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ABSTRACT

This paper focuses on the analysis of portfolio diversification for a wide class of nonlinear transformations

of heavy-tailed risks. We show that diversification of a portfolio of nonlinear transformations of thick-tailed

risks increases riskiness if expectations of these functions are infinite. In addition, coherency of the value at risk

measure is always violated for such portfolios. On the contrary, for nonlinearly transformed heavy-tailed risks

with finite expectations, the stylized fact that diversification is preferable continues to hold. Moreover, in the

latter setting, the value of risk is a coherent measure of risk. The framework of transformations of long-tailed

random variables includes many models with Pareto-type distributions that exhibit local, moderate and global

deviations from power tails in the form of additional slowly varying or exponential factors. This leads to a

refined understanding of under what distributional assumptions diversification increases riskiness.
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risk; coherent measures of risk; risk bounds; robustness; Pareto-type distributions; power laws; local, moderate
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1 Introduction

1.1 Background

In the recent four decades, we have witnessed rapid expansion of the study of heavy-tailedness and the extreme

outliers phenomena in economics and finance. Following Mandelbrot (1963) (see also the papers in Mandelbrot

1997, Fama 1965b), numerous studies have documented that time series encountered in many fields in economics

and finance are typically thick-tailed and have infinite moments of order p ≥ α for certain α > 0 (see the

discussion in Loretan & Phillips 1994, Meerschaert & Scheffler 2000, Gabaix et al. 2003, Ibragimov 2004a,b,

2005, Ibragimov & Walden 2006, and references therein).

In models involving a thick-tailed cdf F with infinite moments of order greater than or equal to α, it is

typically assumed that F has Pareto (power) tails:

F (x) =
c1 + o(1)

|x|α , x → −∞, (1)

1 − F (x) =
c2 + o(1)

xα
, x → +∞, (2)

or, more generally, that F is of Pareto-type, so that

F (x) =
c1 + o(1)

|x|α l(|x|), x → −∞, (3)

1 − F (x) =
c2 + o(1)

xα
l(x), x → +∞, (4)

where c1, c2 are some positive constants and l(x) is a slowly varying function at infinity:

l(λx)
l(x)

→ 1

as x → +∞ for all λ > 0. If a cdf F satisfies the Pareto-type law (3)-(4) with α ∈ (0, 2), then it belongs to the

domain of attraction of a stable distribution with the characteristic exponent α (stable distributions are those

that are closed under portfolio formation; see Section 2 for the definition and the review of the main properties

of stable distributions). This means that, for a sequence of i.i.d. r.v.’s Xt, t ≥ 1, with cdf’s F there exist

sequences of numbers at > 0, t ≥ 1, and bt ∈ R, t ≥ 1, such that the distributions of the sums

Zn =
1
an

n∑
t=1

Xt − bn (5)

weakly converge to a stable cdf G whose tails satisfy (1)-(2). If the tails of a cdf F satisfy the power law (3)-(4)

with α > 2, then F belongs to the domain of attraction of a normal distribution, that is, sums (5) converge

weakly to a Gaussian r.v. for some sequences at > 0, t ≥ 1, and bt ∈ R, t ≥ 1.

Mandelbrot (1963) presented evidence that historical daily changes of cotton prices have the tail index

α ≈ 1.7, and thus have infinite variances. As discussed in, e.g., Ibragimov (2004a,b, 2005), subsequent research
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reported the following estimates of the tail parameter α for returns on various stocks and stock indices: 3 < α < 5

(Jansen & de Vries 1991), 2 < α < 4 (Loretan & Phillips 1994), 1.5 < α < 2 (McCulloch 1996, 1997), 0.9 < α < 2

(Rachev & Mittnik 2000).

Recent studies (see Gabaix et al. 2003, and references therein) have found that the returns on many stocks

and stock indices have the tail exponent α ≈ 3, while the distributions of trading volume and the number of

trades in financial markets have the tail indices α ≈ 1.5 and α ≈ 3.4, respectively. As discussed in Gabaix

et al. (2003), these estimates of the tail indices α are robust to different types and sizes of financial markets,

market trends and are similar for different countries. Motivated by these empirical findings, Gabaix et al. (2003)

proposed a model that demonstrated that the above values of the tail indices for stock returns, trading volume

and the number of trades are explained by trading of large market participants, namely, the largest mutual funds

whose sizes have the tail exponent α ≈ 1. Tail indices of α ≈ 1 (Zipf laws) have also been found for firm sizes

(Axtell 2001) and city sizes (see Gabaix 1999a,b, for the discussion and explanations of the Zipf law for cities).

Moreover, according to the results obtained by Schwarz (2000), distributions exhibiting Pareto-type behavior

(3)-(4) with α = 1 arise naturally as posteriors in several problems of decision making under uncertainty (see

Theorem 5.3 in Schwarz 2000).

De Vany & Walls (2004) showed that stable distributions with tail indices 1 < α < 2 that obey (1)-(2)

provide a good model for distributions of profits in motion pictures. Moreover, some studies have indicated

that the tail exponent is close to one or is slightly less than one for such financial time series as Bulgarian

lev/US dollar exchange spot rates and increments of the market time process for Deutsche Bank price record

(see Rachev & Mittnik 2000). Furthermore, Scherer et al. (2000) and Silverberg & Verspagen (2004) reported

the tail indices α to be considerably less than one for profit outcomes from technological innovations.

Recently, Ibragimov (2004a,b, 2005) developed a unified approach to the analysis of value at risk (VaR) theory

and other economic models under heavy-tailedness using new majorization theory for linear combinations of

thick-tailed random variables (r.v.’s). Generalizing the results on portfolio choice in the stable framework and

riskiness analysis for uniform portfolios of stable risks (see Fama 1965a, Samuelson 1967, Ross 1976), Ibragimov

(2004a,b, 2005) showed, in particular, that the stylized fact of portfolio diversification being preferable is reversed

for riskiness comparisons of portfolios with arbitrary weights for a wide class of extremely thick-tailed risks

whose cdf’s F satisfy power law (1)-(2) with α < 1 and thus have infinite first moments. Specifically, for such

distributions, the VaR is strictly increasing in the degree of diversification (see Proposition 4 in the present

paper). According to the results in Ibragimov (2004a,b, 2005), the stylized facts on portfolio diversification are

robust to heavy-tailedness of risks or returns, as long as their cdf’s are not extremely thick-tailed. They continue

to hold for distributions that satisfy relations (1)-(2) with α > 1 (and thus have finite means). Ibragimov &

Walden (2006) demonstrated, among other results, that the above VaR results hold as well for a wide class of

bounded risks concentrated on a sufficiently large interval.2

2More specifically, according to the results in Ibragimov (2004a,b, 2005), the stylized facts on diversification being preferable (as
well as the properties of many economic models) are reversed for convolutions of α−symmetric distributions with α < 1. These styl-
ized facts, however, continue to hold for convolutions of α−symmetric distributions with α > 1. The results in Ibragimov & Walden
(2006) cover, among others, truncated versions of convolutions of α−symmetric densities. Convolutions of α−symmetric distribu-
tions provide a natural framework for modeling distributions that exhibit both heavy-tailedness in marginals and dependence among
them. An n−dimensional distribution is called α−symmetric if its characteristic function can be written as φ((

Pn
i=1 |ti|α)1/α),

where φ is a continuous function and α > 0. The class of α−symmetric distributions is very wide and includes, in particular, i.i.d.
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Value at risk and the closely related safety first principle provide natural alternatives to the traditional

expected utility approach in the presence of thick-tailedness. For heavy-tailed distributions the expected utility

framework is not readily available since it typically involves assumptions about the existence of moments for the

risks in consideration. The VaR and safety-first approaches to portfolio selection are thus, in many regards, the

only ones available in the presence of heavy-tailedness. Moreover, as noted in Ibragimov & Walden (2006), as

the results hold for arbitrary VaR levels, they also hold for natural generalizations of the concept of “riskiness”

to heavy-tailed distributions. The failure to reduce risk by diversifying, henceforth denoted the failure of

diversification, is thus genuine in this case. It is not a failure of VaR as a risk measure.

The fact that a number of economic and financial time series have tail exponents approximately equal to

(or even slightly less than) one is important in the context of the results obtained in Ibragimov (2004a,b, 2005):

As those works demonstrate, the value of the tail index α = 1 (that is, the existence of the first moment) is

exactly the critical boundary between robustness of implications of many economic models to heavy-tailedness

assumptions and their reversals. More precisely, the implications of most of the models are robust to thick-

tailedness assumptions with tail indices α > 1 and finite first moments, but the implications of the models are

reversed for extremely heavy-tailed distributions with α < 1 for which the first moments are infinite.

1.2 Objectives and key results

In this paper, we analyze portfolio diversification for nonlinear transformations of heavy-tailed risks, using the

framework of value at risk as a measure of portfolio riskiness. The main objective of the analysis is to further

understand under what distributional assumptions failure of diversification occurs. We refine the previous

analyses (of Ibragimov 2004a,b, 2005) in several ways. The concept of diversification of risk is fundamental to

finance. We therefore believe that the detailed analysis of when it fails provided in this paper is well-motivated.

Our first, and main, result is that diversification of a portfolio of nonlinear functions of thick-tailed risks

increases its riskiness if expectations of these functions are infinite (Theorem 2). In addition, coherency of

the value of risk is always violated in the world of such portfolios (Corollary 2). However, the stylized fact

that diversification is preferable continues to hold for nonlinearly transformed heavy-tailed risks with finite

expectations (Theorem 1). Furthermore, the value of risk is a coherent measure of risk in the latter setting

(Corollary 1).

The main results on nonlinear transformations of heavy-tailed r.v.’s provides a natural framework for mod-

eling distributions exhibiting deviations from power laws. We use this to obtain a second set of results. We

analyze deviations of the form (3)-(4) and also more general deviations (see Section 2). First, let us define

recursively the iterations of a logarithm by ln0(x) = x, lnk(x) = ln
[
lnk−1(x)

]
, k ≥ 1. Let m ≥ 0 and let

γ0 > 0, γ1, ..., γm ∈ R be some constants. The stochastic framework considered in the paper covers risks Y

stable distributions and spherical distributions corresponding to α = 2. Important examples of spherical distributions, in turn, are
given by Kotz type, multinormal and logistic distributions and multivariate stable laws. In addition, they include a subclass of mix-
tures of normal distributions as well as multivariate t−distributions that were used in a number of papers to model heavy-tailedness
phenomena with dependence and finite moments up to a certain order. Moreover, the class of α−symmetric distributions includes
a wide class of convolutions of models with common shocks affecting all heavy-tailed risks (such as macroeconomic or political ones,
see Andrews 2003).
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whose tails behave as

P
(
|Y | > x

)
� x−α/γ0

m∏
i=1

[
lni (x)

]αγi/γ0

=

x−α/γ0(ln x)αγ1/γ0(ln ln x)αγ2/γ0 ...(ln ln ... ln x)αγm/γ0 as x → ∞ (6)

(here and throughout the paper, g(x) � h(x) as x → ∞ denotes that there are constants, c and C such that

0 < c ≤ g(x)/h(x) ≤ C < ∞ for large x > 0). In particular, the choice γ0 = 1, γk = −1/α, γs = 0, 1 ≤ s ≤ m,

s 	= k produces deviations from power law (1)-(2) of the form

P
(
|Y | > x

)
� 1

xα lnk(x)
. (7)

The choice γ0 = 1, γk = 1/α, γs = 0, 1 ≤ s ≤ m, s 	= k corresponds to the deviations from power law (1)-(2) of

the form

P
(
|Y | > x

)
� lnk(x)

xα
. (8)

If α = 1, relations (7) and (8) correspond to deviations from the Zipf law (1)-(2) with α = 1 of the form

P
(
|Y | > x

)
� 1

x lnk(x)
; (9)

P
(
|Y | > x

)
� lnk(x)

x
. (10)

Reminiscent of the terminology in the time series unit root literature (see Phillips 1988, Ibragimov & Phillips

2004, Phillips & Magdalinos 2004), it is natural to refer to distributions whose tails satisfy one of relations

(6)-(8) as exhibiting “local” or “moderate” deviations from power laws. Similarly, it is natural to call the

departures from power tails with the index α = 1 in form (9) or (10) as “local” or “moderate” deviations from

the Zipf law. Next, let δ0, δ1, δ2 > 0. Nonlinear transformations of heavy-tailed risks considered in the paper

model the classes of r.v.’s Y whose tails behave as

P
(
|Y | > x

)
� x−α/δ0 exp

(
− (δ1α/δ0)xδ2/δ0

)
. (11)

It is natural to refer to distributions with the tail behavior in form (11) as exhibiting “global” deviations from

power laws.

The main results on nonlinear transformations of heavy-tailed risks imply Corollaries 3 and 4. These

corollaries concern portfolio diversification and robustness of economic models under “local”, “moderate” and

“global” deviations from power laws in forms (6)-(11): We sharpen the “robustness versus reversals” results

in Ibragimov (2004a,b, 2005), Ibragimov & Walden (2006) discussed in Subsection 1.1. We show that even

local or moderate deviations from the Zipf law or a Cauchy-type distribution (1)-(2) with the index α = 1 can

lead to reversals of properties of models in finance and economics. For instance, as we demonstrate, if such

models involve distributions whose tails are slightly thinner than those of Cauchy distributions and behave as

(9), then the properties of the models are similar to those under the standard assumptions of Gaussianity. In

particular, for risks with such distributions, the stylized facts on diversification being preferable continue to
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hold. More generally, the stylized facts on portfolio diversification continue to hold for portfolios of nonlinear

transformations of risks with the tail index α ≥ 1 whose distributions have tails satisfying (6) with γ0 < 1 or

with γ0 = 1, γ1 = 0, ...., γk−1 = 0, γk > 0 for some k ∈ {1, 2, ..., m} (see Corollary 3). Analogous conclusions

hold for distributions exhibiting “global” deviations from power laws (11).

If, however, the r.v.’s entering the models’ assumptions have tails (10) even slightly heavier than those of a

Cauchy distribution, with the iteration of a logarithm in the numerator, rather then in the denominator in (9),

then the properties of the models become completely the opposite to those under the “normal” assumptions.

In particular, our results show that, similar to the case of extremely heavy-tailed distributions in Ibragimov

(2004a,b, 2005), the stylized fact that portfolio diversification is always preferable is reversed for risks with tails

(10). Namely, in the case of risks with such “local to Cauchy” or “local to Zipf” distributions, diversification

of a portfolio always leads to an increase in riskiness of the portfolio’s return. The same diversification failure

also holds for portfolios of nonlinear functions of risks with α ≤ 1 whose distributions have tails satisfying (6)

with γ0 > 1 or with γ0 = 1, γ1 = 0, ...., γk−1 = 0, γk < 0 for some k ∈ {1, 2, ..., m} (see Corollary 4). These

results are thus a refinement of the boundary case, α = 1, where diversification reverses from being preferable

to being inferior, as shown shown in Figure 1.

α=1

α>1

α<1

Local
Deviations

Global
Deviations

Eq. (9)

Eq. (10)

Eq. (11)

Figure 1: Applications of theory to refining the case α = 1. With local deviations of the form (9) and global deviations
of the form (11), diversification is to be preferred. With local deviations of the form (10), diversification fails.

Our third contribution is to demonstrate that in the world of risks with distributions (9) and (11), the value

at risk satisfies the important condition of coherency. This is similar to the results in Ibragimov (2004a,b, 2005).

Corollary 3 shows that coherency of the value at risk measure holds for transformations of risks with α ≥ 1

that satisfy (6) with γ0 < 1 or with γ0 = 1, γ1 = 0, ...., γk−1 = 0, γk > 0 for some k ∈ {1, 2, ..., m}. However,

coherency of the value at risk is always violated if distributions of risks have local deviations from Cauchy

distributions (8). More generally, it is also violated for transformations of risks with α ≤ 1 whose distributions
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satisfy (6) with γ0 > 1 or with γ0 = 1, γ1 = 0, ...., γk−1 = 0, γk < 0 for some k ∈ {1, 2, ..., m} (Corollary 4).

Our fourth, and final contribution is an analysis of portfolio choice for chi-square distributions. Distributions

exhibiting “global” deviations from power laws in form (11) naturally appear in models involving power functions

and other transformations of normal r.v.’s. In particular, the choice δ0 = δ2 = 2α and δ1 = 1 in (11) produces

cdf’s F whose tails have the same rate of decline as those of chi-square distributions:

1 − F (x) � exp(−x/2)√
x

. (12)

Motivated by this property and using the results on extrema of cdf’s of quadratic forms in Gaussian r.v’s obtained

by Szekely & Bakirov (2003), we formulate several characterizations of the optimal safety-first portfolio choice

in the world of risks with chi-square distributions (Propositions 5 and 6). We show that the optimal safety-first

portfolio of chi-square risks is the one with equal weights for large values of the disaster levels z. The optimal

portfolio in such a setting is the one consisting of only one risk in the case of small values of the disaster levels.

However, in contrast to nonlinear transformations of heavy-tailed risks with symmetric densities, the optimal

portfolio choice consists of exactly two chi-square risks if the disaster level is moderate.

The results obtained in this paper further advance those in Ibragimov (2004a,b, 2005), Ibragimov & Walden

(2006) and illustrate the dangers in misidentification of the distributional tail behavior in many economic and

financial models. They further illustrate the dangers associated with the over- or underestimation of the tail

indices under heavy-tailedness. In addition, the results on non-coherency of the value at risk under extreme

thick-tailedness with infinite first moments obtained in Ibragimov (2004a,b, 2005) and in the present paper

emphasize the necessity in the development of coherent risk measures that are finite for wide classes of heavy-

tailed distributions.3

1.3 Organization of paper

The paper is organized as follows. Section 2 introduces classes of distributions we are dealing with throughout

the paper and discusses their main properties. Section 3 discusses how the stochastic framework proposed in the

paper incorporates deviations from power law distributions. Sections 4.1 and 4.2 present our main results about

value at risk and (non)coherency of portfolios of nonlinear transformations of heavy-tailed risks. Section 4.3

discusses implications of the results for “local”, “moderate” and “global” deviations from power laws of forms

(6)-(10) and (11). This leads to a refined understanding of under what distributional assumptions diversification

fails, and when coherency is violated. Section 4.4 discusses the results in the paper from a safety-first portfolio

choice perspective. Finally, Section 5 makes some concluding remarks. All proofs are left to the Appendix.
3One should note here that several recent papers (see, among others Acerbi & Tasche 2002, Tasche 2002, and references therein)

recommended to use the expected shortfall as a coherent alternative to the value at risk. However, the expected shortfall, which is
defined as the average of the worst losses of a portfolio, requires existence of the first moments of risks to be finite. It is not difficult
to see that assumptions close to existence of means of the risks in considerations are also required for applications of coherent
spectral measures of risk (see Acerbi 2002, Cotter & Dowd 2002) that generalize the expected shortfall.
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2 Notations and classes of distributions

In this section, we introduce certain classes of distributions we will be dealing with throughout the paper. The

notations for some of these classes are similar to those in Ibragimov (2004a,b, 2005) and Ibragimov & Walden

(2006).

We say that a r.v. X with density f : R → R and the convex distribution support Ω = {x ∈ R : f(x) > 0}
is log-concavely distributed if log f(x) is concave in x ∈ Ω, that is, if for all x1, x2 ∈ Ω, and any λ ∈ [0, 1],

f(λx1 + (1 − λ)x2) ≥ (f(x1))λ(f(x2))1−λ. (13)

(see An 1998). A distribution is said to be log-concave if its density f satisfies (13). Examples of log-concave

distributions include (see, for instance Marshall & Olkin 1979, p. 493) the normal distribution N (μ, σ2), the

uniform density U(θ1, θ2), the exponential density, the logistic distribution, the Gamma distribution Γ(α, β)

with the shape parameter α ≥ 1, the Beta distribution B(a, b) with a ≥ 1 and b ≥ 1; the Weibull distribution

W(γ, α) with the shape parameter α ≥ 1.

If a r.v. X is log-concavely distributed, then its density has at most an exponential tail, that is, f(x) =

o(exp(−λx)) for some λ > 0, as x → ∞ and all the power moments E|X |γ , γ > 0, of the r.v. exist (see Corollary

1 in An 1998). This implies, in particular, that distributions with log-concave densities cannot be used to model

heavy-tailed phenomena.

As in Ibragimov (2004a,b, 2005) and Ibragimov & Walden (2006), we denote by LC the class of symmetric

log-concave distributions.4 For 0 < α ≤ 2, σ > 0, β ∈ [−1, 1] and μ ∈ R, we denote by Sα(σ, β, μ) the stable

distribution with the characteristic exponent (index of stability) α, the scale parameter σ, the symmetry index

(skewness parameter) β and the location parameter μ. That is, Sα(σ, β, μ) is the distribution of a r.v. X with

the characteristic function

E(eixX) =

⎧⎪⎨
⎪⎩

exp {iμx − σα|x|α(1 − iβsign(x)tan(πα/2))} , α 	= 1,

exp {iμx − σ|x|(1 + (2/π)iβsign(x) ln |x|)} , α = 1,

x ∈ R, where i2 = −1 and sign(x) is the sign of x defined by sign(x) = 1 if x > 0, sign(0) = 0 and sign(x) = −1

otherwise. In what follows, we write X ∼ Sα(σ, β, μ), if the r.v. X has the stable distribution Sα(σ, β, μ).

As is well-known, a closed form expression for the density f(x) of the distribution Sα(σ, β, μ) is available

in the following cases (and only in those cases): α = 2 (Gaussian distributions); α = 1 and β = 0 (Cauchy

distributions); α = 1/2 and β±1 (Lévy distributions).5 Degenerate distributions correspond to the limiting case

α = 0. The index of stability α characterizes the heaviness (the rate of decay) of the tails of stable distributions

Sα(σ, β, μ). In particular, if X ∼ Sα(σ, β, μ), then its distribution satisfies power law (1)-(2). This implies that

the p−th absolute moments E|X |p of a r.v. X ∼ Sα(σ, β, μ), α ∈ (0, 2) are finite if p < α and infinite otherwise.

4LC stands for ”log-concave”.
5The densities of Cauchy distributions are f(x) = σ/(π(σ2 + (x − μ)2)); as is indicated before, Lévy distributions have

densitiesf(x) = (σ/(2π))1/2exp(−σ/(2x))x−3/2, x ≥ 0; f(x) = 0, x < 0, where σ > 0, and their shifted versions.
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The symmetry index β characterizes the skewness of the distribution. The stable distributions with β = 0

are symmetric about the location parameter μ. The stable distributions with β = ±1 and α ∈ (0, 1) (and only

they) are one-sided, the support of these distributions is the semi-axis [μ,∞) for β = 1 and is (−∞, μ] (in

particular, the Lévy distribution with μ = 0 is concentrated on the positive semi-axis for β = 1 and on the

negative semi-axis for β = −1). In the case α > 1 the location parameter μ is the mean of the distribution

Sα(σ, β, μ). The scale parameter σ is a generalization of the concept of standard deviation; it coincides with the

standard deviation in the special case of Gaussian distributions (α = 2). Distributions Sα(σ, β, μ) with μ = 0

for α 	= 1 and β 	= 0 for α = 1 are called strictly stable. If Xi ∼ Sα(σ, β, μ), α ∈ (0, 2], are i.i.d. strictly stable

r.v.’s, then, for all ai ≥ 0, i = 1, ..., n,

n∑
i=1

aiXi/
( n∑

i=1

aα
i

)1/α

∼ Sα(σ, β, μ). (14)

For a detailed review of properties of stable distributions the reader is referred to, e.g., the monographs by

Zolotarev (1986), Embrechts et al. (1997), Uchaikin & Zolotarev (1999), Rachev & Mittnik (2000), Rachev

et al. (2005).

Further, we consider the class CS of distributions which are convolutions of symmetric stable distributions

Sα(σ, 0, 0) with characteristic exponents α ∈ (1, 2] and σ > 0.6 That is, CS consists of distributions of r.v.’s

X such that, for some k ≥ 1, X = Y1 + ... + Yk, where Yi, i = 1, ..., k, are independent r.v.’s such that

Yi ∼ Sαi(σi, 0, 0), αi ∈ (1, 2], σi > 0, i = 1, ..., k.

By CSLC, we denote the class of convolutions of distributions from the classes LC and CS. That is, CSLC
is the class of convolutions of symmetric distributions which are either log-concave or stable with characteristic

exponents greater than one.7 In other words, CSLC consists of distributions of r.v.’s X such that X = Y1 + Y2,

where Y1 and Y2 are independent r.v.’s with distributions belonging to LC or CS.

Also, CS stands for the class of distributions which are convolutions of symmetric stable distributions

Sα(σ, 0, 0) with indices of stability α ∈ (0, 1) and σ > 0.8 That is, CS consists of distributions of r.v.’s X such

that, for some k ≥ 1, X = Y1 + ...+Yk, where Yi, i = 1, ..., k, are independent r.v.’s such that Yi ∼ Sαi(σi, 0, 0),

αi ∈ (0, 1), σi > 0, i = 1, ..., k.

We note that (see Ibragimov 2004a,b, 2005) the class CS of convolutions of symmetric stable distributions

with different indices of stability α ∈ (1, 2] is wider than the class of all symmetric stable distributions Sα(σ, 0, 0)

with α ∈ (1, 2] and σ > 0. Similarly, the class CS is wider than the class of all symmetric stable distributions

Sα(σ, 0, 0) with α ∈ (0, 1) and σ > 0. Clearly, one has LC ⊂ CSLC, CS ⊂ CSLC and CSLC ⊂ CT SLC. Note also

that the class CSLC is wider than the class of (two-fold) convolutions of log-concave distributions with stable

distributions Sα(σ, 0, 0) with α ∈ (1, 2] and σ > 0.

Let R+ = [0,∞). Throughout the paper, M denotes the class of differentiable odd functions f : R → R

such that f is concave and increasing on R+ and M denotes the class of odd functions f : R → R such that
6Here and below, CS stands for ”convolutions of stable”; the overline indicates relation to stable distributions with indices of

stability greater than the threshold value 1.
7CSLC stands for ”convolutions of stable and log-concave”.
8The underline in CS indicates relation to stable distributions with indices of stability less than the threshold value 1.
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f is convex and increasing on R+. Further, M
′
(resp. M ′) denotes the subclass of M (resp. M) consisting of

functions f which are strictly concave (strictly convex) on R+.

By CT SLC, we denote the class of convolutions of log-concave distributions and distributions of transforms

f(Y ), f ∈ M , of symmetric stable r.v.’s Y ∼ Sα(σ, 0, 0) with characteristic exponents α ∈ [1, 2] and σ > 0.9

More precisely, CT SLC consists of distributions of r.v.’s X such that, for some k ≥ 1, and independent r.v.’s

Y0 ∼ LC and Yi ∼ Sαi(σi, 0, 0), αi ∈ [1, 2], σi > 0, i = 1, ..., k,

X = θY0 + f1(Y1) + ... + fk(Yk), (15)

where θ ∈ {0, 1}, fi ∈ M , i = 1, ..., k; fi ∈ M
′
if αi = 1.10

It is not difficult to see that if X ∼ CT SLC or if X = f(Y ), where Y ∼ Sα(σ, β, 0), α ≥ 1, and f ∈ M ;

f ∈ M
′
for α = 1, then E|X | < ∞. Similarly, if X = f(Y ), where f ∈ M and Y ∼ Sα(σ, β, 0), α ≥ 1, then the

first moment of X is infinite: E|X | = ∞.

In some sense, symmetric (about 0) Cauchy distributions S1(σ, 0, 0) are at the dividing boundary between

the classes CS and CSLC. Similarly, Cauchy-type distributions S1(σ, β, 0) are at the dividing boundary between

the class of nonlinear transformations X = f(Y ), f ∈ M , of stable r.v.’s Y ∼ Sα(σ, β, 0) with α ≥ 1 and the

family of nonlinear functions X = f(Y ), f ∈ M , of stable r.v.’s Y ∼ Sα(σ, β, 0) with α ≤ 1.

In what follows, we write X ∼ LC (resp., X ∼ CSLC, X ∼ CS or X ∼ CT SLC) if the distribution of the

r.v. X belongs to the class LC (resp., CSLC, CS or CT SLC).

3 Modeling departures from power tails

As indicated in the introduction, the class of nonlinear transformations of heavy-tailed r.v.’s considered in

this paper provides a natural framework for modeling risks with distributions exhibiting “local” to “moderate”

departures from power laws in form (3)-(4), including (6)-(10), as well as their “global” analogues such as (11).

Indeed, let, throughout this section, Z be a r.v. whose cdf F obeys power law (1)-(2). It is easy to see that

if T is an odd increasing on R function, then the tails of the distribution of the transformation Y = T (Z) of Z

satisfy

P
(
|Y | > x

)
= P

(
|T (Z)| > x

)
� 1[

T−1(x)
]α , x → ∞.

Consequently, if T is such that the function
[
T−1(x)/x

]α is slowly varying at infinity, then the cdf of the r.v.

Y has Pareto-type tails in form (3)-(4). In particular, if the cdf of Z satisfies Zipf law, that is, exhibits power

decay (1)-(2) with α = 1, then the distribution of the transformation Y = T (Z) satisfies

P
(
|Y | > x

)
� 1

T−1(x)
, (16)

and, thus, has Pareto-type form (3)-(4) with the tail index α = 1 if T−1(x)/x is slowly varying at infinity.
9CT SLC stands for ”convolutions of transforms of stable and log-concave”.

10The latter condition implies, in particular, that the distributions of the r.v.’s in the class CT SLC are different from Cauchy
distributions S1(σ, 0, 0) with α = 1.
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Let, as in the introduction, lns(x), s ≥ 0, stand for iterations of a logarithm: ln0(x) = x, lnk(x) =

ln
[
lnk−1(x)

]
, k ≥ 1. Further, let, as before, m ≥ 0 and let γ0 > 0, γ1, ..., γm ∈ R and x0 ≥ em be some

constants. Consider the odd increasing on R function V defined by

V (x) = (x + x0)γ0

m∏
i=1

[
lni (x + x0)

]γi

− xγ0
0

m∏
i=1

[
lni (x0)

]γi

, V (−x) = −V (x), x > 0.

It is not difficult to see that the function V (x) is strictly convex on [0,∞) for a sufficiently large x0 if γ0 > 1 or

if γ0 = 1, γ1 = 0, ..., γk−1 = 0, γk > 0 for some k ∈ {1, 2, ..., m}. Similarly, the function V (x) is strictly concave

on [0,∞) for a sufficiently large x0 if γ0 < 1 or if γ0 = 1, γ1 = 0, ..., γk−1 = 0, γk < 0 for some k ∈ {1, 2, ..., m}.
It is not difficult to show that, with the above x0,

V −1(x) � x1/γ0

m∏
i=1

[
lni (x)

]−γi/γ0

as x → ∞.

Consequently, according to the above discussion, the tails of the distributions of the transformations Y = V (Z)

of the r.v. Z satisfy relation (6) that includes, as special cases, deviations from power laws in forms (7)-(10).

In order to obtain transformations Y = V (Z) whose cdf’s satisfy relation (6), one can equivalently define V

to be the inverse V (x) = H−1(x), x ∈ R, of the function

H(x) = (x + x0)1/γ0

m∏
i=1

[
lni (x + x0)

]−γi/γ0

− x
1/γ0
0

m∏
i=1

[
lni (x0)

]−γi/γ0

, H(−x) = −H(x), x > 0,

where x0 > 0 is such that H is well-defined, increasing and strictly convex on [0,∞) (clearly, such x0 always

exists).

Similarly, let δ0, δ1, δ2 > 0 and let W be the inverse W (x) = Q−1(x) of the function

Q(x) = (x + x0)1/δ0 exp
(
(δ1/δ0)(x + x0)δ2/δ0

)
− x

1/δ0
0 exp

(
(δ1/δ0)x

δ2/δ0
0

)
, Q(−x) = −Q(x), x > 0,

where x0 > 0 is such that W is well-defined, increasing and strictly convex on [0,∞) (as above, such x0 always

exists). Then W is well-defined, odd and increasing function on R which is strictly concave on [0,∞). In

addition, by construction, the tails of the distributions of the transformations Y = W (Z) of Z satisfy (11).

4 Main results

4.1 Diversification of nonlinear transformations of heavy-tailed risks

This section presents the main results of the paper on portfolio diversification for nonlinear transformations of

heavy-tailed risks. These results are given by Theorems 1 and 2 below. Before formulating them, we briefly

review the results on diversification for portfolios of light-tailed and heavy-tailed distributions available in the

literature.

Let 0 < q < 1/2. In what follows, given a r.v. (risk) Z, we denote by V aRq[Z] the value at risk (VaR) of
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Z at level q, that is, its (1 − q)−quantile.11,12 For n ≥ 1, the sample mean Xn represents the return on the

portfolio of risks X1, ..., Xn with equal weights wn = (1/n, 1/n, ..., 1/n): Xn =
1
n

n∑
i=1

Xi.

Proschan (1965) obtained results on majorization properties of tail probabilities of linear combinations of

log-concavely distributed r.v.’s and transformations of Cauchy r.v.’s from which it follows that the following

propositions hold (see the discussion in Ibragimov 2004a,b, 2005).

Proposition 1 (Proschan 1965) The following conclusions hold.

• Let X1, ..., Xn, n ≥ 2, be i.i.d risks such that X1 ∼ LC. Then V aRq[Xn] < V aRq[Xn−1] < ... < V aRq[X1].

• Let k ≥ 1 and let X1, ..., X2k be i.i.d. risks such that X1 = f(Y1), where f ∈ M and Y1 ∼ S1(σ, 0, 0) is a

symmetric Cauchy r.v. Then V aRq[X2k ] < V aRq[X2k−1 ] < ... < V aRq[X1].

Proposition 2 (Proschan 1965) Let X1 and X2 be i.i.d risks such that X1 = f(Y1), where f ∈ M and

Y1 ∼ S1(σ, 0, 0) is a symmetric Cauchy r.v. Then V aRq[X1] < V aRq[X2].

Ibragimov (2004a,b, 2005) showed that the following analogues of the results in Proschan (1965) for distri-

butions from the classes CSLC and CS hold.

Proposition 3 Let X1, ..., Xn, n ≥ 2, be i.i.d risks such that X1 ∼ CSLC or X1 ∼ Sα(σ, β, 0), α ∈ (1, 2],

σ > 0, β ∈ [−1, 1]. Then V aRq[Xn] < V aRq[Xn−1] < V aRq[X1].

Proposition 4 Let X1, ..., Xn, n ≥ 2, be i.i.d risks such that X1 ∼ CS or X1 ∼ Sα(σ, β, 0), α ∈ (0, 1), σ > 0,

β ∈ [−1, 1]. Then V aRq[Xn] > V aRq[Xn−1] > V aRq[X1].

Ibragimov & Walden (2006) showed that analogues of Propositions 3 and 4 hold as well for bounded risks.

According to Theorem 1 below, the stylized facts on diversification being preferable (as formalized by

Propositions 1 and 3) continue to hold for nonlinear transformations of heavy-tailed risks if expectations of

these transformations are finite.

Theorem 1 The following conclusions hold.

• Let Y1 ∼ Sα(σ, β, 0), α ∈ [1, 2], σ > 0, β ∈ [−1, 1]. Further, let X1 and X2 be i.i.d risks such that

X1 = f(Y1), where f ∈ M ; f ∈ M
′
for α = 1. Then V aRq[X2] < V aRq[X1].

• Let k ≥ 1 and let X1, ..., X2k be i.i.d risks such that X1 ∼ CT SLC. Then V aRq[X2k ] < V aRq[X2k−1 ] <

... < V aRq[X1].

11That is, in the case of an absolutely continuous risk Z, P
“
Z > V aRq [Z]

”
= q.

12In what follows, we interpret the positive values of Z as a risk holder’s losses. This interpretation of losses follows that in
Embrechts et al. (2002) and is in contrast to Artzner et al. (1999) who interpret negative values of risks as losses.
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As demonstrated by Theorem 2 below, the stylized fact on diversification being preferable is reversed for

nonlinearly transformed thick-tailed risks with infinite expectations.

Theorem 2 Let Y1 ∼ Sα(σ, β, 0), α ∈ (0, 1], σ > 0, β ∈ [−1, 1]. Further, let X1 and X2 are i.i.d risks such

that X1 = f(Y1), where f ∈ M ; f ∈ M ′ for α = 1. Then V aRq[X1] < V aRq[X2].

Remark 1 Suppose that the r.v.’s X1, ..., Xn have a Cauchy-type distribution S1(σ, β, 0) which is exactly at the

boundary between the nonlinear transformations of heavy-tailed risks in Theorems 1 and 2. Similar to Ibragimov

(2004a,b, 2005), one can observe that, in such a case, the value at risk V aRq[Xn] is the same for all n ≥ 1.

Consequently, in this setting, diversification of a portfolio has no effect on riskiness of its return. Using this

fact, one can show, similar to the proof of Theorem 1 that the theorem continues to hold for convolutions of

distributions in the class CT SLC with symmetric Cauchy distributions S1(σ, 0, 0).

Remark 2 In order to highlight the main ideas and concepts discussed in the paper, Theorems 1 and 2 and the

results in subsequent sections are formulated in the framework of independent risks that represent “the worst

case scenario” for diversification failure. However, combining the methods of proofs of the results in this paper

with those in Ibragimov (2004a,b, 2005), Ibragimov & Walden (2006), one can obtain analogues of the results

for transformations of wide classes of dependent risks, including those with α−symmetric distributions.

4.2 (Non)coherency of VaR for nonlinear transformations of thick-tailed risks

This section of the paper discusses implications of the results in Section 4.1 for (non)coherency properties of

the value at risk.

Let X be a certain linear space of r.v.’s X defined on a probability space (Ω,
, P ). We assume that X contains

all degenerate r.v.’s X ≡ a ∈ R. According to the definition in Artzner et al. (1999) (see also Embrechts, McNeil

& Straumann 2002, Frittelli & Gianin 2002), a functional R : X → R is said to be a coherent measure of risk if

it satisfies the following axioms:

A1. (Monotonicity) R(X) ≥ R(Y ) for all X, Y ∈ X such that Y ≤ X (a.s.), that is, P (X ≤ Y ) = 1.

A2. (Translation invariance) R(X + a) = R(X) + a for all X ∈ X and any a ∈ R.

A3. (Positive homogeneity) R(λX) = λR(X) for all X ∈ X and any λ ≥ 0.

A4. (Subadditivity) R(X + Y ) ≤ R(X) + R(Y ) for all X, Y ∈ X .

The above axioms are natural conditions to be imposed on measures of risk in the setting where positive

values of r.v.’s X ∈ X represent losses of a risk holder.13 For instance, subadditivity property is important,

among others, from the regulatory point of view because if a firm were forced to meet the requirement of extra

capital which is not subadditive, it might be motivated to break up into several separately incorporated affiliates
13This interpretation of losses follows that in Embrechts et al. (2002) and is in contrast to Artzner et al. (1999) who interpret

negative values of risks in X as losses.
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(see the discussion in Artzner et. al., 1999). In addition to that, the properties A1-A4 are important because,

as follows from Ch. 10 in Huber (1981) (see also Artzner et al. 1999), in the case of a finite Ω, a risk measure R
is coherent (that is, it satisfies A1-A4) if and only if it is representable as R(X) = supQ∈P EQ(X), where P is

some set of probability measures on Ω and, for Q ∈ P , EQ denotes the expectation with respect to Q. In other

words, the risk measure R is the worst result of computing the expected loss EQ(X) over a set P of “generalized

scenarios” (probability measures) Q. A similar representation holds as well in the case of an arbitrary Ω and

the space X = L∞(Ω,
, P ) of bounded r.v.’s (see Fölmer & Schied (2002); moreover, as discussed in Frittelli

& Gianin (2002), by duality theory, the convexity axiom A5 alone implies analogues of such characterizations

for an arbitrary Ω and the space X = Lp(Ω,
, P ), p ≥ 1, of r.v.’s X with a finite p−th moment E|X |p < ∞.

It is easy to verify that the value at risk V aRq(X) satisfies the axioms of monotonicity, translation invariance

and positive homogeneity A1, A2 and A3. However, as follows from the counterexamples constructed by Artzner

et al. (1999) and Embrechts et al. (2002), in general, it fails to satisfy the subadditivity property A4, in particular,

for certain Pareto distributions (Examples 6 and 7 in Embrechts et al. 2002).

As discussed in Ibragimov (2004a,b, 2005), from Proposition 3 it follows that the value at risk satisfies

subadditivity axiom A4 and is, thus, a coherent measure of risk in the world of not extremely heavy-tailed risks

from the class CSLC. Proposition 4, on the other hand, implies that axiom A2 is always violated for risks with

extremely heavy-tailed distributions from the class CS. Thus, the value at risk is not a coherent risk measure

in the class CS of extremely long-tailed distributions.

From Theorem 1 it follows that the value at risk is a coherent measure of risks in the world of nonlinear

transformations f ∈ M of heavy-tailed risks with finite expectations.

Corollary 1 Let X1 and X2 be i.i.d risks such that X1 ∼ CT SLC, or X1 = f(Y1), where Y1 ∼ Sα(σ, β, 0),

α ∈ [1, 2], and f ∈ M ; f ∈ M
′
for α = 1. For all q ∈ (0, 1/2), one has V aRq(X1)+V aRq(X2) > V aRq(X1+X2).

That is, subadditivity axiom A4 holds for VaR and it is a coherent measure of risk for distributions in the class

CT SLC and for transformations f(Yi) of i.i.d. risks Yi ∼ Sα(σ, β, 0), α ∈ [1, 2], where f ∈ M ; f ∈ M
′
for

α = 1.

Theorem 2 implies that coherency of the value at risk is always violated for nonlinear transformations f ∈ M

of heavy-tailed risks for which the first moments are infinite.

Corollary 2 Let X1 and X2 be i.i.d risks such that X1 = f(Y1), where Y1 ∼ Sα(σ, β, 0), α ∈ (0, 1], and f ∈ M ;

f ∈ M ′ for α = 1. For all q ∈ (0, 1/2) one has V aRq(X1)+V aRq(X2) < V aRq(X1+X2). That is, subadditivity

axiom A4 is violated for VaR and it is not a coherent measure of risk for transformations f(Yi) of i.i.d. risks

Yi ∼ Sα(σ, β, 0), α ∈ (0, 1], where f ∈ M ; f ∈ M ′ for α = 1.

Remark 3 As indicated in the introduction, the reversals vs. robustness results similar to those given by

Theorems 1 and 2 and Corollaries 1-4 hold as well for all the economic models considered in Ibragimov (2004a,

2005). These results may be proved similarly to those in Ibragimov (2004a, 2005), with the help of distributional

comparisons for transformations of heavy-tailed r.v.’s implied by Theorems 1 and 2.
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4.3 Diversification and value at risk under deviations from power laws

As follows from the discussion in the introduction, the classes of nonlinear transformations of heavy-tailed risks

contain many models with distributions exhibiting “local”, “moderate” and “global” departures from power

laws (1)-(2) in form (6)-(11). This section of the paper presents implications of the results in Sections 4.1

and 4.2 for such deviations from Pareto distributions. We formulate the results for the functions V and W

introduced in Section 3 with the value of x0 being sufficiently large for V and W to be well-defined, odd and

increasing on R and strictly convex or concave on [0,∞), as discussed in that section.

According to Corollary 3, portfolio diversification decreases its riskiness in the world of risks whose distri-

butions are even slightly thinner than those of Cauchy r.v.’s, as modelled, by, e.g., distributions with tails in

form (9) with an arbitrary iteration of the logarithm in the denominator. This corollary also implies that the

stylized fact on diversification being preferable also holds for distributions satisfying (7) with α > 1 as well as

for distributions exhibiting departures from power laws in form (11) with additional exponential factors.

Corollary 3 Let V and W be as in Section 3 and let the parameters of the function V be such that γ0 < 1 or

γ0 = 1, γ1 = 0, ..., γk−1 = 0, γk < 0 for some k ∈ {1, 2, ..., m}. Further, let x0 in the definition of V and W

be sufficiently large so that the functions are well-defined, odd and increasing on R and are strictly concave on

[0,∞). If X1 and X2 are i.i.d risks such that X1 = V (Y1) or X1 = W (Y1), where Y1 ∼ Sα(σ, β, 0), α ∈ [1, 2],

σ > 0, β ∈ [−1, 1], then the conclusions of Theorem 1 and Corollary 1 hold.

Corollary 4 shows that riskiness of a portfolio increases with diversification for risks with distributions whose

tails are even slightly heavier than those of Cauchy r.v.’s. This is the case, in particular, for distributions with

tails in form (10) with an arbitrary iteration of the logarithm in the numerator. According to the corollary, the

failure of diversification is also exhibited by distributions satisfying (8) with α < 1.

Corollary 4 Let V be as in Section 3 and let γ0 > 1 or γ0 = 1, γ1 = 0, ..., γk−1 = 0, γk > 0 for some

k ∈ {1, 2, ..., m}. Further, let x0 in the definition of V be sufficiently large so that the function is well-defined,

odd and increasing on R and is is strictly convex on [0,∞). If X1 and X2 are i.i.d risks such that X1 = V (Y1),

where Y1 ∼ Sα(σ, β, 0), α ∈ (0, 1], σ > 0, β ∈ [−1, 1], then the conclusions of Theorem 2 and Corollary 2 hold.

4.4 Safety-first approach to portfolio selection under heavy-tailedness

The results on the effects of portfolio diversification on its value at risk discussed in the previous sections can be

equivalently casted in the framework of Roy (1952)’s safety-first approach to portfolio selection. Given n risks

X1, ..., Xn, the safety-first approach to portfolio choice consists in minimizing the probability P
( n∑

i=1

wiXi > z
)

of going above a certain target or a disaster level z > 0 over the portfolio weights wi:

min P
( n∑

i=1

wiXi > z
)

s.t.
n∑

i=1

wi = 1, wi ≥ 0. (17)
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For instance, let n = 2k, k ≥ 1, and let the i.i.d. risks Xi, i = 1, ..., n, be such that X1 ∼ CT SLC. From

Theorem 1 it follows that, for any value of the disaster level z > 0, the optimal portfolio of risks Xi in safety-first

portfolio choice problem (17) is that with equal weights (w1, ..., wn) =
(

1
n , ..., 1

n

)
. Similarly, let X1 and X2 be

nonlinear transformations Xi = f(Yi) of i.i.d. stable r.v.’s Yi ∼ Sα(σ, β, 0), α ∈ [1, 2], where f ∈ M ; f ∈ M
′
for

α = 1. In particular, one can take here the function f to be the transformation V defined in Section 3, with the

parameters satisfying γ0 < 1 or γ0 = 1, γ1 = 0, ..., γk−1 = 0, γk < 0 for some k ∈ {1, 2, ..., m}. Alternatively,

one can take f to be W defined in the same section. From Theorem 1 and Corollary 3 it follows that, for any

z > 0, the probability of disaster P
(
w1X1 + w2X2 > z

)
is minimized for equal weights (w1, w2) =

(
1
2 , 1

2

)
.

Let now X1 and X2 be nonlinear transformations Xi = f(Yi), of i.i.d. stable r.v.’s Yi ∼ Sα(σ, β, 0), α ∈ (0, 1],

where f ∈ M ; f ∈ M
′
for α = 1. In particular, one can take here the function f to be transformation V defined

in Section 3 with γ0 > 1 or with γ0 = 1, γ1 = 0, ..., γk−1 = 0, γk > 0 for some k ∈ {1, 2, ..., m}. In contrast

to the above, from Theorem 2 and Corollary 4 it follows that, for any z > 0, the probability of disaster

P
(
w1X1 + w2X2 > z

)
is minimized for the choice (w1, w2) = (1, 0) or (w1, w2) = (0, 1), that is, for portfolios

consisting of only one risk X1 or X2.

According to the above results, regardless of the disaster level z, the safety-first optimal portfolio for sym-

metric nonlinear transformations of heavy-tailed risks is the one with equal weights or the one consisting of

only one risk. In particular, this is the case for nonlinear transformations of stable risks that exhibit tail be-

havior (12) similar to that of chi-square distributions. As demonstrated by the following Propositions 5 and

6 that follow from the results obtained by Szekely & Bakirov (2003), the situation is different for chi-square

risks concentrated on the right semi-axis. These propositions show that, in the world of risks with chi-square

distributions, complete diversification is preferable in the safety-first framework for large values of the disaster

level, namely for z > 2, and is disadvantageous for small values of z, namely for z < 1. That is, in such settings,

the optimal safety-first portfolios either have equal weights or consist of only one risk, similar to the framework

with nonlinear functions of stable r.v.’s considered in the previous sections. However, in the case of moderate

disaster levels between one and two, the optimal portfolio consists of two risks and, furthermore, does not have

equal weights at them.

Let {Nt}∞t=1 be a sequence of i.i.d. standard normal r.v.’s and let, for d ≥ 1, χ2(d) ∼
∑d

t=1 N 2
t be a chi-

square r.v. with d degrees of freedom. Proposition 5, which is a consequence of the results in Szekely & Bakirov

(2003), provides solutions to the safety-first portfolio selection problem in the case of two chi-square risks.

Proposition 5 Let Xt = N 2
t , t = 1, 2, be two i.i.d. risks with χ2(1) distribution. The optimal solution to

safety-first portfolio choice problem (17) with n = 2 is given by

(w1, w2) =

⎧⎨
⎩

(1, 0) for 0 < z ≤ 1,
(w̃1, 1 − w̃1) /∈ {(1, 0), (0, 1), (1/2, 1/2)} for 1 < z < 2,
(1/2, 1/2) for z ≥ 2.

(18)

For z ∈ [1, 2] denote s(z) = inf
w∈(0,1/2)

P
(
wN 2

1 + (1 − w)N 2
2 > z

)
. As follows from Proposition 5, s(z) >

max
{
P (X1 > z), P (X2 > z)

}
= max

{
P (χ2(1) > z), P (1

2χ2(2) > z)
}
, z ∈ (1, 2). According to Proposition 2

in Szekely & Bakirov (2003), for every positive integer d ≥ 1 there exists a unique intersection point y(d) of s(z)
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and P (d−1χ2(d) > z) = P
(

1
d

∑d
t=1 N 2

t > z
)
. In addition, according to the same proposition, the intersection

points y(d) have the following properties: y(2) = 2 > y(3) > y(4) > ... > 1 = y(1); y(d) → 1 as d → ∞. The

following proposition that follows from the results in Szekely & Bakirov (2003) provides solutions to safety-first

portfolio choice problem (17) in the case of an arbitrary number d ≥ 3 of chi-square risks Xi.

Proposition 6 Let n ≥ 3. The optimal solution to safety-first portfolio selection problem (17) is given by

(w1, w2, ..., wn) =

⎧⎨
⎩

(1, 0, ..., 0) for 0 < z ≤ 1,
(w̃1, 1 − w̃1) /∈ {(1, 0), (0, 1), (1/2, 1/2)} for 1 < z < y(d),
(1/n, 1/n, ..., 1/n) for z ≥ y(d).

(19)

5 Concluding remarks

The value of diversification is a corner stone of financial theory. Understanding when diversification succeeds

and when it fails to provide additional value to investors is therefore important. We have provided a refined

analysis of when failure of diversification occurs. Our results indicate that the Cauchy distribution is by all

means the separating distribution. Distributions with “thinner” tails than Cauchy – no matter how slightly

thinner – will always lead to diversification being valuable. On the contrary, distributions with “fatter” tails –

no matter how slightly fatter – will always lead to failure of diversification. We believe that the detailed analysis

in this paper is well-motivated by the importance of the issue.

Appendix - Proofs

Proof of Theorems 1 and 2. Let α1 ∈ [1, 2], α2 ∈ (0, 1], and let f1 ∈ M, f2 ∈ M. Suppose that f1 ∈ M
′

if

α1 = 1 and f2 ∈ M ′ if α2 = 1. For j = 1, 2, let Y
(j)
1 and Y

(j)
2 be i.i.d. r.v.’s such that Y

(j)
i ∼ Sαj (σ, β, 0),

σ > 0, β ∈ [−1, 1], i = 1, 2, and let X
(j)
i = fj(Y

(j)
i ), i = 1, 2, j = 1, 2. As in the proof of Lemmas 2.7 and 2.8 in

Proschan (1965), by the definition of the classes M and M we have that

|f1((y1 + y2)/2)| ≥ |(f1(y1) + f1(y2))/2|, (20)

|f2((y1 + y2)/2)| ≤ |(f2(y1) + f2(y2))/2| (21)

for all y1, y2 ∈ R. In addition, inequality (20) is strict for y1 + y2 	= 0 if f1 ∈ M
′
. Similarly, inequality (21) is

strict for y1 + y2 	= 0 if f2 ∈ M ′. Since the functions |fj(x)|, j = 1, 2, are increasing in |x|, we, therefore, get

that

|f1((y1 + y2)/21/α1)| ≥ |(f1(y1) + f1(y2))/2|, (22)

|f2((y1 + y2)/21/α2)| ≤ |(f2(y1) + f2(y2))/2|. (23)

Obviously, inequality in (22) is strict for y1 + y2 	= 0 if α1 > 1 and inequality in (23) is strict for y1 + y2 	= 0 if

α2 < 1. Since 2−1/αj (Y (1)
1 + Y

(1)
2 ) ∼ Sαj (σ, β, 0), j = 1, 2, and the functions fj , j = 1, 2, are odd, this implies
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that, for all q ∈ (0, 1/2),

V aRq

[X
(1)
1 + X

(1)
2

2

]
= V aRq

[f1(Y
(1)
1 ) + f1(Y

(1)
2 )

2

]
<

V aRq

[f1(Y
(1)
1 + Y

(1)
2 )

21/α1

]
= V aRq

[
f1(Y

(1)
1 )

]
= V aRq

[
X

(1)
1

]
(24)

and

V aRq

[X
(2)
1 + X

(2)
2

2

]
= V aRq

[f2(Y
(2)
1 ) + f2(Y

(2)
2 )

2

]
>

V aRq

[f2(Y
(2)
1 + Y

(2)
2 )

21/α2

]
= V aRq

[
f2(Y

(2)
1 )

]
= V aRq

[
X

(2)
1

]
. (25)

According to relation (24), the part of Theorem 1 for transformations of stable r.v.’s holds. Relation (25)

shows that Theorem 2 is true.

Let now n = 2k, k ≥ 2, and let X1, ..., Xn be i.i.d. r.v.’s such that X1 ∼ CT SLC. By definition of the

class CT SLC, there exist i.i.d. r.v.’s Yit, t = 0, 1, ..., k, i = 1, ..., n, and functions ft ∈ M, t = 1, ..., k, such

that Yi0 ∼ LC and Yit ∼ Sαt(σt, 0, 0), αt ∈ (1, 2], σt > 0, t = 1, ..., k, and Xi = θYi0 + f1(Yi1) + ... + fk(Yik),

θ ∈ {0, 1}, i = 1, ..., n. From (24) we have that for all i = 1, ..., n/2 and t = 1, ..., k,

V aRq

[ft(Yit) + ft(Yn/2+i,t)
2

]
< V aRq[ft(Yit)]. (26)

In addition, by Proposition 1,

V aRq

[Yi0 + Yn/2+i,0

2

]
< V aRq[ft(Yi0)]. (27)

According to Theorem 2.7.6 in Zolotarev (1986), p. 134, and Theorem 1.10 in Dharmadhikari & Joag-Dev

(1988), p. 20, the densities of the r.v.’s Yit, t = 0, 1, ..., k, i = 1, ..., n, are symmetric and unimodal. This implies,

as it is not difficult to see, symmetry and unimodality of the densities of the r.v.’s ft(Yit), ft ∈ M, t = 1, ..., k,

i = 1, ..., n. By Theorem 1.6 in Dharmadhikari & Joag-Dev (1988), p. 13, we get, in turn, that the densities of

the r.v.’s (Yi0 + Yn/2+i,0)/2 and (ft(Yit) + ft(Yn/2+i,t))/2, t = 1, ..., k, i = 1, ..., n, are symmetric and unimodal.

From Lemma in Birnbaum (1948) and its proof it follows that if ξ1, ξ2 and η1, η2 are independent absolutely

continuous symmetric unimodal r.v.’s such that, for j = 1, 2, and all q ∈ (0, 1/2), V aRq[ξj ] < V aRq[ηj ], then

V aRq[ξ1 + ξ2] < V aRq[η1 + η2], q ∈ (0, 1/2). This, together with (26) and (27), implies by induction (see also

Theorem 1 in Birnbaum, 1948, and Theorem 2.C.3 in Dharmadhikari and Joag-Dev, 1988) that

V aRq[Xn] = V aRq

[ 1
n

n/2∑
i=1

{
θ(Yi0 + Yn/2+i,0) + (f1(Yi1) + f1(Yn/2+i,1))... + (fk(Yik) + fk(Yn/2+i,k))

}]
<

V aRq

[ 2
n

n/2∑
i=1

{
θYi0 + f1(Yi1) + ... + fk(Yik)

}]
= V aRq

[
Xn/2

]
.

This completes the proof of Theorem 1 for distributions from the class CT SLC.
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Proof of Corollaries 1-4. Corollaries 1 and 2 evidently follow from Theorems 1 and 4 and positive homogeneity

of the value at risk (axiom A3 in Section 4.1). Corollary 3 follows from Theorem 1 since, under the assumptions

of the corollary, the functions V and W belong to the class f ∈ M
′
. Similarly, Corollary 3 is a consequence of

Theorem 1 and the fact that, under its assumptions, the function V belongs to the class f ∈ M ′.

Proof of Proposition 5-6. The propositions evidently follow from Theorem 2 in Szekely & Bakirov (2003).
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