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Abstract. Recently, James [15, 16] has derived important results for various models in Bayesian

nonparametric inference. In particular, he defined a spatial version of neutral to the right processes

and derived their posterior distribution. Moreover, he obtained the posterior distribution for an

intensity or hazard rate modeled as a mixture under a general multiplicative intensity model.

His proofs rely on the so–called Bayesian Poisson partition calculus. Here we provide new proofs

based on an alternative technique.
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1 Introduction

Recently James [12] introduced a technique, called Bayesian Poisson partition calculus, which allows
the derivation of posterior distributions for a large variety of Bayesian nonparametric models. His
technique, whose roots lie in [23, 24], consists in a Laplace functional change of measure combined with
a Poisson Palm/Fubini calculus on random partitions of the positive integers. See [26] and references
therein for an exhaustive account on exchangeable random partitions and applications in areas not
directly related to Bayesian Nonparametrics.

In [15] the multiplicative intensity model of Aalen [1] is considered. It is well–known that the
multiplicative intensity model covers a large variety of important applied models such as the simple
life testing model, the Cox proportional hazards regression model, the multiple decrement model and
Poisson process spatial regression models, among others. A typical Bayesian nonparametric approach,
in this area, relies on designing the intensity or hazard function as a mixture with respect to gamma (or
allied) random measures. See, e.g., [6, 24, 31, 13, 25, 11]. James [15] derived the posterior distribution
for general multiplicative intensity models in which the intensity or hazard rate is a mixture driven
by any completely random measure thus generalizing all previous posterior representations. Basing
upon this result and suitable simulation algorithms, practitioners have now the possibility not only of
selecting an appropriate kernel but also to decide which random measure to adopt.

In James [16] a spatial version of the popular neutral to the right (NTR) processes, termed spatial
neutral to the right (SPNTR) processes is introduced. Indeed, NTR priors, due to Doksum [5],
have been successfully exploited in the context of survival analysis leading to Bayesian nonparametric
analogs of the Kaplan–Meier estimator. See, among others, [9, 30, 29, 7]. One of the main drawbacks
of NTR priors is represented by the fact that they can be defined only on the real line and not on
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multidimensional or general abstract spaces. The notion of SPNTR prior obviates to this. Moreover, it
relates in a nice way the literature on NTR processes with the other line of research, initiated by Hjort
[10], which consists in modeling the cumulative hazard by means of a suitable completely random
measure, in particular a so–called beta process. Within this framework we recall, e.g., [20, 21, 4].
James [15], applying Poisson partition calculus, derived the posterior distribution for a general SPNTR
prior, again opening up the possibility of exploiting concretely many different alternatives in several
important applications.

In this paper we provide alternative proofs of two results of [15, 16] regarding the posterior distri-
bution of SPNTR priors and mixture priors for multiplicative intensity models by means of a different
technique. Given the importance of the posterior characterizations in [15, 16], it is useful to have
different derivations of them and this could then set a basis for obtaining posterior distributions also
in other models involving completely random measures. Our approach consists in reading a suitably
transformed version of the data “likelihood” as a derivative of the Laplace functional of the completely
random measure upon which the model is built, setting up a recursion and obtaining the posterior
Laplace functional in the limit. Such a device has been, at least to authors’ knowledge, first employed
in [27, 22]. Recently, the posterior distribution of normalized random measures with independent
increments, a class of priors introduced in [28], has been derived in [17]. In that paper, addition-
ally to a proof based on the Poisson process calculus technique, one relying on the approach of the
present paper is provided as well. Finally, it is worth mentioning that the techniques we adopt are
connected to some results obtained in [2] where the authors exploit Faa di Bruno’s formula and deduce
generalizations of Dobinski’s formula.

In Section 2 we recall the definition of completely random measure and some useful notation. In
Sections 3 and 4 we provide alternative proofs of the posterior characterizations of SPNTR models
and of multiplicative hazard models, respectively.

2 Preliminaries and notation

At the heart of most nonparametric models there is the concept of completely random measure
introduced by Kingman [18], which we briefly recall here. It is worth noting that an increasing
additive process (or increasing Lévy process with not necessarily stationary increments) can always
be seen as the càdlàg distribution function induced by a completely random measure on R.

Consider a measure space (X,X ), where X is a complete and separable metric space and X is the
usual Borel σ–field. For notational simplicity, set S = R+×X and let S denote the product σ–algebra
B(R+)⊗X on S where, as usual, B(R+) stands for the class of Borel subsets of R+. Introduce, now,
a Poisson random measure N , defined on some probability space (Ω,F ,P) and taking values in the set
of non–negative counting measures on (S,S ), with intensity measure ν, i.e. E [N(dv,dx)] = ν(dv,dx).
Hence, for any A ∈ S such that ν(A) < ∞, N(A) is a Poisson random variable of parameter ν (A)
and, given any finite collection of pairwise disjoint sets, A1, . . . , Ak, in S , the random variables
N(A1), . . . , N(Ak) are mutually independent. Throughout the paper, E[ · ] will denote expectation
with respect to P. Moreover, the intensity measure ν must satisfy

∫
R+(v ∧ 1)ν(dv,X) < ∞, where

a ∧ b = min{a, b}. See [3] for an exhaustive account on Poisson random measures.
Let now (M,B(M)) be the space of boundedly finite measures on (X,B(X)). We suppose that M

is equipped with the topology of weak convergence and B(M) is the corresponding Borel σ–algebra.
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Let µ be a random element defined on (Ω,F ,P) and with values in (M,B(M)). It is further assumed
that µ can be represented as a linear functional of the Poisson random measure N as follows

µ(B) =
∫
R+×B

g(v)N(dv,dx) for any B ∈X ,

where g : X → R+ is some measurable function. It can be easily seen from the properties of N that
µ is, in the terminology of [18], a completely random measure (CRM) on X, i.e. for any collection of
disjoint sets B1, B2, . . . in X , the random variables µ(B1), µ(B2), . . . are mutually independent.

Let, now, Hν,g be the space of functions h : X→ R+ such that
∫

S[1− e−g(v)h(x)]ν(dv,dx) is finite.
Then, µ is uniquely characterized by its Laplace functional which, for any h in Hν,g, is given by

(1) E
[
e−

∫
X h(x)µ(dx)

]
= e−

∫
S[1−e−g(v)h(x)]ν(dv,dx) =: e−ψν,g(h)

When g(v) ≡ v, we write Hν,g = Hν and ψν,g = ψν . See [19] for details and further references on
CRMs.

3 Posterior analysis of spatial neutral to the right models

Let us start by recalling the precise definition of a Spatial neutral to the right (SPNTR) random
probability measure given in [16]. To this end we set W = [0, 1] × S, with W = B([0, 1]) ⊗S , and
introduce a Poisson random measure N on (W,W ) with intensity measure of the form

(2) ν(dv,ds,dz) = ρ(dv|s)Λ0(ds,dz).

In (2), ρ is a Lévy density and Λ0 is a hazard measure on (S,S ). Based on a Poisson random measure
with intensity of the form (2), define the following CRMs

Λ(C) =
∫

[0,1]×C
v N(dv,ds,dz) for any C ∈ S(3)

Z(C) =
∫

[0,1]×C
− log(1− v) N(dv,ds,dz) for any C ∈ S(4)

We are now in a position to recall the James’ definition of SPNTR random probability measure.

Definition.[16] Given Λ and Z defined as in (3) and (4), respectively, a spatial neutral to the right
process (SPNTR) is a random probability measure on (S,S ) defined by means of the relation

F (dt,dx) d= e−Z(At)Λ(dt,dx).

where At = (0, t)× X.

Note that by integrating over X one obtains the usual neutral to the right process [5] on R+ i.e.
F (dt) = e−Z(At)Λ(dt,X).

We now move to considering the posterior distribution of a SPNTR model. We first remark that a
SPNTR measure is almost surely discrete, which can be seen e.g. from [14]: this implies that samples
from a SPNTR measure will contain ties with positive probability. Consequently, in deriving the
posterior one has to consider the case of samples of size n for which only k ≤ n observations are
distinct. Let (T,X) = {(T1, X1), . . . , (Tn, Xn)} be a sample of size n and denote by (T ∗,X∗) =
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{(T ∗1 , X∗1 ), . . . , (T ∗k , X
∗
k)} the k ≤ n different observations with frequencies n1, . . . , nk, respectively,

and agree that the pairs in (T ∗,X∗) are set in an increasing order with respect to the first coordinate
i.e. (T ∗i , X

∗
i ) and (T ∗j , X

∗
j ) are such that T ∗i < T ∗j for any i < j. Moreover, define n̄j =

∑k
i=j ni and

N̄(s) =
∑k
i=1 n̄iI[T∗i−1,T

∗
i )(s), where we agree on T ∗0 = 0.

Proposition 1. [16, Prop. 4.1] Let F (ds,dz) = e−Z(As)Λ(ds,dz) be a SPNTR process. The posterior

distribution of F , given (T,X), is a SPNTR process defined by

(5) F (n)(ds,dz) d= e−Z
(n)(As)Λ(n)(ds,dz)

with the following specifications:

(i) Λ(n)(ds,dz) d= Λ∗(ds,dz) +
∑k
i=1 Jiδ(T∗i ,X∗

i )(ds,dz), where Λ∗(ds,dz) =
∫

[0,1]
vN∗(dv,ds,dz) is

a CRM with Poisson intensity

(6) ν∗(dv,ds,dz) = (1− v)N̄(s)ρ(dv|s)Λ0(ds,dz)

and, for i = 1, . . . , k, (T ∗i , X
∗
i ) is a fixed point of discontinuity with corresponding jump Ji

distributed as

(7) fJi(dv) =
vni(1− v)n̄i+1ρ(dv|T ∗i )∫

[0,1]
vni(1− v)n̄i+1ρ(dv|T ∗i )

.

Moreover, the Ji’s are conditionally independent of Λ∗.

(ii) Z(n)(ds,dz) d= Z∗(ds,dz)+
∑k
i=1Kiδ(T∗i ,X∗

i )(ds,dz), where Z∗(ds,dz) =
∫

[0,1]
− log(1−v)N∗(dv,ds,dz)

is a CRM with intensity (6) and, for i = 1, . . . , k, (T ∗i , X
∗
i ) is a fixed point of discontinuity with

corresponding jump Ki
d= − log(1− Ji) where Ji is distributed as in (7).

Finally, (5) can be rewritten as

(8) F (n)(ds,dz) d= e−Z
∗(As)

k∏
i=1

(1− I(T∗i ,∞)(s)Ji)Λ∗(ds,dz) +
k∑
i=1

P ∗i δ(T∗i ,X∗
i )(ds,dz)

where all the quantities are as above and, for i = 1, . . . , k, P ∗i is equal in distribution to Jie
−Z∗(AT∗

i
) ∏i−1

j=1(1−
Jj).

Proof. The proof–strategy relies on the derivation of the posterior Laplace functional of Λ defined in
(3) which then uniquely characterizes its posterior distribution. Given the posterior distribution of Λ
the other parts of the result follow by simple arguments.
By (1), the Laplace functional of a CRM with intensity (2) is of the form

e−ψν,g(h) := e−
∫

W(1−e−h(s,z)g(v))ρ(dv|s)Λ0(ds,dz)

for any h ∈ Hν,g. Consider now a set Aε(k) ⊂ S defined as the product set ×ki=1A
ni
i,ε with Ai,ε =

(t∗i − ε, t∗i + ε) × Bε(x∗i ), where Bε(x∗i ) denotes a ball of size ε around the point x∗i . Note that
(T,X) ∈ Aε(k) corresponds to having ni observations in Ai,ε for i = 1, . . . , k; by letting ε ↓ 0,
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(T,X) ∈ Aε(k) reduces to a sample (T,X) featuring k distinct values (t∗i , x
∗
i ) with frequency ni, for

i = 1, . . . , k. Our aim is to derive the posterior Laplace functional of Λ i.e.

(9) lim
ε↓0

E
[
e−

∫
S h(s,z)Λ(ds,dz)

∣∣(T,X) ∈ Aε(k)
]

The conditional expectation in (9), before evaluating the limit, can expressed as

(10)
E
[
e−

∫
S h(s,z) Λ(ds,dz)

∏k
i=1 Φnii,ε

]
E
[∏k

i=1 Φnii,ε
]

with Φi,ε :=
∫
Ai,ε

eZ(At)Λ(dt,dx) denoting the (random) probability that an observation falls in Ai,ε.
Notice that

(11) e−Z(At∗
i

+ε)
∫
Ai,ε

Λ(dt,dx) ≤ Φi,ε ≤ e−Z(At∗
i
−ε)

∫
Ai,ε

Λ(dt, dx)

Hence a lower bound for the numerator becomes

E

[
e−

∫
W(h(s,z) v−N̄ε(s) log(1−v))N(dv,ds,dz)

k∏
i=1

(∫
[0,1]×Ai,ε

v N(dv,dt, dx)

)ni]

having set N̄ε(s) =
∑k
i=1 n̄iI[t∗i−1+ε,t∗i+ε)(s), with t∗0 = 0. Let now

gCε,λ(v, s, z) := IC(s, z)[h(s, z) v − N̄ε(s) log(1− v) + λ v],

where λ is a constant and C some set in S and also set gS
ε,0 := gε. If Cε = ∩ki=1A

c
i,ε, one can exploit

the independence of the increments of N in order to decompose the expected value as

e−ψν(gCεε,0)
k∏
i=1

(−1)ni
dni

dλni
e−ψν(g

Ai,ε
ε,λ )

∣∣∣∣
λ=0

= e−ψν(gε)
k∏
i=1

V
(ni)
i,ε

where

V
(ni)
i,ε = eψν(g

Ai,ε
ε,0 ) (−1)ni

dni

dλni
e−ψν(g

Ai,ε
ε,λ )

∣∣∣∣
λ=0

.

In order to evaluate V (ni)
i,ε one can exploit the following recursive relation

V
(ni)
i,ε = Λ0(Ai,ε)

ni−1∑
j=0

(
ni − 1
j

)
ξ

(i,ε)
ni−j V

(j)
i,ε = Λ0(Ai,ε) ∆(ni)

i,ε

for any ni ≥ 1, where V (0)
i,ε ≡ 1 and, for any m ≥ 1 and i ∈ {1, . . . , k},

ξ(i,ε)
m =

∫
[0,1]×Ai,ε

vm e−gε(v,t,x) ρ(dv|t)Λ0(dt, dx)
Λ0(Ai,ε)

.

One observes that ∆(ni)
i,ε = ξ

(i,ε)
ni + Ki,ε, where Ki,ε is such that limε↓0(Ki,ε/Λ0(Ai,ε)) = Ki < ∞.

Moreover,

lim
ε↓0

ξ
(ni)
i,ε =

∫
[0,1]

e−h(t∗i ,x
∗
i ) v vni (1− v)n̄i+1 ρ(dv|t∗i ) =: ξ(ni)

i .
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Hence, the numerator of the lower bound of (10) can be rewritten as follows

(12) e−ψν(gε)
k∏
i=1

{
Λ0(Ai,ε) ξ

(ni)
i,ε + o(Λ(Ai,ε))

}
,

where, as usual, g(x) = o(f(x)) as x→ 0 means that limx→0(g(x)/f(x)) = 0. On the other hand, by
(11), an upper bound for the denominator is

(13) E

[
e−

∫
W−N̄−ε(s) log(1−v)N(dv,ds,dx)

k∏
i=1

(∫
[0,1]×Ai,ε

v N(dv,ds,dx)

)ni]
.

where N̄−ε(s) :=
∑k
i=1 n̄i I[t∗i−1−ε,t∗i−ε)(s). One can then resort to arguments analogous to those

leading to the lower bound for the numerator and re–express (13) as

(14) e−ψν(lε)
k∏
i=1

{
Λ0(Ai,ε)

∫
[0,1]×Ai,ε

vni (1− v)N̄−ε(s) ρ(dv|s) Λ0(ds,dx)
Λ0(Ai,ε)

+ o(Λ(Ai,ε))

}

having set lε(v, s, z) := N̄ε(s) log(1−v). Consider now the ratio of the lower bound for the numerator
given in (12) and the upper bound for the denominator given in (14) and take the limit as ε ↓ 0. This
yields a lower bound for the posterior Laplace functional of Λ (9) coinciding with

e−
∫

W(1−e−h(s,x) v) (1−v)N̄(s)ρ(dv|s) Λ0(ds,dx)
k∏
i=1

∫
[0,1]

e−h(t∗i ,x
∗
i ) v vni (1− v)n̄i+1 ρ(dv|t∗i )∫

[0,1]
vni (1− v)n̄i+1 ρ(dv|t∗i )

which agrees with with the posterior representation of Λ given in Point (i). The same result can be
obtained by deriving an upper bound for (9) by means of (11) and letting ε ↓ 0. This completes the
proof of Point (i).

As for Point (ii), from the posterior distribution of Λ one can easily deduce the posterior distribution
of Z and, hence, of the SPNTR measure. Note that the posterior distribution of a linear functional of
a random measure µ, conditional on a vector of observations Y = (Y1, . . . , Yn), is given by the linear
functional of the posterior distribution of µ. In other terms, (

∫
f(y)µ(dy) |Y ) d=

∫
f(y) µ(n)(dy),

where µ(n) is a random measure whose distribution coincides with the conditional distribution of
µ, given Y . Hence, the distribution of the background driving Poisson measure N in (3), given
(T ∗,X∗), is of the form N∗+

∑k
i=1 δ(Ji,T∗i ,X∗

i ) where N∗ is a Poisson random measure with intensity
(6). Consequently, the posterior distribution of Z, defined in terms of N via (4), corresponds to
Z(n)(ds,dz) =

∫
[0,1]
− log(1 − v) [N∗(dv,ds,dz) +

∑k
i=1 δ(Ji,T∗i ,X∗

i )(dv,ds,dz)] which leads to the
statements in Point (ii). Given Λ(n) and Z(n), (5) and (8) now easily follow. �

4 Posterior analysis of multiplicative intensity models

Here we consider a general model for multiplicative intensities as described, e.g., in [15]. Let X and
Y be Polish spaces endowed with their Borel σ–algebra X and Y , respectively. Consider a kernel K
on X×Y taking values in R+ such that y 7→ K(C|y) is Y –measurable for any C ∈X and, for some
σ–finite measure τ on X,

∫
· K(x, y)τ(dx) is a σ–finite measure on B(R+) for any y in Y. Consider,

now, the random intensity

λ(x) =
∫

Y
K(x, y) µ(dy).
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where µ is a general CRM on (Y,Y ) as defined in Section 2.1. Write the intensity of µ as ν(dv,dy) =
ρ(dv|y)α(dy) and assume α is non–atomic. Theorem 4.1 in [15] provides a full description of the
posterior distribution of µ given the observations X = (X1, . . . , Xn) generated by a multiplicative
intensity model. Here we provide and alternative proof of this result based on techniques analogous to
those exploited for the derivation of the posterior distribution of a SPNTR. As in [15], the likelihood
function is given by

(15) L (µ;x) = e−
∫

Y gm(y) µ(dy)
n∏
i=1

∫
Y
K(xi, y) µ(dy),

where m ≥ n denotes the number of observations of which x = (x1, . . . , xn) are observable and the
remaining m−n are censored. The function gm(y) :=

∑m
i=1

∫
X Ui(x)K(x, y) τ(dx) is defined in terms

of the predictable and observable processes {Ui(x) : x ∈ X}, i = 1, . . . ,m. Moreover, the kernel
K( · , · ) is chosen in such a way that gm is a non–negative and measurable function with bounded
support on Y. See [15] for a discussion on the generality of this model.

If we condition on the latent variables Y = (Y1, . . . , Yn), the likelihood above reduces to

L (µ;x,y) = e−
∫

Y gm(y) µ(dy)
n∏
i=1

K(xi; yi) µ(dyi).

The above can be usefully rewritten so to take into account the fact that the Yi’s may feature some
ties. In other terms, k ≤ n latent variables are distinct and we denote their values by Y ∗1 , . . . , Y

∗
k .

Correspondingly, one has

L (µ;x,y) = e−
∫

Y gm(y) µ(dy)
k∏
i=1

[µ(dy∗i )]ni
∏
j∈Ci

K(xj ; y∗i )

where Ci = {r : yr = y∗i }. Before presenting our alternative proof of the posterior characterization,
we introduce some useful notation. Let Πn = (Kn,NKn

) be a random vector with the number
of classes and the frequencies of each class generated by a random partition of the set of integers
[n] = {1, . . . , n}. In other terms, the realization Πn = (k, n1, . . . , nk) corresponds to a partition of [n]
into k sets with respective frequencies n1, . . . , nk. Clearly, k ∈ {1, . . . , n} and n = (n1, . . . , nk) ∈ Ak,n
where Ak,n := {(n1, . . . , nk) : nj ≥ 1,

∑k
j=1 nj = n}. Finally, set

ωnj (y) =
∫
R+

vnj e−vgm(y) ρ(dv|y).

Proposition 2. [15, Th. 4.1] Let λ(x) =
∫

Y K(x, y)µ(dy) be a random intensity on X with
ν(dv,dy) = ρ(dv|y)α(dy) under the model (15). Then, given X, the posterior distribution of λ
can be characterized as follows:

(i) Given Y and X, the conditional distribution of µ coincides with the distribution of the random
measure

µ(n) d= µ∗ +
k∑
i=1

Ji δY ∗j
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where µ∗ is a CRM with intensity ν∗(dv,dy) = e−vgm(y) ρ(dv|y)α(dy) and, for i = 1, . . . , k, Y ∗i
is a fixed point of discontinuity with corresponding jump Ji distributed as

fJi(dv) =
vni e−vgm(y∗i ) ρ(dv|y∗i )∫
R+ vni e−vgm(y∗i ) ρ(dv|y∗i )

.

Moreover, the Ji’s are, conditionally on the Y ∗j ’s, independent from µ∗;

(ii) Conditionally on X and on Πn = (k,n), the Y ∗j are independent and Y ∗j has distribution given
by

(16) f
Y ∗
j

(dy) =
ωnj (y)

∏
i∈Cj K(xi, y)α(dy)∫

Y ωnj (y)
∏
i∈Cj K(xi, y) α(dy)

and, given X, the conditional probability that Πn = (k,n) is

(17)

∏k
j=1

∫
Y ωnj (y)

∏
i∈Cj K(xi, y) α(dy)∑n

i=1

∑
n∈Ai,n

∏i
j=1

∫
Y ωnj (y)

∏
i∈Cj K(xi, y) α(dy)

Proof. Following arguments analogous to those employed for the evaluation of the posterior dis-
tribution for a SPNTR process prior, one can proceed to the determination of the posterior Laplace
functional of µ, i.e. E[e−µ(f)|X], where µ(f) =

∫
Y f(y)µ(dy) for any measurable function f : Y→ R+

such that
∫
R+×Y(1 − e−v f(y))ρ(dv|y)α(dy) < ∞. To this end, suppose the vector y consists of k

distinct observations y∗1 , . . . , y
∗
k and let yi = y∗j(i) where j(i) ∈ {1, . . . , k}. If Bε(x) stands for the ball

of radius ε around point x, denote by Aεi(k) the rectangle Bε(xi)×Bε(y∗j(i)). Then

E
[
e−µ(f)

∣∣∣∣X,Y

]
= lim

ε↓0
E
[
e−µ(f)

∣∣∣∣ (Xi, Yi) ∈ Aεi(k), i = 1, . . . , k
]

= lim
ε↓0

E
[
e−µ(f+gm)

∏k
j=1

∏
i∈Cj

∫
Bε(xi)

∫
Bε(y∗j )

K(x, y) µ(dy) τ(dx)
]

E
[
e−µ(gm)

∏k
j=1

∏
i∈Cj

∫
Bε(xi)

∫
Bε(y∗j )

K(x, y) µ(dy) τ(dx)
]

As far as the numerator is concerned, one notes that it can be rewritten as

(18) E
[
e−

∫
Y∗ (f(y)+gm(y))µ(dy)

]
×

×
k∏
j=1

E

e
−
∫
Bε(y∗j )[f(y)+gm(y)]µ(dy) ∏

i∈Cj

∫
Bε(y∗j )

∫
Bε(xi)

K(x, y) τ(dx) µ(dy)


and Y∗ = (∪kj=1Bε(y

∗
j ))c. For the moment it is useful to set γi,ε(y) :=

∫
Bε(xi)

K(x, y) τ(dx) for any
y ∈ Y and i ∈ Cj and introduce the function qλj,ε =

{
f + gm +

∑nj
i=1 λi γi,ε

}
IBε(y∗j ). Then, recall that

nj is the cardinality of the set of indices and, for simplicity, assume that Cj = {1, . . . , nj}. One notes
that (18) also coincides with

e−ψν([f+gm] IY∗ )
k∏
j=1

(−1)nj
∂nj

∂λ1 · · · ∂λnj
e−ψν(qλ

j,ε)

∣∣∣∣
λ=0

= e−ψν(f+gm)
k∏
j=1

V
(nj)
j,ε
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where 0 = (0, . . . , 0) is an nj–dimensional vector and

V
(nj)
j,ε = eψν(q0j,ε) (−1)nj

∂nj

∂λ1 · · · ∂λnj
e−ψν(qλ

j,ε)

∣∣∣∣
λ=0

.

The recursive formula recalled in the proof of Proposition 1 applies in this case as well yielding

V
(nj)
j,ε = α(Bε(y∗j ))

nj−1∑
i=0

(
nj − 1
i

)
ζ

(j,ε)
nj−i V

(i)
j,ε = α(Bε(y∗j )) ∆(nj)

j,ε

where ∆(nj)
j,ε =

∑nj−1
i=0

(
nj−1
i

)
ζ

(j,ε)
nj−i V

(i)
j,ε and, for any r ∈ {1, . . . , nj},

ζ(j,ε)
r =

∫
Bε(y∗j )×R+

(
r∏
i=1

γi(y)

)
vr e−v q

0
j,ε(y) ρ(dv|y)

α(dy)
α(Bε(y∗j ))

.

Hence one can again conclude that

V
(nj)
j,ε = α(Bε(y∗j )) ζ(nj)

j + o(α(Bε(y∗j )))

as ε ↓ 0, where ζ(nj)
j =

∏
i∈Cj γi(y

∗
j )
∫
R+ v

nj e−v[f(y∗j )+gm(y∗j )] ρ(dv|y∗j ) and, for any i in Cj , γi(y∗j ) =
K(xi, y∗j ) τ(dxi). This implies that

E
[
e−µ(f)

∣∣∣∣X,Y

]
=

E
[
e−µ(f+gm)

]∏k
j=1

∫
R+ e−v f(y∗j ) vn

j

e−vgm(y∗j )ρ(dv|y∗j )

E
[
e−µ(gm)

] ∏k
j=1

∫
R+ vn

je−vgm(y∗j )ρ(dv|y∗j )

from which the statement in (i) follows.
One can analogously determine the conditional distribution of Y , given X and Πn. Indeed, if

n = (n1, . . . , nk), one has

P

[
n⋂
i=1

{
Yi ∈ Bε(y∗j(i))

}
∩

n⋂
i=1

{Xi ∈ Bε(xi)} ∩ {Πn = (k,n)}

]
(19)

= E

e−µ(gm)
k∏
j=1

∏
i∈Cj

∫
Bε(y∗j )×Bε(xi)

K(x, y) τ(dx)µ(dy)


= e−ψnu(gm IY∗ε )

k∏
j=1

E

e
−µ(gm IBε(y∗j ))

∏
i∈Cj

∫
Bε(y∗j )×Bε(xi)

K(x, y) τ(dx)µ(dy)

 .
Suppose again Cj = {1, . . . , nj} and, after setting hλj,ε = [gm +

∑nj
i=1 λi γi,ε] IBε(y∗j ), one can proceed

in a similar fashion as before to obtain the following representation for the probability in (19)

e−ψν(gm IY∗ε )
k∏
j=1

(−1)nj
∂nj

∂λ1 . . . ∂λnj
E
[
e−µ(hλ

j,ε)
] ∣∣∣∣
λ=0

= e−ψν(gm)
k∏
j=1

W
(nj)
j,ε

where Y∗ε = (∪kj=1Bε(y
∗
j ))c,

W
(nj)
j,ε = eψν(h0

j,ε) (−1)nj
∂nj

∂λ1 . . . ∂λnj
e−ψν(hλ

j,ε)

∣∣∣∣
λ=0

= α(Bε(y∗j ))
nj−1∑
i=0

(
nj − 1
i

)
ζ

(j,ε)
nj−iW

(i)
j,ε

9



and

ζ(j,ε)
r =

∫
Bε(y∗j )

(
r∏
i=1

γi,ε(y)

) ∫
R+

vr e−vgm(y) ρ(dv|y)
α(dy)

α(Bε(y∗j ))
.

Let δ denote the counting measure on {1, . . . , n} × (∪nk=1Ak,n), so that the density of the vector
(Y ,X,Πn) is absolutely continuous with respect to αk×τn×δ. The corresponding density evaluated
at (y∗,x,πn) coincides with

f(y∗,x,πn) = e−ψν(gm)
k∏
j=1

∏
i∈Cj

K(xi, y∗j )


∫
R+

vnj e−vgm(y∗j ) ρ(dv|y∗j )

where πn = (k, n1, . . . , nk). At this point, one can easily determine the distribution of Y given
(X,Πn), which admits density on Yk (with respect to αk) coinciding with

f(y∗ |x,πn) ∝
k∏
j=1

ωnj (y
∗
j )
∏
i∈Cj

K(xi, y∗j )

from which (16) and (17) follow. �
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Lévy moving averages. Ann. Statist. 33, 1771–1799.

[16] James, L.F. (2006). Poisson calculus for spatial neutral to the right processes. Ann. Statist. 34,
416–440.

[17] James, L.F., Lijoi, A. and Prünster, I. (2008). Posterior analysis for normalized random measures
with independent increments. Scand. J. Statist., in press.

[18] Kingman, J.F.C. (1967). Completely random measures. Pacific J. Math., 21, 59–78.

[19] Kingman, J.F.C. (1993). Poisson processes. Oxford University Press, Oxford.

[20] Kim, Y. (1999). Nonparametric Bayesian estimators for counting processes. Ann. Statist. 27,
562–588.

[21] Kim, Y. and Lee, J. (2003). Bayesian analysis of proportional hazard models. Ann. Statist. 31,
493–511.

[22] Lijoi, A., and Prünster, I. (2004). A note on the problem of heaps. Sankhya 66, 234–242.

[23] Lo, A.Y. (1984). On a class of Bayesian nonparametric estimates: I Density estimates. Ann.
Statist. 12, 351–357.

[24] Lo, A. Y. and Weng, C.–S. (1989). On a class of Bayesian nonparametric estimates. II. Hazard
rate estimates. Ann. Inst. Statist. Math. 41, 227—245.

[25] Nieto-Barajas, L.E. and Walker, S.G. (2004). Bayesian nonparametric survival analysis via Lévy
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