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Abstract

Copula functions have proven to be extremely useful in describing joint default and survival probabilities

in credit risk applications. We overview the state of the art and point out some open modelling issues. We

discuss �rst joint default modelling in diffusion based structural models, then in intensity based ones, focusing

on the possibility - and the dynamic inconsistency - of re-mapping a model of the second type into one of the

�rst. For both types of models, we discuss calibration issues under the risk neutral measure, using the factor

copula device.

The survey leads us to focus on a non-diffusive structural model, which can be re-mapped in a dynamic

consistent intensity-based one, and which can be calibrated under a risk neutral measure without assuming

equicorrelation.
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The assessment of the joint default probability of groups of obligors, as well as related notions, such as the

probability that the n-th one of them defaults, is a crucial problem in credit risk. In order to solve it, both the

Industry and the Academia have extensively relied on copula methods. These allow to split any joint default

probability into the marginal ones and a function, the copula itself, which represents only the association or

dependence between defaults. Essentially, the splitting up makes both default modelling and calibration much

easier, since it permits separate �tting at the univariate and joint level. At present, the use of copula techniques

is a well established fact in risk modelling and credit derivative pricing. However, the choice of the copula and

its calibration is still an open issue: model risk indeed exists at both stages, and its understanding relies on a

deep discussion of the current practices and model limitations.

The �rst part of the paper reviews the theoretical background for different copula choices in default-no default

models and discusses its static and dynamic consistency, when switching from structural to intensity based

approaches. The review proceeds as follows: we �rst resume some basic facts about structural and intensity-

based models, and how copulas are introduced and calibrated in the two settings. We then recall how and under

which conditions two multivariate models of these classes can be statically re-mapped into each other, keeping

dependence �xed. This remapping is indeed exploited in most of the industry applications of intensity-based

models, starting from the well known Li's model (Li, 2000). However, it suffers from dynamic inconsistency,

in that structural models with diffusive asset values do not have an intensity-based representation. In addition,

re-mapping allows calibration under the historical measure only, since the historical equity returns are used as

proxies for the asset ones. In order to calibrate under the/a risk neutral measure, factorization, i.e. the so-called

factor copula, is introduced. We discuss factorization in joint default modelling. The survey will put into

evidence the lack of dynamically consistent foundations for inferring the/a risk-neutral dependence of survival

times for more than two obligors, without assuming equicorrelation.

The second part of the paper suggests a possible solution to this problem: structural models, in which the asset

value is a pure jump process, such as the Merton's restatement of Madan (2000), or the corresponding early

default model. These models allow for an intensity interpretation, and are therefore dynamically consistent.

They �t data nicely at the univariate level (Fiorani and Luciano (2006))

� can be extended to the multivariate case (Luciano and Schoutens (2006), Fiorani, Luciano, Semeraro

(2007)),

� can be calibrated under the risk neutral measure and without equicorrelation,

� and have proven to �t credit data very satisfactorily (ibidem)
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1 Copula modelling in structural models

This section makes an overview of basic copula uses in structural and models. We will brie�y recall how

copulas are introduced, how historical calibration is usually done, for a given copula choice, and �nally how

the �best" copula can (or cannot) be chosen.

We consider a portfolio of n obligors, with random default times �1; �2; ::::�n. The indicator variable of default

of obligor i, i = 1; 2; ::; n, at time t, t 2 R+, is denoted as Yi(t) := 1f� i�tg. Let (
;H, P ) be the probability

space over which the times to default are de�ned. The space is endowed with the �ltrations associated the

single stochastic processes Yi(t); Gi := fGit; t � 0g :

Git := � (Yi(u); 0 � u � t) (1)

as well as with the joint �ltrationG := _ni=1Gi, with the usual properties of right continuity and completeness.

Initially, all obligors are alive, so that Yi(0) = 0 for all i. The default probability by time t, as determined

at time 0; P (Yi(t) = 1 j Gi0), will be denoted as Fi(t), while Si(t) will denote the corresponding survival

probability, Si(t) := 1 � Fi(t). Analogously, we will denote the joint default probability at time t, evaluated

at time 0, as F (t)

F (t) := P (Y1(t) = 1; Y2(t) = 1; :::; Yn(t) = 1 j G0) (2)

and the corresponding survival probability as S(t)

S(t) := P (Y1(t) = 0; Y2(t) = 0; :::; Yn(t) = 0 j G0) (3)

In describing the marginal and joint default or survival functions, we will omit, from now on, the �ltration.

As for the copula tool, we will denote an n-dimensional copula, de�ned on In := [0; 1] � ::: � [0; 1], as

C(u1; :::; un), while its survival counterpart will be �C(u1; :::; un). We take for granted the copula de�nition

as a joint distribution function with uniform margins, which implies that C is always between the bounds

max(u1+ u2+ :::+ un� 1; 0) andmin(u1; u2; :::; un). We will also take for granted the fundamental Sklar's

theorem, which, under continuity of the margins, allows to represent any joint distribution function of n random

variates (rvs), F (t); in terms of a copula C and the marginal distribution functions, Fi(t); i = 1; 2; ::; n:

F (t) = C(F1(t); F2(t); :::; Fn(t)) (4)
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Analogously, any joint survival probability S(t) can be represented in terms of a so-called survival copula, �C,

and the marginal survival functions, Si(t) := 1� Fi(t);

S(t) = �C(S1(t); S2(t); :::; Sn(t)) (5)

This is the reason why the copula is called also dependence function, in that it isolates dependence from the

margin values: independence for instance is represented by the so-called product or factor copula C?, which

is simply the product of its arguments:

C?(u1; :::; un) = u1 � u2 � ::� un: (6)

Copulas can be parametrized by the linear correlation coef�cient as well as by more general association mea-

sures: in the sequel, we will use for instance the so called Gaussian and Student's t copulas, which are char-

acterized by linear correlation and - the second only - by the degrees of freedom parameter; they are linked by

the fact that the former is the �limit" of the latter, when the number of degrees of freedom diverges. For further

details, as well as for an overview of other common speci�cations, we refer the reader to either Nelsen (1999)

or Cherubini, Luciano and Vecchiato (2004).

In the credit risk case, since the variables � i are default times, the copula represents their dependence, and we

could denote it as C� , where � is the vector formed by the rvs � i :

F (t) = C� (F1(t); F2(t); :::; Fn(t)) (7)

S(t) = �C� (S1(t); :::Sn(t)) (8)

The speci�cation of the copula depends on whether we rely on a structural approach or an intensity based one.

In the seminal structural model of Merton (1974), to start with, it is well known that default of �rm i can occur

only at debt maturity. Let the latter be t for all the �rms in the portfolio: default is triggered by the fact that the

�rm's asset value Vi(t) falls to the liability one,Ki(t). The distribution of the time to default, � i, is therefore

� i =

8><>: t P (Vi(t) � Ki(t))

+1 P (Vi(t) > Ki(t))
(9)
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while the default probability at time t is

Fi(t) = P (Vi(t) � Ki(t)) (10)

If the asset value follows a Geometric Brownian motion, as assumed by Merton, and the standard notation of

the Black-Scholes framework is adopted, the marginal default probability can be easily computed to be

Fi(t) = �(�d2i(t)) (11)

where � is the distribution function of a standard normal, while

d2i :=
ln (Vi(0)=Ki(t)) + (m� �2=2)t

�
p
t

(12)

andm is the instantaneous return on assets, which equates the riskless rate r under the risk neutral measure.

By assuming that log assets are not only normally distributed at the individual level, but also jointly normally

distributed with correlation matrix R, it follows that the joint default probability of the n assets is

F (t) = P (V1(t) � K1(t); ::::Vn(t) � Kn(t) j G0) = �R (�d21(t); :::;�d2n(t)) (13)

where �R is the distribution function of a standard normal vector with correlation matrix R. From the fact that

the arguments of the distribution �R can be written as the inverses, according to the univariate normal density,

of the marginal default probabilities, i.e. �d2i(t) = ��1(Fi(t)), it follows, by simple substitution, that

F (t) = �R
�
��1(F1(t)); :::;�

�1(Fn(t))
�

(14)

The latter is the copula representation of the joint default probability for the case at hand, since F is represented

in terms of the marginal distributions. The copula which we have obtained is the so-called Gaussian copula:

C (u1; :::; un) := �R
�
��1(u1); :::;�

�1(un)
�

(15)

Instead of joint normality, we can keep the margins �xed and assume another type of dependence, which means
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another copula. For instance, we can assume a Student t copula, de�ned as

C (u1; :::; un) := tR;�(t
�1
� (u1); t

�1
� (u2); :::; t

�1
� (un)) (16)

where tR;� is the standardized multivariate Student's t distribution with correlation matrix R and � degrees

of freedom., while t�1� is the inverse of the corresponding margin. By so doing, we essentially incorporate fat

tails in the asset return joint distribution. The joint default probability immediately becomes

F (t) = tR;�(t
�1
� (F1(t)); t

�1
� (F2(t)); :::; t

�1
� (Fn(t))) (17)

In general, starting from a marginal probability of the type (10), and therefore from a marginal model of the

Merton's type, we can write the joint default probability as

F (t) = CV (F1(t); :::; Fn(t)) (18)

where CV is the copula of the asset values. Let us recall however that the above expression applies only at

debt maturity, and assuming that the latter is common to all �rms in the basket.

Starting with Black and Cox (1976), the structural model of Merton has been extended by introducing the

possibility of early distress. Default occurs as soon as the asset value Vi(t) falls below a (deterministic) level

Ki(t), which can be, for instance, the present value of debt. As a consequence, the time to default is

� i := inf ft : Vi(t) � Ki(t)g (19)

and the cumulated default probability is

Fi(t) = P ( min
0�u�t

Vi(u) � Ki(u)) (20)

In this model, even if Vi follows a Geometric Brownian motion, its minimum does not, and the departure from

the plain vanilla option pricing at the individual level is immediate. Other departures have been caused, during

the development of the literature on structural models, by introducing more realistic assumptions, such as the

stochastic interest rate one of Longstaff-Schwartz (1995). However, the use of a Gaussian or Student version

at the multivariate level has been widespread, mostly for analytical convenience.

More recently, default has been supposed to be triggered by the fall of a �credit worthiness index" under an
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empirically calibrated barrier: see for instance Hull and White (2000). The credit index does not necessarily

admit a transform which behaves as a Geometric Brownian motion. Because of the lack of marginal normality,

it is not natural any more to assume joint normality and to collect the univariate probabilities in a Gaussian or

an elliptic copula, such as the Student: the bivariate version was outlined in Hull and White (2000), while mul-

tivariate versions are manageable through a purely numerical �t of the copula, similar to the implied volatility

derivation (see the "perfect copula" of Hull and White (2005)).

1.1 Calibration (under the historical measure) and "best" copula choice

The calibration of structural models is straightforward, especially if one refers to the seminal Merton one, as

we will do. Under a Gaussian copula, as in the natural multivariate version of Merton's work, only the linear

correlation coef�cients between the asset values are needed. In case the Student copula is adopted, also the

degrees of freedom parameter is required.

Since asset values are generally unobservable, the corresponding equity ones are generally used for calibration.

This is the approach taken - for instance - by Mashal and Naldi (2003), together with the Student assumption:

they suggest a joint maximum likelihood estimation of the degrees of freedom parameter and the correlation

matrix. Obviously, the calibration is done under the historical measure: under such a measure, as Mashal,

Naldi and Zeevi (2003) have shown, the dependence of assets is well proxied by the equity one. However,

the coincidence between historical and risk neutral correlation requires either no premium for default risk or

particular assumptions, such as the ones listed by Rosenberg (2000).In general, if we exit the strict Merton

model, in which asset returns are jointly normally distributed, it is not guaranteed.

It also follows from the meaning of the copula in the structural approach that the best copula is the one which

best describes equity dependence. The current literature tends to agree on the fact that - at least for extreme

comovements - the Student dependence is more appropriate, since it encapsulates tail dependence: evidence is

reported for instance in Mashal and Zeevi (2002), Mashal, Naldi and Zeevi (2003).

2 Copula modelling in intensity-based models

In the intensity-based models of Lando (1998), Duf�e and Singleton (1997, 1999), default of the obligor i

occurs as soon as a counting process, which is assumed to be of the Cox or doubly stochastic type, jumps

for the �rst time. Omitting the technical details, for which the reader is referred to the probabilistic set up of

Brémaud (1981), or to the credit applications just mentioned, occurrence of default is linked to the event that
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the so called compensator of the Cox process, denoted as �i, be greater than or equal to a stochastic barrier.

The latter is exponentially distributed, with parameter one:

� i := inf ft : �i(t) � �ig (21)

with �i � exp(1). Equivalently, using the change of variable �i := � lnUi :

� i := inf ft : exp (��i(t)) � Uig (22)

where Ui � U(0; 1). The compensator is usually assumed to have an intensity, which means to admit the

representation

�i(t) =

Z t

0

�i(s)ds (23)

where �i is a non negative process, satisfying
R t
0
�i(s)ds < 1 almost surely for all t: Given a �ltration

F := fFt; t � 0g on 
, the intensity �i(s) is assumed to be predictable, while the threshold �i is independent

of F. We also need to de�ne the �ltration H := F _G, or H := fHt = Ft _ Gt; t � 0g.

The default probability of the above �rm at time zero turns out to be

Fi(t) = 1� E
�
exp

�
�
Z t

0

�i(s)ds

�
j F0

�
(24)

If, in particular, the intensities are deterministic, the Cox processes describing default arrival become inhomo-

geneous Poisson ones and

Fi(t) = 1� exp
�
�
Z t

0

�i(s)ds

�
(25)

Under the additional requirement that intensities are constant, �i(s) = �i for every s, they become homoge-

neous Poisson processes, with Fi(t) = 1� exp (��it).

When extending the Cox framework to multiple �rms, i.e. taking i = 1; ::n, the previous framework naturally

leads to conditionally independent defaults, or a multivariate Cox Process, as in Duf�e (1998) and the literature

thereafter: the intensity processes are liable to be correlated, while the thresholds �i, or their transform Ui, are

assumed to be independent, and therefore have the product copula. It follows that the joint default probability

of the n �rms by time t, evaluated at time 0, is

S(t) = E

�
exp

�
�
Z t

0

(�1(s) + �2(s) + ::+ �n(s)) ds

�
j F0

�
(26)
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This extension usually produces low levels of both (linear) correlation between the default indicators of differ-

ent �rms, �(Yi(t); Yj(t)), for i 6= j and all t, and (linear) correlation of survival times, �(� i; � j), i 6= j : This

happens, as is intuitive, as long as the intensities are diffusion-driven.

An alternative approach, due to Schönbucher and Schubert (2001), to whom we refer for the technical details,

allows defaults not to be conditionally independent. The thresholds �i (or Ui) are linked by a copula which is

not the product copula of Duf�e (1998). With the usual notation, let CU be the copula of the thresholds Ui,

which is also the survival copula1 of �i, CU = �C�:The construction of Schönbucher and Schubert (2001) gives

as joint survival probability

S(t) =

E

�
CU

�
exp

�
�
Z t

0

�1(s)ds

�
; exp

�
�
Z t

0

�2(s)ds

�
; ::; exp

�
�
Z t

0

�n(s)ds

��
j F0

�
(27)

which reduces to (26), as due, in the Duf�e (1998) framework.

Whenever the n �rms are driven by inhomogeneous Poisson processes, since the intensities are deterministic,

the survival probability in (27) becomes

S(t) = CU
�
exp

�
�
Z t

0

�1(s)ds

�
; exp

�
�
Z t

0

�2(s)ds

�
; ::; exp

�
�
Z t

0

�n(s)ds

��
=

= CU (S1(t); :::; Sn(t)) (28)

which further reduces to the product

S(t) = exp

�
�
Z t

0

(�1(s) + �2(s) + ::+ �n(s)) ds

�
=

= S1(t)� :::� Sn(t) (29)

with independent thresholds.

2.1 Calibration (under the historical measure) and "best" copula choice

In the general case of stochastic intensities, by choosing independent thresholds one restricts CU to be the

product copula, as in expression (26). Apart from this case, calibration is a very delicate issue, since the

thresholds Ui or �i are not observable: the literature has concentrated on copulas which produce a shift of
1The copula of the thresholds Ui and the one of their transforms �i are linked by the fact that each Ui is a decreasing function of the

corresponding �i.
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the remaining intensities after default of one obligor, such as the Archimedean copulas (see Schönbucher and

Schubert (2001)). The calibration is usually done restricting to a one-parameter copula family, such a Gumbel

one, a Clayton, or a Gaussian with equicorrelation. Once such a family has been chosen, the parameter value

is perfectly �tted using for instance the diversity score produced by Moody's. The perfect �tting, which is

illustrated for instance in Jouanin et alii (2001), does not permit to select a "best" copula: with respect to the

structural approach then, in which there is scope for a copula selection procedure, taking into consideration the

best �t of asset or equity returns, here there is no room for a best-�t selection.

As long as intensities are deterministic, calibration at a single point in time is much easier, since, as we will

now explain, the copula CU is nothing else than the survival copula of the �associated" asset values. This is

the approach �rst taken by Li (2000), made rigorous in Frey and McNeil (2003), and extremely popular in

practice, together with its �best" copula selection. It is based on the observation that structural models with

a diffusion-driven asset or credit index process on the one side and reduced form models with deterministic

intensities on the other are both latent variable models: for any �xed horizon t, there exist n rvs Zi(t) and n

thresholds Di(t) 2 R such that default occurs if and only if the random variables are smaller than or equal to

the corresponding thresholds:.

Yi(t) = 1 , Zi(t) � Di(t) (30)

Indeed, in the structural case, one has simply to choose either the asset values or their minimum and the

liabilities ones as rvs and thresholds respectively:.

Zi = Vi; Di = Ki (31)

In the intensity based case, one has to replace the asset/index values Vi and the threshold ones, Ki, with the

stochastic thresholds and the compensators respectively:

Zi = �i; Di = �i (32)

or with the uniform thresholds and the negative exponential of the compensators:

Zi = �Ui = � exp(��i); Di = � exp (��i) (33)

Having made this simple remark, we can exploit the equivalence of latent variable models in order to re-map
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intensity-based models into structural ones, for a �xed horizon. Indeed, two latent variable models,

(Vi(t);Ki(t))1�i�n ; (�i(t);�i(t))1�i�n (34)

are equivalent if the corresponding default indicator vectors are equal in distribution: this allows us to assess

that, at any �xed time t, the copula for the thresholds �i, C�� which, as said above, is also the survival

copula of the uniform thresholds, �CU � is the same as the asset value copula, CV : The estimate of the last one

obtained from equity returns, as justi�ed in structural models, can therefore be directly used to construct joint

default probabilities, starting from marginal intensity-based ones. Formally, we can then write the joint default

probability as

F (t) = CV (F1(t); F2(t); :::; Fn(t)) =

CV
�
1� exp

�
�
Z t

0

�1(s)ds

�
; 1� exp

�
�
Z t

0

�2(s)ds

�
; :::; 1� exp

�
�
Z t

0

�n(s)ds

��
(35)

However, this remapping has two problems. First, it is not dynamically consistent, since in structural models

with a diffusive asset value, such as the ones described above and used in common applications and commercial

softwares, the times to default are not totally unpredictable stopping times and, as a consequence, there does

not exist an intensity which can represent their arrival. Second, it leads to an historical calibration of default

dependency, via equity returns, which again has no reason to coincide with the risk neutral one.

3 Factor models

While remapping, as described in the previous section, permits to reconnect the copula choice to the asset one,

while paying the price of dynamic inconsistency and historical calibration, another popular approach to default

modelling allows us to switch to the so called product copula. The reduction technique, which is widely adopted

for the evaluation of losses in high-dimensional portfolios, with hundreds of obligors (see for instance Laurent

and Gregory (2003)), is the standard approach of (linear) factorization, or transformation into a Bernoulli factor

model.

Given a vector of random factors,

(X1(t); X2(t); :::; Xp(t)) (36)

the �rst step in reducing it consists in assuming that there exist n (probability) functions pti : Rp ! [0; 1] ;

i = 1; ::; n, such that, conditional on a speci�c realization of the factors X1 = x1; X2 = x2; :::; Xp = xp, the
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default indicators Yi(t) of the n obligor are independent Bernoulli variables, with probability :

Yi(t) =

8><>: 1 pti(x1; ::; xp)

0 otherwise
(37)

In the sequel we will work with one or two factors. In the former case, if the (unique) factor X has a density

f(x) on the real lineR, it follows from the de�nition of conditional probability that the marginal (unconditional)

default probabilities can be written as

Fi(t) =

Z
R
pti(x)f(x)dx (38)

while the joint one can be represented through a (conditional) factor copula C?, as desired:

F (t) =

Z
R

nY
i=1

pti(x)f(x)dx =

Z
R
C?

�
pt1(x); ::; p

t
n(x)

�
f(x)dx (39)

Let us discuss the factorization separately for structural, intensity-based with non stochastic intensity, and

stochastic intensity with independent and dependent thresholds ones: without much loss of generality, we will

use one-factor models, in which the factor is standard Gaussian.

Structural models: the key assumption is that the i � th asset value or credit worthiness indicator, properly

normalized, can be factorized as

Vi = �iX +
q
1� �2i "i (40)

where �i 2 R, X and "1; "2; ::"n are independent standard Gaussian, so that Vi is standard normal too. The

common factor is evidentlyX , while the "i are to be interpreted as the idiosyncratic ones: it follows from (40)

not only that the Vis are independent, conditionally on X , but also that the unconditional linear correlation

coef�cient between Vi and Vj is �i�j . The conditional marginal default probabilities, pti(x), if Ki is the

properly normalized liability or barrier level, are easily calculated:

pti(x) = P (Vi � Ki j x) = �
 
Ki � �ixp
1� �2i

!
(41)

The expressions for the unconditional ones, (38), and the joint unconditional ones, (39), easily follow.

Intensity-based models with non stochastic intensity: In order to adopt a factor model, starting from a

uniform threshold, i.e. from the representation (25) of the unconditional marginal default probability, one must
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factorize a transform of it, which is standard Gaussian by de�nition: Wi := �
�1 (1� Ui). By imposing

Wi = �iX +
q
1� �2i "i (42)

one gets as conditional marginal default probability, with a little bit of algebra

pti(x) = P (�i � �i j x) = �
 
��1 (1� exp (��i))� �ixp

1� �2i

!
(43)

Again, the unconditional marginal probabilities, (38), and the joint unconditional ones, (39), easily follow2.

Stochastic intensity models with independent thresholds: in a multivariate Cox framework, à la Duf�e

(1998), the variable which can be factorized is a transform of the compensator, with no factorization of the

thresholds, which are already independent. Indeed, if we denote as Gi the distribution function of the compen-

sator at time t, so that 1�Gi(�i) is uniform, we can de�ne

Wi := �
�1 (1�Gi(�i)) (44)

and the latter can easily be proven to be standard normal. Let us impose on Wi the factor structure (42), as

above. Noting that �i = G�1i (1� �(Wi)), the conditional marginal default probability

pti(x) = P (�i � �i j x) = 1� E [exp (��i) j F0; x] (45)

can be written as

pti(x) = 1� E
�
exp

�
�G�1i

�
1� �(�ix+

q
1� �2i "i)

��
j F0; x

�
(46)

The expression for the unconditional marginal probability, (38), is straightforward.

As for the joint unconditional default probabilities, they can still be written as (39), as follows. From the fact

that for the case at hand the representation (26) of the joint survival probability holds, it follows that the joint

default is

F (t) = E [(1� exp (��1)) (1� exp (��2)) :: (1� exp (��n)) j F0] (47)
2More interestingly, the factorized models "con�rm" the correspondence between structural and intensity based discussed in section

2.1, since the two models give the same conditional probabilites (and therefore unconditional ones) whenever

Ki = �
�1 (1� exp (��i))

which is the condition which characterizes the equivalence between latent variable models of the structural and intensity type.
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Conditioning it on X = x, we get

F (t) =

Z
R
E [(1� exp (��1)) (1� exp (��2)) :: (1� exp (��n)) j F0; x] f(x)dx (48)

Finally, recalling that the compensators are - by assumption - independent for given x, we have

F (t) =

Z
R

nY
i=1

(1� E [exp (��i) j F0; x]) f(x)dx (49)

which is nothing else than the Bernoulli representation of the default processes, (39) above.

Stochastic intensity models with dependent thresholds: in this case not only we need to perform the factor-

ization for the multivariate Cox case at the univariate level, but we also need to impose a factor structure on the

thresholds, in order to guarantee the conditional independence at the multivariate level.

At the univariate step, nothing changes with respect to the independence case just discussed, and the marginal

conditional default probabilities (46) still hold.

At the multivariate level, Rogge and Schönbucher (2003) propose to assume that the copula of the uniform

thresholds is an Archimedean one:

CU (u1; u2; :::; un) = '
�1('(u1) + '(u2) + :::+ '(un)) = '

�1

 
nX
i=1

'(ui)

!
(50)

where '(u) : [0; 1] ! [0;1] is a continuous, strictly decreasing and completely monotonic function, and its

generalized inverse can be chosen to be the Laplace transform of a positive rv, Z.

We show in the Appendix that, under this choice, a suf�cient condition for obtaining a factor model is to

assume that the variable Z, is independent of the factor driving the intensities. As proven in Rogge and

Schönbucher (2003), the previous copula choice is indeed equivalent to assuming a non linear factor structure

for the thresholds:

Ui = '
�1
�
� ln� (�i)

Z

�
(51)

in which the �i are independent standard normal, which are also independent of the "i,; X and Z.

Summing up, both in structural and intensity based models, factorization permits to substitute the original

copulas with the product one, according to (39), something which makes computations and analytical pricing

results easier to obtain.

In particular, assuming, in addition to a unique risk factor, also equicorrelation of the single obligors with it,
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i.e. �i = � for all obligors i, calibration of default dependence boils down to �nding an appropriate value for

the parameter �: this is practically done by calibrating to the observed fees of liquid CDO tranches. However,

practical applications of the methodology lead to the so-called correlation skew phenomenon, which is incon-

sistent with the theoretical set up: for a survey and discussion see Andersen and Sidenius (2005). In turn,

this has lead to a number of calibration-oriented extensions, mainly related to stochastic correlation. Their full

insertion in the intensity based framework is certainly worth high consideration, while not being completed

yet: however, it is far beyond the scope of this paper.

4 A structural model with remapping and risk neutral calibration

diffusion - based

Given that the credit applications of copula functions are still work in progress, the models reviewed in the

previous sections present a number of limitations, as concerns either dynamic consistency or dependency cali-

bration.

Intensity based models with deterministic intensity in particular do not have a dynamic consistent structural

representation, and an asset copula consistent over time, since intensities exist if and only if the time to default

is not a totally predictable stopping time. This condition, as mentioned above, is violated by diffusion based

structural models.

When we enlarge our consideration to stochastic intensities, we encounter two problems. The limited range of

dependency which can be reached via intensity-based models with stochastic intensity and independent thresh-

olds renders their usefulness quite limited. Using stochastic intensities and allowing for dependent thresholds

one runs into the problem of unobservability of the thresholds themselves. These two dif�culties justify the

success of factor models, which span a wide range of dependency, while allowing easy risk neutral calibration,

at the price of equicorrelation and correlation skews. Or the use of a purely empirical approach to copula

calibration, similar to the implied volatility one, as in Hull and White (2005).

Recently it has been stressed that the lack of total predictability - and therefore, of intensity representation -

of structural models can be overcome by assuming that the information �ow on asset values is not continuous

over time: at the opposite, since accounting data are revealed only at discrete tenors, the wedge between the

�ltration of investors and the actual one renders default times totally inaccessible. The seminal paper in the

�eld, which is for the time being developed only at the single obligor level, is Duf�e and Lando (2001).

As an alternative, the total predictability can be eliminated by assuming that asset values are not described by
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a diffusion process. In order to introduce this approach we refer to a Merton-like default model, as originally

introduced by Madan (2000), which can be extended to the case of several obligors. Let us consider a default

mechanism as the one described in section 1, and assume that asset returns, as described by the logarithm of the

asset value, ln(Vi=V0), follow a pure jump process instead of a diffusion one. The simplest way to introduce

the pure jump process in this case is as a transform of a diffusion, such as a Brownian motion with drift, via a

stochastic transform of time:

ln

�
Vi(t)

Vi(0)

�
= mG(t) + �W (G(t)) (52)

where m is the (constant) drift of returns under the historical measure, � is their instantaneous (constant)

variance,W is a standard Brownian motion, while G(t) is the value at time t a so called subordinator, namely

of a real increasing Lévy process, with no diffusion component and �nite variation. The effect of such a time

transform on time, viaG, is that of making log returns belong to the realm of Lévy processes: in particular, ifG

is a Gamma process, the corresponding returns are Variance Gamma, while if the subordinator is Generalized

Inverse Gaussian we get a Generalized Hyperbolic Model. The amount of time change can be easily interpreted

as a "stochastic clock", which in turn can be related to the amount of trade in a given market: see for instance

Geman (2005). The usual restriction is that the random time change is equal to the effective time in expectation:

E(G(t)) = t (53)

Let us denote with pti(x) the marginal default probability of obligor i, conditional on the time change being

equal to x: given that we have a Merton default mechanism, if Ht
i (u j x) is the asset value distribution of

obligor i at time t, conditional on the change x, we have

pti(x) = H
t
i (Ki j x) (54)

The remarkable property of describing individual assets as above is that, conditional on the time change, these

values are independent and therefore their (conditional) copula is the product one. If we denote with ft is the

density of the time change at t (with support R+), we have a representation analogous to the one in section 3:

Fi(t) =

Z
R+
pti(x)ft(x)dx =

Z
R+
Ht
i (Ki j x)ft(x)dx (55)
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while the joint probability can still be represented through a (conditional) factor copula C?:

F (t) =

Z
R+

nY
i=1

Ht
i (Ki j x)ft(x)dx =

Z
R+
C?

�
Ht
1(K1 j x); ::;Ht

n(Kn j x)
�
ft(x)dx (56)

Luciano and Schoutens (2006) study the case in which the time change is Gamma distributed, so that asset

returns are Variance Gamma: this process indeed has been repeatedly used in the equity literature. Under this

choice, taking into consideration the restriction (53), and focusing on time one, we have

f1(x) =
�1=�

�(1=�)
x1=��1 exp(�x=�) (57)

where � is the usual gamma function. At the same time, since - conditionally on the time change - returns are

normally distributed, we can easily derive the conditional probabilities pti(x): Focusing again on their value at

time one, p1i (x)

p1i (x) = H
1
i (Ki j x) = �

�
zi �mix� �i

�i
p
x

�
(58)

where �i = r + wi and the shift wi is used so as to obtain a risk neutral measure:

wi =
1

�
log
�
1� �2i �=2�mi�

�
(59)

In this framework, the correlation coef�cient between the returns of obligors i and j is

�ij =
mimj�p

�2i +m
2
i �
q
�2j +m

2
j�

(60)

This shows that there is no equicorrelation.

>From conditional normality it follows that the marginal and joint default probabilities at time 1 are respectively

Fi(1) =

Z
R+
�

�
zi �mix� �i

�i
p
x

�
�1=�x1=��1 exp(�x=�)

�(1=�)
dx (61)

F (1) =

Z
R+

nY
i=1

�

�
zi �mix� �i

�i
p
x

�
�1=�x1=��1 exp(�x=�)

�(1=�)
dx (62)

where the threshold zi = ln(Ki=Vi(0)) is obtained from the inequality Vi(1) < Ki (see Luciano and Schoutens

2006)).

The copula representation of the last probability can be obtained only by numerical inversion; however, the
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model can be easily calibrated, under the risk neutral measure, so as to be able to evaluate actual default

probabilities. Luciano and Schoutens extract all the model parameters (single and joint) from CDS quotes.

For each obligor they get the standard variance gamma parameters, namely mi; �i; the third parameter ( �) is

common to all of the obligors. With respect to the standard calibration of univariate Variance Gamma processes

therefore they impose a constraint on the last parameter: the �t they obtain at the marginal level is quite good.

They have a risk neutral joint default probability, since all the parameters are extracted from market prices,

with no need for equity (historical) correlation.

The model just described therefore overcomes two main problems evidenced in the previous approaches: lack

of structural models which can be used to map intensity-based ones and lack of risk neutral calibration without

equicorrelation.

Fiorani, Luciano and Semeraro (2007) provide an even more general model of joint default with VG margins

and without equicorrelation. The model is based on an extended multivariate VG process in which each asset

is subject to a common and an idiosyncratic time change. As a result, the constraint on the common gamma

parameter (�) can be eliminated. The calibration of this model to credit market data is performed in Fiorani,

Luciano, Semeraro (2007), via equity correlation and without equicorrelation. The Authors also justify the fact

that the historical correlation coincides with the risk neutral: the reason for this is that the change of measure

adopted, quite standard in the �eld, does not modify the correlation.

In Fiorani and Luciano (2006) it was shown that the univariate VG model was able to overcome the spread

underprediction typical of the Merton approach and the prediction biases of more sophisticated diffusive struc-

tural models, since it works well both on high yield and investment grade names. Since the multivariate models

in Fiorani, Luciano, Semeraro (2007) builds on the univariate calibration as in Luciano and Fiorani (2006), the

marginal �t is guaranteed.

The explicit representation of the previous models as intensity ones is under investigation: for the time being,

the existence result is guaranteed, and the representation is not needed in order to calibrate the model neither

at the individual, nor at the joint level.

5 Summary and concluding remarks

Default dependence, most of the times represented by default (linear) correlation, is an important feature of

credit derivatives pricing and hedging. Copula functions have proven to be extremely useful in describing joint

default and survival dependency - and probabilities - in credit risk applications.
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In the �rst part of the paper we have overviewed the state of the art and pointed out some open modelling

issues. We have discussed joint default modelling �rst in diffusion-based structural models, then in intensity-

based ones. We have focused on the possibility - and the dynamic inconsistency - of re-mapping a model of

the second type into one of the �rst. For both types of models, we have discussed calibration issues under the

risk neutral measure, using the factor copula device.

The survey has led us to present a structural model, based on a non diffusive asset value, which can be re-

mapped in a dynamic consistent intensity-based one, and which can be calibrated under the risk neutral measure

without assuming equicorrelation. Its copula properties and calibration have been investigated in Luciano and

Schoutens (2006). Fiorani, Luciano and Semeraro (2007) extend further both the multivariate credit model

and the calibration. They �t default correlation via equity correlation. It turns out that the model �ts actual

data quite satisfactorily, when applied to the CDS spreads of both investment grade and high yield names. In

particular, it overcomes the underprediction of the diffusion based Merton case and the prediction biases of

more sophisticated diffusion structural models.

Evidently, it is just one possible rigorous solution to the currently immature state of the research in the �eld.

Models who are dynamically consistent in the sense adopted here and liable of calibration under the/a risk

neutral measure, for pricing and hedging purposes, are very welcome.
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Appendix

In this Appendix we brie�y review the factor model with stochastic intensities and non independent thresholds.

Having assumed that the copula of the uniform thresholds is Archimedean, as in (50), '�1(u) can be chosen to

be the Laplace transform of a positive rv, Z, i.e. '�1(u) = E [exp(�uZ)], and the copula (assuming a density

exists for Z) can be written as

CU (u1; u2; :::; un) = E exp

 
�Z

nX
i=1

'(ui)

!
=

Z
R+
exp

 
�z

nX
i=1

'(ui)

!
h(z)dz (63)

With the Archimedean assumption, the joint survival probability can then be manipulated as

S(t) = E
�
CU (exp (��1) ; exp (��2) ; ::; exp (��n)) j F0

�
= (64)

= E

"
'�1

 
nX
i=1

'(exp (��i))
!#

=

= E

"Z
R+
exp

 
�z

nX
i=1

'(exp (��i))
!
h(z)dz

#
(65)

Let us change the order of integration and condition the inner expectation with respect to X = x, which is

the factor used in the marginal factorization (the one for W := ��1(1 � Gi(�i))), and is assumed to be

independent of Z :

S(t) =

Z
R+

Z
R
E

"
exp

 
�z

nX
i=1

'(exp (��i))
!
j x
#
f(x)dxh(z)dz (66)

Recognizing that the compensators are independent, conditionally on X = x; we have

S(t) =

Z
R+

Z
R

nY
i=1

E [exp (�z'(exp (��i))) j x] f(x)dxh(z)dz (67)

which is of the form corresponding to (39), since

E [exp (�z'(exp (��i))) j x] =

E

�
exp

�
�z'

�
exp

�
�G�1i

�
1� �(�ix+

q
1� �2i "i)

�����
(68)
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is the marginal survival probability conditional on x and z, 1� pti(x; z).
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