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ABSTRACT

The present paper introduces new sign tests for testing equality of conditional distributions

of two (arbitrary) adapted processes as well as for testing conditionally symmetric martingale-dif-

ference assumptions. Our analysis is based on results that demonstrate randomization over ties in

sign tests for equality of conditional distributions of two adapted sequences produces a stream of

i.i.d. symmetric Bernoulli random variables. This reduces the problem of estimating the critical

values of the tests to computing the quantiles or moments of Binomial or normal distributions. A

similar proposition holds for randomization over zero values of three-valued random variables in a

conditionally symmetric martyingale-difference sequence.

Key words and phrases: Sign tests, dependence, adapted processes, martingale-difference se-

quences, Bernoulli random variables, conservative tests, exact tests

JEL Classification: C12, C14, G12, G14
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1 Introduction and discussion

1.1 Objectives and key results

This paper introduces new sign tests for testing equality of conditional distributions of two (arbi-

trary) adapted sequences of random variables (r.v.’s) as well as for testing conditionally symmetric

martingale-difference assumptions. Our analysis is based on results that demonstrate randomiza-

tion over ties in sign tests for equality of conditional distributions of two adapted processes produces

a stream of i.i.d. symmetric Bernoulli r.v.’s. This reduces the problem of estimating the critical

values of the tests to computing the quantiles or moments of Binomial or normal distributions (see

Theorem 2.4 and Corollary 2.4). A similar proposition holds for randomization over zero values of

three-valued r.v.’s in a conditionally symmetric martingale-difference sequence (Theorem 2.1 and

Corollary 2.1). We wish to point out that the results obtained in the present paper can also be

used to test the hypothesis that the conditional median of a sequence of r.v.’s Xt adapted to a

filtration (=t) equals some constant µ 6= 0. More precisely, the results can be used to test the null

hypothesis that the conditional distributions L(Xt|=t−1) are symmetric about µ using tests based

on sign(Xt−µ). These results allow us to obtain general estimates for the tail probabilities of sums

of signs of random variables forming a conditionally symmetric martingale-difference sequence or

signs of differences of the components of two adapted sequences. Such estimates give sharp (i.e.,

attainable either in finite samples or in the limit) bounds for the tail probabilities in terms of

(generalized) moments of sums of i.i.d. Bernoulli r.v.’s (or corresponding moments of Binomial

distributions) and standard normal r.v.’s (see Corollaries 2.2, 2.3, 2.6 and 2.7). Similar estimates

hold as well for expectations of arbitrary functions of the signs that are convex in each of their

arguments (Theorem 2.2 and Corollary 2.5).

The analysis in this paper is based, in large part, on general characterization results for two-

valued martingale difference sequences and multiplicative forms obtained recently in Sharakhmetov

and Ibragimov (2002). Their results allow one to reduce the study of many problems for three-

valued martingales to the case of i.i.d. symmetric Bernoulli r.v.’s and provide the key to the

development of sign tests for dependent observations.
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1.2 Sign tests

There are many studies focusing on procedures for dealing with ties in sign tests if observations

are independent (see Coakley and Heise, 1996, for a review and comparisons of sign tests in the

presence of ties). Using the conclusions derived from a size and power study, Coakley and Heise

(1996) recommended using the asymptotic uniformly most powerful nonrandomized (ANU) test

due to Putter (1955) if ties occur in the sign test. The results obtained by Putter (1955) show

that randomization over ties reduces the exact power of the sign test and the asymptotic efficiency

of the sign test. It is known, however, that the exact version of the ANU test is conservative

for small samples compared to both its randomized conditional version as well as to ANU (see

Coakley and Heise, 1996; Wittkowski, 1998). The estimates obtained in the present paper shed

new light on sign tests comparisons and suggest that randomization over ties leads, in general,

to more conservative unconditional sign tests since it provides bounds for the tail probabilities of

signs in terms of generalized moments of i.i.d. Bernoulli r.v.’s. An advantage of randomization

over ties or zero observations is that it allows one to use sign tests in the presence of dependence

while nonrandomized sign tests can only be used in the case of independent data. In this regard,

our results demonstrate that, in addition to their other appealing properties, sign tests also have

the important property of robustness to dependence.

An appealing property of sign tests is that a simple linear transformation of a test statistic based

on signs leads to a Binomial distribution, and, thus, its distribution can be computed exactly.

This is in contrast to other commonly used test statistics for which the exact distributions are

frequently unknown. Even if known, the exact distributions of such test statistics are usually

difficult to compute and have to be obtained by relying on computationally intensive algorithms or

Monte-Carlo techniques.

Another important property of sign tests is that they can be applied in the case of a small

number of observations. This is very important since large sample approximations, e.g., those

based on central limit theorems, require special regularity assumptions on the distribution of the

observations such as existence of the second or higher moments or identical distribution.

1.3 Applications to experimental game theory

Finite-sample tests for equality of conditional distributions of adapted processes are especially im-

portant in experimental game theory and experimental economics. In particular, reliable tests that
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perform well with a relatively small number of dependent observations are necessary in analyz-

ing experimental data in these fields. The high costs of implementing experiments prohibits large

sample size and the unavoidable presence of dependence in observations is caused by subjects’

intertemporal learning.

Bracha (2005) proposed a new paradigm for decision making under uncertainty. In her model,

there is an interaction between cognitive and affective neural processes described as an intraper-

sonal potential game where observed behavior is a Nash equilibrium of the game resulting from

simultaneous play of cognitive and affective processes. This interaction is termed affective decision

making.

Bracha, Gray, Ibragimov, Nadler, Shapiro, Ames and Brown (2005) consider the implications of

Bracha (2005)’s model for a hypothetical experiment in discrete choice under risk. The hypothetical

experiment considered by Bracha et al. (2005) produces a finite sequence of dependent observations

on one group of subjects choosing between decks of cards with random monetary payoffs paired with

another group of subjects choosing between decks of cards with the same random monetary payoffs,

but containing affective payoffs, i.e., images. Bracha’s model prediction is that the sequences of the

players payoffs in the two groups have different conditional distributions. Thus, Bracha et al. (2005)

test the null hypothesis that the conditional distributions of choices are the same in both groups

against the alternative hypothesis that the conditional distributions of choices differ as predicted

by Bracha’s model using the tests proposed in this paper. In order to be able to conduct our

tests of the above hypotheses, it is important that the players’ choices are adapted to the same

filtration generated by the monetary outcomes that both groups observe. In other words, if seeing

the images has no effect on a subject’s decisions, then the players’ decisions are determined only

by the monetary outcomes in the previous rounds observed by the subjects in both groups.

1.4 Organization of the paper

The paper is organized as follows. In Section 2, we obtain the main results of the paper on the

distributional properties of sign tests for dependent r.v.’s that provide the key to the development

of statistical procedures based on signs of dependent observations and to obtaining sharp bounds

in the trinomial contingent claim pricing model in subsequent sections. Section 3 describes the

new sign tests based on the results obtained in Section 2. The sign tests provide the statistical

procedures for testing for conditionally symmetric martingale-difference assumptions as well as for

testing that conditional distributions of two (arbitrary) adapted sequences are the same. Section
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4 is an appendix that recalls the relevant result from Sharakhmetov and Ibragimov (2002) that is

the basis for the analysis in this paper, Proposition 4.1, and a technical lemma, Proposition 4.2,

that is a corollary of Proposition 4.1.

2 Distributions of sign test statistics for dependent obser-

vations

The present section of the paper establishes the results on the distributional properties of the sign

tests for adapted processes that provide the basis for the development of statistical procedures

based on signs of dependent observations in the Section 3.

Let (Ω,=, P ) be a probability space equipped with a filtration =0 = (Ω, ∅) ⊆ =1 ⊆ ...=t ⊆ ... ⊆
=.

Let Zt, t = 1, 2, ..., be an (=t)−conditionally symmetric martingale-difference sequence (so that

P (Zt > x|=t−1) = P (Zt < −x|=t−1), t = 1, 2, ..., for all x > 0) consisting of r.v.’s each of which

takes three values {−at, 0, at}. Further, let, for z ∈ R, sign(z) denote the sign of z defined by

sign(z) = 1, if z > 0, sign(z) = −1, if z < 0, and sign(0) = 0.

Throughout Sections 2 and 3, εt, t = 1, 2, ..., stand for a sequence of i.i.d. symmetric Bernoulli

r.v.’s independent of Zt, t = 1, 2, ...; in addition to that, in what follows, we denote by N the

standard normal r.v. if not stated otherwise.

Theorem 2.1 The r.v.’s ηt = sign(Zt) + εtI(Zt = 0) are i.i.d. symmetric Bernoulli r.v.’s.

Proof. The theorem follows from Proposition 4.1 since, as it is easy to see, the r.v.’s (ηt) form

an (=t)−martingale-difference sequence and each of them takes two values −1 and 1. ¥

Corollary 2.1 The statistic Sn = (
∑n

t=1 sign(Zt) + εtI(Zt = 0) + n)/2 has Binomial distribution

Bin(n, 1/2) with parameters n and p = 1/2.

Proof. The corollary is an immediate consequence of Theorem 2.1. ¥

Theorem 2.2 For any function f : Rn → R convex in each of its arguments,

Ef(sign(Z1), sign(Z2), ..., sign(Zn)) ≤ Ef(ε1, ε2, ..., εn).
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Proof. The theorem follows from Proposition 4.2 applied to the martingale-difference sequence

ηt = sign(Zt), t = 1, 2, ..., consisting of r.v.’s each of which takes three values {−1, 0, 1}. ¥

Corollary 2.2 For any x > 0,

P
( n∑

t=1

sign(Zt) > x
)
≤ inf

0<c<x

E max
( ∑n

t=1 εt − c, 0
)

(x− c)
. (2.1)

Proof. The corollary is an immediate consequence of Markov’s inequality and Theorem 2.2

applied to the functions fc(x1, x2, ..., xn) = max
( ∑n

t=1 xt − c, 0
)
, 0 < c < x. ¥

Remark 2.1 For a fixed x > 0, consider the class of functions φ satisfying φ(y) =
∫ y

0
max(y −

u, 0)dF (u), y ≥ 0, φ(y) = 0, y < 0, and φ(x) =
∫ x

0
max(x − u, 0)dF (u) = 1, for a nonnegative

bounded nondecreasing function F (x) on [0, +∞) with F (0) = 0. Similar to the proof of Corollary

2.2 we obtain

P
( n∑

t=1

sign(Zt) > x
)
≤ Eφ

( n∑
t=1

εt

)
(2.2)

for all φ. It is not difficult to show, similar to Proposition 4 in Eaton (1974) (see also the discussion

following Theorem 5 in de la Peña, Ibragimov and Jordan, 2004, for related optimality results for

bounds on the expected payoffs of contingent claims in the binomial model) that bound (2.1) is the

best among all estimates (2.2), that is,

inf
φ

Eφ
( n∑

t=1

εt

)
= inf

0<c<x

E max
( ∑n

t=1 εt − c, 0
)

(x− c)
.

The following result gives sharp bounds for the tail probabilities of the normalized sum of signs

of the r.v.’s Zt in terms of (generalized) moments of the standard normal r.v.

Corollary 2.3 For any x > 0,

P
(∑n

t=1 sign(Zt)√
n

> x
)
≤ inf

0<c<x

E max
(Pn

t=1 εt√
n

− c, 0
)

(x− c)
≤ inf

0<c<x

(E[max(N − c, 0)]3)1/3

x− c
. (2.3)

Proof. Using Markov’s inequality and Theorem 2.2 applied to the functions

fc(x1, x2, ..., xn) = max
(∑n

t=1 xt√
n

− c, 0
)
,
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0 < c < x, we get the first estimate in (2.3). From Jensen’s inequality we obtain

E max
(∑n

t=1 εt√
n

− c, 0
)
≤

{
E

[
max

(∑n
t=1 εt√
n

− c, 0
)]3}1/3

, (2.4)

0 < c < x. The second bound in (2.3) is a consequence of estimate (2.4) and the inequality

E
[
max

(∑n
t=1 εt√
n

− c, 0
)]3

≤ E[max(N − c, 0)]3 (2.5)

for all c > 0 implied by the results in Eaton (1974). ¥

Let (Xt), t = 1, 2, ..., and (Yt), t = 1, 2, ..., be two (=t)−adapted sequences of r.v.’s.

The following results provide analogues of Theorem 2.1 and Corollaries 2.1-2.3 that concern

the distributional properties of sign tests for equality of conditional distributions of (Xt) and (Yt).

They follow from Theorem 2.1 and Corollaries 2.1-2.3 applied to the r.v.’s Zt = Xt−Yt that form a

conditionally symmetric martingale-difference sequence under the assumption that the conditional

distributions of (Xt) and (Yt) are the same.

Theorem 2.3 If the conditional (on =t−1) distributions of (Xt) and (Yt) are the same:

L(Xt|=t−1) = L(Yt|=t−1), then the r.v.’s η̃t = sign(Xt − Yt) + εtI(Xt = Yt) are i.i.d. symmetric

Bernoulli r.v.’s

Corollary 2.4 If the conditional (on =t−1) distributions of (Xt) and (Yt) are the same:

L(Xt|=t−1) = L(Yt|=t−1), then the statistic S̃n = (
∑n

t=1 sign(Xt − Yt) + εtI(Xt = Yt) + n)/2 has

Binomial distribution Bin(n, 1/2) with parameters n and p = 1/2.

Corollary 2.5 If the conditional (on =t−1) distributions of (Xt) and (Yt) are the same:

L(Xt|=t−1) = L(Yt|=t−1), then, for any function f : Rn → R convex in each of its arguments,

Ef(sign(X1 − Y1), sign(X2 − Y2), ..., sign(Xn − Yn)) ≤ Ef(ε1, ε2, ..., εn).

Corollary 2.6 If the conditional (on =t−1) distributions of (Xt) and (Yt) are the same:

L(Xt|=t−1) = L(Yt|=t−1), then, for any x > 0,

P
( n∑

t=1

sign(Xt − Yt) > x
)
≤ inf

0<c<x

E max
( ∑n

t=1 εt − c, 0
)

(x− c)
.
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Corollary 2.7 If the conditional (on =t−1) distributions of (Xt) and (Yt) are the same:

L(Xt|=t−1) = L(Yt|=t−1), then, for any x > 0,

P
(∑n

t=1 sign(Xt − Yt)√
n

> x
)
≤ inf

0<c<x

E max
(Pn

t=1 εt√
n

− c, 0
)

(x− c)
≤ inf

0<c<x

(E[max(Z − c, 0)]3)1/3

x− c
.

Remark 2.2 Bounds for the tail probabilities of sums of bounded r.v.’s forming a condition-

ally symmetric martingale-difference sequence implied by the results in the present section pro-

vide better estimates than many inequalities implied, in the trinomial setting, by well-known es-

timates in martingale theory. In particular, from Markov’s inequality and Theorem 2.2 applied

to the function f(x1, x2, ..., xn) = exp(h
∑n

i=1 utxt), h > 0, it follows that the tail probability

P
( ∑n

t=1 Xt > x
)
, x > 0, of the sum of r.v.’s Xt that take three values {−ut, 0, ut} is bounded

from above by exp(−hx)E exp
(
h

∑n
t=1 utεt

)
, h > 0 :

P
( n∑

t=1

Xt > x
)
≤ inf

h>0
exp(−hx)E exp

(
h

n∑
t=1

utεt

)
. (2.6)

From estimate (2.6) it follows that Hoeffding-Azuma inequality for martingale-differences in the

above setting

P
( n∑

t=1

Xt > x
)
≤ exp

(
− x2

2
∑n

t=1 u2
t

)
(2.7)

is implied by the corresponding bounds on the expectation of exponents of weighted i.i.d. Bernoulli

r.v.’s E exp
(
h

∑n
t=1 utεt

)
(see Hoeffding, 1963; Azuma, 1967). More generally, Markov’s inequality

and Theorem 2.2 imply the following bound for the tail probabilities of three-valued r.v.’s forming

a conditionally symmetric martingale-difference sequence with the support on {−ut, 0, ut} :

P
( n∑

t=1

Xt > x
)
≤ inf

φ

φ
( ∑n

t=1 utεt

)

φ(x)
, (2.8)

where the infimum is taken over convex increasing functions φ : R → R+. It is easy to see that

estimate (2.8) is better than Hoeffding-Azuma inequality (2.7) since the latter follows from choosing

a particular (close to optimal) h in estimates for the right-hand side of (2.6) which is a particular

case of (2.8) (see Hoeffding, 1963, and also Remark 2.1 on the optimality of bound (2.2))
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3 Sign tests under dependence

As follows from the results in the previous section, sign tests for testing the null hypothesis that

the conditional distributions of two adapted processes (Xt) and (Yt) are the same: L(Xt|=t−1) =

L(Yt|=t−1) for all t or that (Zt) is an (=t)−conditionally symmetric martingale-difference sequence

with P (Zt > x|=t−1) = P (Zt < −x|=t−1), x > 0, can be based on the procedures described below.

As most of the testing procedures in statistics and econometrics, they can be classified as falling

into one of the following classes: exact tests, conservative tests and testing procedures based on

asymptotic approximations. The exact tests are based on the fact that, according to Corollaries 2.1

and 2.4, the distributions of the transformation of signs in the model is known precisely to be Bino-

mial and thus the statistical inference can be based on critical values for the sum of i.i.d. Bernoulli

r.v.’s (the case of exact randomized ER tests below). The asymptotic tests use approximations for

the quantiles of the Binomial distribution in terms of the limiting normal distribution (the case

of asymptotic randomized AR tests). The conservative testing procedures in the present section

are based on sharp estimates for the tail probabilities of sums of dependent signs in the model in

terms of sums of i.i.d. Bernoulli or normal r.v.’s implied by Corollaries 2.2, 2.3, 2.6 and 2.7 and

corresponding estimates for the critical values of the sign tests for dependent observations in terms

of quantiles of the Binomial or Gaussian distributions (Binomial conservative non-randomized BCN

and normal conservative non-randomized NCN testing procedures). The classification of the sign

tests in the present section as non-randomized or randomized refers, respectively, to whether the

inference is based on the original (three-valued) signs sign(Xt − Yt) (resp., sign(Xt)) in the model

with dependent observations or the r.v.’s sign(Xt−Yt)+εtI(Xt = Yt) (resp., sign(Xt)+εtI(Xt = 0))

that form, according to the results in the previous section, a sequence of symmetric i.i.d. Bernoulli

r.v.’s.

The following are statistical procedures for testing the null hypothesis that conditional distri-

butions of components of two adapted sequences of r.v.’s are the same: L(Xt|=t−1) = L(Yt|=t−1).
5

1. The exact randomized (ER) sign test with the test statistic S̃
(1)
n = (

∑n
t=1 sign(Xt − Yt) +

εtI(Xt = Yt)+n)/2 rejects the null hypothesis L(Xt|=t−1) = L(Yt|=t−1) for all t in favor of the (two-

sided) hypothesis L(Xt|=t−1) 6= L(Yt|=t−1) for all n at the significance level α ∈ (0, 1/2), if S̃
(1)
n <

B
(1)
α/2 or S̃

(1)
n > B

(2)
α/2 where B

(1)
α/2 and B

(2)
α/2 are, respectively, the (α/2)− and (1− α/2)−quantiles of

the Binomial distribution Bin(n, 1/2).

5We describe the tests for the two-sided alternative since this is usually the case of interest in most of the

applications.
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2. The asymptotic randomized (AR) sign test with the test statistic S̃
(2)
n = (

∑n
t=1 sign(Xt −

Yt) + εtI(Xt = Yt))/
√

n rejects the null hypothesis the null hypothesis L(Xt|=t−1) = L(Yt|=t−1)

for all t in favor of L(Xt|=t−1) 6= L(Yt|=t−1) for all n at the significance level α ∈ (0, 1/2), if

|S̃(2)
n | > zα/2, where zα/2 is the (1− α/2)−quantile of the standard normal distribution N (0, 1).

3. The binomial conservative non-randomized (BCN) sign test with the test statistic S̃
(3)
n =∑n

t=1 sign(Xt − Yt) rejects the null hypothesis L(Xn|=n−1) = L(Yn|=n−1) for all n in favor of

L(Xn|=n−1) 6= L(Yn|=n−1) for all n at the significance level α ∈ (0, 1/2), if |S̃(3)
n | > Bα/2, where

Bα/2 is such that

inf
0<c<Bα/2

E max
( ∑n

t=1 εt − c, 0
)

(Bα/2 − c)
< α/2.

4. The normal conservative non-randomized (NCN) sign test with the test statistic S̃
(4)
n =∑n

t=1 sign(Xt − Yt) rejects the null hypothesis L(Xt|=t−1) = L(Yt|=t−1) for all t in favor of

L(Xt|=t−1) 6= L(Yt|=t−1) for all t at the significance level α ∈ (0, 1/2), if |S̃(4)
n | > zα/2, where

zα/2 is such that

inf
0<c<zα/2

(E[max(Z − c, 0)]3)1/3

zα/2 − c
< α/2.

The following are the analogues of the above procedures for testing the null hypothesis that (Zt)

is an (=t)−conditionally symmetric martingale-difference sequence with P (Zt > x|=t−1) = P (Zt <

−x|=t−1), x > 0.

1. The exact randomized (ER) sign test with the test statistic S
(1)
n = (

∑n
t=1 sign(Xt)+εtI(Xt =

0) + n)/2 rejects the null hypothesis P (Zt > x|=t−1) = P (Zt < −x|=t−1), x > 0, for all t in favor

of P (Zt > x|=t−1) > P (Zt < −x|=t−1), x > 0, for all n at the significance level α ∈ (0, 1/2), if

Sn > Bα, where Bα is the (1− α)−quantile of the Binomial distribution Bin(n, 1/2).

Using the central limit theorem for the statistic (
∑n

t=1 sign(Xt) + εtI(Xt = 0))/
√

n, in the case

of large sample sizes n one can also use the following asymptotic version of the previous testing

procedure.

2. The asymptotic randomized (AR) sign test with the test statistic S
(2)
n = (

∑n
t=1 sign(Xt) +

εtI(Xt = 0))/
√

n rejects the null hypothesis P (Zt > x|=t−1) = P (Zt < −x|=t−1), x > 0, for all t in

favor of P (Zt > x|=t−1) > P (Zt < −x|=t−1), x > 0, for all t at the significance level α ∈ (0, 1/2),

if Sn > zα, where zα is the (1− α)−quantile of the standard normal distribution N (0, 1).

3. The binomial conservative non-randomized (BCN) sign test with the test statistic S
(3)
n =

11



∑n
t=1 sign(Xt) rejects the null hypothesis P (Zt > x|=t−1) = P (Zt < −x|=t−1), x > 0, for all t in

favor of P (Zt > x|=t−1) > P (Zt < −x|=t−1), x > 0, for all t at the significance level α ∈ (0, 1/2),

if Sn > Bα, where Bα is such that

inf
0<c<Bα

E max
( ∑n

t=1 εt − c, 0
)

(Bα − c)
< α.

4. The normal conservative non-randomized (NCN) sign test with the test statistic S
(4)
n =∑n

t=1 sign(Xt) rejects the null hypothesis P (Zt > x|=t−1) = P (Zt < −x|=t−1), x > 0, for all t in

favor of P (Zt > x|=t−1) > P (Zt < −x|=t−1), x > 0, for all t at the significance level α ∈ (0, 1/2),

if Sn > zα, where zα is such that

inf
0<c<zα

(E[max(N − c, 0)]3)1/3

zα − c
< α.

The analogues of the above tests in the case of the two-sided alternative P (Zt > x|=t−1) 6=
P (Zt < −x|=t−1) are completely similar.

For illustration, in Table 1 in the Appendix, we provide the results on calculations of the power

of the AR sign test for testing the null hypothesis H0 : P (Zt > x|=t−1) = P (Zt < −x|=t−1), x > 0,

for all t against a particular case of the alternative hypothesis, namely, against the assumption

that P (Zt > x|=t−1) = p > 1 − p = P (Zt < −x|=t−1), x > 0, where p ∈ (1/2, 1] (the power of

other tests discussed in the present section against this particular alternative may be calculated

in complete similarity). One should note that, as it is not difficult to see, the power calculations

are the same for the AR test for testing H0 against the alternative P (Zt > x|=t−1) = p1 >

q1 = P (Zt < −x|=t−1), x > 0, P (Zt = 0|=t−1) = 1 − p1 − q1, where p1, q1 ∈ [0, 1] are such

that 1/2 + (p1 − q1)/2 = p. They are also the same for the AR sign test for testing the null

hypothesis of equality of conditional distributions of two (=t)−adapted processes Xt and Yt against

the alternative that P (Xt > Yt|=t−1) = p2 > 1/2 > q2 = P (Yt > Xt|=t−1), where p2, q2 ∈ [0, 1] are

such that 1/2 + (p2 − q2)/6 = p. According to the table, the test has very good power properties,

even in the case of small samples.

4 Appendix A1. Probabilistic foundations for the analysis

Let (at)
∞
t=1 and (bt)

∞
t=1 be arbitrary sequences of real numbers such that at 6= bt for all t.
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The key to the analysis in this paper is provided by Propostion 4.1. This proposition is a

consequence of more general results obtained in Sharakhmetov and Ibragimov (2002) that show

that r.v.’s taking k + 1 values form a multiplicative system of order k if and only if they are jointly

independent (see also de la Peña and Ibragimov, 2003; de la Peña, Ibragimov and Sharakhmetov,

2003).

Proposition 4.1 If r.v.’s Xt, t = 1, 2, ..., form a martingale-difference sequence with respect to a

filtration (=t)t and each of them takes two (not necessarily the same for all t) values {at, bt}, then

they are jointly independent.

Let Xt, t = 1, 2, ..., be an (=t)−martingale-difference sequence consisting of r.v.’s each of which

takes three values {−at, 0, at}. Denote by εt, t = 1, 2, ..., a sequence of i.i.d. symmetric Bernoulli

r.v.’s independent of (Xt)
∞
t=1. The following proposition provides an upper bound for the expectation

of arbitrary convex function of Xt in terms of the expectation of the same function of the r.v.’s εt.

Proposition 4.2 If f : Rn → R is a function convex in each of its arguments, then the following

inequality holds:

Ef(X1, ..., Xn) ≤ Ef(a1ε1, ..., anεn). (4.9)

Proof. Let =̃0 = =n. For t = 1, 2, ..., n, denote by =̃t the σ−algebra spanned by the r.v.’s

X1, X2, ..., Xn, ε1, ..., εt. Further, let, for t = 0, 1, ..., n, Et stand for the conditional expectation

operator E(·|=̃t) and let ηt, t = 1, ..., n, denote the r.v.’s ηt = Xt + εtI(Xt = 0).

Using conditional Jensen’s inequality, we have

Ef(X1, X2, ..., Xn) = Ef(X1 + E0[ε1I(X1 = 0)], X2, ..., Xn) ≤
E[E0f(X1 + ε1I(X1 = 0), X2, ..., Xn)] = Ef(η1, X2, ..., Xn). (4.10)

Similarly, for t = 2, ..., n,

Ef(η1, η2, ..., ηt−1, Xt, Xt+1, ..., Xn) =

Ef(η1, η2, ..., ηt−1, Xt + Et−1[εtI(Xt = 0)], Xt+1, ..., Xn) ≤
E[Et−1f(η1, η2, ..., ηt−1, Xt + εtI(Xt = 0), Xt+1, ..., Xn)] =

Ef(η1, η2, ..., ηt−1, ηt, Xt+1, ..., Xn). (4.11)
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From equations (4.10) and (4.11) by induction it follows that

Ef(X1, X2, ..., Xn) ≤ Ef(η1, η2, ..., ηn). (4.12)

It is easy to see that the r.v.’s ηt, t = 1, 2, ..., n, form a martingale-difference sequence with

respect to the sequence of σ−algebras =̃0 ⊆ =̃1 ⊆ ... ⊆ =̃t ⊆ ..., and each of them takes two values

{−at, at}. Therefore, from Proposition 4.1 we get that ηt, t = 1, 2, ..., n, are jointly independent

and, therefore, the random vector (η1, η2, ..., ηn) has the same distribution as (a1ε1, a2ε2, ..., anεn).

This and (4.12) implies estimate (4.9). ¥
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