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Abstract

The most common approach for default dependence modelling is at
present copula functions. Within this framework, the paper examines
factor copulas, which are the industry standard, together with their latest
development, namely the incorporation of sudden jumps to default instead
of a pure diffusive behavior. The impact of jumps on default dependence
- through factor copulas - has not been fully explored yet. Our novel
contribution consists in showing that modelling default arrival through a
pure jump asset process does matter, even when the copula choice is the
standard, factor one, and the correlation is calibrated so as to match the
diffusive and non diffusive case. An example from the credit derivative
market is discussed.
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Modelling credit risk poses extreme challenges, since one has to care at the
same time about providing an adequate description of default arrival at the
single firm level and about dependence modelling. Research on both topics, but
especially on default dependence, has been very active in the last years.

This paper starts by reviewing the most common approach for dependence
modelling, namely copula functions. It examines factor copulas, which are the
industry standard, together with their latest development, namely the incor-
poration of sudden jumps to default. Indeed, jumps in the asset value, whose
deterioration is assumed to trigger default, are economically sound and statis-
tically helpful in model calibration. On the one side they give leptokurtic asset
distributions, on the other they can correct for lack of totally unpredictability
of default of diffusive models, as discussed in Fiorani Luciano and Semeraro
(2007).

The impact of jumps on default dependence - through factor copulas - has not
been fully explored. Earlier works include Baxter (2006), Albrecher, Ladoucette
and Schoutens (2006), Moosbrucker (2006), who focus on CDO pricing. We
examine joint default prediction instead. Our aim is to show that the process
choice does matter, even when the copula choice is the standard, factor one,
and default correlation - through asset correlation - is matched across models.

The present paper is structured as follows: section 1 reviews the copula no-
tion, section 2 justifies their application to credit risk, by introducing structural
credit risk models. It presents also the notion of factor copula. Section 3 extends
structural models to the case of pure jumps in asset values and represents them
through factor copulas. Section 4 shows the joint default probability evaluations
which diffusions and pure jumps provide, when calibrated to the same names
and equalizing asset correlation. The conclusions follow.

1 Copula functions

Copula functions are joint distribution functions of standard uniform margins.
They have been introduced by Sklar (1959), but are closely related to Hoeffd-
ing’s "standardized distributions" and have been studied under different names
(t norms, dependence functions, uniform representations). The standard intro-
ductory textbook for copulas is Nelsen (1999), while applications in Finance are
presented in Cherubini, Luciano, Vecchiato (2004).

Let us consider, for the sake of simplicity, the bivariate case!. Define as I
the unit interval, I = [0, 1].

Definition 1 A two-dimensional copula C(v,z) is a real function defined on
2
C:I* =1

such that, for every v,z € I

IFor the definition and properties in the n-dimensional case see for instance Nelsen (1999).



i)
C(0,2z) =C(v,0) =0

i)
C(v,1) =, C(l,2z) ==z

iii) for every rectangle [v1,va] X [21,22] whose vertices lie in I?, and such that
V1S U2 ,21 S22

C(UQ, ZQ) — C(Ug, Zl) — C(’Ul, 22) + C(’Ul, Zl> Z 0

Example 2 The functions max(u+v—1,0), uv, min(u, v) are copula functions.
They are called respectively the minimum, product and maximum copula, and
are denoted as C—,C+,C+.

Example 3 Consider the function
Cv,2) = @, (27 '(v), 2 '(2))

where ®, is the joint distribution of a bi-dimensional standard normal, with
linear correlation coefficient p,while ® 1 is the inverse of the univariate standard
normal distribution ®. C%® is a copula: it is called the Gaussian copula?.

Example 4 Consider the function
CH(v,2) = tpu (1 (v), 8,1 (2))

where t, : R — R is the (central) univariate Student’s t distribution function,
with v degrees of freedom (dof) :

T F(l/_-‘rl) 52 T2
o= [ T (1) F,
—oo VTUT (%) v
I' is the usual Euler function, while t,, the bivariate Student’s t distribution
with correlation p and v degrees of freedom (dof):

v+2

oy
1 s2+t2 —2pst\ 2

tou(z,y) = 1 dsdt

pul®:0) //27r\/1—p< s > ’

— 00 —0O0

The function C* is called the Student or t copula.

2Recalling the definition of a bivariate normal, D), CGa can be re-written as

<I>_1('U) <I>_1(z) 1 2pst — s2 — ¢2
C% (v, z :/ / exp( d )dsdt
%) —o0 —oo 2my/1 — p? 2(1—p?)




Copulas are satisfy the so-called Fréchet inequality, which states that each
copula function is bounded by the minimum and maximum one:

C™(v,2) = max(v + 2z — 1,0) < C(v,2) < min(v, z) = C" (v, 2) (1)

The usefulness of copula functions in applications relies on the following
theorem, which clarifies the link between copulas and joint distribution functions
of non uniform variables. Let X Y be two continuous random variables (rv s)

Theorem 5 (Sklar (1959)) Let Fi(xz) = Pr(X < z), Fa(y) = Pr(Y < y) be
(given) continuous marginal distribution functions. Then, for every (x,y) € R?,
i) if C is any copula,

C(Fi(x), Fa(y))

is a joint distribution function with margins Fy(z), F2(y);
ii) Conversely, if F(x,y) = Pr(X < z,Y < y) is a joint distribution function
with margins Fy(x), Fy(y), there exists a unique copula C' such that

F(z,y) = C(Fi(z), Fa(y)) (2)

Based on Sklar’s theorem, the copula C' - which we will call the copula of
X and Y - represents only the dependence between the rv s . While writing

F(z,y) = C(Fi(z), Fa(y))

one splits the joint probability into the marginals and dependence. From this
modelling separation it follows that also in the estimation one can identify the
marginals and, at a second stage, specify the copula function. Current method-
ologies for copula identification indeed include the joint estimate of the copula
and margin parameters: this is the case for instance of the traditional maximum
likelihood approach. However, they allow also for separate identification of the
margins, at a first stage, and the copula, at a second stage (inference function for
margins). Or for the use of empirical margins in the likelihood function for the
copula (canonical maximum likelihood). In addition, a number of identification
approaches for copulas relies on dependence measures.

Copula functions are related to non parametric measures of association or
dependence, such as Kendall’s tau, 7, or Spearman’s rho, pg, which general-
ize the notion of linear dependence of the usual linear correlation coefficient,
p. They represent the difference between the probability of concordance of X
and Y and the one of discordance (respectively per se and with respect to the
independence case) and can be written as

— / /1 O, 2)dC(0,2) - 1 (3)

pg = 12/ C(v,z)dvdz — 3 = 12// vzdC(v,z) — 3
2 2

They range between -1 and +1, and are equal to zero when X and Y are
independent. It follows from the above expressions that the copula parameters



can be written (although not always in closed form) in terms of the dependence
measures.

Example 6 The minimum copula corresponds to 7 = pg = —1, the product
one to T = pg = 0, the mazimum one to 7 = pg = 1. These copulas rep-
resents therefore perfect (non linear) megative dependence, independence and
perfect (non linear) positive dependence.

The representation in Sklar’s theorem on one side, and the correspondence
between copulas (or their parameters) and association on the other are extremely
fruitful for applications. Indeed, Sklar’s theorem becomes a very powerful tool
when, as in credit risk modelling, the usual joint normality assumption can be
questioned.

2 Copulas and credit risk

Two very preliminary probabilistic problems can be identified in credit risk:
assessing the default probability for single obligors and determining their cor-
responding joint default likelihood. Usually, when working with copulas at the
multivariate level, one starts from marginal assessments based on the so called
structural models, which date back to Merton (1974). We will briefly introduce
the approach in section 2.1, and come back to the copula representation of joint
probabilities in section 2.2

2.1 Single defaults

In the seminal model of Merton (1974), each firm 4, i = 1,2, ..n, is assumed to
have a single zero coupon debt, with face value K;, which expires at maturity
t . Default of firm 7 can therefore occur only at debt maturity. It is triggered
by the fact that the firm’s asset value V;(t) falls at the liability one, K;(¢). The
distribution of the time to default, 7;, is

]t P(Vi(t) < Ki(t))
T 4o P(Vi(t) > Ki(t))
while the default probability at maturity ¢ is
Fi(t) = P(Vi(t) < Ki(1)) (4)

Merton assumes that asset returns are normal, or, equivalently, that the asset
value follows a geometric Brownian motion. Under his assumptions the (mar-
ginal) default probability of firm ¢ is

Fi(t) = ®(—da(t))
where
In (Vi(0)/Kit)) + (1, — o2/2)t

d i =
? o/t




and p,; and o; are respectively the instantaneous mean return on assets (r under
the risk neutral measure) and its standard deviation.

Merton’s model has been extended in a number of ways, including the ex-
istence of coupons on debt or debt covenants, and therefore the possibility of
default before expiry. The extensions are well beyond the scope of this article.
However the extensions, once compared with the actual data, provide credit
spreads ? well below the actual ones for short maturities and high ratings. This
happens because of the lack of total unpredictability of diffusive processes.

2.2 Joint defaults

As in section 1, consider the bivariate case to start with.

In Merton’s model, if one assumes that log assets are jointly normally dis-
tributed, the joint default probability of two names with common expiry of debt
is

F(t) = P(Vi(t) < Ki(t), Va(t) < Ka(t)) = @ (—d21 (1), —d22(1))
Since —da;(t) = ®71(F;(t)), the copula representation of the joint default prob-
ability follows:
F(t) =@, (27H(F1(1), @ (F2(1)))

The copula which we have obtained is the Gaussian copula presented above.
Analogously, for the n names, the joint default probability is

F(t) = P(Vi(t) < Ki(t), ..V (t) < Kn (1)) = B (—dor (£), ..., —dan (L))

which can be written using the corresponding n dimensional Gaussian cop-
ula, with correlation matrix R:

F(t) = g (2 (Fi(t)), ... 2" (Fn(t)) (5)

Instead of joint normality, one can assume a Student t copula among asset
values, so that the joint default probability is

F(t) = tro(t, (F1(1)), -ty (Fu(1))) (6)

2.3 Factor copulas

If the number of obligors increases, the representations (5) or (6), in spite of
their conceptual simplicity, can become cumbersome. Therefore, it is common
practice, especially for pricing and hedging applications, which can involve more
than a hundred names, to substitute the actual copula with the so called corre-
sponding factor one, as follows.

Let us assume that the asset value has unit value at time zero and normalize
the log asset value (or asset return) of firm i. The latter is:

V- InV; — (u; —03/2)t
T oVt

3 Credit spreads are differences between the required rate of return on risky debt and the
riskless rate (r in Merton’s model).




An analogous expression holds under the risk neutral, pricing measure. As-
sume that each log asset value in the portfolio can be factorized in a common
component Z and an idiosyncratic one, €;, as follows:

Vi=pZ+1/1-pie (7)

where p; € R, Z and ¢;,i = 1,..,n are independent standard Gaussian. The
weighting coefficients p; and /1 — p? are chosen so that V/ is standard normal.
The assumptions on the factorization are such that not only the log asset values
Vs are independent, conditionally on the common factor Z, but also that the
unconditional linear correlation coefficient between two log asset values V; and
V] is p;p;. The conditional marginal default probabilities, pi(z), if K/ is the
properly normalized log liability,

K = 25 et

are easily calculated:

V1-p;

The expressions for the unconditional ones follow by simple integration over the
support of the factor:

I .
=)= P(V] <K!|2) = (K—”)

Fi(t) = /R PH(2)p(2)d ®)

where ¢ is the standard Gaussian density.

Taking into consideration that asset values - and therefore defaults - are
conditionally independent, the conditional joint default probability is simply
the product of the marginal ones:

n
F(t]z2)=][]ri(»)
i=1
It can be written in copula terms using the product copula C*t :

F(t]z)=C" (pi(2),,00(2))

The corresponding expressions for the joint unconditional probability easily fol-
low:

P = [ TIrtGeli: = [ ¢ plep@) ez ©)

The technique above can be extended beyond the Gaussian case. In general,
if the common factor Z has a density f(z) on the real line R, it follows from the



definition of conditional probability that the marginal (unconditional) default
probabilities can be written as

Fi(t) = /R PU(2) f(2)dz (10)

The joint unconditional probabilities can be represented through the (condi-
tional) product copula C*, as desired:

) = [ TIteG = [ € pE) ) SGa

We will indeed examine in the next section Lévy models in which the condi-
tional asset value is still lognormal, while the factor is gamma distributed instead
of being normal. These models allow a factor representation and therefore can
be easily handled.

Summing up, both in the original Merton model and in non Gaussian struc-
tural models, factorization permits to substitute the original copulas with the
product one, according to (11). This makes computational handling of default
and survival probabilities - and therefore pricing and hedging results - much
easier to obtain. In section 4 below we will examine the impact of the factor
copulas when the margins correspond to the most traditional Merton model and
when they correspond to the most advanced jump ones, but the factor copula
is maintained. In order to do this, we need a brief introduction to jump models
for asset values: this is provided in the next section.

3 Lévy models

The very high pace of research in risk management in the last decade spurred the
interest in asset models able to describe skewness, kurtosis, and other deviations
from normality. Lévy models, which include the diffusive Brownian motion
adopted by Merton on the one side, pure jump processes on the other, seem to
be the general environment in which asset processes for the 21 century can be
studied. Given the observed deviations from normality, the interest has been
concentrated on non diffusive and even pure jump Lévy models, which easily
incorporate fat tails and leptokurtosis.

In turn the possibility of writing pure jump models as time changed Brown-
ian motions provides the following intuition for them: even tough prices are
diffusions in business or transaction time, they are not in calendar time. The
pace at which business time runs constitutes a sort of stochastic clock, and asset
prices are not any more diffusions, once the stochastic time change has been ac-
counted for. This intuition, which is discussed at length in Geman et alii (2001),
has been pursued and related to empirical trade evidence by Geman and Ané
(1996). It constitutes a well established support for the adoption of pure jump
models.



As an alternative, the use of such models in credit risk is advocated on
the ground that only sudden jumps to default can overcome the lack of total
unpredictability of default of diffusive models (see for instance Fiorani, Luciano,
Semeraro (2007)).

As a main consequence, it is by now well understood that Lévy models such
as the Variance Gamma can be appropriate for describing - one by one - risk
neutral asset prices.

Let us assume then that log returns on asset i, ¢ = 1,...n, are Geometric
Brownian motions in transaction time, namely before any time change (and that
they have unit value at time zero, as above):

V/(t) =0t + oW, t>0.

with 6; and o; > 0 constant.
If the time change has value Gy at time ¢, the calendar time log return is:

V()= 0,G, + o WS, t>0. (12)

If one specifies the time change to be of the gamma type with parameter
v, as we will do in the sequel for illustrative purposes, one gets the so called
Variance Gamma (VG) process for log asset prices or asset returns. This process
has been introduced by Madan and Seneta (1990), and developed in a number
of publications?.

In the VG case, the return process has the following features, for simplicity
considered at time 1:

® Imnearn:

e a variance which decomposes as:

Var[V/(1)] = 02 + v6?

e a level of asymmetry equal to

0,0 (302 + 2002) /(02 + v6?)>/?
e a coefficient of kurtosis equal to
3(1+2v —vol(o? +vh7)72).
Under the risk neutral measure, the value process in calendar time becomes

V/(t) = 0,Gy + o, WS +mit, >0, (13)

4Non biasedness implies that G must be gamma with parameters (vt,v), where v > 0.



where )
m; =1+ v log (1 — §U?V — Qiy) .

If two VG, V{ and Vj, are driven by the same time change, as in Luciano and
Schoutens (2006), their correlation coefficient is

9192V
p= :
\/or% + 9?1/\/0% + O3v

3.1 Factor copulas and Lévy models

(14)

Conditional normality of log-returns allows us to write joint default probabilities
of Lévy models - and of the VG case in particular - in a straightforward way.
The idea is the same used for factor models, so that the similarities will be
evident.

The distribution of each single asset return at time 1, conditional on a re-
alization z of the (Gamma) time change, is Normal, with risk neutral mean
m; + 0;z and variance zo?. Let us denote the corresponding marginal default
probability as p}(z) :

vi—mi—eiz)’ (15)

P =0 (B

where v; = In K;. As for the unconditional distribution, F;(1), we have

+oo V*l/l/ .
A = [ re gt e

oo v; —my; — 0,2\ vUvo,
d i i i 11 _ .
I ( Py~ ) Ty /v

A closed form expression for this integral has been given in Madan, Carr, Chang
[3], in terms of Hypergeometric functions and the modified Bessel functions. We
note that the integral can also be computed very fast using the inverse Fourier
transform approach or via Partial-Differential Integral Equations (PDIEs).
Once more, starting from the marginal conditional distributions (15) also the
joint unconditional one can be obtained, since conditional independency holds:

F() = /O+OO f[l ® (Ui _;Zi/; eiz) If(;l//:)z%_l exp(—z/v)dz.

As in the Merton’s case, the previous expression can be written via the factor
copula C*:

F(1) = (16)

oo 1 1 Vﬁl/y l_q
/0 C* (pi(2),p5(2)) WZ exp(—z/v)dz.

10



4  Calibration and comparison of factor default
probabilities

This section calibrates to the same data set the factor copulas (9) and (16), so
as to compare them in dependence terms.

4.1 Calibration

We select a sample of five names: Autozone, Ford, Kraft, Walt Disney, Whirlpool,
which are active in the credit derivative market. The parameters of their asset
values under the VG hypothesis have been derived (from credit default swap
prices) in Luciano and Schoutens (2006). For the present purpose, we take
the riskless rate to be zero and we derive the corresponding parameters under
the Merton’s diffusion hypothesis by the first two moment matching. Table 1
presents the marginal parameters for both models.

variance gamma

0 o
Autozone -0.02500 0.2025 0.7068] -0.02500 0.20359
Ford -0.02500 0.25616 0.7068( -0.02500 0.25702
Kraft -0.02957 0.1509%6 0.7068( -0.02957 0.15299

Walt Disney -0.03299  0.15429 0.7068] -0.03299  0.15676
Whirlpool 0.03%7  0.17445 0.7068] -0.03957  0.17759

TABLE1
The correlation coefficients in the jump case, computed according to (14),
are collected in the next table:

Autozone Ford Kraft WaltDisney  Whirlpool
Autozone
Ford 0.701
Kraft 0.6%4 0.695
Walt Disney 0.692 0.693 0.686
Whirlpool 0.691 0.692 0.685 0.683
TABLE2

The parameters p; in the Gaussian case are calibrated so as to match as
closely as possible the VG ones: indeed, they are chosen so as to minimize the
distance with respect to those of table 2. This is done in order for the comparison
not to be affected by the parameters level, but only by the processes behavior
and characteristics of dependence (instead of its level).

11



4.2 Default probabilities

The one year pairwise joint default probabilities, under the Merton’s diffusive
hypothesis and the corresponding VG ones, are represented in basis points and
collected in tables 3 and 4, respectively .

Joint default probabilities, Merton model

Autozone Ford Kraft Walt Disney Whirlpool
Autozone 6.065 0.030 0.053 0.508
Ford 6.065 0.080 0.143 1.356
Kraft 0.030 0.080 0.001 0.007
Walt Disney 0.053 0.143| 0.001 0.012
Whirlpool 0.508 1.356 0.007 0.012
TABLE3

Joint default probabilities, VG model

Autozone Ford Kraft Walt Disney Whirlpool
Autozone 2.4210.599 0.712 1.215
Ford 2.421 0.966 1.149 2.035
Kraft 0.599 0.966 0.350 0.565
Walt Disney 0.712/ 1.149 0.350 0.667
Whirlpool 1.215| 2.035| 0.565 0.667
TABLE4

Evidently, the probabilities in both tables are very low, since they are over
one year only and refer to companies with a good credit standard. We are inter-
ested not in their absolute level, but in their (percentage) differences, which are
visualized in figure 1. From the figure one can argue that even with reference
to this sample of five names, adopting the product copula approach and con-
sidering, as in the VG case, that asset values jump or neglecting this, produces
extremely different evaluations. Some of the differences are positive, other neg-
atives. It is then incorrect to conclude that neglecting jumps, once the model,
as in our case, is properly calibrated to data, leads to underestimating joint
default probabilities.

12
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5 Conclusions

This paper has examined default dependence modelling through factor copulas,
both when the underlying processes driving default are continuous and when
they are pure jump. The aim of study was that of showing that, even under the
same parametrization, the modelling choice has a relevant impact on default
prediction. We have shown, through a calibration example, that factor copulas
based on diffusive assets and factor copulas based on pure jump asset provide
very different evaluations, even when the correlation is matched across models.
This poses new challenges both to the users of factor copulas. Taking into
consideration that pricing, hedging and reserving in the credit derivative market
are most of time done via factor copulas, this seems to be a major issue for credit
risk assessment of bank portfolios.
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Copule e dipendenza nella modellizzazione del rischio di credito:
processi diffusivi e processi a salti a confronto

Riassunto:

L’evidenza empirica mostra che i fallimenti delle imprese tendono a presen-
tarsi congiuntamente. Risulta quindi cruciale, nel modellizzare il rischio di cred-
ito, a fini di valutazione prospettica delle probabilita di fallimento, incorporare
e valutare correttamente la dipendenza tra i default. Questo articolo esamina
la tecnica correntemente piu utilizzata a tal fine, quella delle funzioni copula.
Discute I'impatto da un lato della scelta della copula, dall’altro del processo
che riproduce I'andamento degli attivi d’impresa. Accanto ai processi diffusivi
infatti sono stati recentemente proposti processi di puro salto. Entrambi sono
compatibili con le factor copulas, ma producono valutazioni di probabilita di
default profondamente diverse. Tale impatto della modellizzazione ¢ studiato
su un campione di imprese attive nel mercato dei derivati di credito.
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