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In traditional reputation theory, reputation is good for the long-run player.  In "Bad
Reputation," Ely and Valimaki give an example in which reputation is unambiguously
bad.  This paper characterizes a more general class of games in which that insight holds,
and presents some examples to illustrate when the bad reputation effect does and does not
play a role.  The key properties are that participation is optional for the short-run players,
and that every action of the long-run player that makes the short-run players want to
participate has a chance of being interpreted as a signal that the long-run player is "bad.
We also broaden the set of commitment types, allowing many types, including the
"Stackelberg type" used to prove positive results on reputation.  Although reputation need
not be bad if the probability of the Stackelberg type is too high, the relative probability of
the Stackelberg type can be high when all commitment types are unlikely.  
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1. Introduction
A long-run player playing against a sequence of short-lived

opponents can build a reputation for playing in a specific way and so

obtain the benefits of commitment power.  To model these “reputation

effects,” the literature following Kreps and Wilson [1982] and Milgrom

and Roberts [1982] has supposed that there is positive prior probability

that the long-run player is a “commitment type” who always plays a

specific strategy.3 In “Bad Reputation,” Ely and Valimaki [2001]

(henceforth EV) construct a striking example in which introducing a

particular commitment type hurts the long-run player.  When the game is

played only once and there are no commitment types, the unique

sequential equilibrium is good for the long-run player. This remains an

equilibrium when the game is repeated without commitment types,

regardless of the player’s discount factor. However, when a particular

“bad” commitment type is introduced, the only Nash equilibria are “bad”

for a patient long-run player.4

What is not clear from EV is when reputation is bad. This paper

extends the ideas in EV to a more general class of games in an effort to

find the demarcation between “bad” and “good” reputation. In addition,

we try to relate the EV conclusions to past work on reputation effects.

Reputation effects are most powerful when the long-run player is

very patient, and Fudenberg and Levine [1992] (FL) provided upper and

lower bounds on the limiting values of the equilibrium payoff of the long-

run player as that player’s discount factor tends to 1. The upper bound

                                                
3 See Sorin [1999] for a recent survey of the reputation effects literature, and its
relationship to the literature on merging of opinions.
4 It is obvious that incomplete information about the long-run player’s type can be
harmful when the long-run player is impatient, since incomplete information can be
harmful in one-shot games. Fudenberg-Kreps [1987] argue that a better measure of the
“power of reputation effects” is to hold fixed the prior distribution over the reputation-
builder’s types, and compare the reputation-building scenario to one in which the
reputation builder’s opponents do not observe how the reputation builder has played
against other opponents. They discuss why reputation effects might be detrimental in the
somewhat different setting of a large long-run player facing many simultaneous small but
long run opponents.
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corresponds to the usual notion of the “Stackelberg payoff.” The lower

bound, called the “generalized Stackelberg payoff,” weakens this notion to

allow the short-run players to have incorrect beliefs about the long-run

player’s strategy, so long as the beliefs are not disconfirmed by the

information that the short-run players get to observe.  When the stage

game is a one-shot simultaneous-move game, actions are observed, and

payoffs are generic, these two bounds coincide, so that the limit of the

Nash equilibrium payoffs as the long-run player’s discount factor tends to

one is the single point corresponding to the Stackelberg payoff.  For

extensive-move stage games, with public outcomes corresponding to

terminal nodes, the bounds can differ. However, although FL provided

examples in which the lower bound is attained, in those examples the

upper bound was attained as well, and we are not aware of past work that

determines the range of possible limiting values for a fairly general class

of games.

Here we examine the upper bound more closely for a specific class

of games designed to capture the insight of EV. Specifically, we define a

class of “bad reputation” games, in which the long-run player can do no

better than if the short-run players choose not to participate. This extends

the EV example in a number of ways. We allow a broad class of stage

games in which participation by the short-run players is optional; allowing

for many actions, many signals, many short-run players, and a wide

variety of payoffs. Especially important, we allow for a broad range of

types, including types that are committed to “good” actions, as well as

types that are committed to “bad” actions. Earlier research suggests that to

attain the upper bound on the long-run player’s payoff, it can be important

to include the “Stackelberg type” that is committed to the stage-game

action the long-run player would choose in a Stackelberg equilibrium.5 We

                                                
5  EV consider two specifications for the bad type, either “committed” (to playing the bad
action) or “strategic” (willing to play a different action occasionally to increase entry and
the future payoff from playing “bad.”) In a related model, Mailath and Samuelson [1998]
argue that “bad” types – and  specifically strategic bad types – are more plausible than
Stackelberg types. We are sympathetic to the argument that strategic bad types may be
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find that the EV results fails if the probability of this Stackelberg type is

too high, but extends to the case where the probability of the Stackelberg

type is sufficiently low, but nonzero.  This shows that it is not essential to

rule out the types that support “good” reputation effects in order to derive

the bad reputation result.

By extending the EV example to a broad class of stage games we

are able to more clearly identify the types of assumptions key to a bad

reputation. There are several such properties, notably that the short-run

players can either individually or collectively choose not to participate.

However, most of the assumptions on the structure of the game seem to

involve little loss of economic applicability. The key substantive

assumption seems to be that every action of the long-run player that makes

the short-run players want to participate in the game has a chance of being

misconstrued as a signal of a “bad reputation.”

EV motivate their example by considering an automobile mechanic

who has specialized knowledge of the work that needs to be done to repair

the car. We think that we have identified a broader class of bad reputation

games that can be interpreted as “expert advice.” This includes consulting

a doctor or stockbroker, or in the macroeconomics context, can be the

decision whether or not to turn to the IMF for assistance. In EV, the short-

run players observe only the advice, but not the consequences of the

advice. Here we explicitly consider what happens when the short-run

players observe the consequences as well.  We also show that there are

other distinct classes of games with rather different observation structures

that are bad reputation games, such as our “teaching evaluation” game,

where “advice” is not an issue because the long-run player does not

privately observe anything that is payoff-relevant for the short-run player.

Finally, we illustrate the boundaries of bad reputation by giving a number

                                                                                                                        
more likely than commitment types, but this does not imply that the probability of
commitment types should be zero. Instead, we would argue that it is preferable for
models to allow for a wide range of types, especially those with fairly simple behavior
rules.
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of examples and classes of participation games that are not bad reputation

games.

2. The Model

2.1. The Dynamic Game

There are 1N +  players, a long run-player 1, and N  short-run

players 2 1N +� . The game begins at time 1t =  and is infinitely

repeated.  Each period, each player i  chooses from a finite action space
iA . We denote individual actions ia , and action profiles by a . We also

use ia−  to denote the play of all players except player i  and i ja− −  to

denote the play of all players except players i  and j .

The long-run player discounts the future with discount factor δ .

Each short-run player plays only in one period, and is replaced by an

identical short-run player in the next period. There is a set Θ  of types of

long-run player. There are two sorts of types: type 0 ∈ Θ  is called the

“rational type,” and is the focus of our interest, with utility described

below.  For each pure action 1a , type 1( )aθ  is a “committed type,” that is

constrained to play 1a .  These are the only possible types in Θ .  Note that

we do not require that every pure action commitment type has positive

probability. The stage game utility functions are ( )iu a , where 1( )u a

corresponds to the long-run player of type 0θ = . The common prior

distribution over long-run player types is denoted (0)µ .

There is a finite public signal space Y  with signal probabilities

( | )y aρ . All players observe the history of the public signals. Short-run

players observe only the history of the public signals, and in particular

observe neither the past actions of the long-run player, nor of previous

short-run players. We do not assume that the payoffs depend on the

actions only through the signals, so the short-run players at date t need not
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know the realized payoffs of the previous generations of short-run

players.6

We let 1 2( , , )t th y y y= �  denote the public history through the

end of period t . We denote the null history by 0 . We let 1
th  denote the

private history known only to the long-run player. This includes his own

actions, and may or may not include the actions of the short-run players he

has faced in the past. A strategy for the long-run player is a sequence of

maps 1 1 1( , , ) conhullt th h Aσ θ ∈ ≡
�

� ; a strategy profile for the short-run

players is a sequence of maps -1A1
1( ) conhull j

t jh Aσ
−

≠
∈× ≡ . A short-

run profile 1
α
−  is a Nash response to 1

α  if
1 1 1 1( , , ) ( , , )i i i i i iu u aα α α α α

− − − −

≥  for all i ia A∈ .  We denote the set

of short-run Nash responses to 1
α  by 1( )B α .

Given strategy profiles σ , the prior distribution over types (0)µ

and a public history th  that has positive probability under σ , we can

calculate from 1
σ  the conditional probability of long-run player actions

1( )thα  given the public history. A Nash Equilibrium consists of strategy

profiles σ  such that for each positive probability history

1) 1 1( ) ( ( ))t th B hσ α
−

∈  [short-run players optimize]

2) 1 1 1 1( , , ( ))t th h a aσ θ =  [committed types play accordingly]

3) 1(, , 0)σ ⋅ ⋅  is a best-response to 1
σ
−  [rational type optimizes].

Given a Nash equilibrium, and a positive probability history th  let
1( )tv h  denote the expected continuation value to the rational long-run

player, and let 1( ), ( )t th hµ α
−  be the posterior beliefs and strategy of the

short-run players conditional on the history. Notice that the expected

average present value to the rational long-run player conditional on a

positive probability public/private history pair must not depend on the

private history 1
th , or the rational long-run type would be failing to

optimize. If 1a  has positive probability under 1( )thα , and 1a−  positive

probability under 1( )thα
− , then we define

                                                
6  Fudenberg and Levine[1992] assumed that a player’s payoff was determined by his
own action and the realized signal, but that assumption was not used in the analysis. The
assumption is used in models with more than one long-run player to justify the restriction
to public equilibria, but it is not needed here.
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1 1 1( , ) (1 ) ( ) ( | ) ( , )t ty
v h a u a y a v h yδ δ ρ≡ − + ∑  .

When 1
α  and 1

α
−  put weight only on such positive-probability 1 1,a a− , it

is convenient also to define 1( , )tv h α .

2.2 The Ely-Valimaki Example

We will use the EV example to illustrate our assumptions and

definitions.  In EV, an action by the long-run player is a map from a

privately observed signal { , }E Tω∈ to announcements { , }e t ; thus the

long-run player’s action space consists of 1 { , , , }A ee et te tt= . The two

signals are i.i.d. and equally likely.  There is one short-run player each

period who chooses an element of 2 { , }A In Out= .   The public signal

takes on the values { , , }Y e t Out= . If the short-run player chooses Out

the signal is Out , that is 1( | , ) 1Out a Outρ = ; otherwise the signal is the

announcement of the long-run player, so

( | ( , )) ( | ( , )) 1/2e et In e te Inρ ρ= = , ( | ( , )) 1e ee Inρ = , and

( | ( , )) 0e tt Inρ = . If the short-run player chooses Out , each player

gets utility 0. If he plays In  and the long-run player’s announcement is

truthful (that is, matches the state), the short-run player receives u ; if it is

untruthful, it is w−  where 0w u> > . The “rational type” of long-run

player has exactly the same stage-game payoff function as the short run

players.  Thus when the long-run player is certain to be the rational type,

the strategic form of the stage game is

In Out

ee ( )/2,( )/2u w u w− − 0,0

et ,u u 0,0

te ,w w− − 0,0

tt ( )/2,( )/2u w u w− − 0,0

Figure 1
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When the rational type is the only type in the model, there is an

equilibrium where he chooses the action that matches the state, all short-

run players enter, and the rational type's payoff is u .  However, EV show

that when there is also a probability that the long-run player is a “bad

type” who always plays ee , the long-run player's payoff is bounded by an

amount that converges to 0 as the discount factor goes to 1.  The intuition

for this result has three steps.  First of all, the short-run players will not

enter if the long-run player is too likely to play ee . Second, from Bayes

rule it follows that there is some number K  such that K  successive

observations of E  will make the posterior probability of the bad type so

high that all subsequent short-run players play out.  Third, when there

have been 1K −  successive observations of E , the rational type of long

run player is tempted to play tt instead of et, even though this lowers his

short-run payoff, to avoid driving out the short-run players with another

observation of E.  Thus, the long-run player is tempted to take an action

that is worse for both himself and the short-run players in order to avoid

being incorrectly tagged as a “bad type.” Our result will generalize this

idea of a “temptation.”

2.3. Participation Games and Bad Reputation Games

We consider “participation games” in which the short-run players

may choose not to participate. The crucial aspect of non-participation by

the short-run players is that it conceals the action taken by the long-run

player from subsequent short-run players; this is what allows the lower

bound on the long-run player's Nash equilibrium payoff in the EV

example to be lower than Stackelberg payoff. We will then define “bad

reputation” games as a subclass of participation games that have the

additional features needed for the bad reputation result.

To model the option to not participate, we assume that certain

public signals e ey Y∈ are exit signals. Associated with these exit signals

are exit profiles, which are pure action profiles 1 1e E A− −∈ ⊆  for the short
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run players. For each such e , 1( | , ) ( | )e ey a e y eρ ρ=  for all 1a , and

( | ) 1eY eρ = . In other words, if an exit profile is chosen, an exit signal

must occur, and the distribution of exit signals is independent of long-run

player action.  Moreover, if 1 1a E− −∉  then 1 1( | , ) 0ey a aρ
−

=  for all
1 1, e ea A y Y∈ ∈ . We refer to 1 1A E− −−  as the entry profiles. Note that

an entry profile cannot give rise to an exit signal. A participation game is

a game in which 1E−

≠ ∅ . The remainder of the paper specializes to

participation games.

We begin by distinguish actions by the long-run player that cause

the short-run players to exit (unfriendly actions), and those that are needed

to get them to enter (friendly actions).

Definition 1: A finite non-empty set of pure actions 1A
�

 for the long-run

player is unfriendly if there is a number 1α <
�  such that 1 1( )Aα α≥

�

�

implies  1 1( ) conhull B Eα −⊆ .

Remark:  This definition says that unfriendly actions induce exit, in the

strong sense that exit is the only best response if the probability of the

unfriendly actions is sufficiently high. There will often be many sets of

unfriendly actions. In the EV example the set { , , }ee tt te  is unfriendly, and

so is any subset.

Definition 2: A finite set of mixed actions 1F  for the long run player is

friendly if there is a number 0α >  such that
1 1 1( ) conhull( )B A Eα − −� �∩ − ≠ ∅� �  implies 1 1fα α≥  for some 1 1f F∈ .

Remark:  This definition says that the probabilities given to every pure

action must be bounded below by a scale factor times some friendly

mixture if the short-run players are not to exit. Note that weight on a

friendly action is necessary for entry, but need not be sufficient for entry.

There may also be many different friendly sets. Suppose that 1F  is

friendly of size 0α
� , and let 1 1 1 1 1 1min{ ( ) 0 | , }f a f F a Aα = > ∈ ∈

�

.

Then if 1 1f F∈  it may be replaced by any mixture over the support of
1f , and the resulting set will be friendly of size 0α α

�

�

. Similarly, if we
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have a friendly set and we eliminate mixtures 1 1f F∈�  whose support

contained in the support of some different 1 1f F∈ , we get a new friendly

set with a smaller value of α . In the EV example, the action et  is

friendly, with

/2
w u

w u
α

−
=

+
.

Finally, consider a pure action 1a  such that
1 1 1( ) conhull( )B a A E− −� �∩ − ≠ ∅� � . Since 1a  is pure, 1 1a fα≥  is possible

only if 1 1f a= . In other words, any pure action that permits short-run

entry (such as et  in the EV example) must be in every friendly set.

Moreover, if there is a single pure action that permits entry (again et) then

this action is the unique friendly set, even if some mixed actions allow

entry as well.

Definition 3: The support 1 1( )A F of a friendly set 1F  is the actions that

are played with positive probability:
1 1 1 1 1 1 1 1( ) { | ( ) 0, }A F a A f a f F≡ ∈ > ∈ . We say that a friendly set 1F

is orthogonal to an unfriendly set 1A
�

 if 1 1 1( )A A F∩ = ∅

�

.

Next we consider what signals may reveal about actions.

Definition 4: We say that a set of signals Y
�

is unambiguous for a set of

actions 1A
�

 if for all 1 1 1 1 1 1, , ,a E y Y a A a A− −∉ ∈ ∈ ∉
� ��

� �  we have
1 1 1 1( | , ) ( | , )y a a y a aρ ρ

− −

>
� � � .

Notice that this is a strong condition: every action in 1A
�

 must assign a

higher probability to each signal in Y
�

 than any action not in 1A
�

.  A given

set of actions may not have signals that are unambiguous. In the case of

the EV example, E  is an unambiguous signal for the sets { },{ , , }ee ee et te .

The set { }et  does not have an unambiguous signal.

Definition 5: An action 1a  is vulnerable to temptation relative to a set of

signals Y
�

if there exists numbers , 0ρ ρ >�  and an action ib such that
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1) If 1 1a E− −∉ , y Y∈

�

� , then 1 1 1 1( | , ) ( | , )y b a y a aρ ρ ρ− −≤ −� � .

2) If 1 1a E− −∉  and ey Y Y∉ ∪
�

 ,

then 1 1 1 1( | , ) (1 ) ( | , )y b a y a aρ ρ ρ− −≥ + � .

3) For all 1 1e E− −

∈ , 1 1 1 1 1 1( , ) ( , )u b e u a e− −

≥ .

The action ib is called a temptation.

In other words, an action is vulnerable if it is possible to lower the

probability of all of the signals in Y
�

 by at least ρ  while increasing the

probability of each other signal by at least the multiple (1 )ρ+ � . Notice that

for an action to be vulnerable to a temptation, it must place at least weight

ρ  on each signal in Y
�

.  Notice also that the definition does not control the

payoff to the vulnerable action when the short-run players participate – the

temptation here is not to increase short-run payoff, but rather to decrease

the probability of the signals in Y
�

. In the EV example, the action et  is

vulnerable relative to { }E . The temptation ib  is tt, which sends the

probability of the signal E  to zero. (Since there is one other signal,

condition 2 of the definition is immediate.)

Notice that if an action 1a  is vulnerable, it cannot be the case that

if 1 1conhullEα
− −∉  then 1 1 1( | , ) ( | )aρ α ρ α

− −

⋅ = ⋅  – the distribution of

actions must be in some way dependent on the long-run player’s action if

the short-run players do not exit. This is related to the notion of an action

being identified, as in Fudenberg, Levine and Maskin [1994]. Here we

allow the possibility that there are strategies such as et  and te  from the

EV example that are not identified, but do not allow complete lack of

identification unless the short-run players play in 1E−  with probability

one.

Definition 6: A mixed action 1
α  for the long run player is enforceable if

there does not exist another action 1
α�  such that for all 1 1a E− −

∈ ,
1 1 1 1 1 1( , ) ( , )u a u aα α

− −

≥�  and for all 1 1 1a A E− − −

∈ − ,
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1 1 1 1 1 1( , ) ( , )u a u aα α
− −

>�  and 1 1 1 1( | , ) ( | , )a aρ α ρ α
− −

⋅ = ⋅� . When 1
α   is

not enforceable, we say that the action 1
α�   defeats  1

α .

If an action is not enforceable then there is necessarily lack of

identification, since 1
α  and 1

α�  induce exactly the same distribution over

signals. The key point is that if the short-run players enter with positive

probability, the rational type cannot play an action that is not enforceable:

by switching to 1
α�  he would strictly increase his current payoff, while

maintaining the same distribution over signals, and so the same future

utility. Note also that a mixed action that assigns positive probability to

unenforceable actions is not enforceable: if 1
α  assigns probability p to

unenforceable action 1a , then 1
α  is defeated by the mixed action 1

α̂

formed by replacing the probability on 1a   with the action 1
α�  that defeats

1a .

Definition 7: A participation game has an exit minmax if

1 1

1 1

1 1 1
( )

1 1 1
( )

max max ( , )

min max ( , )
E range B

range B

u

u
α α

α α

α α

α α

−

−

−

∈ ∩

−

∈

=

In other words, any exit strategy forces the long-run player to the minmax

payoff, where the relevant notion of minmax incorporates the restriction

that the action profile chosen by the short-run players must lie in the range

of B.7 It is convenient in this case to normalize the minmax payoff to 0. 

We are now in a position to define a class of games we call bad

reputation games.  

                                                
7  When there is a single short-run player this restriction collapses to the constraint of not
playing strictly dominated strategies, but when there are multiple short-run players it
involves additional restrictions.  It is clear that no equilibrium could give the long-run
player a lower payoff than the minmax level defined in defintion 7.  Conversely, in
complete-information games, any long-run player payoff above this level can be
supported by a perfect Bayesian equilibrium if actions are identified and the public
observations have a “product structure” (Fudenberg and Levine [1994]). This is true in
particular when actions are publicly observed as shown in Fudenberg, Kreps and Maskin
[1990].
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Definition 8: A participation game is a bad reputation game if it has an

exit minmax,  there is an unfriendly set 1A
�

, a friendly set 1F  that is

orthogonal to 1A
�

, and a set of signals Y
�

 that are unambiguous for 1A
�

,

and such that every enforceable 1 1f F∈  is vulnerable to temptation

relative to Y
�

.

In particular, the EV game is a bad reputation game. We take the

friendly set to be { }et , the unfriendly set to be { }ee  and the unfriendly

signals to be { }E . We have already observed that { }et  is a friendly set

and { }ee  unfriendly. The two are obviously orthogonal, and { }E  is

unambiguous for { }ee .

In a bad reputation game, the relevant temptations are those

relative to Y
�

. For the remainder of the paper when we examine a bad

reputation game and refer to a temptation, we will always mean relative to

the set Y
�

.

For any bad reputation game, it is useful to define several constants

describing the game. Let 1a�  be the probability in the definition of an

unfriendly set; let α  be the probability in the definition of a friendly set.

Since the friendly set is finite, we may define 0ρ >  to be the least value

for which a friendly enforceable action is vulnerable. . Define

1 1 1 1 1 1

1 1

1 1, , conhull( ),

( | , )min
( | , )a A a A E y Y

y ar
y aα

ρ α

ρ α
− −

−

−∈ ∉ ∉ ∈
= � � �

� �

� �

�

.

Since Y
�

 is unambiguous for the unfriendly set, 1r > . Also define

log( )/ logrη αρ= −

which is positive, and

( )0
log( )

log (1 )
k

r
α

α α

= −
+ −

�

� �
.

3. The Theorem
We now prove our main result: In a bad reputation game with a

sufficiently patient long-run player and likely enough unfriendly types, in
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any Nash equilibrium, the long-run player gets approximately the exit

payoff. The proof uses two Lemmas, both proven in the Appendix.

We begin by describing what it means for unfriendly types to be

likely “enough.” Let 1( )FΘ  be the commitment types corresponding to

actions in the support of 1F .

Definition 9: A bad reputation game has commitment size , ,ε ω φ  if

1
1

(0)[ ](0)[ ( )]
(0)[ ( )]

F
F

φ
ε µ

µ ε
ω µ

 Θ Θ ≤    Θ 

�

This notion of commitment size places a bound on the prior probability of

friendly commitment types that depends on the prior probability of the

unfriendly types in Θ
�

. Since φ  is positive, the larger the prior probability

of Θ
�

, the larger the probability of the friendly commitment types is

allowed to be. The hypothesis that the priors have commitment size , ,ε α η
�

for sufficiently small ε  is a key assumption driving our main results.

Note that the assumption of a given commitment size does not

place any restrictions on the relative probabilities of commitment types. In

particular, let µ�  be a fixed prior distribution over the commitment types,

and consider priors of the form λµ� , where the remaining probability is

assigned to the rational type. Then the right-hand side of the inequality

defining commitment size depends only on µ� , and not on λ , while the

left-hand side has the form λµ� . Hence for sufficiently small λ  the

assumption of commitment size , ,ε α η
�  is satisfied. Note that in EV the set

of actions 1 { }A ee=

�

 has commitment size 0, ,α η
�  for all priors (0)µ

since the only types are the rational type and the commitment type who

plays ee .

We now have a series of Lemmas proven in the Appendix.

Lemma 1: If th  is a positive probability history in which y Y∈

�

�  occurs in

period t  and 1
1( )[ ( )] /2th Fµ α

−

Θ ≤  then 1 1
0( ) ( /2)th fα α≥ .
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In other words, when the prior on committed types is sufficiently low,

entry can occur only if the strategic type is playing a friendly strategy with

appreciable probability.

Lemma 2: In a bad reputation game, if th  is a positive probability history

with respect to a Nash equilibrium, and the signals in th  all lie in
eY Y∪

�

, then

a) At most ( )0* log (0)[ ]k k µ= − Θ
�

 of the signals are in Y
�

.

b) If the commitment size is /2, ,α α η
�  then 1( )[ ( )] /2th Fµ αΘ ≤

whenever 1 1( ) conhullth Eα
− −∉ .

Remark: The intuition for part a is simple, and closely related to the

argument about the deterministic evolution of beliefs in FL: The short-run

players exit if they think it is likely that entry will lead to the observation

of a bad signal.  Hence each observation of a bad signal is a “surprise” that

increases the posterior probability of the bad type by (at least) a fixed ratio

greater than 1, so along a history that consists of only bad signals and exit

signals, the posterior probability of the bad type eventually gets high

enough that all subsequent short-run players exit.   This argument holds no

matter what other types have positive probability, and it is the only part of

this lemma that would be needed when there are only two types, one

rational and one bad, as in EV.

However, as we will show by example below, we cannot expect

the “bad reputation” result to hold when there is sufficiently high

probability of the Stackelberg type. Part b of the lemma says that if the

initial probability of the friendly types is sufficiently low compared to the

prior probability of the bad types, then along any history consisting of exit

outcomes and bad outcomes, the probability of the Stackelberg type

remains low up to the point where the short-run players decide to exit. The

intuition for this result is that because 1r > , each observation of a bad
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signal not only increases the probability of the bad type, it increases the

relative probability of this type compared to any friendly commitment

type. (If there were a type with a history-dependent strategy, this part of

the lemma would need to be modified.)  Notice that part b will be satisfied

for any given ratio of type probabilities, provided that the probability of all

types is sufficiently low.

Define 1 1 1max min(0, )U u u= − ,

1
1

0
( , ) 11

ey Y
u y

U y Y
ρ

ρ

∈=    + ∈  

� �

�

1( , )

ey Y
y

y Y

δ

δ ρ δ

ρ

∈

= 
 ∈


� �

�

and 1 1( ) { | ( | ( ), ( )) 0}e
t t tY h y Y Y y h hρ α α

−

= ∈ ∪ >

�

.

Lemma 3: In a participation game if 1 1( ) conhull( )th Eα
− −

∈ , or
1 1( ) conhullth Eα

− −∉  and 1 1
0( )th fα γ≥  for some 0γ >  and

vulnerable friendly action 1f  of temptation f size ρ , ρ�  then

1 1 1
( )( ) max (1 ) ( , ) ( , ) ( , )

tt y Y h tv h u y y v h yδ ρ δ ρ∈≤ − + � .

Remark: This lemma says that if the rational type is playing a friendly

strategy, his payoff is bounded by a one-period gain and the continuation

payoff conditional on a bad signal.  This follows from the assumption that

for every entry-inducing strategy it is possible to lower the probability of

all of the signals in Y
�

 by at least ρ  while increasing the probability of

each other signal by at least the multiple (1 )ρ+ � .  The fact that the rational

type chooses not to reduce the probability of the bad signal means that the

continuation payoff after the bad signal cannot be much worse than the

overall continuation payoff.

Theorem 1: In a bad reputation game of commitment size /2, ,α α η
�  let

1v be the supremum of all Nash equilibrium values for the rational type.
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*

1 * 11 1(1 ) 1
k

v k Uδ
ρ ρ

     ≤ − +       � �
,

where ( )0* log (0)[ ]k k µ= − Θ
�

. In particular, 1
1lim 0vδ→ ≤ .

Proof:  Given an equilibrium, we begin by constructing a positive

probability sequence of histories beginning with 0. Given th  already

constructed, we define 1 1( , )tt th h y
+ +

=  where
1 1

1 ( )arg max (1 ) ( , ) ( , ) ( , )
tt y Y h ty u y y v h yδ ρ δ ρ+ ∈∈ − + � .

We know that ( )tY h  is not empty because either 1( ) conhull th Eα −1 −∈ , or
1( ) conhull th Eα −1 −∉ . This latter case implies that 1 1( )th fα α≥  for some

friendly 1f , and since only enforceable actions can be played in

equilibrium, this 1f must be vulnerable to temptation, so
1 1 1 1| ( ), ( )) | , ( )) 0t t tY h h Y f hρ α α αρ α− −( ≥ ( >

� �

.

Now apply Lemma 2 to conclude that for each th  at most *k  of

the signals are in Y
�

and 1( )[ ( )] /2th Fµ αΘ ≤  whenever
1 1( ) conhullth Eα

− −∉ . Consider an th  such that
1 1( ) conhullth Eα

− −∉ . From the definition of a friendly action, we know

that 1 1( )th fα α≥  for some friendly 1f , so 1( )[ ( )] /2th Fµ αΘ ≤  and

Lemma 1 implies that 1 1
0( ) ( /2)th fα α≥ . Now apply Lemma 3 to

conclude that for each th
1 1 1

1 1 1( ) (1 ) ( , ) ( , ) ( )t t t tv h u y y v hδ ρ δ ρ+ + +≤ − + � .

Since 1 1( )tv h U≤ , it follows that

1 1
21

(0) (1 ) ( , ) ( , )t
tt

v y u y
τ τ

δ δ ρ ρ
∞

=
=

≤ − Π∑ � .

Since 1( , ) 0eu y ρ =� , and  ty Y∈

�

 at most *k  times, this gives the desired

bound. Notice that the fact that 1( , ) 0eu y ρ =�  follows from the

assumption of exit minmax: it is here that we make use of the fact that exit

gives the long-run player no more than the minmax.

�
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4. Examples
We now consider a number of examples to illustrate the scope of

Theorem 1, and also the extent to which the assumptions are necessary as

well as sufficient.  To begin, Example 4.1 illustrates what happens when

the prior puts too much weight on some committed types for the

hypothesis of commitment size /2α  to be satisfied. Example 4.2 shows

that the EV conclusion is not robust to the addition of an observed action

that makes the short-run players want to enter.   Example 4.3 examines

participation games that are not bad reputation games, and example, 4.4

illustrates the role of the exit-minmax assumption.  In all of the examples

but 4.1, we assume that the hypothesis of commitment size /2α  is

satisfied, and investigate whether the game is a bad reputation game. The

following section considers a class of bad-reputation principal-agent

games. .

Example 4.1: EV With Stackelberg Type

We have verified Assumptions 1 and 2 in the EV example, so

Theorem 1 follows. Moreover, we have relaxed the original assumptions

of EV in a number of ways. One important extension is that we allow for

positive probabilities of all commitment types. In particular, we allow a

positive probability of a “Stackelberg type” committed to the honest

strategy et , which is the optimal commitment. However, a hypothesis of

the theorem is that the prior satisfy the commitment size assumption.
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Here we illustrate that assumption in the context of the EV

example. Suppose in particular that there are 3 types, rational, bad, and

Stackelberg.  The set of possible priors can be represented by the simplex

in figure 2

Figure 2

When the prior falls into the region in the lower right, the probability of

the bad type is too high, and the short run players refuse to enter

regardless of the behavior of the standard type.  Bad reputation arises

because the long-run player tries to prevent the posterior from moving into

this region.  In EV the prior assigned probability zero to the Stackelberg

type.  Thus the prior and all posteriors on the equilibrium path belong to

the lower boundary of the simplex.  When there is a sufficiently high

probability of the Stackelberg type, the short-run players will enter

regardless of the behavior of the standard type; this is the region at the top

of the simplex.  Note that the boundaries of these regions intersect on the

right edge of the simplex: this point represents the mixture between ee and

et which makes the short-run player indifferent between entry and exit.
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When the prior falls in the bad region, there will be no entry and the long-

run player obtains the minmax payoff of zero.  On the other hand, when

the prior falls in the good region, we there is a Nash (and indeed

sequential) equilibrium in which the long run player receives the e best

commitment payoff, which is “ u ” in the notation of EV.

Consider the game in which the posterior probability of the bad

type is zero. In this game there exists a sequential equilibrium in which the

long-run player gets u . Suppose that we assume that this is the

continuation payoff in the original game in any subform in which the long-

run player played t at least once in the past. A sequential equilibrium of

this modified game is clearly a sequential equilibrium of the original

game, and by standard arguments, this modified game has a sequential

equilibrium. How much does the rational long-run player get in this

sequential equilibrium? One option is to play tt in the first period. Since

the short-run player is entering regardless, this means that beginning in

period 2 the rational type gets u . In the first period he gets ( )/2u w− .

Hence in equilibrium he gets at least (1 )( )/2u w uδ δ− − + , which

converges to u  as 1δ → .

Our theorem is about the set of equilibrium payoffs for priors

outside of these two regions.  The theorem states that there is a curve,

whose shape is represented in the figure, such that when the prior falls

below this curve, the set of equilibrium payoffs for the long-run player is

bounded above by a value that approaches the minmax value as the

discount factor converges to 1.  The diagram shows that the left boundary

of the simplex is an asymptote for this curve as it approaches the complete

information prior (i.e. 0(0)( ) 1µ θ = ) in the lower left corner.  This

illustrates the important aspect of the commitment size restriction: it is

satisfied for r “almost) all” sufficiently small perturbations of the complete

information limit.
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Example 4.2: Adding an Observed Action to EV

We now modify the EV game by adding new observable action "g"

for the long-run player called “give away money.” This action induces the

short-run players to participate ( 1( ) conhull( )B g E−∩ = ∅ ) and it is

observable, so Assumption 1 is not satisfied.  Moreover, even without a

Stackelberg type the EV conclusion fails in this game: there is an

equilibrium where the rational type plays g  in the first period. This reveals

that he is the rational type, and there is entry in all subsequent periods,

while playing anything else reveals him to be the bad type so that all

subsequent short run players exit.  Thus the assumption that every friendly

action is vulnerable to temptation is seen to be both important and

economically restrictive.

4.3. Orthogonality Issues

Suppose friendly actions send the bad signal by putting positive

weight on unfriendly actions. An important class of games in which this is

the case are those in which, conditional on entry, the long-run players’

actions are observed. In this case the bad signals correspond to unfriendly

actions, and bad signals can only have positive probability when the

unfriendly action is played with positive probability. Moreover, in some

games, the only friendly strategies involve randomizing in this way.

Proposition 1: If there is a friendly action that only send bad signals

because of mixing onto unfriendly actions, the game is not a bad

reputation game

Proof: The assumption that the friendly and unfriendly sets are orthogonal

are violated.

�

To see that this makes a difference, consider the following two-

person game:
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L M R

U 0,4 1,3 0,0

D 0,0 1,3 0,4

Figure 3

where L and R  correspond to exit and M to entry.8 In this case entry can

be induced only by mixing with probability of U between ¼ and ¾.

Because friendly actions must involve mixing, they will send a bad signal,

which can be taken to be either U or D. Suppose we take D to be the bad

signal, and suppose that the only committed type with positive probability

is D. The problem that occurs is that while repeated observations of D

increase the probability of the bad type, when that probability hits the

critical level, the rational player no longer needs to play a friendly action:

in effect the bad type is doing his mixing for him. Specifically, suppose

that initially, the probability of the bad type is less than ¼, and that for any

current probability ( )[ ]th Dµ  less than ¼ the rational type mixes so that the

overall probability of D is exactly ¾.  The short-run player always enters.

If U is observed, the type is revealed rational. If D  is observed, the

probability of the bad type increases by a factor of 4/ 3 . So when it first

exceeds ¼ it is at most equal to 1/3. At this point, the rational type may

reveal himself by playing U with probability 1, while preserving the

incentive of the short-run player to enter. In this equilibrium, the long-run

player gets 1.

We say that an action *f  is sufficient for entry if, for some

1α < , 1 *fα α≥  implies that there is 2 1( )Bα α∈  with positive

probability of entry. In the example above the friendly action is sufficient

for entry, and sends the bad signal only because of mixing onto the

                                                
8 In this example, the short-run player has several exit actions, and his payoff depends on
the long-run player’s action. This is a necessary feature of two-player games where the
only friendly strategies are mixed, but it is not necessary in three-player games – think of
a game where player 3 has veto power, 3 only plays In if 2 plays M, and 2’s payoffs to M
are as in the payoff matrix of this example.
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unfriendly action. That is, the sufficient action mixes between a pure

action that does not send the bad signal, and an unfriendly action. If there

is a friendly action that does not send the bad signal at all, then we have a

quite general conclusion that the game is not a bad reputation game since

such an action cannot admit a temptation. More strongly, if an action

sufficient for entry does not send the bad signal at all, then a patient

rational player can do almost as well as in the absence of bad reputation

effects.

Proposition 2: If there is an action *f  that is sufficient for entry and

does not send any bad signal, the only committed types are unfriendly

types, and the probability of committed types is sufficiently low, then as

1δ →  there are sequential equilibrium payoffs for the rational type that

approach the highest sequential equilibrium payoff without committed

types.

Proof:  Suppose that the prior probability of committed types is

sufficiently low that the short-run players will enter when the rational type

plays *f . Then it is a sequential equilibrium for the rational type to play

*f  in the initial period with entry by the short-run players. Subsequently,

if a bad signal was observed, the short-run players stay out. If a bad signal

was not observed, the probability of committed types is zero, and the

continuation equilibrium is the best possible without committed types. On

the equilibrium path, the rational type payoff clearly approaches that of the

highest payoff without committed types, since he gets that amount

beginning in period 2, and payoffs in period 1 are bounded below.

�

4.4:  Exit Minmax

In participation games, reputation plays a role because the short

run players will guard against unfriendly types by exiting.  This is “bad”

for the long-run player only if exit is worse than the payoff he otherwise
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would receive, and the exit minmax assumption ensures that this is the

case.

In participation games without exit minmax, there are outcomes

that are even worse for the long-run player than obtaining a bad

reputation.  In this case it is possible that there exist equilibria in which the

long-run player is deterred from his temptation to avoid exit by the even

stronger threat of a minmaxing punishment.  For example consider the

game in Figure 4, where the first matrix represents the payoffs, and the

second represents the distribution of signals conditional on entry.

In 1Out 2Out g b r

F 1,1 0,0 -2,0 F ½ ½ 0

U 1,0 0,1 -2,0 U 0 1 0

T 1,0 0,0 -2,1 T ½ 0 ½

Figure 4

This game is a participation game with exit actions 1Out  and 2Out ,

unfriendly action U  and friendly action F  vulnerable to temptation T .

There are only two types, the rational type and a bad type that plays U.

Exit minmax fails because the maximum exit payoff exceeds the minmax

payoff, and we claim that there are good equilibria in this game because

the threat of exiting with 2Out  is worse than the fear of obtaining a

reputation for playing U  which would only lead to exit with 1Out .

To see this, consider the following strategy profile.  The rational

type plays F at every history unless the signal r has appeared at least

once; in that case the rational type plays T . The short run player plays

2Out  if a signal of r  has ever appeared. Otherwise, the short run player

plays 1Out  if the posterior probability of the bad type exceeds ½ and In if

this probability is less than ½.    Obervations of r are interpreted as signals

that the long-run player is rational.

Since 2( , )T Out  is a Nash equilibrium of the stage game, the

continuation play after a signal of r  is a sequential equilibrium.   When r
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has not appeared, the long run player optimally plays F .  Playing U gives

no short-run gain and hastens the onset of 1Out , and playing T shifts

reallocates probability from the bad signal b to the signal r which is even

worse.9   The short-run players are playing short-run best responses.  In

this equilibrium, the long run player does not give in to the temptation to

play T .  As a result, with positive probability, the short-run players never

become sufficiently pessimistic to begin exiting, and so the long run

player achieves his best payoff.

In the above example there were two exit actions.  The next

proposition states that when there is only one exit action and the long-run

player’s exit payoff is independent of his own action, the worst Nash

equilibrium payoff for the long run player is (not much worse than) his

exit payoff.  Note that this condition is satisfied in the principal-agent

applications discussed in section 5.  The proposition is a consequence of

FL (1992).

Proposition 3: Consider a participation game with a single short-run

player and a unique exit action.  If

 (i)  there exists a pure  action10 1â ,  such that  1( ) { }B exitα = ,

(ii) the prior distribution assigns positive probability to a type that

is commited to 1â ,

and

(iii) the long-run player’s action is identified conditional on entry,

then there is a lower bound on the payoffs to the standard type which

converges to u as the discount factor approaches 1.

                                                
9 Playing T gives probability ½ of shifting to the absorbing state where payoffs are –2.
Playing the equilibrium action of F has probability at most ½ of switching to the state
where payoffs are 0.
10 The assumption of pure action is not needed here, but we state the result this way for
consistency with the rest of the paper.
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Proof:  FL (1992) established11 that for any game there exists a bound

lower bound ( )b δ  on the set of Nash equilibrium payoffs for the standard

type, and that as 1δ → ,  ( )b δ converges to a limit that is at least

1 2 1
1 1 2

( )
max min ( , )

a C B a
u

α
α α

∈ ∈ �

where 1( )B a� is the set of self-confirmed best-responses to for the short-run

player to 1a , and C is the set of actions corresponding to the support of the

prior distribution over commitment types. Because the long-run player’s

action is identified conditional on entry and 1ˆ( ) { }B a exit= , we have
1ˆ( ) { }B a exit=� , and because the type that plays 1â  has positive prior

probability, the FL (1992) bound is at least 1 1ˆ( , )u a exit u= .

�

For games satisfying the conditions of the proposition, the exit

minmax condition is not necessary for bad reputation.  The worst

equilibrium continuation value that the short-run players could inflict is

arbitrarily close to the exit payoff and hence a patient long run player

could not be deterred from his tempation to avoid a bad reputation.

5. Poor Reputation Games and Strong Temptations
Recall that an action is vulnerable to a temptation if when the

short-run players participate, the temptation lowers the probability of all

bad signals, and increases the probability of all others.  In this case the bad

reputation result requires the exit minmax condition, as demonstrated by

the example in Section 4.4. Notice, however, that in the example the

relative probability of g and r is changed by the temptation. If the

temptation satisfies the stronger property that the relative probability of

the other signals remains constant, then we can weaken the assumption of

                                                
11  The statement of the FL theorem  requires that commitment types including mixing
types have full support, in which case the set C  is the space of all (mixed) actions, but
the proof given there also shows that the version of the lower bound given here is correct.
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exit minmax. In this section we prove this result, and give an application

to games with two actions.

First we give a formal definition of a strong temptation:

Definition 10: An action 1a  is vulnerable to a strong temptation relative to

a set of signals Y
�

if there exists a number 0ρ >  and an action ib such

that

1) If 1 1a E− −∉ , y Y∈

�

�  then 1 1 1 1( | , ) ( | , )y b a y a aρ ρ ρ− −≤ −� �

2) If 1 1a E− −∉  and , ' ey y Y Y∉ ∪
�

 then 
1 1 1 1

1 1 1 1

( | , ) ( | , )
( ' | , ) ( ' | , )

y b a y a a
y b a y a a

ρ ρ
ρ ρ

− −

− −= .

3) For all 1 1e E− −

∈ , 1 1 1 1 1 1( , ) ( , )u b e u a e− −

≥ .

The action ib is called a strong temptation.

The first and third parts of this definition are the same as in the

definition of a temptation; the additional strength comes from part (2),

which requires that the temptation not merely increase the probability of

all of the good signals, but leave their relative probabilities unchanged.

Note that strong temptation is equivalent to temptation in games in which

the set \ ( )eY Y Y∪

�

 has a single element, for example games in which

there are only two entry signals; in particular applies when the modified

versions of the game of Section 4.4 is modified so that the only signals

when entry occurs are g and r.  

This condition lets us sharpen lemma 3 by replacing the variable
1( , )yδ ρ�  with the constant δ :

Lemma 4: In a participation game, if 1 1( ) conhullth Eα
− −

∈ or
1 1( ) conhullth Eα

− −∉  and 1 1
0( )th fα γ≥  for some 0γ >  and friendly

action 1f   that is vulnerable to a strong temptation  size ρ , then

1 1 1
( )( ) max (1 ) ( , ) ( , )

tt ty Y hv h u y v h yδ ρ δ
∈

≤ − + .
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The proof, in the Appendix, follows that of lemma 3, but takes advantage

of the fact that the long-run player’s continuation expected value,

conditional on a friendly action, a non-exit profile, and a signal not in
eY Y∪

�

, is the same for the equilibrium action and the strong temptation
1b .

Define

1 1 1
1 1 1 1

, conhull( ) image( )
ˆ max ( , )

a E B
u u a

α

α
− −

−

∈ ∩
=

This is a bound on the long-run player’s payoff when the short-run players

play exit actions that are a best response to some (possibly incorrect)

conjectures.

Defintion 11: A participation game is a poor reputation game if there is

an unfriendly set 1A
�

, a friendly set 1F  that is orthogonal to 1A
�

, and a set

of signals Y
�

 that are unambiguous for 1A
�

, and such that every

enforceable 1 1f F∈  is vulnerable to strong temptation relative to Y
�

.

Theorem 3: In a poor reputation game of commitment size /2, ,α α η
�

 1
11 ˆlim v u

δ→
≤ .

In other words, poor reputation games have much the same consequences

as bad reputation games.  Notice that it is possible for a game to be both a

bad reputation game and a poor reputation game, and, since strong and

ordinary temptation are equivalent when \ ( )eY Y Y∪

�

 the two are

necessarily equivalent in this case. The original EV game is such an

example. Notice also that example 4.4 in which we construct a non-bad

equilibrium has three signals rather than two. With two signals, the game

would still fail the exit minmax condition and fail to be a bad reputation

game, but it would never-the-less be a poor reputation game, and would

not admit a good equilibrium. Finally, observe that there is an element of

continuity: the proof of both Lemma 3 and 4 can be generalized, so that

the extent to which the best equilibrium (in the limit as 1δ → ) can

exceed the most favorable outcome with exit is bounded by a term which
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is the product of the change in relative probabilities induced by a

temptation and the excess of the best result given exit over the minmax.

When one of these two equals zero we get the case of either bad or poor

reputation. Otherwise, the best equilibrium can exceed the best exit payoff

for the long-run player, but only by a limited amount.

We turn now to the special case of two-player participation games

where there is only one signal  in Y
�

and short-run player payoffs depend

only on the signal. We focus on the case where bad reputation games have

poor reputation, that is one signal in \ ( )eY Y Y∪

�

. We show that these

games are not poor reputation games (and by implication not bad

reputation games either)..

Proposition 4: In a two-player participation game suppose there are only

two “entry signals”  (that is two elements of eY Y− ), that the short-run

player has only two actions, and that the short-run player’s realized payoff

is determined by the signal.Then the game is not a poor reputation

game.Proof: Notice that since the short-run player has only two actions,

they correspond to “entry” and “exit” respectively. Consequently, the

short-run player payoff conditional on entry depends only on the

distribution over signals induced by the long-run player action. If we

normalize the short-run player’s payoff function so that his exit payoff is

0, and suppose that both the friendly and unfriendly sets are non-empty,

then one signal yields a  negative payoff and the other signal’s payoff is

positive; call these the “bad” and “good” signals respectively. Then any

unfriendly set 1A
�

 consists of actions with a sufficiently high probability of

sending the bad signal, and the bad signal (as a singleton set) is the only

set Y
�

that can be unambiguous for 1A
�

. (If there were no unfriendly set,

then the game is not a poor reputation game, so we can assume there is at

least one unfriendly set.) Let 1f  be the friendly action in the (finite)

friendly set that maximizes the short-run player's payoff. The payoff to

this action, conditional on it not generating the bad signal with the

negative payoff, is positive, and since any temptation relative  to Y
�

must

reduce the probability of the bad signal, a temptation must give the short-
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run player a higher payoff than this “friendliest” friendly action. For this

to be true, there must be a pure strategy 1̂b  that gives the short-run player

at least this same utility. Clearly 1̂b  induces entry, and since it is a pure

strategy, it must be in the friendly set. This contradicts the fact that 1f  was

assumed to maximize short-run player utility in the friendly set.

�

We believe that the assumptions of this proposition imply that there is an

equilibrium where the rational type's payoff is bounded below by a

positive number as 1δ →  but we have not been able to show this.

6. Principal-Agent Entry Games
In this section we consider a class of applications which have the

nature of an agency relationship.  The long- run player (the agent) takes an

action that affects the payoffs of both a principal (that period’s short run

player) and herself. When the principal’s and the agent’s preferences

differ over the action set, and the action is not perfectly observed, we have

a classical problem of incentives. A repeated interaction can often

substitute for explicit contracts in alleviating this incentive problem.  The

long run agent’s objective of establishing a good reputation can provide an

incentive for efficient behavior in the short-run.  In this section we classify

agency environments in which the repeated interaction has the opposite

effect.  Bad reputation can intensify rather than mitigate the agent’s

incentive problem.

There is a single short-run player (the principal) whose only choice

is whether to enter or to exit.  If the principal enters, then the long-run

player (the agent) chooses a payoff-relevant action, otherwise both players

receive a reservation value which is normalized to zero.   Formally
2 { , }A exit enter=  and 2 1( , ) 0u a exit = for each 1a ∈ 1A .  For simplicity we

write 2 1 2 1( , ) ( )u a enter u a= .  We assume there is an action 1a ∈  1A  for

which 1 1( ) 0u a ≥ , so that the exit minmax assumption is satisfied.  (Note

that this assumption will hold whenever the principal has the option to
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refuse to participate.  Note also that from Theorem 2 this assumption is not

necessary for games with two signals.)

For these games we can immediately identify the relevant friendly

set.  Define
1 1 1 2 1{ : ( ) }F a A u a= ∈ ≥ 0

which is the set of pure friendly actions.  We know that 1 1ˆF F⊂  for any

friendly set 1F̂ .  In fact, within the class of principal-agent games, any bad

reputation game is a bad reputation game with friendly set 1F .  To see this

note that if 1 1( ) 0Fα =  then 2 1( ) 0u α < , i.e. exit is the unique best-reply to
1α .  Thus 1F  is itself a friendly set.12  Furthermore 1 1ˆsupp( ) supp( )F F⊂

so that orthogonality is preserved, and if every 1 1ˆf F∈ is vulnerable then

every 1 1f F∈  is vulnerable.  Thus we can restrict attention to 1F .

To show that these are bad reputation games, it suffices to find an

unfriendly set orthogonal to 1F  with unambiguous signals, such that every

enforceable point in 1F  is vulnerable to a temptation.

Remark: It is also of interest to consider games in which the agent has the

opportunity to take a costly action prior to the entry decision of the short-

run players. Consider for example, a game in which the long-run player is

an expert advisor, and the decision of the short-run player is whether or

not to pay the long-run player for advice. One example of this is the EV

example of car repairs, where the long-run player is able to determine the

type of repair the car needs. Other examples include stockbrokers advising

clients on portfolio choices, doctors advising patients on treatments, and

the IMF advising countries on economic policies. Costs incurred on exit

are consistent with a bad reputation game provided that conditional on exit

the temptations are less costly than the friendly actions. For example, the

long-run player might be a stockbroker, and the general non-client specific

information might be something about general economic conditions,

                                                
12 When there is more than one principal, this conclusion does not follow, and mixed
friendly sets will generally have to be considered.  See the discussion in section 4.3 and
footnote 7.
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acquired in advance in the form of economic reports that will be presented

to the client. The friendly actions in this case are to report truthfully; the

bad action might be to always claim that times are good. In this case the

temptation is to announce that times are bad when they are actually good,

to avoid being mistaken for the type that always announces good times. If

it is costly to put together a persuasive package of economic data

indicating that times are bad when in fact they are good this would not be

a bad reputation game. If it is more costly to put together an honest report,

then it would be a bad reputation game.

6.1 Games with Hidden Information

In these games the principal has some private information that is

relevant for a decision affecting both principal and agent.  Each period,

nature draws a state ω ∈ Ω ; in independently from a probability

distribution that we denote by p.13 The agent privately observes the state

and then selects a decision d ∈  D .  Conditional on the realized state and

the decision of the agent, a signal z ∈  Z , is drawn from the distribution

( | , )m z dω  where we assume that ( | , ) 0m z dω >  for each , ,  and z dω .

Future short run players observe both z  and the decision d .  Each player

j  has state-dependent utility function ( , )j dπ ω  and evaluates stage

payoffs according to expected utility with respect to ( )p ω .

To apply Theorem 1, we find conditions under which this defines a

bad reputation game.  The set of actions 1A  for the long-run player is the

set of maps 1 :a DΩ → .  The stage-game utility function is
1 1( ) ( ) ( , ( ))j ju a p a

ω
ω π ω ω

∈Ω

= � .

Finally eY Y Z D− = × and

 
1

1

{ : ( ) }

(( , ) | , ) ( ) ( | , )
a d

z d a entry p m z d
ω ω

ρ ω ω
=

= �

                                                
13 This is a slight abuse of notation, as p also denotes the probability distribution over
types in the incomplete-information games, but no ambiguity should result.
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Proposition  5: The hidden information game is a bad reputation game if

there exists a decision d  such that 1a ∈ 1F  implies ∅ ≠ 1{ : ( ) }a dω ω = ≠

Ω .

Proof:  Let ( )a d  denote the constant action that chooses d  regardless of

the signal ω , and take { ( )}A a d=

�

. Because ( | , ) 0m z dω > , the set of

signals { }dY Z d= ×  is unambiguous for A
�

. If  1a  is friendly, then
1{ : ( ) }d a dω ωΩ = = ≠ ∅ . For each b d≠  let 1b  be the action defined by

1( ) , db dω ω≠ ∈ Ω  and 1 1( ) ( ), db aω ω ω= ∉ Ω . Then  ( )a d  is vulnerable

to any mixed strategy that puts positive weight on every 1b .

�

Many examples can be found that meet the condition of the proposition.

First of all, note that the EV example is a special case.  In fact the theorem

extends the example to allow for public signals z  about the short run

players’ realized payoffs (which are determined by ( , )dω .

6. 2. Games with Hidden Actions

On the other hand, agency games with hidden actions, or moral

hazard, tend not to be susceptible to bad reputation effects.  The problem

is that the second part of the definition of temptation typically fails

because deviations will generally lower the probability of some good

signals.  However, a special case in which a hidden action game is a bad

reputation game occurs when there is only one short-run player and only

two signals.

The following proposition is an immediate application of the

definition of a bad reputation game in this setting.

Proposition 6: Suppose in a principal-agent entry game that

{ , }e L HY Y y y− =  and that 1a�  strictly maximizes the probability of Ly

with 2 1( ) 0u a <
� . If for every friendly enforceable 1a  there is a 1b  such

that 1 1( | ) ( | )L Ly b y aρ ρ<  the game is a bad reputation game.

We consider two applications of this idea. In the first, the agent

chooses an action from a one-dimensional set ordered so that higher
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actions are more likely to give rise to the high signal.  Specifically, we let
1 1 1{ ,..., }A a a= ⊂ ℜ  and 1( | )Hy aρ  are an increasing function of 1a . We

assume that 2 1( )u a  is concave so that 1F  is an interval.  Whether or not

the game is a bad reputation game then depends on whether the principal

prefers extreme or interior actions.

Proposition 7: The hidden action game with two non-exit signals is a bad

reputation game if and only if 1 1 1 1{ , }a a A F⊂ − .

Proof:   Suppose 1 1 1 1{ , }a a A F⊂ − .  Then 1 1a a=
�  and every friendly

action 1 1a a>
�  is vulnerable to the (unfriendly) temptation 1a .  On the

other hand if, 1 1a F∈ , then the only candidate set of bad signals is Y
�

=

{ }Ly , meaning that 1a is not vulnerable to a temptation. In case 1 1a F∈ ,

we simply reverse the role of the signals.

�

In these two-signal games, as in the hidden information games,

short-run player utility depends on aspects of the long-run player strategy

that is unobserved by subsequent short-run players. Proposition 4 shows

that this must be the case for a game with two entry signals to be a bad-

reputation game.

6.3. Rules vs. Discretion

We can build on the analysis of hidden information games to

discuss the emergence of rules over discretion in agency relationships.  To

motivate the idea, consider college admissions.  The university (the long-

run agent) receives an application.  The applicant is described by a set of

characteristics ω  ∈  Ω = oΩ ×  nΩ .  Some ( oΩ ) of these characteristics

are publicly observable  (for example race and SAT scores) and others

( nΩ ) are observed only by the university. This may include information

that is truly private (like an interview) or information that require the

expertise of the agent to interpret (for example, the strength of the

applicant’s high school.)  A pure strategy for the university is a map from

characteristics to the decision space D= (admit, deny). The probability of
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drawing characteristics ω  is ( ) 0p ω > . The university’s preferences over

applicants are summarized by the payoff function 1( )π ω  if the student is

admitted, and R  if the student is denied.

The short-run principal, player 2, is the state governor who chooses

between allowing the university discretion in admissions, or imposing a

rigid admission rule based on observable characteristics.  There are many

possible rules that the principal might use, but since she is a short-run

player we can restrict attention to the rule that maximizes the principal’s

expected short-run payoff. This rule is a mapping : og DΩ → that

mandates admission if and only if 1( )o g admitω −∈ .  The imposition of a

rigid admission rule represents “exit.”   The public signal at date t is
2( , , )o

t t ty d a ω= , where any signal with 2
ta rule= is an exit signal. The

governor shares the same preferences as the university, receiving a utility

of 1( )π ω  for admits and R  for rejects.

Because the university can always implement r on its own, exit

minmax condition is satisfied.   In order for discretion to improve upon r ,

for some set of verifiable characteristics, the admission decision should

depend on the unverifiable characteristics.  That is 1 1a F∈  only if
1( , )o na admitω ω = and 1 ˆ( , )o na denyω ω =  for some nω , ˆ nω and oω .  Then

by essentially the same argument as in the hidden information case, the

game is a bad reputation game with unfriendly set
1 1{ : ( , ) }oa a denyω ⋅ =

For example, oω may be racial characteristics, and this unfriendly

set represents the governor’s fear that the university admissions are biased

against members of the race in question

7. Mulilateral Entry Games
We now consider games with multiple principals. In these

“mutilateral entry” games, in the short-run players choose only whether to

participate or exit.  If any short-run player chooses to exit, that player

receives the reservation payoff of 0, but play between the agent and other

principals is unaffected. That is, { , }jA exit enter= for each 1j > , and the
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unique exit profile is 1 ( ,..., )ea exit exit− ≡ .  The payoff of the short-run

players who enter depends only on the action of the principal, and not on

how many  other short-run players chose to enter; to simplify notation we

denote this “entry payoff” as 1( )ju a .  If all principals exit, the long-run

player’s payoff is 0; if m of them choose to enter, the long-run player’s

payoff is 1 1( , )u a m . We assume that the agent cannot be forced to

participate, so that there exists an action 1a  such that for all m,
1 1( , ) 0u a m ≥ .

We do not require that 1 1( , )u a m  is linear in m, so this class of

games includes those in which the agent has the opportunity to take a

costly action prior to the entry decision of the short-run players. Consider

for example, a game in which the long-run player is an expert advisor, and

the decision of the short-run player is whether or not to pay the long-run

player for advice. One example of this is the EV example of car repairs,

where the long-run player is able to determine the type of repair the car

needs. Other examples include stockbrokers advising clients on portfolio

choices, doctors advising patients on treatments, and the IMF advising

countries on economic policies. In the EV example, the private

information emerges as a consequence of the decision of the short-run

player to consult the long-run player, so the advice is specific to the short-

run player. In another cases, at least some part of the information is not

specific to the short-run player.  The advisor receives a report about the

general desirability of various actions, and then meets with each of his n

short-run customers, possibly learning about their individual needs.  Here

the advisor receives the signal regardless of whether or not he is consulted

by any particular short-run player, and he may incur costs ahead of time

for doing so. That is, the long-run player's payoff may depend on his

action even if the short-run players decline to participate.

 Costs incurred on exit are consistent with a bad reputation game

provided that conditional on exit the temptations are less costly than the

friendly actions. For example, the long-run player might be a stockbroker,

and the general non-client specific information might be something about
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general economic conditions, acquired in advance in the form of economic

reports that will be presented to the client. The friendly actions in this case

are to report truthfully; the bad action might be to always claim that times

are good. In this case the temptation is to announce that times are bad

when they are actually good, to avoid being mistaken for the type that

always announces good times. If it is costly to put together a persuasive

package of economic data indicating that times are bad when in fact they

are good this would not be a bad reputation game. If it is more costly to

put together an honest report, then it would be a candidate for a bad

reputation game.

We have the following obvious extension of Proposition 5.

Proposition 8: Suppose in a multilateral entry game that

{ , }e L HY Y y y− =  and that 1a�  strictly maximizes the probability of Ly

with 1( ) 0ju a <
� . If for every friendly enforceable 1a  there is a 1b  such

that 1 1( | ) ( | )L Ly b y aρ ρ<  the game is a bad reputation game.

For concreteness, suppose that the short-run players are students, the long-

run player a teacher, and the signals are teaching evaluations. (This model

could apply equally well to the decision to attend a particular college,

graduate school, or take a particular job.)  Each period, each short-run

player decides whether to enter - that is, take the class, or not. The long

run player has a pair of binary choices: he can either teach well or teach

poorly, and he can either administer teaching evaluations honestly or

manipulate them. The public signals are whether the evaluations (averaged

over respondents) are good, Hy  or poor, Ly . If the evaluations are

administered honestly and the class is taught well, there is probability .9 of

a good evaluation. If evaluations are administered honestly and the class is

taught poorly, the probability of good evaluations is only .1. Manipulating

the evaluations is certain to lead to a good evaluation.  All players get 0 if

no students decide not to take the class. For a short-run player who enters,

the short run player's payoffs are +1 for good teaching and -1 for bad. Let

m  denote the number of students who take the class. The rational type of
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long-run player pays a cost of m  to teach well; good evaluations are

worth 2m , while manipulating evaluations costs 3m .  Hence in the one-

shot game with only the rational type, the unique sequential equilibrium is

for the rational type to teach well and not manipulate the evaluations, for

an expected payoff of .8.

However, when there is a small probability that the instructor is a

bad type, and the instructor faces a sequence of short-run students,

Proposition 7 applies.  To see this, we see that teaching poorly and

administering the evaluations honestly is the unfriendly action 1a� . The

friendly set consists of the pure actions “teach well, administer honest

evaluations” and “teach well, manipulate.” Crucially, the action “teach

well, manipulate” is unenforceable: teach poorly and manipulate yields a

higher stage game payoff and the same distribution over signals.  So the

only enforceable action in the friendly set is “teach well, administer

honestly.” This admits the temptation “teach poorly, manipulate.” Here the

short-run player recognizes that if the long-run player chooses not to send

the signal honestly, he loses his incentive to teach well, and so there is no

reason to enter

Appendix: Proofs

Lemma 1: If th  is a positive probability history in which y Y∈

�

�  occurs in

period t  and 1
1( )[ ( )] /2th Fµ α

−

Θ ≤  then 1 1
0( ) ( /2)th fα α≥ .

Proof: Given 1th
−

 the short-run players' profile has positive probability on

a profile that does not exit. At such profiles 1 1( )th fα α≥  for some

friendly 1f . Since 1
1( )[ ( )] /2th Fµ α

−

Θ ≤  friendly and unfriendly sets are

orthogonal we see that 1 1
0( ) ( /2)th fα α≥ .

�

Lemma 2: In a bad reputation game, if th  is a positive probability history

with respect to a Nash equilibrium, and the signals in th  all lie in eY Y∪

�



38

a) At most ( )0* log (0)[ ]k k µ= − Θ
�

 of the signals are in Y
�

.

b) If the commitment size is /2, ,α α η
�  then 1( )[ ( )] /2th Fµ αΘ ≤

whenever 1 1( ) conhullth Eα
− −∉ .

Proof:  First observe that if 1( )[ ]thµ α
−

Θ ≥
�

� , then the short-run players

must exit in period t , so 1( ) ( )t th hµ µ
−

= .

Suppose that th  is a positive probability history in which y�  occurs

in period t. Taking liberties with notation, let 1
1( | , ( ))ty hρ α

−

−
Θ
�

�  denote

the probability of signal y� conditional on the unfriendly types.  From

Bayes rule

1 1
1 1

1 1
1 1

( | , ( )) ( )[ ]( )[ ]
( | ( ), ( ))

t t
t

t t

y h hh
y h h

ρ α µ
µ

ρ α α

−

− −

− −

− −

Θ Θ
Θ =

� �

�

�

�

Since y�  has positive probability at time t  conditional on 1th
−

, it must be

that 1 1
1 1( ) ( ( ))t th B hα α

−

− −

∈  has positive probability of entry. It follows

that 1
1( )thα

−

 puts weight less than α�  on 1A
�

, and that

1
1

1 1
1

( | , ( ))
( | , ( ))

t

t

y h r
y a h

ρ α

ρ α

−

−

−

−

Θ
≥

�

�

�
.

Consequently

1( )[ ]( )[ ] 1(1 )
t

t
hh

r

µ
µ

α α

−
Θ

Θ ≥

+ −

�

�

� �

.

It follows that if signals in Y
�

 occur k  times, then

1( )[ ] (0)[ ]1(1 )

k

th

r

µ µ

α α

   Θ ≥ Θ   + −   

� �

� �

Hence if

( )
( )

log( ) log (0)[ ]1log (1 )
k

r

α
µ

α α

≥ − − Θ

+ −

�

�

� �

then ( )[ ]thµ αΘ ≥
�

� , so in all subsequent periods the signal must be an exit

signal. This proves the first assertion.
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To prove the second part, apply Lemma 1 inductively to conclude

that 1 1
0( ) ( /2)th fα α≥ . Because enforceability is a property of the

support of an action, 1f must be enforceable as well as friendly. By

assumption every enforceable friendly action is vulnerable to temptation,

so there is at least a /2ρα  chance of each bad signal y Y∈

�

� , so when y�

occurs, from Bayes rule we have 1( )[ ] (1/ ) ( )[ ]t th hµ θ ρα µ θ
−

≤  for all θ .

Hence, if 1( )[ ( )] /2th Fµ αΘ ≥  then it must be that Y
�

 has occurred at

least k  times, with 1(1/ ) (0)[ ( )] /2k Fρα µ αΘ ≥ . However, for
1( )aθ ∉ Θ

�

, 1 1a A∈

�

� , if y�  occurs, then
1

1
( )[ ( )]
( )[ ( )]

t

t

h a
r

h a
µ θ

µ θ
≥

�

.

Consequently, at k , it must be that

1( )[ ] ( )[ ( )] / 2k k
t th r h F rµ µ θ αΘ ≥ ≥

�

.

However, under the hypothesis of the Lemma, it can be verified that this

implies ( )[ ]thµ αΘ ≥
� � .  In other words, as soon as 1( )[ ( )] /2th Fµ αΘ ≥ ,

the equilibrium play of the short-run players is concealing for the

remainder of the game.

�

Lemma 3: In a participation game if 1 1( ) conhullth Eα
− −

∈ or
1 1( ) conhullth Eα

− −∉  and 1 1
0( )th fα γ≥  for some 0γ >  and

vulnerable friendly action 1f  of temptation size ρ , ρ�  then

1 1 1
( )( ) max (1 ) ( , ) ( , ) ( , )

tt y Y h tv h u y y v h yδ ρ δ ρ∈≤ − + � .

Proof:  If 1 1( ) conhullth Eα
− −

∈  then ( ) e
tY h Y⊆ , and the bound

follows directly from the definition of 1u . So consider
1 1( ) conhullth Eα

− −∉ . Note that 1f  must be enforceable, since

otherwise the rational type could replace 1f  and get a strictly higher

utility. Since every enforceable friendly 1f  is vulnerable to temptation,
1 1 1 1| ( ), ( )) | , ( )) 0t t tY h h Y f hρ α α αρ α− −( ≥ ( >

� �

 so that ( )tY Y h⊆
�

.  Notice

that 1 1( , )t tv h h  must be independent of the private history 1
th , and that the
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rational long-run player must be indifferent between the actions in the

support of 1( )thα . In particular, playing 1f  must yield the expected

present value 1( )tv h .

Consider then the long-run player switching from playing 1f  to a
1b  given in the definition of temptation.  We now need to calculate the

long-run player payoff separately as a function of whether the short-run

players exit or not. Observe that 1( )thα
−  induces a probability distribution

over 1A− . The probability distribution can be written as a convex

combination of two component distributions, namely 1
eα

−

−
, which has

support entirely in 1 1A E− −

− , and 1
eα
− , which has support entirely in

1E− . Then 1 1
~ (1 )e eλα λ α
− −

+ −  induces the same distribution over 1A−  as
1( )thα

− , where 1 1( ) conhullth Eα
− −∉ , 0λ > . Notice that in general,

1
eα

−

−
 and 1

eα
−  do not have representation as mixed strategies, as they can

correspond to correlated strategies for the short-run players. However, we

may still write 1 1 1 1 1 1 1 1( , ), ( , , ), ( | , )e e etu v hα α α α ρ α α
− − −

⋅  and so forth for

the expected values of 1 1 1 1 1 1 1 1( , ), ( , , ), ( | , )tu a v h a aα α ρ α
− − −

⋅  with

respect to the weights 1
eα
− , and similarly for 1

eα
−

−
. For example,

1
1 1 1 1 1 1 1 1( , ) ( , ) [ ]e ea

u u a aα α α α
−

− − − −
≡ ∑

 With this in mind, we may decompose

1 1 1 1

1 1 1 1 1 1 1 1 1
~

( ) ( , , ( ))

( , , ( )) ( , , ) (1 ) ( , , )
t t t

e et t t t

v h v h f h

v h b h v h b v h b

α

α λ α λ α

−

− − −

=

≥ = + −

.

Since 1 1 1 1 1 1( , ) ( , )e eu b u fα α
− −

≥  by definition of a temptation, it must be

that 1 1 1 1 1 1
~ ~( , , ) ( , , )e et tv h f v h bα α
− −

≥ . Notice that in the current period, 1b

loses at most 1U . Let 1 1( , )v Yα

�

�  denote the continuation expected

present value, conditional on 1 1
~, eaα
−  and a signal not in eY Y∪

�

. The

overall next period present value of for 1f  is

1 1 1 1 1 1 1
~ ~( | , ) ( , ) (~ | , ) ( , )e ety Y

y f v h y Y f v f Yρ α ρ α
− −

∈
+∑ �

�

� �
� �

� .

By switching, the next period present value is
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1 1 1 1 1 1 1
~ ~( | , ) ( , ) (~ | , ) ( , )e ety Y

y b v h y Y b v b Yρ α ρ α
− −

∈
+∑ �

�

� �
� �

� .

Since 1f  is in fact optimal, we conclude that

1 1 1 1 1 1 1 1
~ ~

1 1 1 1 1 1 1
~ ~

(1 ) ( | , ) ( , ) (~ | , ) ( , )

( | , ) ( , ) (~ | , ) ( , ) 0

e ety Y

e ety Y

U y f a v h y Y f v f Y

y b v h y Y b v b Y

δ δ ρ ρ α

δ ρ α ρ α

− −

∈

− −

∈

− + +

− + ≥

∑

∑

�

�

�

�

� �
� �

�

� �
� �

�

or

[ ]

[ ]

1 1 1 1 1 1
~ ~

1 1 1 1 1
~ ~~

(1 ) ( | , ) ( | , ) ( , )

( | , ) ( | , ) ( , )

e e ty Y

e e ty Y

U y f y b v h y

y b y f v h y

δ δ ρ α ρ α

δ ρ α ρ α

− −

∈

− −

∈

− + − ≥

 −  

∑

∑

�

�

�

� � �

But  1b  reduces the probability of every bad signal by at least ρ , and the

continuation payoff 1( , )tv h y must be at least the minmax value, which we

have set to 0. This implies for
1 1( , ) max ( , )t ty Y

v h y v h y
∈

= �

�

it must be that
1 1

1 1 1 1 1 1 1 1
~ ~

(1 ) ( , )

(~ | , ) ( , ) (~ | , ) ( , )

t

e e

U v h y

Y b v b Y Y f v f Y

δ δ

δ ρ α ρ α− −

− + ≥

 − 

�

� � � �

� �

Continuing to use the fact that 1( , ) 0tv h y ≥ , part 2 of the definition of a

temptation implies

[ ]1 1 1 1 1
~ ~~

1 1

( | , ) ( | , ) ( , )

( , )

e e ty Y
y b y f v h y

v f Y

δ ρ α ρ α
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∈
−

≥

∑ �

�

� �

from which

1 1 1 1 1 1 1
~ ~ ~

1 1 1 1
~

1
1 1

1 1

(1 ) ( , ) ( | , ) ( , )

( | , ) ( , )

(1 )(1 ) ( , )

max (1 ) ( , ) ( , )

e e e ty Y

e

t

ty Y

v u f y f a v h y

Y f a v f Y

UU v h y

u y v h y

δ α δ ρ

ρ

δ δ
δ

ρ ρ

δ
δ ρ

ρ

− −

∈

−

∈

≡ − +

+

−
≤ − + +

= − +

∑ �

�

�

� �

� �

� �

�

� �

�

If  1λ =  this gives the desired result. If not,
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1 1 1 1 1
~

1 1 1 1
~

( ) ( , , ) (1 )

max{ ( , , ), }

t t e e

t e e

v h v h f v

v h f v

λ α λ

α

−

−

= + −

≤

Since

1 1 1 1 1
( )( , , ) max (1 ) ( , ) ( , ) ( , )

tt e y Y h tv h f u y y v h yα δ ρ δ ρ−

∈≤ − + �

the result follows

�

Lemma 4: In a participation game, if 1 1( ) conhullth Eα
− −

∈ or
1 1( ) conhullth Eα

− −∉  and 1 1
0( )th fα γ≥  for some 0γ >  and friendly

action 1f   that is vulnerable to a strong temptation  size ρ , then

1 1 1
( )( ) max (1 ) ( , ) ( , )

tt ty Y hv h u y v h yδ ρ δ
∈

≤ − + .

Proof: Since the proof of Lemma 4 is very similar to that of lemma 3, we

will only discuss the necessary changes.   As in the proof of Lemma 3,  we

consider the long-run player switching from playing 1f  to a 1b  given in

the definition of what is now a strong temptation.  Using the notation of

the proof of lemma 3, we compute that the overall next period present

value of for 1f  is

1 1 1 1 1 1
~ ~( | , ) ( , ) ( | , ) ( )e t ey Y

y f a v h y Y f a v Yρ ρ
− −

∈
+∑ �

�

� �
� �

� � .

Because of the proportionality of the probabilities for a strong temptation,

the corresponding value for 1b  is

1 1 1 1 1 1
~ ~( | , ) ( , ) ( | , ) ( )e t ey Y

y b a v h y Y b a v Yρ ρ
− −

∈
+∑ �

�

� �
� �

� � .

Since 1f  is in fact optimal, we conclude that

1 1 1 1 1 1 1
~ ~

1 1 1 1 1 1
~ ~
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∈

− + +

− + ≥

∑

∑

�

�

�

�

� �
� �

� �

� �
� �

� �

or
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[ ]1 1 1 1 1 1
~ ~

1 1 1 1 1
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Y b a Y f a v Y
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� � �

Set

1 1( , ) max ( , )t ty Y
v h Y v h y

∈
= �

�

.

From the fact that 1b  reduces the probability of every bad signal by a

positive amount

1 1 1 1 1 1
~ ~

1 1 1 1 1
~ ~
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 − 
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� � �

�

Observe that since 1b  reduced the probability of each bad signal by at least

ρ ,  1 1 1 1
~ ~( | , ) ( | , ) #e eY b a Y f a Yρ ρ ρ
− − − ≥ 
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. Since 1 0U >

it must be that
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from which
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�

The final steps exactly parallel those of the proof of Lemma 3.

�
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