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The Bernstein-von Mises theorem in

semiparametric competing risks models

Pierpaolo De Blasi∗
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Nils L. Hjort
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Abstract

Semiparametric Bayesian models are nowadays a popular tool in
survival analysis. An important area of research concerns the inves-
tigation of frequentist properties of these models. In this paper, a
Bernstein-von Mises theorem is derived for semiparametric Bayesian
models of competing risks data. The cause-specific hazard is taken
as the product of the conditional probability of a failure type and the
overall hazard rate. We model the conditional probability as a smooth
function of time and leave the cumulative overall hazard unspecified.
A prior distribution is defined on the joint parameter space, which
includes a beta process prior for the cumulative overall hazard. We
show that the posterior distribution for any differentiable functional
of interest is asymptotically equivalent to the sampling distribution
derived from maximum likelihood estimation. A simulation study is
provided to illustrate the coverage properties of credible intervals on
cumulative incidence functions.

Keyword: Bayesian nonparametrics, Bernstein–von Mises theorem, beta process,
competing risks, conditional probability of a failure type, semiparametric inference.

1 Introduction

The study of Bernstein-von Mises (BvM) type theorems has recently received a renewed
interest in the context of nonparametric statistics. Indeed, such an interest stems from
the debate on posterior inconsistency originated by the paper of Diaconis and Freedman
(1986). The BvM theorem states that the posterior distribution of the model parameter
centered at the maximum likelihood estimator (MLE) is asymptotically equivalent to
the sampling distribution of the MLE. In a parametric setup, it represents a quite
standard result, roughly implied by the consistency and asymptotic normality of the
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MLE. See, e.g., Schervish (1995) and references therein. On the other hand, in infinite-
dimensional models, the choice of the prior distribution influences the large sample
properties of the posterior and BvM-type results are in general difficult to establish,
because of both the over-whelming mathematics involved in their derivation and the
fact they may not hold.

Cox (1993) provides an example of nonparametric regression with a Gaussian prior
where posterior inference and maximum likelihood inference disagree asymptotically.
His arguments are further developed by Freedman (1999). Somehow surprisingly, in
infinite-dimensional models the BvM theorem is not even guaranteed by the consistency
of the posterior, since problems may arise due to a suboptimal convergence rate. See
Zhao (2000). For nonparametric survival models there exist positive results for the
family of neutral to the right processes (Doksum 1974), which constitute the most
common prior used on the space of survival distributions. Indeed, Kim and Lee (2004)
investigate the BvM theorem for right-censored survival data and show that it holds
under minimal conditions that are matched by the most common processes within this
family. Their method is based on describing neutral to the right processes via the
corresponding random cumulative hazard, taken as an increasing additive process, i.e.
an increasing process with independent and not necessarily stationary increments. See,
e.g., Sato (1999). This approach was first introduced by Hjort (1990) and developed
further by Kim (1999) in terms of counting processes. Kim and Lee (2004) proceed
by proving that the BvM theorem holds for the cumulative hazard function and then
extend the result to the survival distribution via the functional delta method. The
survival function is in fact recovered from the cumulative hazard via the product
integration operator, which is compactly differentiable. The asymptotic normality of
the survival function is then expressed in terms of the sampling distribution of the
Kaplan-Meier estimator. Still in the context of nonparametric survival models, the
following step in the analysis of BvM type asymptotics is naturally represented by the
proportional hazards regression model, which stands out for its wide use in applications.
The derivation of the BvM theorem within this framework has been successfully faced
in Kim (2006) and De Blasi and Hjort (2007). In fact, the convenience of working
at the cumulative hazard level is that Bayesian methods can be readily extended to
more complex event history data by using the multiplicative intensity model of Aalen
(1978). For a comprehensive treatment of Aalen’s approach, see the monograph by
Andersen, Borgan, Gill and Keiding (1993) (ABGK henceforth).

In this paper we derive a BvM result for competing risks models, which represent
another important class of statistical tools in the context of event history analysis,
aiming at the description of the occurrences of failure times with multiple endpoints.
See Lawless (2003, Chapter 9) for an exhaustive account on competing risks. Here
we consider a particular semiparametric formulation and study the asymptotic nor-
mality of posterior distributions for quantities derived from the model parameters via
differentiable functionals. This formulation has statistical interest in its own and is
described below.

We consider the pair (T 0, D0), where T 0 is the failure time and D0 ∈ {1, . . . , k} is
the type of failure. This means that the event under observation has k different and

2



mutually exclusive outcomes. The joint distribution of (T 0, D0) can be specified via
the cause-specific hazard (CSH) function:

αj(t) = lim
∆t→0

Pr{t ≤ T 0 < t + ∆t, D0 = j|T ≥ t}/∆t, j = 1, . . . , k,

that is αj(t) is the instantaneous rates of a failure of type j at time t. Alternatively,
one can describe competing risk data via the marginal probabilities Pj(t) = Pr{T 0 ≤
t,D0 = j} also known as cumulative incidence function (CIF). We rather consider
cumulative CSH, defined as dAj(t) = dPj(t)/S(t−), where S(t) = Pr{T 0 > t} is the
survival function. In the continuous case, Aj is the integral of αj , whereas in general
it is a right-continuous, non decreasing function with jumps in [0, 1]. We work in a
semiparametric setting and specify Aj as follows:

Aj(t) =
∫ t

0
pj(s, θ)dA(s), j = 1, . . . , k, (1.1)

where (i) pj : R+ × Rp → [0, 1] is a smooth function continuous in t and twice
differentiable in θ such that

∑
j≤k pj(s, θ) = 1 for each s and θ; (ii) A =

∑
j≤k Aj is

the cumulative overall hazard and is left unspecified. Our results apply to a general
class of models, for pj as detailed in the following equation (7.1). However, in order to
ease the flow of ideas and avoid heavy notation, we focus first on the crucial case

{
pj(s, θ) = eθj1+θj2spk(s, θ), j = 1, . . . , k − 1
pk(s, θ) =

{∑
h≤k eθh1+θh2s

}−1 (1.2)

where θk1 = 0, θk2 = 0 is needed for guaranteeing the identifiability of the model. The
proportionality factor pj(t, θ) describes the conditional probability of a failure of type
j at time t, given one failure occurs at that time:

pj(t, θ) = lim
∆t↓0

Pr{T 0 ∈ [t, t + ∆t), D0 = j}
Pr{T 0 ∈ [t, t + ∆t)} =

dAj(t)
dA(t)

, (1.3)

see ABGK Section II.6. Following the terminology of Gasbarra and Karia (2000),
we call pj the cause-specific conditional probability. Note that it corresponds to the
subdensity dPj/dt normalized over its sum. In particular, (1.2) can be seen as the
cause-specific conditional probabilities that arise by starting with Gompertz-type CSH
and by normalization for the kth one. In order to avoid confusion, the reader should
note the difference with the conditional probability Pr(T 0 ≤ t |D0 = j), sometimes
used for describing competing risks data in the so called mixture model, see e.g. Larson
and Dinse (1985).

The proposed method consists in carrying out Bayesian estimation of the joint distri-
bution of (T 0, D0) via the cause-specific conditional probability pj and the cumulative
overall hazard A. This entails the specification of a prior density function for θ and
a prior distribution for the functional parameter A. The latter is accomplished by
resorting to the beta process of Hjort (1990), an increasing additive process widely
used for modeling cumulative hazards. A related approach can be found in Gasbarra
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and Karia (2000), who also consider the cause-specific conditional probability and the
overall hazard rate, but with a different prior specification. As for the cause-specific
conditional probability, they take a random partition of the time axis and assign on
each segment an independent k-dimensional Dirichlet distributed random vector. Then
pj is obtained by kernel smoothing. As for the overall hazard, they propose to use a
convolution of gamma processes at the hazard rate level, in the spirit of Lo and Weng
(1989). Another approach to competing risks in a Bayesian nonparametric framework
is the one of Salinas-Torres et al. (2002), who model directly the CIF’s via a Dirichlet
multivariate process prior (see definition therein). Their approach is different in that
they assume a system of independent latent failure times and exploit the representation
of the CIF as the product Pr(T 0 ≤ t |D0 = j)× Pr(D0 = j).

Our model is semiparametric, with (A, θ) taking value in the product space Ω =
D[0,τ ]×Rp, where p = 2k−2 and D[0,τ ] is the space of cadlag function on the (possibly
infinite) time interval [0, τ ]. All the relevant survival quantities are obtained from
(A, θ) via functionals like the cumulative CSH Aj (see (1.1)), the survival function
S(t) = π[0,t]{1− dA(s)} and the CIF Pj(t), in the present setting given by

Pj(t) =
∫ t

0
π
[0,s)

{1− dA(u)}pj(s, θ)dA(s), j = 1, . . . , k. (1.4)

Here π stands for the product integral, see Gill and Johansen (1990). As we are
interested in the asymptotic properties of the posterior distribution of Aj , S and Pj ,
we make use of the following two main facts: (i) for Aj given in (1.1), the mapping
Ψ : (A, θ) → (A1, . . . , Ak) from Ω to (D[0,τ ])k is compactly differentiable, (ii) compact
differentiability satisfies the chain rule: the composition of differentiable functionals
is differentiable, with derivative equal to the composition of the derivatives (see Gill
1989). It follows that S and Pj are compactly differentiable functionals of (A, θ). A
noteworthy consequence is that the BvM theorems for the posterior distributions of
Aj , S and Pj are implied by the asymptotic normality of the posterior distribution
of (A, θ) under appropriate priors. Hence, it suffices to prove the BvM for (A, θ).
The formulation in (1.1) is convenient in that, as it will be shown in Section 2, the
total likelihood factorizes into two parts and estimation of A and θ can be carried out
separately. Moreover, this alleviates remarkably the difficulties usually encountered in
describing the full posterior in semiparametric inference: with independent priors for
A and θ we get independence also with respect to their posterior distributions.

The paper is organized as follows. In Section 2, we introduce the counting process
formulation of cause-specific failure times and exploit the similarity of pj(t, θ) in (1.2)
with a multinomial logistic regression model in order to obtain the asymptotic proper-
ties of the likelihood estimators of A and θ. Then, the allied limiting distributions for
Aj , S and Pj are derived using the functional delta method. In Section 3, we develop
the Bayesian treatment of the model by describing the prior distribution for (A, θ),
by deriving the form of the posterior distribution together with sampling schemes for
posterior averaging. Section 4 provides the main result of the paper, namely the BvM
theorem for the posterior distribution of (A, θ). In Section 5, a simulation study is
presented, with focus on the empirical coverage of credible sets on CIF’s. In order to
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ease the flow of ideas, we collect proofs and technical lemmas in Section 6. In Section
7 we provide conditions for the BvM theorems to hold for a large family of models
for pj , which include (1.2) as special case; we also show how the previously developed
techniques may be adapted to this framework. Finally, some concluding remarks and
lines of future research are provided.

2 Asymptotics for likelihood estimation

Let us start by introducing the counting process formulation of competing risks data.
As we want to account for right-censoring, we indicate the sample by (T1, D1), . . . ,
(Tn, Dn), where Ti is the (possibly right censored) failure time and Di = {0, 1, . . . , k}
is the observed failure type: Di = 0 if Ti is right censored, whereas Di = j if i-th
individual is observed to fail due to cause j. The censoring mechanism is assumed
to be independent of the failure time and the failure type distribution. For each
observation (Ti, Di), we consider k counting processes Ni,j(t) = I{Ti ≤ t,Di = j}, and
the at-risk process Yi(s) = I{Ti ≥ t}. According to Aalen’s multiplicative intensity
model, Ni,j can be decomposed as

Ni,j(t) =
∫ t

0
Yi(s)dAj(s) + Mi,j(t), j = 1, . . . , k, (2.1)

i.e. the sum of the intensity process and a martingale residual Mi,j . In the following
we use the notation 〈M〉 for the variation process of M and 〈M,M ′〉 for the covariation
process of M and M ′, M and M ′ being martingales. Under standard regularity con-
ditions, that we assume to hold, we have 〈Mi,j〉(t) =

∫ t
0 Yi(s)dAj(s) and orthogonality

at the failure type level: 〈Mi,j ,Mi,h〉 = 0. Summation at the individual level preserves
the representation in (2.1), as well as orthogonality, and will be denoted by suppressing
the index i. We also make use of the aggregated process N·(t) =

∑
j≤k Nj(t), which

counts the number of failure of any types occurred before time t.

The likelihood for (A, θ) can be expressed by the product integral in a multinomial
form:

L(A, θ) = π
t

{ ∏
j≤k(Y (t)dAj(t))dNj(t)

{
1−∑

j≤kdAj(t)
}1−dN·(t)

}

cf. equation (2.7.2”) in ABGK, Section II.7. Upon substitution of (1.1), the likeli-
hood for θ can be separated out from that of A, so that the L(A, θ) factorizes in two
components, say L(A) and L(θ), where

L(A) = π
t

{
dA(t)dN·(t)

{
1− dA(t)

}Y (t)−dN·(t)
}

, (2.2)

L(θ) =
∏

i≤n

∏

j≤k

pj(θ, ti)∆Ni,j(ti). (2.3)

L(A) is the likelihood of the cumulative overall hazard, and simply corresponds to the
case of right-censored survival times, while L(θ) is the conditional likelihood for θ and
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depends only on uncensored observations. The factorization of L(A, θ) represents one of
the main property of model (1.1): it leads to frequentist estimation in a straightforward
way by means of the Nelson-Aalen estimator Ân(t) =

∫ t
0 Y (s)−1dN·(s) for A and of the

MLE θ̂n for θ. Upon substitution of (1.2) for pj(θ, t) in (2.3), the conditional likelihood
L(θ) resembles the likelihood for a multinomial logistic regression model with the type
of failure as response variable and the time of failure as regression variable. Then, one
can exploit a well known result of the multinomial logistic regression model, namely
that the likelihood of the regression coefficient is strictly concave if there is overlap on
the space of covariate variables, see Albert and Anderson (1984). As we will show in
the sequel, this allows in our setting to provide weak and neat conditions for the large
sample properties of likelihood estimation to hold.

To this aim, we postulate that model (1.1)-(1.2) is in force for a certain overall hazard
rate α(·) = αtr(·), with cumulative hazard Atr(t) =

∫ t
0 αtr(s)ds, and for a parameter

vector θtr ∈ R2k−2. We also assume that observations are recorded over a fixed and
finite time window [0, τ ]. The conditions required are the following:

(A) There exists a positive y(·) such that supt∈[0,τ ] |n−1Y (t)− y(t)| →p 0.

(B)
∫ τ
0 (t2 + 1)3αtr(t)dt < ∞.

(C) ∃j, h ∈ {1, . . . , k}, j 6= h, such that pj(t, θtr), ph(t, θtr) > 0 for any t.

Condition (A) guarantees that Y (τ) → ∞ in probability as n → ∞, which is needed
for the asymptotic distribution of the Nelson-Aalen estimator Ân. For example, if
right censoring is determined by independent censoring times with common distrib-
ution function G, then it is sufficient to assume that G(τ−) < 1. The integrability
condition (B) is needed for the convergence (in probability) of the variation processes
of martingales obtained from Mj via stochastic integration. Condition (C) assures
that, for sufficiently large sample sizes, there is overlap of cause-specific failure times,
which is needed for the concavity of L(θ), see Lemma 6.1 in Section 6.

Before describing the limiting distribution of (Ân, θ̂n), we introduce some more notation
that will be also needed in the rest of the paper. Let `n(θ) = log L(θ) and use the
counting process formulation to write

`n(θ) =
∑

j≤k

∫ τ

0

[
zj(t)tθ + log pk(t, θ)

]
dNj(t), (2.4)

where zj(t) is the (2k−2)-dimensional function having (1, t)t in the j-th block and zeros
elsewhere. Note that zk(t) is identically zero and is introduced for mathematical conve-
nience. Upon definition of e(t, θ) =

∑
j≤k zj(t)pj(t, θ), the function zj(t)−e(t, θ) stands

for ∂ log pj(t, θ)/∂θ. Next, define the information matrix Σ =
∫ τ
0 V (t, θtr)y(t)αtr(t)dt,

where V (t, θ) =
∑

j≤k pj(t, θ)[zj(t) − e(t, θ)]⊗2, so that υ ∼ N(0, Σ−1) denotes a mul-
tivariate normal random vector with covariance matrix given by the inverse of Σ. As
for the asymptotic distribution of the Nelson-Aalen estimator Ân, define the function
σ2(t) =

∫ t
0 y(s)−1αtr(s)ds and let W be a standard Brownian motion. For a vector
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b = (b1, . . . , bp), write |b| = (btb)1/2 and b⊗2 = b bt, while, for B a p× p matrix, |B| is
the determinant and vec(B) is the column vector of length p2 with the jth block equal
to the jth column of B. The covariance matrix of a matrix-valued random variable X
is then defined as cov(X) = E

{
[vec(X) − vec(EX)][vec(X) − vec(EX)]t

}
. Finally, let

C[0,τ ] be the space of continuous functions defined on the interval [0, τ ].

Theorem 2.1 Assume conditions (A)-(C) hold. Then
√

n(θ̂n−θtr) and
√

n(Ân−Atr)
are asymptotically independent and

√
n(Ân −Atr) →d W(σ2) on D[0,τ ]. (2.5)
√

n(θ̂n − θtr) →d N(0, Σ−1) (2.6)

The asymptotic independence of
√

n(θ̂n − θtr) and
√

n(Ân − Atr) is a key ingredient
for the derivation of the asymptotic distribution of the plug-in estimators for Aj , S
and Pj via the functional delta method. As for Aj , consider the mapping Ψ : (A, θ) →
(A1, . . . , Ak) from D[0,τ ] × R2k−2 to (D[0,τ ])k defined by equations (1.1) and (1.2) and
write Ψ as the composition Ψ = Ψ2 ◦ Ψ1, where Ψ1 : R2k−2 → (C[0,τ ])k is defined
by Ψ1(θ) =

[
p1(t, θ), . . . , pk(t, θ)

]t and is compactly differentiable at each point of
x ∈ R2k−2 with derivative given by

(dΨ1(θ) · x)(t) =




[z1(t)− e(t, θ)]txp1(t, θ)
...

[zk(t)− e(t, θ)]txpk(t, θ)




On the other hand, Ψ2 : (C[0,τ ])k ×D[0,τ ] → (D[0,τ ])k is defined by Ψ2(p1, . . . , pk, A) =
(A1, . . . , Ak), where Aj =

∫
pjdA. Using the properties of the integration operator (see

ABGK Proposition II.8.6) we have that, for (h1, . . . , hk, H) in the space (C[0,τ ])k×D[0,τ ]

such that each hj is integrable with respect to H, Ψ2 has derivative:

dΨ2(p1, . . . , pk, A) · (h1, . . . , hk, H) =




∫
h1dA +

∫
p1dH

...∫
hkdA +

∫
pkdH




The compact differentiability of Ψ is then a direct consequence of the chain rule
of compact differentiability. The next corollary gives the limiting distribution of√

n[Âj(t)−Aj(t)], j = 1, . . . , k, in terms of a vector of dependent Gaussian processes.
Here Âj stays for Aj in (1.1) with (Ân, θ̂n) substituted for (A, θ). The thesis follows
from two applications of the functional delta method, see Gill (1989).

Corollary 2.1 For j = 1, . . . , k define the Gaussian process

Uj(t) =
∫ t

0
[zj(s)− e(s, θtr)]tυ pj(s, θtr)αtr(s)ds +

∫ t

0
pj(s, θtr)dW

(
σ2(s)

)
.

Then, the following weak convergence result on (D[0,τ ])k holds:
√

n
[

(Â1, . . . , Âk)− (A1, . . . , Ak)
] →d (U1, . . . , Uk).

7



In order to derive the asymptotic distribution of S and Pj , it is convenient to look at
competing risks data as the transition times of a Markov process with one transient
state “0 : alive” and absorbing state j = 1, . . . , k corresponding to “ failure of type
j ”. Let P(s, t) be the corresponding transition matrix for 0 ≤ s ≤ t and write
P(t) = P(0, t). Then

P(t) = π
[0,t]
{I + dA(s)} (2.7)

where I is the identity matrix and A is the transition intensity matrix with element
(1, 1) equal to −A, elements (1, j + 1) equal to Aj , elements (j + 1, j + 1) equal to
1 and zeros elsewhere, j running trough {1, . . . , k}. Note that [S(t), P1(t), . . . , Pk(t)]
corresponds to the first row of P(t). The thesis of Corollary 2.1 can be written as√

n(Â −A) →d U for U the matrix-valued Gaussian process with first row equal to
(−W (σ2), U1, . . . , Un) and zeros elsewhere. Upon definition of the matrix Cj having
element (1, 1) equal to −1, element (1, j + 1) equal to 1 and zeros elsewhere, the
covariance matrix of U(t) is given by cov(U(t)) =

∑
j,h≤k vec(Cj)vec(Ch)tωjh(t), where

ωjh(t)=
∫ t

0
[zj(s)−e(s, θtr)]tpj(s, θtr)αtr(s)dsΣ−1

∫ t

0
[zh(s)−e(s, θtr)]ph(s, θtr)αtr(s)ds

+
∫ t

0
pj(s, θtr)ph(s, θtr)

αtr(s)
y(s)

ds

We now let the previous notation prevail. The next corollary describes the limiting
distribution of

√
n[P̂(t)−P(t)], where P̂ stays for the transition matrix P with (Ân, θ̂n)

substituted in A in (2.7) via equation (1.1). The thesis follows from an application of
the functional delta method and the formula for the derivative of the product integral,
see Gill and Johansen (1990).

Corollary 2.2 The transition matrix P̂ has the following asymptotic behavior:

√
n[P̂(t)−P(t)] →d Z(t) =

∫ t

0
P(s−) dU(s)P(s, t)

for each t ∈ [0, τ ], where Z(t) has covariance matrix given by

cov(Z(t)) =
∫ t

0
P(s, t)t ⊗P(s−) d cov(U(s))P(s, t)⊗P(s−)t.

It follows that an explicit formula for the asymptotic distribution of
√

n[P̂j(t)−Pj(t)]
is as follows:

Zj(t) =
∫ t

0
S(u−)dUj(u)−

∫ t

0

Pj(t)− Pj(u)
S(u)

S(u−)dW(σ2(u)),

with asymptotic variance

var(Zj(t)) =
∫ t

0
S(u−)2

{(
Pj(t)− Pj(u)

)2

S(u)2
σ2(u)du

−2
Pj(t)− Pj(u)

S(u)
pj(u, θtr)σ2(u)du + dωjj(u)

}
.

(2.8)
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3 Bayesian inference

As far as model (1.1) is concerned, Bayesian inference requires the specification of a
prior distribution for (A, θ) on the infinite-dimensional space D[0,τ ]×R2k−2. We proceed
by taking A and θ to be independent and, then, derive the posterior distributions
separately because of the factorization in the total likelihood L(A, θ).

As for the prior distribution of A, we resort to the beta process of Hjort (1990),
which is an increasing additive process whose paths lie, with probability one, in the
space of cumulative hazard functions. It is worth noting that a fully nonparametric
treatment of the competing risks model was implicit in Hjort (1990, Section 5), who
showed how to use the beta process for Bayesian inference on nonhomogeneous Markov
processes. His proposal was to assign independent beta processes to all cumulative
transition intensities, using the fact that, given a sample of right-censored transition
times, they preserve independence and are still beta distributed in the posterior. A
formal definition of the beta process is as follows. Let A is the set of right-continuous
non-decreasing functions A on R+, such that A(0) = 0 and A is increasing to infinity
with jumps in [0, 1]. Let A0 ∈ A with jumps at points {t1, t2, . . .} and let c(·) be a
piecewise continuous, nonnegative real valued function on [0,∞). Then, a beta process
with parameters c and A0, in symbols A ∼ Beta(c, A0), is defined as an increasing
additive process with Lévy-Khinchine representation given by

E
[
e−uA(t)

]
=

∏

j: tj≤t

E
[
e−u∆A(tj)

]
e−
R t
0

R 1
0 (1−e−us)s−1(1−s)c(z)−1c(z)ds dA0,c(z),

where ∆A(tj) is the jump size at location tj and is distributed as a beta random vari-
able of parameters c(tj)∆A0(tj) and c(tj){1 − ∆A0(tj)}, whereas A0,c(t) = A0(t) −∑

tj≤t ∆A0(tj). Note that dA(s) has mean dA0(s) and variance dA0(s){1−dA0(s)}/{1+
c(s)}, indicating that A0 is the prior guess at A and c determines the concentration of
the random function around A0. In particular, the choice c(t) = m exp{−A0(t)} makes
the random distribution function 1−π[0,t]{1−dA(s)} distributed as a Dirichlet process
with prior mean equal to

[
1−π[0,t]{1− dA0(s)}

]
and concentration parameter m. In

this case m can be interpreted as the strength of the prior beliefs in A0, corresponding
to the size of an imaginary prior sample from a lifetime distribution with cumulative
hazard A0.

The convenience of using a beta process prior for the overall cumulative hazard consists
in the fact that we are modeling the occurrence of simple events, disregarding the type
of failure observed. In fact, the likelihood contribution L(A) depends only on the
failure times t1, . . . , tn and the censoring mechanism (see equation (2.2)). Then, one
can exploit the conjugacy of the beta process for i.i.d. right-censored data to get

A | data ∼ Beta
{

c + Y,

∫
c dA0 + dN·

c + Y

}
, (3.1)

where we have used the counting process notation introduced in Section 2. The second
parameter corresponds to the posterior mean and has increments given by a convex
linear combination of the Nelson-Aalen estimator Ân(t) and the prior mean A0. The
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plain Nelson-Aalen estimator Ân arises in the noninformative case of c(t) ≡ 0 for any
t. If A0 is continuous, then, in the posterior, there are new fixed points of discontinuity
at any observed failure time ti, the distribution of the jump size being

∆A(ti) | data ∼ beta
(
c(ti)4A0(ti) + dN·(ti), c(ti)[1−4A0(ti)] + Y (ti)− dN·(ti)

)
.

Sample paths from the posterior distribution of A are readily obtained by simulating
independently the beta-distributed jumps and the continuous paths. For a fine grid of
the time axis, the increments of the continuous part can be approximated by summing
beta random variates, generated in accordance with (3.1).

As for the parameter θ, any density function π(θ) with support R2k−2 can be employed,
although specifying a meaningful distribution can be a difficult task. A possibility is
to adopt the prior density dictated by Jeffreys’s rule, which is suited to the case of
little available prior information. For general parametric models, the Jeffreys’s prior is
proportional to |Jn(θ)|1/2, the square root of the determinant of the information matrix.
Since the conditional likelihood L(θ) is interpretable in terms of a multinomial logistic
regression model, it is easy to see that Jeffreys’s prior is given by

π(θ) ∝
∣∣∣

∑

i: di 6=0

V (ti, θ)
∣∣∣
1/2

. (3.2)

See also Ibrahim and Laud (1991). In order to simulate from the posterior density
π(θ|data) ∝ π(θ) × L(θ), we exploit the concavity of L(θ). In fact, by Lemma 6.1 in
the Section 6, L(θ) is concave as long as there is overlapping of cause-specific failure
times. In this case, a concave prior π(θ) leads to a concave posterior density, so that
one can use coordinatewise the adaptive rejection sampling (Gilks and Wild, 1992).

Once we simulate A∗ from A | data and θ∗ from π(θ|data), inference on CIF’s can be
obtained via posterior averaging. The trajectory {A∗(t), t ≥ 0} will be of pure jumps,
with jump times 0 < s1 < s2 < . . . obtained by reordering the uncensored times of
failure in the data and the time points used in the discretization of the continuous
part. Then,

P ∗
j (t) =

∑

i: si≤t

{ ∏

l<i

[1−∆A∗(sl)]pj(si, θ
∗)∆A∗(si)

}
.

is a variate from the posterior distribution of Pj , see equation (1.4).

4 Bernstein-von Mises theorem

In this section we investigate the BvM theorem for the posterior distribution of Aj

and Pj . Indeed, we prove that, under the choice of beta process for the overall hazard
and minimal conditions on the prior density π(θ), the posterior distribution of (A, θ)
is asymptotically equivalent to the sampling distribution of the likelihood estimates
(Ân, θ̂n), as stated in Theorem 2.1. The claimed BvM result for Aj and Pj is, then,
direct consequence of the functional delta method, as implemented in Corollary 2.1 and
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2.2. It is worth noting that the same is true for all differentiable functionals of (A, θ)
or of the CSH’s Aj : we can then rely on posterior averaging having valid frequentist
properties. Indeed, thanks to the BvM result, Bayesian credible sets are guaranteed to
reach asymptotically nominal coverage probability like consistent estimation based on
the likelihood. This has important consequences from a practical point of view. Since
the Bayesian computational capacity has increased, Bayesian credible sets represent
an alternative to confidence intervals when traditional methods do not lead to easily
implementable algorithms. The BvM theorem is the theoretical justification of this
practice.

As in Section 2, we assume that data are generated under model (1.1) with true para-
meters (Atr, θtr), and that conditions (A)-(C) hold. The convergence of the posterior
distribution holds in probability, where convergence in probability refers to repeated
sampling from the true distribution of (T 0, D0).

Theorem 4.1 Let A be a beta process (A0, c) and let θ, independent of A, have density
π. Assume that A0 is continuous with bounded and positive density on (0, τ) and that
0 < inft∈[0,τ ] c(t) ≤ supt∈[0,τ ] c(t) < ∞. Moreover, π is assumed to be positive and
continuous at θtr. Then, as n →∞,

√
n(A− Ân) |data →d W(σ2) on D[0,τ ] in probability, (4.1)
√

n(θ − θ̂n) |data →d N(0, Σ−1) in probability. (4.2)

Corollary 4.1 Under the hypothesis of Theorem 4.1
√

n
[

(A1, . . . , Ak)− (Â1, . . . , Âk)
] | data →d (U1, . . . , Uk)t

on (D[0,τ ])k in probability, where Âj(t) is defined as in Corollary 2.1.

Corollary 4.2 Under the hypothesis of Theorem 4.1, for j = 1, . . . , k,

√
n(Pj − P̂j) |data →d

∫ t

0
S(u−)dUj(u)−

∫ t

0

Pj(t)− Pj(u)
S(u)

S(u−)dW(σ2(u))

on D[0,τ ] in probability, where P̂j(t) =
∫ t
0 π[0,s)

{
1− dÂn(u)

}
pj(s, θ̂n)dÂn(s).

5 Simulation study

In this section we investigate the validity of the BvM theorem on simulated data by
comparing the coverage probability of likelihood and Bayesian intervals for the CIF. We
generate competing risks data with two types of failure (k = 2) from independent life-
times (T1, T2) having different Gompertz distributions. Specifically, T1 ∼ Gomp(a1, b1)
with (a1, b1) = (log(0.05), 0.6) and T2 ∼ Gomp(a2, b2) with (a2, b2) = (log(0.01), 1),
resulting in expected lifetimes equal to 3.6 and 4.1 respectively. Right-censoring is
introduced via exponential distributed random variables with mean 10, resulting in
a censoring of approximately 25%. We consider data of 5 different sample sizes,
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n = 30, 50, 100, 200, 500 and, for each data set, we perform interval estimation of
P1 and P2 at the time point t∗ = 4.

Bayesian inference on P1(t∗) and P2(t∗) is based on 5000 posterior variates from
π(θ |data) and 5000 trajectories from the posterior beta process A | data. As for θ,
we use the Jeffreys’s prior in (3.2) and implement the adaptive rejection sampling
coordinatewise for a total of 6000 iterations, discarding the first 1000 sweeps as burn-
in. As for A, the prior process is centered at A0 = α0t with α0 = 0.165 and we
take c(t) = m exp(−α0t) with m = 1, 10, 20, corresponding to three different degrees
of prior beliefs. For each choice of m we compute credible intervals for P1(t∗) and
P2(t∗) based on highest posterior density. Finally, we derive confidence intervals under
the semiparametric model (1.1) based on the limiting normality of Corollary 2.2 and
on plug-in estimates of the asymptotic variance (2.8). For comparison purposes, we
also report interval estimation for the fully nonparametric case, where the cumulative
CSH’s are estimated via the Nelson-Aalen estimators, see ABGK Section IV.4.1.

In Table 1 we report the empirical frequentist coverage probability of the 95% interval
estimates of P1(t∗) and P2(t∗) based on 1000 independent samples for each method
(Bayesian with m = 1, 10, 20, semiparametric and nonparametric) and for each sample
size (n = 30, 50, 100, 200, 500). Note that the performance of the Bayesian intervals
increases for increasing sample size and decreasing concentration parameter m. A small
coverage is associated with a big m because the initial guess on the cumulative overall
hazard, i.e. A0, is different from the true one: the expected lifetime corresponding
to A0 is approximately twice than E(T1 ∧ T2). As n increases, the data rule out
the ”wrong” prior guess more and more. The Bayesian intervals work well for all
sample sizes for the least informative prior specification, which corresponds to m = 1:
they attain coverage probabilities close to the nominal level and consistent with the
ones of semiparametric estimation. The accuracy of intervals based on nonparametric
estimation is somehow superior, even if one has to consider that the Bayesian intervals
suffer of a wrong specification of the prior. Moreover, a better accuracy is also caused
by the fact that the width of the nonparametric intervals is generally larger because
of a larger asymptotic standard deviation.

6 Proofs of Theorem 2.1 and Theorem 4.1

Proof of Theorem 2.1. Result (2.5) is standard in survival analysis and holds under
condition (A) and (B), see ABGK Section IV.1. Asymptotic normality of θ̂n is derived
using convex analysis in the spirit of Hjort and Pollard (1994). To this aim, the
following Lemma is essential.

Lemma 6.1 Denote by Ej the index set for failures of the j-th type, Ej = {i : di =
j, i = 1, . . . , n} and indicate by θj the two-dimensional vector (θj1, θj2), j = 1, . . . , k.
If for any θ =∈ R2k−2 there exists a triplet (i, j, h) with j, h ∈ 1, . . . , k, j 6= h, i ∈ Ej

such that
〈(θh − θj), (1, ti)〉 > 0
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Table 1: Empirical coverage of interval estimates for P1(t∗) (upper block) and P2(t∗)
(lower block) based on 1000 independent samples. Nominal coverage is 95%.

Method n = 30 n = 50 n = 100 n = 200 n = 500

P1(t∗) Bayesian (m = 1) .928 .936 .941 .940 .942
(m = 10) .905 .917 .933 .927 .937
(m = 20) .844 .864 .902 .911 .929

Semiparametric .916 .921 .927 .926 .929
Nonparametric .941 .946 .950 .946 .945

P2(t∗) Bayesian (m = 1) .933 .933 .946 .939 .952
(m = 10) .899 .910 .934 .933 .942
(m = 20) .842 .863 .895 .915 .935

Semiparametric .901 .908 .921 .920 .929
Nonparametric .932 .944 .951 .944 .953

then the maximum likelihood estimate θ̂ exists and is unique. Moreover, the likelihood
has limit −∞ at infinity and is strictly concave.

Proof. The log likelihood `n(θ) in (2.4) can be written as

`n(θ) = −
∑

j≤k

∑

i∈Ej

log
{∑

l≤k exp〈θl − θj , (1, ti)t〉
}

Then, existence and uniqueness of the maximum likelihood estimate is implied by the
overlap of observed failure times, see Albert and Anderson (1984). The condition of
overlap has a simple geometric interpretation when k = 2, that is the two sets of
observations {ti, i ∈ E1} and {ti, i ∈ E2} cannot be separated by any value on the
time axis. 2

We can now proceed with the proof of Theorem 2.1. Consider first the following Taylor
expansion of log pk(t, θ) around θtr:

log pk(t, θtr)− log pk(t, θtr + x) = e(t, θtr)tx +
1
2
xtV (t, θtr)x +

1
6
v(x, t, θ∗)

for θ∗ such that |θ∗ − θtr| ≤ |x| and v(x, t, θ) =
∑

j≤k pj(t, θ){[zj(t) − e(t, θ)]tx}3. A
bound for the v(x, t, θ) can be found with techniques similar to those used by Hjort and
Pollard (1994, Lemma A2). In fact, it can be shown that |v(x, t, θ)| ≤ 64(t2 +1)3/2|x|3
regardless of the value of θ.
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Next, Lemma 1 implies that, under condition (C), for a sufficiently large sample size
the sequence of functions Cn(x) = `n(θtr +x/

√
n)− `n(θtr) is strictly concave in x with

maximum in zero and can be written as

Cn(x) = Hn(τ)tx− 1
2
xtΣn(θtr)x− 1

6
rn(x, θ∗), (6.1)

where

Hn(t) = n−1/2
∑

j≤k

∫ t
0 [zj(s)− e(s, θtr)]dNj(s), (6.2)

Σn(θ) = n−1
∫ τ
0 V (t, θ)dN·(t), (6.3)

rn(x, θ∗) = n−3/2
∫ τ
0 v(x, t, θ∗)dN·(t), (6.4)

and θ∗ in (6.4) such that |θ∗ − θtr| ≤ |x|. By the methods set forth in Section 1 of
Hjort and Pollard (1994) convergence in (2.6) is implied by: (i) rn(x, θ∗) →p 0 for any
θ∗ such that |θ∗ − θtr| ≤ |x|, (ii) Hn(τ) →d N(0, Σ) and (iii) Σn(θtr) →p Σ.

As for (i), rn(x, θ∗) is bounded by
∫ τ
0 64(t2 + 1)3/2|x|3n−3/2dN·(t), which is Op(n−1/2)

by Condition (B) and an application of Lenglart’s inequality. As for the proof of (ii)
and (iii), we make use of convergence theory for counting processes. The martingale
decomposition in (2.1) leads to

Hn(τ) = n−1/2
∑

j≤k

∫ τ

0
[zj(t)− e(t, θtr)]dMj(t), (6.5)

Σn(θtr) = n−1

∫ τ

0
V (t, θtr)Y (t)αtr(t)dt + n−1

∑

j≤k

∫ τ

0
V (t, θtr)dMj(t), (6.6)

where M·(t) =
∑

j≤k Mj(t). As for the convergence in distribution in (ii), note that
{Hn(t), t ∈ [0, τ ]} is a martingale so we can apply the Rebolledo’s central limit theo-
rem. The Lindeberg-type condition

n−1
∑

j≤k

∫ τ

0
|zj(t)− e(t, θtr)|2 I{n−1/2|zj(t)− e(t, θtr)| ≥ ε}Y (t)pj(t, θtr)αtr(t)dt →p 0

is satisfied because the indicator goes to zero for large n. It is easy to see that

〈Hn〉(τ) = n−1
∑

j≤k

∫ τ

0
[zj(t)− e(t, θtr)]⊗2Y (t)pj(t, θtr)αtr(t)dt →p Σ,

which completes the proof of (ii). As for the convergence in probability in (iii), the
first term in (6.6) converges to Σ by Condition (A) and boundedness of the integrand.
The latter follows from Condition (B) and a bound on V (t, θtr) similar to the one used
for v(x, t, θ). The second term in (6.6) is Op(n−1/2), which can be proved by combining
Lenglart’s inequality, the formula of stochastic integration with respect to martingales
and Condition (B). This proves (iii). Finally, the asymptotic independence of Ân and
θ̂n is easily verified by writing

√
n(θ̂n − θtr) = Σ−1Hn(τ) + op(1) and

√
n [Ân(t)−Atr(t)] =

√
n

∫ t

0
I{Y (s) > 0}Y (s)−1dM·(s) + op(1).

14



It can be shown that Hn(t) is componentwise orthogonal with respect to the first term
in the right hand side. The proof is then complete.

Proof of Theorem 4.1. It is easy to see that convergence in (4.1) is implied by
Theorem 2 in Kim and Lee (2004), which holds under the hypotheses made on the
prior parameters of the beta process. In order to prove (4.2) the following lemma is
needed.

Lemma 6.2 Assume conditions (A)-(C) hold and that π(·) is positive and continuous
at θtr. Then ∫

R2k−2

|gn(x)− φ(x)π(θtr)| dx →p 0,

where gn(x) = exp{`n(θ̂n +x/
√

n)− `n(θ̂n)}π(θ̂n +x/
√

n) and φ(x) = exp{−xtΣx/2}.

Proof. The proof goes along with the decomposition
∫

R2k−2

∣∣gn(x)− φ(x)π(θtr)
∣∣dx ≤

∫

|x|≤K

∣∣gn(x)− φ(x)π(θtr)
∣∣dx +

∫

K<|x|<δ
√

n
gn(x)dx

+
∫

|x|≥δ
√

n
gn(x)dx +

∫

|x|>K
φ(x)π(θtr)dx

Denote the four integrals in the right-hand side by I1, I2, I3 and I4 respectively. Since
I4 can be set as small as needed (φ is concave with maximum at 0) it is sufficient to
find, for given ε > 0, two positive constants K and δ such that Pr{Ij > ε} → 0 for
j = 1, 2, 3.

For I1 we use the third-order Taylor expansion

`n(θ̂n + x/
√

n)− `n(θ̂n) = −1
2
xtΣn(θ̂n)x− 1

6
rn(x, θ∗), (6.7)

for θ∗ such that |θ∗ − θ̂n| ≤ |x|/√n. The remainder rn(x, θ∗) is defined as in (6.4) and
Σn(θ̂n) is defined accordingly to (6.2). Next, for φn(x) = exp{−xtΣn(θ̂n)x/2},

I1 ≤ π(θtr)
∫

|x|≤K
|φn(x)− φ(x)| dx +

∫

|x|≤K
|gn(x)− φn(x)π(θtr)| dx. (6.8)

It can be shown, exploiting the continuity of V (t, ·) and Lenglart’s inequality, that
Σ(θ̂n) →p Σ. Then, sup|x|≤K |φn(x) − φ(x)| →p 0 and the positivity of π(θtr) implies
that the first term in (6.8) goes to zero in probability for any finite K. As for the
second term in (6.8), we have

|gn(x)− φn(x)π(θtr)| ≤ φn(x)π(θtr)
[
(1 + η1) sup

|x|≤K

∣∣ exp
{− rn(x, θ∗)

}− 1
∣∣ + η1

]
,

where η1 = sup|x|≤K

∣∣π(θ̂n + x/
√

n)/π(θtr) − 1
∣∣. Note that η1 →p 0 because of

π(θ̂n + x/
√

n) →p π(θtr) uniformly on |x| ≤ K and the positivity of π(θtr). More-
over, reasoning as in the proof of Theorem 2.1, one finds that, for any K > 0 and
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|x| ≤ K, sup|x|≤K | exp{−rn(x, θ∗)} − 1| →p 0. Since
∫
|x|≤K φn(x)dx is bounded in

probability, we conclude that, for any K > 0, Pr{I1 > ε} → 0.

Regarding I2, we use the following bound for the third order term of the Taylor ex-
pansion in (6.7):

∣∣rn(x, θ∗)
∣∣ ≤ δxtx

∫ τ

0

32
3

(t2 + 1)3/2n−1dN·(t),

where the integral in the right hand side is a quantity bounded in probability (see
condition (A) and (B) and use Lenglart’s inequality). Hence, there exists M > 0 large
enough such that Pr

{|rn(x, θ∗)| > δM xtx
} → 0. Next define (i) Bn = Σn(θ̂n) − Σ

and bn = (2k − 2)2 maxi,j=1,...,2k−2 |Bnij | such that xtBnx ≤ bn hth; (ii) λ as the
smallest eigenvalue of Σ, such that xtΣx ≥ λ xtx. Hence, we have −1

2xtΣn(θ̂n)x ≤
−1

2

(
λ−bn

)
xtx. Since λ > 0 (Σ is positive definite) and bn →p 0, for some ε1 sufficiently

small there exists δ = δ(λ,M, ε1) such that λ+δM/3− ε1 > 0 and Pr
{

λ−bn−2δM <

ε1

}
→ 0. Fix now ε > 0 and use expansion in (6.7) to get

Pr{I2 > ε}≤Pr
{

sup
|x|≤δ

√
n

∣∣∣π(θ̂n+x/
√

n)/π(θtr)
∣∣∣> η2

}
+Pr

{
|rn(x, θ∗)| > δM xtx

}

+Pr
{
bn > λ + δM/3− ε1

}
+Pr

{∫

K<|x|<δ
√

n
e−ε1xtx/2 dx >

ε

η2π(θtr)

}
,

where η2 = sup|x|≤2δ |π(θtr + x)/π(θtr)|. The first term in the right hand side goes
to zero because |θ̂n − θtr| ≤ 2δ eventually. Since we have already shown that the
second and the third terms go to zero in probability, it is sufficient to choose K large
enough such that

∫
|x|>K e−ε1xtx/2 dx ≤ ε/η2π(θtr). Then, there exist K, δ > 0 such

that Pr{I2 > ε} → 0.

As for I3, first consider that
∫

|x|≥δ
√

n
gn(x) dx ≤ nk−1 sup

|θ−bθn|≥δ

exp{`n(θ)− `n(θ̂n)}.

The set {θ : |θ − θ̂n| ≥ δ} is eventually contained in {θ : |θ − θtr| ≥ δ/2}. Therefore,
by the concavity of `n(θ), it suffices to prove that

nk−1 sup
|θ−θtr|=δ/2

exp{`n(θ)− `n(θ̂n)} →p 0, (6.9)

Reasoning as in the proof of Theorem 2.1, it is possible to show that n−1
(
`n(θ) −

`n(θtr)
) →p d(θ) uniformly on compact set, where d(θ) is a strictly concave function

with maximum at θtr equal to zero. Finally, consistency of θ̂n leads to

nk−1 sup
|θ−θtr|=δ/2

exp{`n(θ)− `n(θ̂n)} ≤ nk−1 sup
|θ−θtr|=δ/2

exp
{
n[op(1) + d(θ)]

}
.

Hence, (6.9) holds because nk−1end(θ) → 0. We conclude that, for any ε, δ > 0,
Pr{I3 > ε} → 0, and the proof is complete. 2
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Now we are in the position to prove the second statement of Theorem 4.1 in a straight-
forward way. Denote by fn(·) the posterior density of

√
n(θ − θ̂n). We aim at proving

that fn(·) converges in L1-norm to a multivariate normal density with zero mean and
covariance matrix Σ−1. For x =

√
n(θ − θ̂n),

fn(x) ∝ exp{`n(θ̂n + x/
√

n)}π(θ̂n + x/
√

n)

so that fn(x) = gn(x)/Gn, for gn defined in Lemma 6.2 and Gn =
∫

gn(x)dx. For
φ(x) = exp{−xtΣx/2}, it is then sufficient to show that gn converges in L1 to φ(h)π(θtr).
Hence, Lemma 2 completes the proof.

7 Treatment for general pj

As we already pointed out, equation (1.2) corresponds to cause-specific conditional
probabilities in the case of Gompertz-type CSH’s, see equation (1.3). Other forms for
pj are equally plausible, e.g. one could start from a different family of hazard rates.
This suggests a natural way to generalize (1.2), a convenient form being

{
pj(t, θ) = eλ(t,θj)pk(t, θ), j = 1, . . . , k − 1
pk(t, θ) = 1

/{∑
h≤k eλ(t,θh)

} (7.1)

For simplicity we keep θj as the two dimensional vector (θj1, θj2), even if this limitation
is not strictly necessary. In order to ensure identifiability, we set θk to satisfy the
constraint λ(t, θk) = 1. This entails θ to be a (2k − 2)-dimensional parameter. The
function λ(t, θj) is assumed to be twice differentiable in θj . For example, starting with
Weibull-type CSH, one can set λ(t, θj) = log[θj1t

θj2 ], θk1 = 1 and θk2 = 0.

The arguments set forth in the previous sections can be adapted to (7.1) without
serious efforts. First note that the part regarding the overall hazard remains exactly
the same and that the conditions for the prior distributions on A and θ remain also the
same. We next replace Conditions (B) and (C) of Section 2 in order to make Theorem
2.1 and Theorem 4.1 hold, see Section 6. To this aim, we need to introduce some
additional notation for the first and second derivatives of λ(t, θj) with respect to θ:

zj(t, θ) =
∂

∂θ
λ(t, θj) and Zj(t, θ) =

∂2

∂θ∂θt
λ(t, θj).

We also redefine e(t, θ) =
∑

j≤k zj(t, θ)pj(t, θ) and V (t, θ) as

V (t, θ) :=
∑

j≤k

pj(t, θ)
∂

∂θt

[
zj(t, θ)− e(t, θ)

]
=

∑

j≤k

pj(t, θ)[zj(t, θ)− e(t, θ)]⊗2

The equality is due to the fact that the terms involving Zj(t, θ) cancel out. Finally,
the information matrix Σ remains defined as Σ =

∫ τ
0 V (t, θtr)y(t)αtr(t)dt. Condition

(B) is then replaced by the assumption that, for any δ > 0 and for any θ such that
|θ − θ0| < δ,
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(B1’)
∫ τ

0

(
max
j≤k

|zj(t, θ)|
)4

αtr(t)dt < ∞;

(B2’)
∫ τ

0

(
max
j≤k

|Zj(t, θ)h,i|
)4

αtr(t)dt < ∞ for any h, i = 1, . . . , 2k − 2;

(B3’) {`(3)
n,hil(θ)} = Op(n), h, i, l,= 1, . . . , 2k − 2,

where, in (B3’), `
(3)
n (θ) denotes the array of the third derivatives of the log-likelihood

of θ, now given by `n(θ) =
∑

j≤k

∫ τ
0

[
λ(t, θj) + log pk(t, θ)

]
dNj(t). Condition (C) is

replaced by

(C’) `n(θ) is strictly concave in all its domain.

The statement of Theorem 2.1 remains valid upon substitution of zj(t) with zj(t, θ).
As for the proof of the asymptotic normality of θ̂n, Condition (B1’) is sufficient for the
convergence of Hn(τ) →d N(0, Σ) whereas condition (B2’) guarantees that Σn(θtr) →p

Σ. Condition (B3’) is needed for the the remainder

rn(x, θ) =
1√
n

2k−2∑

h,i,l=1

xhxixl

6
`
(3)
n,hil(θ)/n

being asymptotically negligible for θ in a neighborhood of θtr. The asymptotic inde-
pendence of Ân and θ̂n follows from arguments similar to those used in the proof of
Theorem 2.1. We stress that, in general, one needs to check Condition (C’) case by
case.

As for Theorem 4.1, one can prove asymptotic normality of the posterior distribution
of θ by using Conditions (A), (B1’), (B2’), (B3’) and (C’) with techniques similar
to those set forth in the proof of Theorem 4.1. The steps which deserve attention
are the following: (i) the asymptotic negligibility of the remainder term rn(x, θ) in a
neighborhood of θ̂n; (ii) the bound in probability of rn(x, θ) in a

√
n-neighborhood of

θ̂n; (iii) the consistency of the observed information matrix Σ(θ̂n) and (iv) the pointwise
convergence of n−1

(
`n(θ) − `n(θtr)

)
to a strictly concave function with maximum at

θtr equal to zero. Condition (B3’) is involved in points (i) and (ii), whereas point
(iii) is dealt with Condition (B1’) and (B2’) in conjunction with Lenglart’s inequality.
Finally, Condition (C’) is the key ingredient for dealing with point (iv).

Remark 1 It is worth considering a subclass of models in (7.1) that arises when
λ(t, θj) has the following form:

λ(t, θj) = exp{θj1 + θj2g(t)},

with g is a continuous function defined on R+. It turns out that the arguments used for
model (1.2) extend exactly in the same way if we replace the failure times T1, . . . , Tn

with g(T1), . . . , g(Tn). In fact, λ(t, θj) has null derivatives of order higher than one
and zj(t) has (1, g(t))t in the j-th block and zeros elsewhere. Condition (B) is replaced
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by assuming that
∫ τ
0 [g(t)2 + 1]3αtr(t)dt < ∞, whereas the strict concavity of `n(θ) is

assured by the overlap of the transformed times g(T1), . . . , g(Tn). In particular, for
monotonic g, overlap of the actual observed failure times is enough, so that Condi-
tion (C) remains the same. Note that g(t) = log(t) corresponds to the Weibull case,
implying that our results cover this noteworthy case as well. 2

8 Concluding remarks

In this paper we proposed novel Bayesian methods for the analysis of competing risks
data and investigated the asymptotic normality of the posterior distribution of dif-
ferentiable functionals of model parameters. The semiparametric formulation takes
the cumulative overall hazard as the infinite-dimensional parameter and is character-
ized by the factorization in the likelihood. This simplifies the derivation of the BvM
theorem for differentiable functionals, since the joint posterior distribution of (A, θ)
is the product of the marginals under independent priors and it is sufficient to prove
the BvM for A and θ separately. This suggests that the way the model is formulated
matters in order to exploit the functional delta method. On the other side, model (1.1)
is appealing since the cause-specific conditional probability pj is a primary result of
estimation. Indeed, these conditional probabilities are of direct statistical interest in
many practical situations: a simultaneous plot of the pj ’s against time might serve as
an additional graphical device for describing the prevalence of risks, which is a central
topic in many applications. A common approach for studying of prevalence of risks
is via the CIF’s Pj , even though they do not provide changes in the relative risk of
failure, which is rather given by the CSH’s. The quantity pj is a valid alternative,
presenting the advantage of having a sound interpretation as conditional probability.

The competing risks problem is a special case when survival times are associated to
mark variables which are not observed when the event is censored. Huang and Louis
(1998) discuss nonparametric methods in this framework: in particular they propose to
estimate the joint distribution of survival times and mark variables by using the con-
cept of cumulative mark-specific hazard function. A natural candidate for Bayesian
estimation of this type of models is represented by the family of spatial neutral to the
right processes, recently introduced by James (2006). It will be then of interest to
study the asymptotic properties of the posterior distribution in this setting.
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