recommended to use
the expected shortfall as a coherent alternative to the value at risk. However, the expected shortfall, which is defined as the average of
the worst losses of a portfolio, requires existence of the first moments of risks to be finite. It is not difficult to see that assumptions close
to existence of means of the risks in considerations are also required for applications of coherent spectral measures of risk (see Acerbi,
2002, and Cotter and Dowd, 2002) that generalize the expected shortfall.

5We will, somewhat contradictory, refer to distributions of such risks as bounded heavy-tailed distributions as opposed to the standard
(unbounded) heavy-tailed distributions.
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Second, we relate our results to the expected utility framework. For risks with unbounded heavy-tailed distribu-

tions, we provide a natural generalization of the second order stochastic dominance concept, originally introduced

in Rothschild and Stiglitz (1970). We provide a rigorous motivation for that diversification increases risk for such

distributions (Theorem 2). Furthermore, we relate our results on bounded risks to the traditional results on diversi-

fication. With bounded supports, diversification will always be preferable in an expected utility setting6, contrary to

our value at risk results. We show that the traditional results crucially depend on the tail properties of the expected

utility function and that if investors’ utility function at any point in the domain of large negative outcomes becomes

convex,7 then our non-diversification results may continue to hold (Theorem 3). This provides additional support

for our view that the theory of unbounded heavy-tailed distributions may provide a good approximation for markets

with a limited number of bounded heavy-tailed risks.

Third, we provide numerical results that show when not to diversify (Table 1), depending on the types of

distributions, the length of distributional support and the number of risks at hand. In the non-diversification region,

the implications for asset pricing may be large. It will be difficult to create risk sharing, idiosyncratic risk will

matter, and risk premia may be high. We suggest that this could explain puzzling properties of risky assets for

which losses may be large, e.g., catastrophe insurance and the under-diversification puzzle. This is a natural future

application of the results in this paper.

Fourth, we obtain extensions of the above results for a wide class of dependent risks. We show that Theorem 1

continues to hold for convolutions of dependent risks with joint truncated α−symmetric distributions and their

analogues with non-identical marginals (Theorem 4).8,9

To summarize, the stylized facts on portfolio diversification are not robust to distributional assumptions involv-

ing truncated extremely heavy-tailed distributions. In our view, this is important since it demonstrates that the

“unpleasant” properties of value at risk as a risk measure under heavy-tailedness does not arise from properties of

the extreme tails of the distributions. On the contrary, the conclusion that diversification is always to be preferred

depends on properties of the utility function for extreme outcomes, or on the number of assets being very large. In

the real world, distributions may be finitely supported, the risk averse expected utility specification of investor be-

havior may break down outside reasonable domains and the number of assets is finite. Which model approximation

is most appropriate must depend on the situation at hand.

6As originally shown in a general setting in Samuelson (1967).
7Convexity of utility functions in the loss domain being one of the key foundations of Prospect theory (Kahneman and Tversky 1979).

It also effectively arises if there is limited liability.
8An n−dimensional distribution is called α−symmetric if its characteristic function can be written as φ((

Pn
i=1 |ti|

α)1/α), where φ is
a continuous function and α > 0. Such distributions should not be confused with multivariate spherically symmetric stable distributions,

which have characteristic functions exp
ˆ

− λ
`

Pn
i=1 t2i

´β/2˜

, 0 < β ≤ 2. Obviously, spherically symmetric stable distributions are

particular examples of α−symmetric distributions with α = 2 (that is, of spherical distributions) and φ(x) = exp(−xβ).
9The class of α−symmetric distributions is very wide and includes, in particular, spherical distributions corresponding to α = 2.

Important examples of spherical distributions, in turn, are given by Kotz type, multinormal and logistic distributions and multivariate
stable laws. In addition, they include a subclass of mixtures of normal distributions as well as multivariate t−distributions that were used
in a number of papers to model heavy-tailedness phenomena with dependence and finite moments up to a certain order (see, among others,
Praetz, 1972, Blattberg and Gonedes, 1974, and Glasserman, Heidelberger and Shahabuddin, 2002). Moreover, the class of α−symmetric
distributions includes a wide class of convolutions of models with common shocks affecting all risks (such as macroeconomic or political
ones, see Andrews, 2003) which are of great importance in economics and finance.
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1.3 Extensions of results

To illustrate the main ideas of the proof and in order to simplify the presentation of the main results in this paper, we

first model heavy-tailedness using the framework of independent truncated stable distributions and their convolutions.

More precisely, the results of the paper for the bounded analogues of extremely heavy-tailed densities are first

presented and proved using the framework of convolutions of truncated stable distributions with characteristic

exponents α less than one.

As indicated above, in Section 4 we show, however, that the results on nondiversification continue to hold for

a wide class of multivariate distributions for which marginals are bounded and dependent (Theorem 4). These

distributions can be non-identical and, in addition, can be truncations of distributions with finite variances (unlike

bounded analogues of stable distributions and their convolutions with infinite second moments). As indicated before,

according to these extensions, all the results in the paper continue to hold for convolutions of truncated α−symmetric

distributions and their analogues with non-identical one-dimensional marginals. Similar to the framework based on

stable distributions, the stylized facts on portfolio diversification are reversed in the case of convolutions of truncated

α−symmetric distributions with α < 1 that have extremely heavy-tailed marginal distributions with infinite means.

Also, the results in the paper are available for the case of skewed distributions (see Remark 6), including trun-

cated skewed stable distributions (such as, for instance, extremely heavy-tailed Lévy distributions with α = 1/2

concentrated on the positive semi-axis) and, according to the extensions discussed above, truncated α−symmetric

distributions with skewed marginals.10 Therefore, this paper, in fact, succeeds in the unification of the robustness

of safety-first portfolio selection theory to all the main distributional properties: boundedness, heavy-tailedness,

dependence, skewness and the case of non-identical one-dimensional distributions.11

1.4 Literature on heavy-tailedness in economics and finance

This paper belongs to a large stream of literature in economics and finance that have focused on the analysis of thick-

tailed phenomena. This stream of literature goes back to Mandelbrot (1963) (see also the papers in Mandelbrot,

1997, and Fama, 1965), who pioneered the study of heavy-tailed distributions with tails declining as x−α, α > 0, in

these fields. If a model involves a r.v. X with such thick-tailed distribution, then12

P
(

|X| > x
)

∼ x−α. (1)

The r.v. X for which this is the case has finite moments E|X|p of order p < α. However, the moments are infinite

for p ≥ α.

It was documented in numerous studies that the time series encountered in many fields in economics and fi-

nance are heavy-tailed (see the discussion in Loretan and Phillips, 1994, Meerschaert and Scheffler, 2000, Gabaix,

Gopikrishnan, Plerou and Stanley, 2003, and references therein). Motivated by these empirical findings, a number

10Lévy distributions have densities f(x) = (σ/(2π))1/2exp(−σ/(2x))x−3/2, x ≥ 0; f(x) = 0, x < 0, where σ > 0, and their shifted
versions.

11According to well-established parlance in the many scientific literatures, robustness is understood to mean insensitivity to deviations
from distributional assumptions. In this paper, the use of the term “robustness” accords with this tradition.

12Here and throughout the paper, f(x) ∼ g(x) means that 0 < c ≤ f(x)/g(x) ≤ C < ∞ for large x.
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of studies in financial economics have focused on portfolio and value-at-risk modeling with heavy-tailed returns (see,

e.g., the reviews in Duffie and Pan, 1997, Uchaikin and Zolotarev, 1999, Ch. 17, and Glasserman, Heidelberger

and Shahabuddin, 2002). Several authors considered problems of statistical inference for data from thick-tailed

populations (see Loretan and Phillips, 1994, the papers in Adler, Feldman and Taqqu, 1998, and references therein).

Mandelbrot (1963) presented evidence that historical daily changes of cotton prices have the tail index α ≈ 1.7,

and thus have infinite variances. Using different models and statistical techniques, subsequent research reported the

following estimates of the tail parameters α for returns on various stocks and stock indices:

3 < α < 5 (Jansen and de Vries, 1991),

2 < α < 4 (Loretan and Phillips, 1994),

1.5 < α < 2 (McCulloch, 1996, 1997),

0.9 < α < 2 (Rachev and Mittnik, 2000).

Recent studies (see Gabaix, Gopikrishnan, Plerou and Stanley, 2003, and references therein) have found that the

returns on many stocks and stock indices have the tail exponent α ≈ 3, while the distributions of trading volume

and the number of trades on financial markets obey the power laws (1) with α ≈ 1.5 and α ≈ 3.4, respectively.

As discussed in Gabaix et. al. (2003), these estimates of the tail indices α are robust to different types and sizes

of financial markets, market trends and are similar for different countries. Motivated by these empirical findings,

Gabaix et. al. (2003) proposed a model that demonstrates that the above power laws for stock returns, trading

volume and the number of trades are explained by trading of large market participants, namely, the largest mutual

funds whose sizes have the tail exponent α ≈ 1. Power laws (1) with α ≈ 1 (Zipf laws) have also been found to hold

for firm sizes (see Axtell, 2001) and city sizes (see Gabaix, 1999a, b for the discussion and explanations of the Zipf

law for cities).

De Vany and Walls (2004) presented evidence that stable distributions with tail indices 1 < α < 2 provide a

good model for distributions of profits in motion pictures. One should also note that some studies also indicated

that the tail exponent is close to one or slightly less than one for such financial time series as Bulgarian lev/US

dollar exchange spot rates and increments of the market time process for Deutsche Bank price record (see Rachev

and Mittnik, 2000). Furthermore, Scherer, Harhoff and Kukies (2000) and Silverberg and Verspagen (2004) report

the tail indices ξ to be considerably less than one for financial returns from technological innovations.

The fact that a number of economic and financial time series have the tail exponents of approximately equal

to or (slightly or even substantially) less than one is important in the context of the results in this paper: as

we demonstrate, the conclusions of portfolio value at risk theory for truncations of risk distributions with the tail

exponents α < 1 with infinite means are the opposites of those for distributions with α > 1 for which the first

moment is finite.
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1.5 Organization of paper

The paper is organized as follows: Section 2 contains notations and definitions of classes of heavy-tailed distributions

used throughout the paper. It also reviews their properties. In Section 3, we present the main results of the paper on

the effects on riskiness of diversification of bounded risks. We also relate our results to the expected utility/stochastic

dominance framework. We provide tables for when it is optimal not to diversify and finally discuss some puzzles in

financial markets for which the limits of diversification may play a role. Section 4 discusses extensions of the results

in the paper to the case of dependence, including convolutions of truncated α-symmetric and spherical distributions

and models with common shocks. In Section 5, we make some concluding remarks.

2 Notation

For 0 < α ≤ 2, σ > 0, β ∈ [−1, 1] and µ ∈ R, we denote by Sα(σ, β, µ) the stable distribution with the characteristic

exponent (index of stability) α, the scale parameter σ, the symmetry index (skewness parameter) β and the location

parameter µ. That is, Sα(σ, β, µ) is the distribution of a r.v. X with the characteristic function

E(eixX) =











exp {iµx − σα|x|α(1 − iβsign(x)tan(πα/2))} , α 6= 1,

exp {iµx − σ|x|(1 + (2/π)iβsign(x)ln|x|)} , α = 1,

x ∈ R, where i2 = −1 and sign(x) is the sign of x defined by sign(x) = 1 if x > 0, sign(0) = 0 and sign(x) = −1

otherwise. In what follows, we write X ∼ Sα(σ, β, µ), if the r.v. X has the stable distribution Sα(σ, β, µ).

As is well-known, a closed form expression for the density f(x) of the distribution Sα(σ, β, µ) is available in the

following cases (and only in those cases): α = 2 (Gaussian distributions); α = 1 and β = 0 (Cauchy distributions);

α = 1/2 and β ± 1 (Lévy distributions).13 Degenerate distributions correspond to the limiting case α = 0.

The index of stability α characterizes the heaviness (the rate of decay) of the tails of stable distributions

Sα(σ, β, µ). In particular, if X ∼ Sα(σ, β, µ), then its distribution satisfies power law (1). This implies that the

p−th absolute moments E|X|p of a r.v. X ∼ Sα(σ, β, µ), α ∈ (0, 2) are finite if p < α and infinite otherwise.

The symmetry index β characterizes the skewness of the distribution. The stable distributions with β = 0 are

symmetric about the location parameter µ. The stable distributions with β = ±1 and α ∈ (0, 1) (and only they)

are one-sided, the support of these distributions is the semi-axis [µ,∞) for β = 1 and is (−∞, µ] (in particular, the

Lévy distribution with µ = 0 is concentrated on the positive semi-axis for β = 1 and on the negative semi-axis for

β = −1). In the case α > 1 the location parameter µ is the mean of the distribution Sα(σ, β, µ). The scale parameter

σ is a generalization of the concept of standard deviation; it coincides with the standard deviation in the special

case of Gaussian distributions (α = 2). Distributions Sα(σ, β, µ) with µ = 0 for α 6= 1 and β 6= 0 for α = 1 are called

strictly stable. If Xi ∼ Sα(σ, β, µ), α ∈ (0, 2], are i.i.d. strictly stable r.v.’s, then, for all ai ≥ 0, i = 1, ..., n,

13The densities of Cauchy distributions are f(x) = σ/(π(σ2 +(x−µ)2)); as is indicated before, Lévy distributions have densitiesf(x) =
(σ/(2π))1/2exp(−σ/(2x))x−3/2, x ≥ 0; f(x) = 0, x < 0, where σ > 0, and their shifted versions.
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n
∑

i=1

aiXi/
(

n
∑

i=1

aα
i

)1/α

∼ Sα(σ, β, µ). (2)

For a detailed review of properties of stable distributions the reader is referred to, e.g., the monographs by

Zolotarev (1986), Embrechts, Klupperberg and Mikosch (1997), Uchaikin and Zolotarev (1999), Rachev and Mittnik

(2000) and Rachev, Menn and Fabozzi (2005).

For 0 ≤ r < 1, we denote by CS(r) the class of distributions which are convolutions of symmetric stable

distributions Sα(σ, 0, 0) with indices of stability α ∈ (r, 1) and σ > 0.14 That is, CS(r) consists of distributions of

r.v.’s X for which, with some k ≥ 1, X = Y1 + ... + Yk, where Yi, i = 1, ..., k, are independent r.v.’s such that

Yi ∼ Sαi
(σi, 0, 0), αi ∈ (r, 1), σi > 0, i = 1, ..., k.

A linear combination of independent stable r.v.’s, each having the same characteristic exponent α also has a stable

distribution with the same α. However, in general, this does not hold in the case of convolutions of stable distributions

with different indices of stability. Therefore, the class CS(r) of convolutions of symmetric stable distributions with

different indices of stability α ∈ (r, 1) is wider than the class of all symmetric stable distributions Sα(σ, 0, 0) with

α ∈ (r, 1) and σ > 0.

Evidently, the classes CS(r) are closed under convolutions. In addition, clearly, CS(r1) ⊂ CS(r2) if r1 < r2. In

what follows, we write X ∼ CS(r) if the distribution of the r.v. X belongs to the class X ∼ CS(r). The properties

of stable distributions discussed above imply that the p−th absolute moments E|X|p of a r.v. X ∼ CS(r), r ∈ (0, 1),

are finite if p < r. However, all the r.v.’s X ∼ CS(r), r ∈ (0, 1) have infinite means: E|X| = ∞.

Throughout the paper, given two r.v.’s X and Y , we write X
d
= Y if the distributions of X and Y are the same.

In what follows, for z ∈ R, sign(z) denotes the sign of z: sign(z) = 1 for z > 0, sign(z) = −1 for z < 0, and

sign(0) = 0. In addition, I(·) stands for the indicator function.

We define the a-truncated version of a r.v.: Y (a) = X if |X| ≤ a, Y (a) = −a if X < −a and Y (a) = a if X > a.

In other words, Y (a) = a · sign(Xi) + XI(|X| ≤ a).15 We will also use the notation Xa instead of Y (a) for the

a-truncated version of X.

3 Main results: The limits of diversification

3.1 Non-diversification for risks with bounded support

Let 0 ≤ r < 1. Following the framework of Roy’s (1952) safety-first, given a r.v. (risk) Z, we will interested in

analyzing the probability P (Z > z) of going above a certain target or a disaster level z > 0.16 Furthermore, given a

14CS is the abbreviation of “convolutions of stable.”
15This definition of truncation moves probability mass to the edges of the distributions. As follows from the arguments the results in

Section 3.1 continue to hold for the more commonly used truncations XI(|X| ≤ a) which move probability mass to the center. However,
this is not true for the results in Section 3.2.

16In what follows, we interpret the positive values of Z as a risk holder’s losses. This interpretation of losses follows that in Embrechts,
McNeil and Straumann (2002) and is in contrast to Artzner, Delbaen, Eber and Heath (1999) who interpret negative values of risks as
losses.
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loss probability q ∈ (0, 1/2) and a r.v. (risk) Z, we denote by V aRq[Z] the value at risk (VaR) of Z at level q, that

is, its (1 − q)−quantile.17

Throughout this section, X1, X2, ... is a sequence of i.i.d. risks with distributions from the class CS(r). For

a > 0, denote by Yi(a) the a-truncated versions of X ′
is. In what follows, R+ stands for R+ = [0,∞). Let In = {w =

(w1, ..., wn) ∈ Rn
+ :

n
∑

i=1

wi = 1}.

For w ∈ In, denote by Xw the return on the portfolio of risks X1, ..., Xn with weights w: Xw =

n
∑

i=1

wiXi.

Similarly, in what follows, for a > 0 and w ∈ In, Yw(a) stands for the return on the portfolio of bounded risks

Y1(a), ..., Yn(a) with weights w: Yw(a) =

n
∑

i=1

wiYi(a).

Evidently, the return on the portfolio of risks X1, ..., Xn with equal weights w̃n =
(

1
n , 1

n , ..., 1
n

)

is given by the

sample mean of X ′
is: Xw̃n

=
1

n

n
∑

i=1

Xi. Similarly, Yw̃n
(a) is the sample mean of the risks Yi(a): Yw̃n

(a) =
1

n

n
∑

i=1

Yi(a).

The problems faced by a holder of risks X1, ..., Xn or Y1(a), ..., Yn(a) consist in minimizing, respectively, the

disaster probabilities P
(

n
∑

i=1

wiXi > z
)

or P
(

n
∑

i=1

wiYi(a) > z
)

over the portfolio weights w ∈ In.

Let w[1] ≥ ... ≥ w[n] denote the components of w ∈ In in decreasing order. Obviously, w[1] = 1 implies that w is

a permutation of the vector (1, 0, ..., 0). E.g., according to the following proposition, in such a case, obviously, the

portfolio with weights w consists of only one risk, and, thus, Xw̃n
has the same distribution as X1 and Yw̃n

(a) is

distributed as Y1(a). In addition, for w ∈ In, let (w(1), w(2)) =
(

max[0.5, w[1]],min[0.5, 1 − w[1]]
)

.

According to the following result obtained in Ibragimov (2004a, b, 2005), the stylized facts that portfolio diversi-

fication is always preferable are violated for a wide class of extremely heavy-tailed risks with unbounded distribution

support.18 In such a setting, diversification of a portfolio of the risks increases the probability of going over a given

disaster level.

Proposition 1 (Ibragimov, 2004a, b, 2005). Let w ∈ In be a vector of weights with w[1] 6= 1. Suppose that

Xi, i = 1, ..., n, are i.i.d. risks such that Xi ∼ CS(r), for some r ∈ (0, 1), i = 1, ..., n. Then, for all z > 0,

P
(

Xw > z
)

> P
(

w(1)X1 + w(2)X2 > z
)

> P
(

X1 > z
)

.

Remark 1 If r.v.’s X1, ..., Xn have a symmetric Cauchy distribution S1(σ, 0, 0) which is exactly at the “upper”

boundary of the classes CS(r), r ∈ (0, 1), then the disaster probabilities P
(

Xw > z
)

are the same for all w ∈ In.

Consequently, in such a case, diversification of a portfolio has no effect on its riskiness.

Remark 2 It is not difficult to see that Proposition 1 can be equivalently formulated as follows in the framework

of the value at risk analysis for financial portfolios. Let w ∈ In be a vector of weights with w[1] 6= 1. Suppose that

17That is, in the case of an absolutely continuous risk Z, P (Z > V aRq[Z]) = q.
18The result given by Proposition 1 is a part of Corollary 5.3 in Ibragimov, 2004a and of Theorem 4.2 in Ibragimov, 2004b since the

vector w = (w1, w2, w3, ..., wn) is majorized by (that is, has more diverse components than) the vector (v1, v2, 0, ..., 0) which is, in turn,
is majorized by the vector (1, 0, 0, ..., 0).
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Xi, i = 1, ..., n, are i.i.d. risks such that Xi ∼ CS(r), for some r ∈ (0, 1), i = 1, ..., n. Then, for all loss probabilities

q ∈ (0, 1/2), the return Xw on the portfolio of risks X1, ..., Xn with weights w is strictly more risky (in terms of the

value at risk) than the return w(1)X1 + w(2)X2 on the portfolio of two risks X1 and X2 with weights w(1) and w(2).

In turn, the return w(1)X1 +w(2)X2 is more risky (in terms of the value at risk) than the return X1 on the portfolio

consisting of one risk. In other words, for any value of the loss probability q ∈ (0, 1/2), the following inequalities

hold: V aRq[Xw] > V aRq[w
(1)X1 + w(2)X2] > V aRq[X1].

We now expand the analysis to risks with bounded support. A summary of the results we will provide is given

in Figure 1. The traditional situation with i.i.d. risks is according to line A in the figure: diversification is always to

be preferred, regardless of the number of risks. The other extreme is D, when diversification never will be preferred,

as analyzed in Ibragimov (2004a, b, 2005). The intermediate cases are B and C, when diversification is suboptimal

up to a certain number of risks (similar to D), but becomes preferable when enough assets are available and/or

investors are VaR tolerant, (similar to A).

n

Value of portfolio
with n risks A. Traditional

1 10 100

B. Bounded, VaR tolerant

C. Bounded, VaR intolerant

D. Unbounded

Figure 1: Illustrative figure of value of diversification. A: Traditional situation (α > 1). The value increases monotonically
and it is always preferable to add another risk to portfolio. B: New situation (α < 1). Bounded heavy-tailed distributions
with VaR tolerant investor. For portfolios with few assets, value decreases with diversification. C: New situation (α < 1).
Bounded heavy-tailed distributions with VaR intolerant investor. For portfolios with few-medium assets, value decreases with
diversification. D: Situation in Ibragimov (2004a, b, 2005) (α < 1). Unbounded heavy-tailed distributions. Value always
decreases with diversification.

The following theorem is the analogue of Proposition 1 in the case of bounded risks. According to the theorem,

the diversification continues to be disadvantageous for truncated extremely heavy-tailed distributions. The results

demonstrate, in particular, that for any number n ≥ 2 and any given disaster level z > 0, there exist n risks with

finite support with the property that the return of their portfolio is more risky than that of the portfolio consisting

8



only of one risk.

In what follows, for z > 0 and w ∈ In, we denote by G(w, z) the difference

G(w, z) = P
(

w(1)X1 + w(2)X2 > z
)

− P
(

X1 > z
)

, (3)

which is positive if w[1] 6= 1 since, by Proposition 1 applied to the portfolio of risks X1, X2 with weights (w(1), w(2)),

P
(

w(1)X1 + w(2)X2 > z
)

> P
(

X1 > z
)

if w(i) 6= 1, i = 1, 2.

Theorem 1 Let n ≥ 2 and let w ∈ In be a portfolio of weights with w[1] 6= 1. For any z > 0 and all

a >
(E|X1|

r(n − 1)

2G(w, z)

)1/r

, (4)

the following inequality holds:

P
(

Yw(a) > z
)

> P
(

Y1(a) > z
)

. (5)

Proof. We have

P
(

Xw > z
)

≤ P
(

Yw(a) ≥ Xw > z
)

+ P
(

Xw > z,Xw > Yw(a)
)

≤

P
(

Yw(a) > z
)

+ P
(

Xw > Yw(a)
)

≤ P
(

Yw(a) > z
)

+ P
(

Xi > a for at least one i ∈ {1, 2, ..., n}
)

≤

P
(

Yw(a) > z
)

+

n
∑

i=1

P
(

Xi > a
)

= P
(

Yw(a) > z
)

+ nP
(

X1 > a
)

. (6)

From Proposition 1 it follows that

P
(

Xw > z
)

> P
(

w(1)X1 + w(2)X2 > z
)

=

P (X1 > z) + G(w, z) = P
(

X1 > a
)

+ P
(

Y1(a) > z
)

+ G(w, z). (7)

Relations (6) and (7) imply that the following inequalities hold:

P
(

Yw(a) > z
)

− P
(

Y1(a) > z
)

> G(w, z) − (n − 1)P
(

X1 > a
)

. (8)

Since, under the assumptions of the theorem, E|X1|
r < ∞, by Chebyshev’s inequality we get

P
(

X1 > a
)

=
1

2
P

(

|X1| > a
)

≤
E|X1|

r

2ar
. (9)

Estimates (8) and (9) give

P
(

Yw(a) > z
)

− P
(

Y1(a) > z
)

> G(w, z) −
(n − 1)E|X1|

r

2ar
. (10)

Under the conditions of the theorem, the right-hand side of (10) is positive. Consequently,

P
(

Yw(a) > z
)

> P
(

Y1(a) > z
)

and, thus, (5) indeed holds. ¥
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Remark 3 We note that in the case of a portfolio with equal weights w̃n =
(

1
n , 1

n , ..., 1
n

)

, one has (w(1), w(2)) =
(

1
2 , 1

2

)

and, thus, (3) becomes

G(w̃n, z) = H(z) = P
(X1 + X2

2
> z

)

− P
(

X1 > z
)

. (11)

This means that the length of the distributional support providing the diversification failure results in Theorem 1 can

be taken to be same for all the portfolios with equal weights w̃n. This holds, obviously, for the whole class of the

portfolios w such that w[1] < 1/2. Furthermore, a similar result holds as well for the class of portfolios w such that

w[1] < 1 − ǫ (and, thus, wi < 1 − ǫ for all i), where 0 < ǫ < 1/2. As follows from the proof of Theorem 1, for all

such portfolios w, the theorem holds for a >
(

E|X1|
r(n−1)

2G̃(ǫ,z)

)1/r

, where G̃(ǫ, z) = P
(

(1 − ǫ)X1 + ǫX2 > z
)

< G(w, z).

Similar to Proposition 1, the last inequality follows from Corollary 5.3 in Ibragimov, 2004a and Theorem 4.2 in

Ibragimov, 2004b since any vector w with w[1] < 1 − ǫ is majorized by (that is, has more diverse components than)

the vector (1 − ǫ, ǫ, 0, ..., 0).

Remark 4 From the proof of Theorem 1 it follows that, in the case of portfolios with equal weights w̃n =
(

1
n , 1

n , ..., 1
n

)

,

where n > 2, the length of the interval of truncation a can be reduced to a smaller value. In such a case, the theorem

holds under the restriction a >
(

E|X1|
r(n−1)

2Fn(z)

)1/r

, where

Fn(z) = P
(

∑n
i=1 Xi

n
> z

)

− P
(

X1 > z
)

.

Note that, by Proposition 1, Fn(z) > H(z) = G(w̃n, z) for n ≥ 3.

Remark 5 Theorem 1 does not hold uniformly for portfolios arbitrarily close to an undiversified portfolio. Thus,

for any a and any number of stocks, n, it may be preferable to diversify “slightly.” An asymptotic analysis shows

that the required support, a, to ensure that diversification into w = (ǫ, 1 − ǫ) is not preferred, grows as a ∼ ǫ−1/r.

Therefore, when ǫ approaches zero, the length of the distributional support a becomes unbounded.

Remark 6 As discussed in Ibragimov (2004a, b, 2005) analogues of Proposition 1 hold for i.i.d. risks X1, ...., Xn

that have skewed extremely thick-tailed stable distributions with infinite first moments: Xi ∼ Sα(σ, β, 0), α ∈ (0, 1),

σ > 0, β ∈ [−1, 1], i = 1, ..., n. As follows from the proof of Theorem 1, this implies that complete analogues of the

results in the present section for bounded versions of symmetric risks from the classes CS(r) continue to hold for

truncated extremely heavy-tailed stable distributions Sα(σ, β, 0) with α ∈ (0, 1), σ > 0, and an arbitrary skewness

parameter β ∈ [−1, 1]. In particular, Theorem 1 continues to hold for arbitrary skewed risks Xi ∼ Sα(σ, β, 0),

α ∈ (0, 1), σ > 0, β ∈ [−1, 1] if a >
(

E|X1|
r(n−1)

G(w,z)

)1/r

. 19

Remark 7 As indicated in Ibragimov (2004a, b, 2005), Proposition 1 and its extensions imply corresponding results

on peakedness, monotone consistency and efficiency properties of linear estimators

n
∑

i=1

wiXi under heavy-tailedness.

In particular, from the proposition it follows that, the sample mean of observations from extremely heavy-tailed

19The factor 2 in the denominator of the bound for a in Theorem 1 needs to be replaced by 1 in this case because, if X1 is not

necessarily symmetric, then the tail probability P
“

X1 > a
”

on the right-hand side of (9) is, in general, bounded from above by
E|X1|

r

ar .
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populations exhibit decreasing peakedness about the population center as the sample size increases. Thus, having

more data is always disadvantageous for inference if the sample mean is used to estimate the population center under

extreme thick-tailedness. For instance, if Zi = µ + Xi, where Xi, i ≥ 1, are symmetric i.i.d. shocks with extremely

thick-tailed distributions: Xi ∼ CS(r), then, for all ǫ > 0 and all n > 1, P
(

|Zn − µ| > ǫ
)

= P
(

|
1

n

n
∑

i=1

Zi − µ| >

ǫ
)

> P
(

|Z1 − µ| > ǫ
)

. Similar to the above, Theorem 1 provides econometric and statistical results that concern

efficiency, peakedness and monotone consistency properties of linear estimators for data from bounded populations.

For instance, Theorem 1 and Remark 3 imply the following result that shows that an increase in the sample size is

disadvantageous for inference if the sample mean is used to estimate the population center for data with truncated

extremely thick-tailed distributions. Let, again, X1, X2, ... be a sequence of i.i.d. r.v.’s distributions from the class

CS(r), r ∈ (0, 1). Further, let ǫ > 0 and let a >
(

E|X1|
r(n−1)

2H(ǫ)

)1/r

, where H(ǫ) = G(w̃n, ǫ) is defined in (11). Suppose

that Zi = µ+Yi(a), i = 1, ..., n, where, as before, Yi(a) = XiI(|Xi| ≤ a) denote the truncated versions of X ′
is. Then,

according to the results in Theorem 1 and Remark 3, the likelihood of making an error greater than ǫ in estimating

µ using the sample mean of the whole sample of n observations Zi is greater than that using only one datum Z1:

P
(

|Zn − µ| > ǫ
)

= P
(
∣

∣

∣

1

n

n
∑

i=1

Zi − µ
∣

∣

∣
> ǫ

)

> P
(

|Z1 − µ| > ǫ
)

.

Remark 8 Theorem 1 means that, for a specific loss probability q ∈ (0, 1/2), there exists a sufficiently large a such

that the value at risk V aRq

[

Yw(a)
]

of the return Yw(a) at level q is greater than the value at risk V aRq

[

Y1(a)
]

of the

return Y1(a) at the same level: V aRq

[

Yw(a)
]

> V aRq[Y1(a)]. On should emphasize that the last inequality between

the returns Yw(a) and Y1(a) holds for the particular fixed loss probability q and, in the comparisons of the values at

risks V aRq

[

Yw(a)
]

and V aRq[Y1(a)], the length of the interval needed for the reversals of the stylized facts on the

portfolio diversification depends on q (similar to the fact that in Theorem 1, the length of the distributional support

a depends on the value of the disaster level z). This is the crucial qualitative difference of the results in Theorem 1

for bounded distributions and their implications for the value at risk from those given by Theorem 1 and Remark 2

for unbounded risks where the inequalities hold for all z > 0 and all q ∈ (0, 1/2).

3.2 Non-diversification and general risk rankings

In this section we relate the VaR approach to the expected utility framework, both for unbounded and bounded

heavy-tailed risks. As noted in the introduction, with extremely heavy-tailed distributions, a direct expected utility

approach does not work as integrals may not be defined. In what follows, we argue that with natural generalizations

of the concepts of expected utility and risk, the same type of risk rankings can be applied for a wide class of

symmetric heavy-tailed distributions. It allows us to conclude that for such distributions, diversified portfolios are

dominated by undiversified ones from a stochastic dominance perspective. In other words, the monotone decrease

of the line D in Figure 1 holds from a general risk perspective.

We work with r.v.’s X and Y , with c.d.f.’s FX and FY respectively and, as before, denote their a-truncated

versions by Xa and Y a.20 The corresponding c.d.f.’s are denoted by F a
X and F a

Y . We will also denote their p.d.f.’s

by fX and fY . Following Ingersoll (1970), we define a simple mean preserving spread (MPS) of a c.d.f., F , with

20As we relate to the expected utility framework, we use the convention that negative valuers of X and Y are losses in this section.
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corresponding p.d.f., f , by adding to f a function ϕ(x) satisfying:

ϕ(x) =























α for c < x < c + t,
−α for c′ < x < c′ + t,
−β for d < x < d + t,
β for d′ < x < d′ + t,
0 elsewhere,

(12)

where α(c′ − c) = β(d′ − d), α > 0, β > 0, t > 0, c + t < c′ < d− t, and d + t < d′. If f(x) + ϕ(x) ≥ 0 for all x, then

the function G(x) = F (x) +
∫ x

−∞
ϕ(s)ds is a simple mean preserving spread of F . For any c.d.f., F , we define MF ,

the set of c.d.f.’s obtainable by a finite number of simple MPS’s on F .

We equip the space of distributions with the Lévy metric

d(FX , FY ) = inf{ǫ : FX(x − ǫ) − ǫ ≤ FY (x) ≤ FY (x + ǫ) + ǫ, for all x}. (13)

This makes it a complete metric space with the topology of weak convergence.21 For the MPS condition, we will use

the closure of MF , MF , and say that if G ∈ MF then G can be obtained by a sequence of MPS’s on F , or simply

that G is an MPS of F . We note that if ϕ(x) satisfies (12), then so does ϕ(−x) and cϕ(x) for any c > 0. It follows

that if X and Y are symmetric and Y ∈ MFX
then Y can be obtained from X by a finite sequence of pairs of simple

MPS’s, each pair being symmetric. Specifically, if fY (x) = fX(x) + ϕ(x), where ϕ =
∑N

i=1 ϕi, each ϕi satisfying

(12), then, clearly, fY (x) = fX(x) +
∑N

i=1

(

ϕi(x)/2 + ϕi(−x)/2
)

.

Rothschild and Stiglitz (1970) introduce four equivalent definitions of risk dominance, one of which is directly

related to expected utility theory. The following four conditions B1-B4 are equivalent for two r.v.’s X and Y with

bounded support in [−a, a] and c.d.f.’s FX and FY such that EX = EY ,22 defining a partial – second order stochastic

dominance – ordering over risks and their c.d.f.’s, X º Y and FX º FY .

• B1: FY can be obtained by a sequence of mean-preserving spreads (MPS) of FX .

• B2: For all t ∈ (a, b),

∫ t

a

FX(x)dx ≤

∫ t

a

FY (x)dx.

• B3: For all concave utility functions, u : [−a, a] → R: Eu(X) ≥ Eu(Y ).

• B4: Y
d
= X + U , where U is a r.v. on [−a, a] such that E(U |X) = 0.

Remark 9 There is an interesting link between these definitions and assets with option-like payout. Condition (B2)

(and, thus, any other of the above conditions) is equivalent to the following:

• B̃2: For all t ∈ (a, b), E(X − t)+ ≤ E(Y − t)+, where z+ = max(z, 0) for z ∈ R.

While condition B3 means that every risk averse prefers X to Y , the interpretation of condition B̃2 (with t > 0) is

that the expected payoff of an European call option with the strike price t written on the risk X is not greater than

that of the same contingent claim on the risk Y .23

21See Lukacs (1975).
22Equivalently,

R a
−a xdFX(x) =

R a
−a xdFY (x)).

23The reader is referred to de la Peña, Ibragimov and Jordan, 2004, and Ibragimov and Brown, 2005, for the discussion of comparisons
for c.d.f.’s of transforms of dependent r.v.’s and their relation to sharp bounds on the expected payoffs and fair prices of European call
options and other contingent claims on such risks.
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Next, following Birnbaum (1948), we define X to be more peaked about 0 than Y if P (|X| > x) ≤ P (|Y | > x) for

all x ≥ 0. The VaR results in Ibragimov (2004a, b, 2005) provided by Proposition 1 can also be cast in peakedness

terminology: For any r < 1 and all i.i.d. risks Xi ∼ CS(r), i = 1, ..., n, the r.v. X1 is more peaked about the origin

than the return Xw on the portfolio of Xi’s with weights w ∈ In such that w[1] 6= 1.

For symmetric distributions with finite absolute first moments and, in particular, for bounded symmetric distri-

butions, peakedness implies second order stochastic dominance, as the following Lemma 1 demonstrates. Let X and

Y be two symmetric risks with the same distribution support [−a, a] ⊆ R.24 In the case a = ∞, we assume that

E|X| < ∞ and E|Y | < ∞.

Lemma 1 Under the above assumptions, if X is more peaked about 0 than Y , then FX and FY satisfy condition

B2 (and, thus, in the bounded case conditions B1, B̃2, B3 and B4).

Proof. For t ∈ [−a, a], denote G(t) =

∫ t

−a

(

FX(s) − FY (s)
)

ds. We have that G(−a) = 0 and G(a) =

∫ a

−a

(

FX(s) −

FY (s)
)

ds = 0 by symmetry of X and Y . In addition, peakedness comparisons for X and Y imply that G′(t) =

FX(t)−FY (t) ≤ 0 for t ∈ [−a, 0] and G′(t) ≥ 0 for t ∈ [0, a]. The above properties of the function G evidently imply

that G(t) ≤ G(−a) = 0 for t ∈ [−a, 0] and G(t) ≤ G(a) = 0 for t ∈ [0, a]. Consequently, B2 indeed holds. ¥

Thus, for symmetric r.v.’s with finite first absolute moments and, thus, for symmetric bounded r.v.’s, peakedness

provides a ranking of risks that is at least as informative as second order stochastic dominance.

Remark 10 Lemma 1 is related to several extremal results in probability theory that were demonstrated to be helpful

in obtaining sharp bounds on the tail probabilities of self-normalized statistics and developing conservative testing

procedures for dependent and/or heavy tailed observations (see de la Peña and Ibragimov, 2003) and can also be

used, similar to de la Peña, Ibragimov and Jordan, 2004, and Ibragimov and Brown, 2005, to obtain sharp estimates

for expected payoffs and fair prices of European options and other contingent claims. For example, from the results

obtained by Hunt (1955), it follows that for all continuous concave functions u : [−a, a] → R and all r.v.’s X

such that EX = 0 and |X| ≤ a, the following estimate holds: Eu(X) ≥ Eu(Y ), where Y is a r.v. with the

following distribution: P (Y = a) = P (Y = −a) = 1/2. This inequality means that condition B3 (and, thus,

each of the conditions B1, B2, B̃2 and B4) with the above r.v. Y holds for all r.v.’s X on [−a, a] under the

only assumption that EX = 0; condition B1, on the other hand, is trivially satisfied for the r.v.’s X and Y in

the present instance since, for all a ≥ x > 0, P (|X| > x) ≤ 1 = P (|Y | > x). Similar to Hunt’s argument,

the inequality Eu(X) ≥ Eu(Y ) can be proved as follows. Consider a r.v. Ỹ that has the following distribution

conditional on X: P
(

X̃ = −a
∣

∣X
)

= (a − X)/(2a) and P
(

X̃ = a
∣

∣X
)

= (X − a)/(2a). It is easy to see that

the unconditional distribution of X̃ is the same as that of Y because of the assumption EX = 0. In addition,

E(X̃|X) = X. Therefore, for any concave functions u : [−a, a] → R, by the conditional Jensen’s inequality,

Eu(Y ) = Eu(X̃) = E
[

E
(

u(X̃)|X
)]

≤ Eu
[

E
(

X̃|X
)

] = Eu(X). The above comparisons are easily generalized to the

case of r.v.’s X defined on an arbitrary interval [a, b]. Namely, using the argument similar to that above, one can

show, that for all r.v.’s X such that a ≤ X ≤ b (a.s.) and all concave functions u on [a, b], Eu(X) ≥ Eu(Y ), where

24The value of a can be infinity so that [−a, a] can be the whole real line: [−a, a] = R.
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Y is a two-valued r.v. with the following distribution: P (Y = a) = b−EY
b−a , P (Y = b) = EY −a

b−a .

We next turn to unbounded symmetric distributions for which the first absolute moments do not exist. Specif-

ically, we study extremely heavy-tailed symmetric distributions and without loss of generality, we assume that the

point of symmetry is the origin. We therefore look at the class of distributions CS(r), 0 < r < 1. Ideally, we

would like to generalize the equivalence of B1–B4 to distributions in CS(r) with r ∈ (0, 1). This would provide an

unambiguous risk ranking. However, as is usually the case, the picture becomes more complicated with unbounded

heavy-tailed risks.

It is evident that, given two symmetric r.v.’s X and Y on R, X is more peaked than Y if and only if, for any

a > 0, the truncated version Xa of X is more peaked than the truncated version Y a of Y . From Lemma 1 we get,

therefore, that if X is more peaked than Y , then, for any a > 0, the c.d.f.’s FXa and FY a of the truncated versions

Xa and Y a of the r.v.’s satisfy conditions B1, B2, B̃2, B3 and B4.

Below, for a r.v. W , we denote by σ(W ) the σ−algebra spanned by it. In addition, P (·|W ) denotes the

σ(W )−conditional probabilities. Given two symmetric r.v.’s X and Y with c.d.f.’s FX and FY , we consider the

following conditions.

• B0’: FX is more peaked about the origin than FY (Peakedness condition).

• B1’: FY ∈ MFX
(MPS condition).

• B2’: There is an a0 such that for all a > a0: F a
X and F a

Y satisfies B2 (Strong integral condition).

• B2”: For all ǫ > 0, there exists a > 0 and a c.d.f. F̃ ǫ : [−a, a] → [0, 1], such that

1. For all t ∈ (−a, a):
∫ t

−a
F a

X(x)dx ≤
∫ t

−a
F̃ ǫ(x)dx.

2. F a
Y = F̃ ǫ + ξ + s, where ξ is an antisymmetric25 function satisfying

FY (x − ǫ) − FY (x) ≤ ξ(x) ≤ FY (x + ǫ) − FY (x), for all x (14)

and s is an antisymmetric function with
∣

∣

∣
s(x)

∣

∣

∣
≤ ǫ for (almost) all x.

3. If ǫ → 0, then a → ∞.

(Weak integral condition).26

• B3’: There is an a0 such that for all a > a0 for all concave u: Eu(Xa) ≥ Eu(Y a) (Expected utility condition).

• B4’: There is an a0 such that for all a > a0, Y a d
= Xa + Za, where Za is a σ(Xa)-measurable r.v. such that

E(Za|Xa) = 0 (a.s.) (Fair game condition).

25That is, f(−x) = −f(x) for all x.
26Clearly, (14) implies that |ξ(x)| ≤ 1 (a.s.) and

R t
−a ξ(x)dx ≤ ǫ for all t. Thus, the weak integral condition allows for “approximate”

MPS’s on bounded sets in the sense that F a
Y is the sum of an MPS (F ǫ), a term which is “small” in integration (ξ) and a term which

is small in maximum norm (s). Moreover, if FX and FY are absolute continuous, then one can choose ξ = 0. This is the case as
|FY (x + ν) − FY (x)| ≤ C|ν| for all |ν| and therefore the condition will be satisfied with ξ = 0 and |s(x)| ≤ ǫ̃ = (C + 1)ǫ.
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• B4”: Y
d
= sign(Y )

[

|X|+Z
] d

= X+sign(X)Z, where Z ≥ 0 (a.s.) (Conditional absolute symmetry condition).27

We show that the conditions are related as in Figure 2, i.e.,

Theorem 2 For distributions symmetric about the origin: 1. B0’ is equivalent to B4”, 2. B0’ implies B2’, 3. B2’

is equivalent to B3’ and B4’ 4. B2’ implies B2” and 5. B1’ is equivalent to B2”.

Proof.

1. B0’ ⇐⇒ B4”: Let F|X|(t) and F|Y |(t), t ≥ 0, denote the c.d.f.’s of the r.v.’s |X| and |Y | and let, as

usual, F−1
|X|(u) and F−1

|Y |(u), u ∈ [0, 1] stand for their right continuous inverses: F−1
|X|(u) = sup{x : F|X|(x) ≤ u}

and F−1
|Y |(u) = sup{x : F|Y |(x) ≤ u}. The r.v. F|X|[|X|] has the uniform distribution on [0, 1] and, therefore,

|Y |
d
= F−1

|Y |

[

F|X|(|X|)
]

.

Suppose that B0’ holds. Then, as is not difficult to see, F−1
|Y |(t) ≥ F−1

|X|(t) for all t ≥ 0. Consequently, the

σ(|X|)−measurable r.v. Z defined by Z = F−1
|Y |

[

F|X|(|X|)
]

−F−1
|X|

[

F|X|(|X|)
]

= F−1
|Y |

[

F|X|(|X|)
]

−|X| is a.s. nonneg-

ative: P
(

Z ≥ 0
)

= 1. We have that |Y |
d
= |X|+Z and, thus, Y

d
= sign(Y )|X|+sign(Y )Z. Since, evidently, sign(Y )

and sign(X) are symmetric Bernoulli r.v.’s independent of |X|, this implies that Y
d
= sign(X)|X| + sign(X)Z =

X + sign(X)Z, that is, B4” is satisfied.

Suppose now that B4” holds. Then, evidently, for all x ≥ 0, P
(

|Y | > x
)

= P
(

|X| + Z > x
)

≥ P
(

|X| > x
)

, that

is, X is more peaked than Y and B0’ is satisfied.

2. B0’ =⇒ B2’: Clearly, for symmetric unbounded r.v.’s, if X is more peaked about 0 than Y , then Xa is more

peaked about 0 than Y a for all a ≥ 0. This, together with Lemma 1 implies that B2’ is satisfied.

3. The equivalence follows from Rothschild and Stiglitz (1970). Clearly, the same a0 can be used to satisfy both

B2’, B3’ and B4’.

4. B2’ =⇒ B2” is immediate, as for any ǫ > 0 and a > a0, the condition is satisfied with ξ = s = 0 and F̃ ǫ = F a
Y .

5i. B1’ =⇒ B2”: If FY ∈ MFX
, then for any ǫ > 0, we can choose a finite sequence of MPS’s to obtain

F ǫ ∈ MFX
, which is in an ǫ-neighborhood of FY , i.e., d(F ǫ, FY ) ≤ ǫ. Without loss of generality, we can assume that

F ǫ is symmetric for all ǫ. This follows from our previous symmetrization discussion, i.e., for any nonsymmetric MPS,

ϕǫ(x), we can define ϕ̃ǫ(x) = ϕǫ(x)/2 + ϕǫ(−x)/2. As convex summation and reflection (of p.d.f.’s) are continuous

operators on distributions in the Lévy metric, this ensures that ϕ̃ǫ converges to ϕǫ as ǫ approaches zero. Thus, by

defining F ǫ(x) = FX(x) + ϕ̃ǫ(x), we get a sequence of symmetric distributions in MFX
converging to FY .

As the MPS is in MFX
, the support of FX −F ǫ is bounded and we can define a = max{max supp ϕ̃ǫ, 1/ǫ} < ∞,

where max supp ϕ̃ǫ is the length of the support of ϕ̃ǫ.

27For condition B4”, we restrict our attention to absolutely continuous distributions. However, complete analogues of the results below
hold as well in the discrete case.
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We have
∫ t

−a

(F a
X(x) − F a

Y (x))dx =

∫ t

−a

(F a
X(x) − F ǫ(x))dx +

∫ t

−a

(F ǫ(x) − F a
Y (x))dx. (15)

From the definition of the Lévy metric, we have d(F ǫ, F a
Y ) ≤ d(F ǫ, FY ) ≤ ǫ, so

F a
Y (x − ǫ) − ǫ ≤ F ǫ(x) ≤ F a

Y (x + ǫ) + ǫ =⇒

F ǫ(x) − F a
Y (x) ∈

[

F a
Y (x − ǫ) − F a

Y (x) − ǫ, F a
Y (x + ǫ) − F a

Y (x) + ǫ
]

=⇒

F ǫ(x) − F a
Y (x) = F a

Y (x + η(x)) − F a
Y (x) − s(x), (a.s.),

where η(x) ∈ [−ǫ, ǫ] and s(x) ∈ [−ǫ, ǫ]. Furthermore, η and s are antisymmetric from the symmetry of F a
Y and F ǫ.

Therefore, by defining the antisymmetric function ξ(x) = F a
Y (x) − F a

Y (x + η(x)) we get

F a
Y (x) = F ǫ(x) + ξ(x) + s(x). (16)

5ii. B2” =⇒ B1’: The integral condition implies that F ǫ ∈ MF a
X

. We define F̃ ǫ = FX + F ǫ − F a
X . Clearly,

F̃ ǫ ∈ MFX
. By the triangle inequality, we have

d(F̃ ǫ, FY ) ≤ d(F̃ ǫ, F ǫ) + d(F ǫ, F a
Y ) + d(F a

Y , FY ). (17)

For the third term on the RHS, we have lima→∞ dK(F a
Y , FY ) = 0, where dK(F, G) denotes the Kolmogorov distance,

dK(F, G) = supx |F (x) − G(x)|. Similarly, for the first term dK(F̃ ǫ, F ǫ) = dK(FX , F a
X), which converges to zero

when ǫ approaches zero. As the Kolmogorov topology is stronger than the Lévy topology, this implies that the first

and third terms converge to zero.

Finally, for the second term, we have

F a
Y = F ǫ + ξ + s, (18)

where F a
Y (x)−F a

Y (x+ǫ) ≤ ξ(x) ≤ F a
Y (x)−F a

Y (x−ǫ), and −ǫ ≤ s ≤ ǫ. Therefore, F a
Y (x−ǫ)−ǫ ≤ F ǫ(x) ≤ F a

Y (x+ǫ)+ǫ

for all x, i.e., d(F ǫ, F a
Y ) ≤ ǫ.

We have shown that limǫ→0 d(F̃ ǫ, FY ) = 0 for a sequence F̃ ǫ ∈ MFX
and thus by completeness, FY ∈ MFX

. ¥

Remark 11 From condition B4’ it follows that Y
d
= X + H, where H is a σ(|X|)−conditionally symmetric r.v.:

P
(

H > t
∣

∣|X|) = P
(

H < −t
∣

∣|X|) for all t > 0. One should note that, in representation given by B4’ in the

above form, the σ(|X|)−conditionally symmetric summand H = sign(X)Z depends on X. From the results in

Birnbaum (1948) (see also Theorem 2.C.3 in Shaked and Shanthikumar, 1994, and the proof of Theorems 4.1-4.4 in

Ibragimov, 2004a) it follows that if the X and H are independent symmetric unimodal r.v.’s then X is less peaked

than Y = X + H. It is important to emphasize that, in general, the fact that

Y
d
= X + H, (19)

where X has a symmetric distribution and H is σ(|X|)−conditionally symmetric r.v., does not imply that Y is more

peaked than X, even in the case when X and Z are independent. The argument for this is similar to Birnbaum’s
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B0': Peakedness

B2': Strong integral     
       condition

B3': Expected utility    
       condition

B2'': Weak integral      
        condition

B1': MPS condition

Figure 2: Relationship between risk rankings for unbounded symmetric distributions.

(1948) example (see also example 7.1 in Dharmadhikari and Joag-Dev, 1988) that shows that unimodality cannot

be completely dispensed for peakedness comparisons to be preserved under convolutions of symmetric distributions.

Indeed, suppose that X is a symmetric Bernoulli r.v.: P (X = 1) = P (X = −1) = 1/2 and let H be an independent

of X r.v. with a uniform distribution on [−1, 1]. It is easy to see that the r.v. X + H has a uniform distribution on

[−2, 2] and, thus P (|X + H| > x) > P (|X| > x) = 0 for all x > 1, while P (|X + H| > x) < P (|X| > x) = 1 for all

0 ≤ x < 1. That is, the r.v.’s X and X + H are not ordered by peakedness. Since the r.v. X can be approximated

by an absolutely continuous r.v. with a U−shaped density, representation (19) does not imply B0′ in the continuous

case as well.

For portfolios of risks in CS(r), an undiversified portfolio is more peaked about the origin than any diversified

portfolio. Thus, an undiversified portfolio also any dominates diversified portfolios in the sense of B1’, B2’, B2”, B3’,

B4’ and B4”. Therefore the results in Ibragimov (2004a, b, 2005), on diversification always being non preferable,

also are true in each of these senses. This concludes our analysis of the limits of diversification for unbounded

heavy-tailed risks.

We next compare the VaR results for bounded distributions with the traditional results on diversification. The

results in the previous section show that diversification is suboptimal for a large class of distributions with bounded

support when value at risk is used as portfolio benchmark measure. This is contrary to the standard view that

diversification is always to be preferred. For the case with unbounded risks it can be attributed to the non-existing

moments of distributions in CS(r). However, the distributions in Theorem 1 have bounded (but large) support and

finite moments of all orders exist. We therefore analyze what drives the differences compared with the traditional

results on diversification.

There are two main motivations for diversification in traditional portfolio theory. The first approach uses the

law of large numbers (LLN). The second approach uses expected utility/stochastic dominance.28 For the first

28We view Markowitz’ (1952) mean-variance approach as a special case of the latter.
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approach, the law of large numbers implies that, for all ǫ, ǫ1 > 0, P
(
∣

∣

∣
Zn − µ

∣

∣

∣
> ǫ

)

= P
(
∣

∣

∣

P

n
i=1 Zi

n − µ
∣

∣

∣
> ǫ

)

< ǫ1

if n > N(ǫ1) > 0 and the risks Z1, Z2, ... are i.i.d. r.v.’s with EZ1 = µ, and Zn = n−1
∑n

i=1 Zi. Thus, as n

becomes large, all risk disappears and the diversified portfolio will be preferred. This type of argument has strong

asset pricing implications, as shown in the celebrated arbitrage pricing theory (Ross 1976), which analyzes the case

when n becomes unbounded. Our approach differs from the LLN approach, in that we asymptotically increase the

distributional support, a, as the number of assets, n, increases. This leads to the break-down of the rule. Practically

speaking, we assume that the effective distributional support of Zi is relatively large compared to the number of

assets where large is defined by equation (4).

The second motivation for diversification is based on expected utility. Samuelson (1967) showed that any investor

with a strictly concave utility function will uniformly diversify among i.i.d. risks with finite second moments, i.e.,

will choose the portfolio with equal weights and the return Zn among all portfolios. As our previous discussion

shows, this breaks down for unbounded extremely heavy-tailed distributions, but it must hold in all situations with

bounded support. In light of condition B3, the result in Samuelson (1967) implies that Zn second order stochastically

dominates the distributions of all other portfolios.

Why does the expected utility approach favor diversification for any a, even though, as follows from Theorem 1

and Remark 8, for a specific loss probability, q ∈ (0, 1/2), a can always be chosen large enough so that the diversified

portfolio has higher value at risk than the undiversified portfolio: V aRq(Y n(a)) > V aRq(Y1(a))? The reason is that

regardless of a, there will always be a region further out in the probability tail where the inequality is reversed: for

some q̃ >> q, V aRq̃(Y n(a)) < V aRq̃(Y1(a)). This is contrary to the case when a = ∞ in which no such reversal

takes place. The argument is illustrated in Figure 3. The concavity of the utility function over the whole real line

then implies that diversification is always preferred. Specifically, the concavity of the utility implies that the impact

in the tail beyond q̃ will be higher that the impact between q and q̃. Thus, the expected utility argument in favor

of diversification with truncated heavy-tailed distributions depends fundamentally on the behavior of the utility

function in the domain of extreme negative outcomes. Therefore, under the assumption of strict risk aversion for

arbitrary large negative outcomes, the VaR measure is “wrong” regardless of the distributional support, a.

However, there are several situations where assuming concavity over all outcomes may be a stretch. First,

experimental results leading to Prospect theory have shown that decision makers’ utility functions may be convex

in the domain of losses (Kahneman and Tversky, 1979). Second, limited liability introduces an option-like payoff

structure, as do several agency problems (see e.g. Stiglitz, 1974, Jensen and Meckling, 1976, Stiglitz and Weiss, 1981,

and Gollier, Koehl and Rochet, 2001). This may lead to the expected utility function being effectively convex, with

respect to the original distribution. Thus, any of these effects make the assumption on strict concavity of expected

utility over the whole real line implausible. In situations where concavity may only be assumed over a bounded

domain of outcomes arguments based on asymptotes of the utility function are as dubious as arguments based on

asymptotic behavior of the tails of probability distributions.

We formalize this argument by showing that as long as there is a point arbitrarily far out in the domain of negative
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A.

B.

a-a

Figure 3: Differences between untruncated (A) and Truncated (B) distributions. For untruncated, only one crossing on each
side of origin. For truncated, (at least) two crossings. Solid lines represent undiversified risk, and dotted line diversified risk.

outcomes beyond which the utility is convex, increasing and bounded, there is an expected utility specification for

which the nondiversification result continues to hold, in line with Theorem 1. We use the following notation. An

increasing, strictly concave function: u : R → R will be called admissible. For any t > 0, a continuous function

v : R → R is called a t-convex regularization of an admissible function u, if v(x) = u(x) for x ≥ −t, v is increasing

and twice continuously differentiable on (−∞,−t), and u(−t) − lims→∞ v(−s) ≤ 1/t. For a large t, a t-convex

regularization is thus a way of introducing a region of convexity far out in the negative domain of the utility

function, while keeping the assumption of strictly positive marginal utility. There are of course many ways to create

a t-convex regularization of any admissible function.

As in the previous section, for r < 1, and n i.i.d. risks, Xi ∼ CS(r), we consider the truncated r.v.’s Yi(a),

i = 1, . . . , n and the diversified portfolio with equal weights w̃n =
(

1
n , 1

n , ..., 1
n

)

and the return Y n(a) =
1

n

n
∑

i=1

Yi(a).

We have

Theorem 3 Let n ≥ 2. Then there exists a t0, such that for any t ≥ t0, there is an admissible utility function u,

and a > 0, such that any investor with utility function, v, where v is a t-convex regularization of u, will have

Ev
(

Y1(a)
)

> Ev
(

Y n(a)
)

. (20)

Proof. From Theorem 1, we know that for any t > 0, we can choose an a such that

FY1(a)(−t) < FY n(a)(−t).
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We have

∫ −t

−∞

−t dFY1(a)(x) +

∫ ∞

−t

x dFY1(a)(x) =

∫ −t

−∞

−t dFY n(a)(x) +

∫ ∞

−t

x dFY n(a)(x) − s, s > 0.29 (21)

That s > 0 follows from Rothschild and Stiglitz (1970) and that Y1(a) is a mean preserving spread of Y n(a).

Specifically, the integral takes the form
∫

QdF , where Q(x) = (x + t)+ − t is convex and therefore −Q is concave.

For a specific a, we can clearly choose an admissible utility function u, such that

∣

∣

∣

∫ ∞

−t

u(x)dFY1(a)(x) −

∫ ∞

−t

xdFY1(a)(x)
∣

∣

∣
≤

s

6
,

∣

∣

∣

∫ ∞

−t

u(x)dFY n(a)(x) −

∫ ∞

−t

xdFY n(a)(x)
∣

∣

∣
≤

s

6
, (22)

and, for t large enough

∣

∣

∣

∫ −t

−∞

v(x)dFY1(a)(x) −

∫ −t

−∞

−tdFY1(a)(x)
∣

∣

∣
≤

s

6
,

∣

∣

∣

∫ −t

−∞

v(x)dFY n(a)(x) −

∫ −t

−∞

−tdFY n(a)(x)
∣

∣

∣
≤

s

6
.

We, therefore, have

∫ ∞

∞

v(x)[dFY1(a)(x) − dFY n(a)(x)] =

∫ ∞

−∞

(Q(x) + v(x) − Q(x))[dFY1(a)(x) − dFY n(a)(x)] =

s +

∫ −t

−∞

(v(x) − (−t))[dFY1(a)(x) − dFY n(a)(x)] +

∫ ∞

−t

(u(x) − x)[dFY1(a)(x) − dFY n(a)(x)] ≥

≥ s −
∣

∣

∣

∫ −t

−∞

(v(x) − (−t))dFY1(a)(x)
∣

∣

∣
−

∣

∣

∣

∫ −t

−∞

(v(x) − (−t))dFY n(a)(x)
∣

∣

∣
−

∣

∣

∣

∫ ∞

−t

(u(x) − x)dFY1(a)(x)
∣

∣

∣
−

∣

∣

∣

∫ ∞

−t

(u(x) − x)dFY n(a)(x)
∣

∣

∣
≥

s − 4
s

6
=

s

3
.

Altogether, this implies that

Ev(Y1(a)) ≥ Ev(Y n(a)) +
s

3
(23)

and as s > 0, we are through. ¥

In light of this discussion, it is clear that in situations with many assets, or when we can assume that investors’

utilities are strictly concave in the whole (efficient) support of distributional outcomes, we expect classical diversi-

fication results to hold whenever risks are bounded. However, in situations when the number of risks is not large

compared with the number of assets, as defined in Theorem 1 and if utility is non-concave for large negative outcomes,

then nondiversification may be optimal even with bounded risks.

3.3 When not to diversify

In this section, we further study the implications of Theorem 1, by analyzing under which conditions it will not be

optimal to diversify. To calculate bounds from (4), we need bounds on E|X|r, G(ω, z), and for uniformly diversified

portfolios, on Fn(z).

29Note that, due to the boundedness of the risks Yi(a), the integrals (that is, the means of the r.v.’s Y1(a) and Y n(a)) exist, as opposed
to the corresponding integrals involving the risks X1 and Xn (that is, the first moments of the r.v.’s X1 and Xn).
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We assume i.i.d. risks X1, X2, ..., Xn in Sα(σ, β, 0) with α ∈ (r, 1), β ∈ [−1, 1] and σ > 0.30 From Zolotarev

(1986, Property 2.5, p. 63), we have that, for X ∈ Sα(σ, β, 0), r < α < 1,

E|X − med(X)|r ≤ 22+r/ασrΓ
(

1 −
r

α

)

Γ(r) sin
(π

2
r
)

, (24)

where med(X) denotes the median of X and Γ(x) =

∫ ∞

0

e−ttx−1dt is the Gamma function. Furthermore, according

to Theorem 2.4.2 in Zolotarev (1986), if α ∈ (0, 1), then, using the notation Qα,β,σ(x) for P (X > x),

Qα,β,σ(x) =
1

απ

∞
∑

k=1

(−1)k−1 Γ(kα + 1)

kΓ(k + 1)
sin

(kπα(1 + β)

2

)σkα

xkα
, (25)

x > 0.

We use the fact that, by (2),

P
(

w(1)X1 + w(2)X2 > z
)

= P
(

X1 >
z

[

(w(1))α + (w(2))α
]1/α

)

,

and more generally (for arbitrary nonnegative vectors summing to one, w)

P
(

n
∑

i=1

wiXi > z
)

= Qα,β,σ

(

z/
•

‖w‖α

)

,

where
•

‖w‖α=
(

∑n
i=1(wi)

α
)1/α

. Specifically, 1/
•

‖w̃n‖α= n1−1/α. Therefore, we have:

G(w, z) = Qα,β,σ

(

z
[

(w(1))α + (w(2))α
]1/α

)

− Qα,β,σ(z) and Fn(z) = Qα,β,σ

(

zn1−1/α
)

− Qα,β,σ

(

z
)

, (26)

where Qα,β,σ is defined in (25).

Remark 12 If we wish to introduce a time dimension, we can define the T -scaling operator: ΛT : x 7→ Tx. The

well-known “T 1/2” rule for Brownian processes, W , implies that W ◦ ΛT
d
= T 1/2 × W . For processes in Sα(σ, 0, 0),

this generalizes to the “T 1/α” rule (see, e.g. Mandelbrot 1997), i.e., for X : R+ → R, a stable stochastic process

with X(1) ∼ Sα(σ, 0, 0), we have X ◦ ΛT
d
= T 1/α × X. Thus, for such processes properties scale-up faster over time

than for Brownian processes. With this T 1/α scaling in mind, for X1, . . . , Xn stable processes Xi : R+ → R and

Xi(t) ∈ Sα(t1/ασ, 0, 0), we can define the truncated processes Xa
i (T ) = Xi(T ), if |Xi(T )| ≤ aT 1/α, Xa

i (T ) = aT 1/α if

Xi > aT 1/α and Xa
i (T ) = −aT 1/α if Xi < −aT 1/α. With these definitions, it is clear that σ changes to (T2/T1)

1/ασ

in equations (24)-(26) when going from time-scale T1, to time-scale T2.

We first study the symmetric case, i.e., the case when β = 0. For simplicity, we begin with the case when there

are two assets, n = 2, and study how a depends on w(1) (and w(2) = 1−w(1)). In this case, the analogue of equation

(24) is (see the argument for Property 2.5 in Zolotarev, 1986)

E|X|r ≤ 2σrΓ
(

1 −
r

α

)

Γ(r) sin
(π

2
r
)

. (27)

30For notational convenience, we restrict ourselves to the case with the location parameter µ = 0. All results are trivially extended to
the general case by the translation Xµ = X + µ, leading to med(Xµ) = med(X) + µ, P (Xµ > z) = P (X > z − µ), etc.
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Furthermore, the asymptotic expansion (25) implies the following bounds for the tail of Qα,0,σ:

1

απ
Γ(α + 1) sin

(πα

2

)σα

xα
−

1

απ

Γ(2α + 1)

4
sin(πα)

σ2α

x2α
< Qα,0,σ(x) <

1

απ
Γ(α + 1) sin

(πα

2

)σα

xα
. (28)

Using (28) for G(w, z), we get

G(w, z) >
1

απ
Γ(α + 1) sin

(πα

2

)σα

zα

(

(w(1))α + (w(2))α − 1
)

−

1

απ

Γ(2α + 1)

4
sin(πα)

σ2α
[

(w(1))α + (w(2))α
]2

z2α
. (29)

Using bounds (4), (27) and (29) we get that Theorem 1 holds with the following easy to compute estimate for

the length of the distribution support:

ã =
zα/r(απ)1/rσ(r−α)/r

(

Γ
(

1 − r
α

)

Γ(r) sin
(

π
2 r

)

)1/r

(n − 1)1/r

[

Γ(α + 1) sin
(

πα
2

)(

(w(1))α + (w(2))α − 1
)

− Γ(2α+1)
4 sin(πα)

σα

(

(w(1))α+(w(2))α

)2

zα

]1/r
. (30)

Thus, ã as a function of w(1) provides a sufficient condition for diversification into (w1, w2) not being preferred to

holding one asset.

In Figure 4, we plot the relationship between ã and w(1) for different value at risk and σ = 1. We see that

the bound is fairly constant for w(1), except close to 1 (corresponding to an almost undiversified portfolio) where

it rapidly grows. We will therefore compare uniform diversification portfolios going forward. Also, clearly a larger

bound is needed for a smaller q (that is, for larger z = V aRq(X1)). This comes as no surprise, as a smaller q implies

that the VaR inequality must hold further out in the tail, which pushes a upward.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

0.5

1

1.5

2

2.5

3
x 10

7

w(1)

a

Figure 4: Relationship between distributional support, ã, and level of diversification, w(1), for VaR centiles q = 0.01 (below)
and q = 0.001 (above). Parameters: n = 2, σ = 1, β = 0.

We next generalize to arbitrary n ≥ 2, and σ, keeping β = 0 and fixing α = 0.85. We study when hold-

ing one risk dominates uniform diversification, i.e., we study a as a function of n, and q (where value at risk is
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z = V aRq(X1)) for (4) to be satisfied is satisfied for w̃n: a(n, V aRq(X1)). However, we normalize to A(n, q) =

a(n, V aRq(X1))/V aRq(X1), i.e., for a given percentile, q, the required a as a factor of the value at risk for the

untruncated distribution. This normalization is natural as, given the VaR chosen, it is the number of times this

level that is the worst possible outcome. The advantage of this normalization is that it is scale free: it holds for

arbitrary σ.31 We use the exact formulae in (24-26). For α = 0.85, the results are shown in Table 1. A general

n 2 5 8 11 14 17 20 23 26 29 32 35
q
0.1 2,288 4,404 6,371 8,279 10,158 12,018 13,868 15,710 17,549 19,385 21,221 23,056
0.05 2,226 4,222 6,056 7,821 09,547 11,248 12,933 14,604 16,267 17,922 19,572 21,218
0.02 2,419 4,560 6,516 8,394 10,225 12,027 13,807 15,571 17,322 19,064 20,799 22,526
0.01 2,672 5,028 7,179 9,240 11,251 13,226 15,178 17,111 19,030 20,938 22,837 24,728
0.005 2,934 5,517 7,874 10,133 12,335 14,499 16,636 18,752 20,853 22,941 25,019 27,088
0.025 3,254 6,118 8,730 11,232 13,671 16,068 18,435 20,779 23,106 25,418 27,719 30,010
0.001 3,691 6,938 9,899 12,736 15,500 18,217 20,899 23,556 26,192 28,813 31,420 34,017
0.0005 4,133 7,768 11,080 14,260 17,355 20,396 23,399 26,373 29,325 32,258 35,177 38,083

Table 1: Threshold for A = a/V aRq(X1), above which diversification is sub-optimal as a function of q and number of risks,
n. α = 0.85, β = 0.

conclusion is that the worst case scenario must be a lot worse than the V aR level chosen, for diversification being

inferior. For example, with a value at risk corresponding to q = 1%, the worst case scenario must be almost 2,700

times V aRq for diversification into 2 assets to be clearly inferior, and the factor increases almost linearly in the

number of assets. This might be taken as an indication that the types of limits of diversification discussed in this

paper only arises in quite extreme situations, even when distributional support is bounded. We caution against this

conclusion for two reasons. First, equation (4) only gives a sufficient condition for diversification to be suboptimal

and, in fact, uses rough bounds (Chebyshev’s inequality for the marginal distributions). The true A may therefore

be considerably smaller. Second, so far, we have for tractability only studied the strongest case for diversification,

namely the case with i.i.d. risks. According to the results presented in Section 4, diversification also breaks for a wide

range of bounded risks that exhibit dependence modelled by convolutions of α−symmetric distributions with α < 1,

in particular, for certain models with common shocks (see Remark 13). We conjecture, however that, comparing to

the independent case, the smallest length of distributional support required for diversification failure is considerably

smaller for these as well as for other types of dependence.

Finally, we generalize to the case β 6= 0. Equation (27) and the right-hand-side inequality in (28) implies the

following bound for the median med(X) of a r.v. X ∼ Sα(σ, β, 0):

|med(X)| ≤ 21/ασ
( 1

απ
Γ(α + 1) sin

(πα(1 + β)

2

))1/α

.

This and (24) imply that

E|X|r ≤ 2r/ασr
( 1

απ
Γ(α + 1) sin

(πα(1 + β)

2

))r/α

+ 22+r/ασrΓ
(

1 −
r

α

)

Γ(r) sin
(π

2
r
)

. (31)

31Therefore, it also holds for arbitrary time scales, T , according to our previous discussion.
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Similar to (29), we obtain that, in the general case of skewed stable distributions,

G(w, z) >
1

απ
Γ(α + 1) sin

(πα(1 + β)

2

)σα

zα

(

(w(1))α + (w(2))α − 1
)

−

1

απ

Γ(2α + 1)

4
sin

(

πα(1 + β)
)σ2α

[

(w(1))α + (w(2))α
]2

z2α
. (32)

Using bounds (31) and (32), from Remark 6 we obtain that, in the case of general skewed stable risks Xi ∼

Sα(σ, β, 0), Theorem 1 holds with the following easy to compute estimate for the length of the distribution support:

ã >
21/rzα/r(απ)1/rσ(r−α)/r

((

1
απ Γ(α + 1) sin

(

πα(1+β)
2

))r/α

+ 4Γ
(

1 − r
α

)

Γ(r) sin
(π(1+β)

2 r
)

)1/r

(n − 1)1/r

[

Γ(α + 1) sin
(

πα(1+β)
2

)(

(w(1))α + (w(2))α − 1
)

− Γ(2α+1)
4 sin

(

πα(1 + β)
)σα

(

(w(1))α+(w(2))α

)2

zα

]1/r
. (33)

The same type of analysis as for the case with β = 0 could now be carried out for general β’s. This concludes our

numerical treatment of the limits of diversification for bounded risks.

3.4 Potential implications for financial risks

In this section we briefly discuss two puzzling facts in markets for risky assets, for which the limits of diversification

may play a role. An in-depth analysis may be a topic for future research.

First, several facts for markets for catastrophe (re)-insurance may be explained by the limits of diversification:

For insurance companies, risk sharing and diversification can be achieved by selling and buying reinsurance in the

reinsurance market. Froot (2001) notes the puzzling fact that insurance companies seem to limit their reinsurance

and that their degree of reinsurance actually is decreasing in the size of the risk. This is contrary to the implications

in Froot, Scharsfstein and Stein (1993) that the largest risks should be reinsured first and most extensively.

An explanation is suggested by lines B-C in Figure 1. If there is a critical size of risks beyond which it is not

optimal to diversify, then insurance companies might choose to reinsure smaller risks (corresponding to either a

medium-large n on line B, or a large n on line C), whereas, larger risks (corresponding to small-medium n on line

C) will not be reinsured.

Second, limits of diversification might have implications for the so-called under-diversification puzzle: Traditional

asset pricing theory suggests that investors should invest in the market portfolio, i.e., hold a fraction in each asset

(Sharpe 1964, Lintner 1964, Merton 1973). Brennan (1975) noted that the presence of transaction costs leads to

less diversified portfolios being optimal. However, the portfolios held by investors seem to be much less diversified

than what would motivated by transaction costs (Blume and Friend (1975), Barber and Odean (2000)). This is the

under-diversification puzzle. The puzzle is further analyzed in Goetzmann and Kumar (2005).

Several explanations for the under-diversification puzzle have been suggested. Uppal and Wang (2001) and

more recently Klibanoff, Marinacci and Mukerji (2005) suggest that the presence of ambiguity averse investors

with non-expected utility preferences may lead to low diversification. Bounded rationality in the form of limited

information processing ability in combination with learning is suggested as an explanation in Van Nieuwerburgh and

Veldkamp (2004). Behavioral explanations for under-diversification have also been suggested. For example, Cao,
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Hirshleifer and Zhang (2004) suggest that preference for status quo driven by fear of the unfamiliar may lead to

under-diversification. Over-confident investors may choose to hold focused portfolios (Odean, 1999), as may investors

who suffer from narrow framing (Barberis, Huang and Thaler, 2003).

The analysis in this paper may suggest an additional explanation. From Theorem 1, we know that there are

distributions with bounded support for which diversification increases the probabilities of disaster up to a certain

number of stocks, n. Even if the number of stocks in the market is larger than n, transaction costs may bring this

number down. The number of stocks needed for diversification to be preferred may be so large that transaction

costs make such portfolios sub-optimal, even though it is not large enough in absence of transaction costs. The idea

is illustrated in Figure 5.
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Figure 5: Illustrative example: Diversification with bounded risks and transaction costs. Total cost increasing function in
number of stocks so it is optimal to hold focused portfolio.

4 Generalizations to dependence and non-identical distributions

As indicated in Subsection 1.3 in the introduction, the results obtained in this paper continue to hold for wide

classes of bounded dependent and non-identically distributed risks. More precisely, the results continue to hold

for convolutions of r.v.’s with joint truncated α−symmetric and spherical distributions and their non-identically

distributed versions as well as for a wide class of models with common shocks.

According to the definition introduced by Cambanis, Keener and Simons (1983), an n−dimensional distribution

is called α−symmetric if its characteristic function (c.f.) can be written as φ((
∑n

i=1 |ti|
α)1/α), where φ : R+ → R

is a continuous function (with φ(0) = 1) and α > 0. An important property of α−symmetric distributions is that,

similar to strictly stable laws, they satisfy property (2). The number α is called the index and the function φ is

called the c.f. generator of the α−symmetric distribution. The class of α−symmetric distributions contains, as a

subclass, spherical distributions corresponding to the case α = 2 (see Fang, Kotz and Ng, 1990, p. 184). Spherical

distributions, in turn, include such examples as Kotz type, multinormal, multivariate t and multivariate spherically
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symmetric α−stable distributions (Fang et. al., 1990, Ch. 3). Spherically symmetric stable distributions have

characteristic functions exp
[

− λ
(
∑n

i=1 t2i
)γ/2]

, 0 < γ ≤ 2, and are, thus, examples of α−symmetric distributions

with α = 2 and the c.f. generator φ(x) = exp(−xγ).

For any 0 < α ≤ 2, the class of α−symmetric distributions includes distributions of risks Q1, ..., Qn that have

the common factor representation

(Q1, ..., Qn) = (ZY1, ..., ZYn), (34)

where Yi ∼ Sα(σ, 0, 0) are i.i.d. symmetric stable r.v.’s with σ > 0 and the index of stability α and Z ≥ 0 is a

nonnegative r.v. independent of Y ′
i s (see Bretagnolle, Dacuhna-Castelle and Krivine, 1966, and Fang et. al., 1990,

p. 197). In the case Z = 1 (a.s.), model (34) represents vectors with i.i.d. symmetric stable components that

have c.f.’s exp
[

− λ
∑n

i=1 |ti|
α
]

which are particular cases of c.f.’s of α−symmetric distributions with the generator

φ(x) = exp(−λxα).

The dependence structures considered in this section include, among others, convolutions of models (34). That

is, the dependence structures cover vectors (X1, ..., Xn) which are sums of i.i.d. random vectors (ZjV1j , ..., ZjVnj),

j = 1, ..., k, where Vij ∼ Sαj
(σj , 0, 0), i = 1, ..., n, j = 1, ..., k, and Zj are positive absolutely continuous r.v.’s

independent of Vij :

(X1, ..., Xn) =

k
∑

j=1

(ZjV1j , ..., ZjVnj). (35)

Although the dependence structure in model (34) alone is restrictive, convolutions (35) of such vectors provide

a natural framework for modeling of random environments with different multiple common shocks Zj , such as

macroeconomic or political ones, that affect all risks Xi (see Andrews, 2003).

According to the results in Bretagnolle et. al. (1966) and Kuritsyn and Shestakov (1984), the function exp
(

−
(

|t1|
α + |t2|

α
)1/α)

is a c.f. of two α−symmetric r.v.’s for all α ≥ 1 (the generator of the function is φ(u) = exp(−u)).

Zastavnyi (1993) demonstrates that the class of more than two α−symmetric r.v.’s with α > 2 consists of degenerate

variables (so that their c.f. generator φ(u) = 1). For further review of properties and examples of α−symmetric

distributions the reader is referred to Fang et. al. (1990, Ch. 7) and Gneiting (1998).

Convolutions of α−symmetric distributions are symmetric and unimodal. These convolutions also exhibit

both heavy-tailedness in marginals and dependence among them. It is not difficult to show that convolutions

of α−symmetric distributions with α < 1 have extremely heavy-tailed marginals with infinite means.32 On the

other hand, convolutions of α−symmetric distributions with 1 < α ≤ 2, and, in particular, convolutions of models

(34) with 1 < α ≤ 2, can have marginals with power moments finite up to a certain positive order (or finite expo-

nential moments) depending on the choice of the r.v.’s Z. For instance, convolutions of models (34) with 1 < α < 2

and E|Z| < ∞ have finite means but infinite variances, however, marginals of such convolutions have infinite means

32This is true because if one assumes that r.v.’s X1, ..., Xn, n ≥ 2, have an α−symmetric distribution with α < 1 and that E|Xi| < ∞,
i = 1, ..., n, then, by the triangle inequality, E|X1 + ... + Xn| ≤ E|X1| + ... + E|Xn| = nE|X1|. The latter, however, cannot hold since,
according to (2), (X1 + ... + Xn) ∼ n1/αX1 and, thus, under the above assumptions, E|X1 + ... + Xn| > nE|X1|. Similarly, one can
show that α−symmetric distributions with α < r have infinite marginal moments of order r.
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if the r.v.’s Z satisfy E|Z| = ∞. Moments E|ZYi|
p, p > 0, of marginals in models (34) with α = 2 (that correspond

to Gaussian r.v.’s Yi) are finite if and only if E|Z|p < ∞. In particular, all marginal power moments in models (34)

with α = 2 are finite if E|Z|p < ∞ for all p > 0. Similarly, marginals of spherically symmetric (that is, 2-symmetric)

distributions range from extremely heavy-tailed to extreme lighted-tailed ones. For example, marginal moments of

spherically symmetric α−stable distributions with c.f.’s exp
[

− λ
(
∑n

i=1 t2i
)γ/2]

, 0 < γ < 2, are finite if and only if

their order is less than γ. Marginal moments of a multivariate t−distribution with k degrees of freedom which is a an

example of a spherical distribution are finite if and only the order of the moments is less than k. These distributions

provide one of now well-established approaches to modeling heavy-tailedness phenomena with moments up to some

order (see Praetz, 1972, Blattberg and Gonedes, 1974, and Glasserman et. al., 2002).

Using the argument similar to that in the proof of Theorem 1 and the results on the value at risk under heavy-

tailedness and dependence obtained in Ibragimov (2004a, b, 2005), we obtain the following Theorem 4 that provides

precise formulation of the extensions of the results in Subsection 3.1 to the dependent case. According to Theorem

4, the results provided by Theorem 1 for convolutions of truncated i.i.d. stable distributions with indices of stability

α < 1 continue to hold for convolutions of truncated α−symmetric distributions with α < 1 that have, as indicated

above, extremely thick-tailed marginals with infinite first moments. In particular, Theorem 1 continues to hold for

convolutions of truncated analogues of models (34) with common shocks affecting all thick-tailed risks Yi with tail

indices α < 1.

Let Φ denote the class of c.f. generators φ such that φ(0) = 1, limt→∞ φ(t) = 0, and the function φ′(t) is concave.

Theorem 4 Theorem 1 continues to hold if any of the following is satisfied:

The vector of r.v.’s (X1, ..., Xn) entering its assumptions is a sum of i.i.d. random vectors (V1j , ..., Vnj), j =

1, ..., k, where (V1j , ..., Vnj) has an absolutely continuous α−symmetric distribution with the c.f. generator φj ∈ Φ

and the index αj ∈ (0, 1);

The vector of r.v.’s entering the assumptions of the results is a sum of i.i.d. random vectors (ZjV1j , ..., ZjVnj),

j = 1, ..., k, where Vij ∼ Sαj
(σj , 0, 0), i = 1, ..., n, j = 1, ..., k, with σj > 0 and αj ∈ (0, 1) and Zj are positive

absolutely continuous r.v.’s independent of Vij .

Proof. Theorem 4 can be derived similar to the proof of Theorem 1 using the fact that, according to the results

in Ibragimov (2004a, b, 2005), Proposition 1 continues to hold for vectors of r.v.’s (X1, ..., Xn) in its assumptions.

Remark 13 One should emphasize that the values of the interval length, a that lead to the breakdown of the stylized

facts on diversification for dependent risks considered in the present section are not greater than those in the case

of independence in Section 3. We conjecture, however, that the length of the distributional support required for

diversification failure in the case of dependence is, in fact, considerably smaller than that in the independent setting.

As for generalizations of the results in the paper to the case of non-identical distributions, the following conclusions

hold: Let σ1, ..., σn ≥ 0 be some scale parameters and let Xi ∼ Sα(σi, β, 0), α ∈ (0, 2], be independent non-identically
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distributed stable risks. Using the arguments in this paper together with the fact that, according to the results in

Ibragimov (2004a, b, 2005), Proposition 1 holds for risks X1, ..., Xn if σn ≥ ... ≥ σ1 ≥ 0, we obtain that Theorem 1

is valid under such assumptions.

5 Concluding remarks

We have analyzed the limits of diversification for bounded risks with heavy tails in their support. Our results

show that portfolio diversification may not be preferable for a wide class of such bounded risks. Also, value at risk

coherency may be violated for this class.

The key parameters for our analysis are the number of risks available, the thickness of the tails and the support

of the distributions. If the effective support is large compared with the number of risks, nondiversification may

be optimal. This demonstrates that “unpleasant” properties of the value at risk as a risk measure under heavy-

tailedness does not arise from the high likelihood of getting very large losses but rather from the fact that there are

too few securities available for diversification to work.

The theory can be related to the expected utility model. We show that if there is a point arbitrary far out in

the domain of losses beyond which the utility function is not concave, then nondiversification may be optimal also

from an expected utility perspective.

Our results suggest that the distributional assumption of unbounded heavy tails may be treated as an appropriate

approximation in some situations even though the distributional support may be bounded. In many real world

applications, distributions may be bounded, the expected utility specification of investor behavior only makes sense

over reasonable domains and the number of assets is finite. Which approximation is most appropriate must then

depend on the situation at hand.

Finally, the paper essentially accomplishes the unification of the analysis of robustness of value at risk models

to such important distributional phenomena as boundedness, dependence, skewness and the case of non-identical

marginals.

The analysis in this paper may help explain observed low diversification in markets where losses may be large.

We mention two examples: the low levels of reinsurance in markets for catastrophe reinsurance and the under-

diversification puzzle in stock markets. These may be topics for future research. ¥
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