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1. Introduction

In efficiency analysis of production units, called DMUs (decision-making units in the

operations research literature), resources consumed and outputs produced are usually

assumed to be continuous variables. However, in practical applications some variables

may be categorical. A categorical variable is a variable that takes on only a finite

number of values. It is not unusual in DEA applications, especially for DMUs where

outputs are not sold on markets, that variables are categorical, i.e. there are inputs and/or

outputs of certain types, e.g. type of education of labour, type of court cases being

completed, etc., which are distinct and cannot be represented by continuous variables.

DEA models with categorical variables are treated for the first time (to our knowledge)

in Banker and Morey (1986), and the approach improved by Nakamura (1988) and also

followed up in Rousseau and Semple (1993). Charnes et al. (1994) provide a further

development, which is used in e.g. Puig-Junoy (1998), and also presented in Cooper et

al. (2000). However, the programming models developed in the first two papers are of

the mixed integer type. Moreover, all papers mentioned are concerned only with ordered

categorical variables (e.g. of the type “low”, “medium”, “high”). Our purpose is to show

how to adapt a standard LP programme formulation of the DEA model, as done in

Charnes et al. (1994), but not restricted to hierarchically ordered variable types only.

The crucial assumption needed is that there is at least one continuous input variable and

at least one continuous output variable.

There may be important applications of DEA analyses where imposing a hierarchical

structure would not be natural. In an efficiency analysis of the municipal nursing and

home care sector Erlandsen and Førsund use number of clients in a limited set of age

groups as categorical output variables, as well as whether nursing homes have single

rooms or not (see Erlandsen and Førsund, 2001). In a study of the efficiency of auction

houses of selling Picasso paintings, Førsund and Zanola (2001) use Picasso paintings

from different periods in the painter’s life as both categorical inputs and outputs.  Such

variables have no natural ordering.
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An important output of a DEA efficiency analysis is the identification of peers for

inefficient units. Due to the general feature of models with categorical variables that the

DMUs often do not have full sets of positive variables, it is of interest to study the

nature of peers with respect to positive variables. The situation with hierarchically

ordered categorical variables would come out as a special case. The DEA models for

calculating efficiency scores are set out in Section 2 and our general way of treating

categorical variables is developed in Section 3. A review of the literature in view of our

generalisation is provided in Section 4, and some concluding remarks offered in Section

5.

2. The DEA efficiency model

The point of departure for the calculation of efficiency measures is the piecewise linear

frontier technology expressed by the following production possibility set:

(1)

where x is the input vector and y is the output vector, and in the last expression we have

introduced J points and index m for type of output and index n for type of input. The

variables λj (j=1,..,J) are non-negative weights or intensity variables defining frontier

points. Constant returns to scale is assumed2. Basic properties are that the production set

is convex, includes all points and envelopment is done with minimum extrapolation, i.e.

the fit is as "tight" as possible.

The input oriented Farrell radial efficiency measure, E1i, for each DMU, i, of a set of J

observations, is calculated by solving the following linear programme set up according

to the definition of the measure:

                                                          
2 The nature of scale does not play any part in determining the type of the LP programme or the solutions
with categorical variables.
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(2)

Each type of input is scaled down with the same factor, θi, until the frontier is reached

according to the definition of the Farrell efficiency measure. DMUs with positive λj are

termed "Peers". These DMUs have to be frontier units, and the linear combinations

define the frontier point that is the point of comparison with the DMUi under

investigation. In the case of zero slacks on the output constraints the comparison point is

found as a radial contraction of the observation for DMUi. In case of slacks the frontier

point will coincide with one of the peers.

The output oriented Farrell radial efficiency measure, E2i, for each unit, i, of a set of J

observations, is calculated by solving the following linear programme set up according

to the definition of the measure, with the necessary change that we solve for the inverse

measure φi = 1/ E2i in order to maintain a linear programming problem:

(3)

Each type of output is scaled up with the same factor, φi, until the frontier is reached

according to the (inverse) definition of the Farrell efficiency measure. DMUs with

positive λj (for convenience the same symbol is used as in the input-oriented case) are,

again, the peers. These DMUs have to be frontier units, and the linear combinations
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define the frontier point that is the point of comparison with the DMUi under

investigation. In the case of zero slacks on the output constraints the comparison point is

found as a radial expansion of the observation for DMUi. In case of slacks the frontier

point will coincide with one of the peers.

It should be noted that a general assumption underlying the rationale for comparing

different production units is that the inputs and outputs are indeed comparable, i.e. that

they are homogeneous. If xni is labour input measured in hours then these hours must be

comparable across the units. It would not be so meaningful an analysis if one unit has

highly educated employees while another has unskilled ones if we believe that marginal

productivity of these two types of labour are significantly different.

3. Features of the DEA solution with categorical variables

Handling of categorical variables

In the DEA model a general way of handling categorical variables may be to interpret

the different attributes or states as different types of inputs and/or outputs, recognising

the need for homogenous variables across DMUs. Let zkj
x be a categorical characteristic

k (k=1,.., K) of DMUj (j=1,..,J) regarding types of inputs, zpj
y be a categorical

characteristic p (p=1,..,P) of DMUj regarding types of outputs, and let xnj be continuous

input variables of type n (n=1,..,N), and ymj be continuous output variables of type m

(m=1,..,M) . We then have KxN different types of inputs, each continuous input variable

is matched with each of the K types of inputs, and PxM different types of outputs, each

continuous output variable is matched with each of the M types of outputs. Thus, the

situation with a mix of categorical and continuous variables is converted to a standard

DEA LP model3.

Each DMU may typically employ fewer characteristics than the total number existing,

resulting in a value of zero for the non- observed types of inputs. An extreme case

would be that each DMU employs only one type of input, e.g. only labour of one

                                                          
3 Note that we may run into a dimensionality problem as to number of observations and number of
variables.
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category of education, and then there may be a number of combinations of having and

not having certain variables. This situation imposes some restrictions on what kind of

peers that will emerge. We now go on to explore these restrictions.

Input orientation

Let us look at the input restrictions in the efficiency score programme (2) above and

reinterpret the number of inputs, N, as including all categorical variables converted to

homogeneous types. We assume that each type of input is employed at least by one unit.

The production unit under investigation is DMUi. The restriction system for inputs is:

(4)

If DMUi is not using type n input then the corresponding constraint is:

(5)

Both λj and xnj are non-negative variables. Fulfilment of the constraint then requires all

the products of λj and xnj to be zero. If xnj is positive for a type j (i.e. we are considering

an input type the unit under investigation does not have) then the corresponding λj must

be zero. This implies that the peers cannot have positive xnj. The peers cannot employ

types of inputs the unit under investigation are not using4.

                                                          
4 A similar result may be deduced from the analysis in Banker and Morey (1986), p.1618.
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For the case that DMUi has input of type n, but that some of the peer DMUs do not have

this type, we may denote the set of DMUs with this input n for Jn’ and the set of DMUs

without for Jn''.  The constraint then reads:

(6)

The xni are positive by assumption. Is it possible that none of the peers employ a factor

of type n? Equation (6) will hold with inequality even if all the peer variables of input

type n should be zero. The optimal value of the efficiency score must then be

determined from other binding input constraints. If the constraint (6) is not binding it

cannot influence the solution for the weights and the efficiency score. The weight is the

same for all inputs and outputs of a peer unit, j. Notice that no unit can have all inputs

zero and still have positive outputs by assumption on the production set (1). A peer

must then at least have one type of input in common with the unit under investigation,

since by Equation (5) we have that a peer cannot  employ input types the unit under

investigation does not use.

The efficiency score is calculated from a binding constraint of type (6):

(7)

where N’ is the set of inputs with a binding constraint in (6). We need at least one

binding constraint to calculate an efficiency score. For the case of the unit under

investigation being inefficient we also need at least one other constraint in (2) to hold

with equality in order to determine at least one positive weight, λj.

                                                                                                                                                                         

,',

0

'

'

Nn
x

x

xx

ni

Jj
njj

i

Jj
njjnii

n

n

∈=⇒

=−

∑

∑

∈

∈

λ
θ

λθ

Nnxx

xxx

n

n n

Jj
njjnii

Jj Jj
njjnjjnii

,..,1,0

0

'

' ''

=≥−⇒

≥−−

∑

∑ ∑

∈

∈ ∈

λθ

λλθ



8

Let us similarly reinterpret the number of outputs, M, to include all categorical variables

converted to homogeneous types. The constraint for an output type, m, not produced by

the unit under investigation reads:

(8)

This constraint does not exclude peers from having positive amounts of an output m that

the unit under investigation does not produce. If that should be the case the constraint

(8) is not binding and thus cannot influence the solution for the weights and the

efficiency score.

For the case that DMUi has output of type m, but that some of the potential peer DMUs

do not have this type, we may now denote the set of DMUs with this output m for Jm’

and the set of DMUs without for Jm''.  The constraint then reads:

(9)

A peer may according to (9) have fewer types of outputs than the unit under

investigation. Since there is only one weight for each unit we must have at least two

constraints of type (6) or (9) to hold with equality to determine a weight and the

efficiency score. A peer unit must be involved in at least one binding constraint of type

(6) or (9) for a positive weight to be determined. In general we have as the maximal

number of non-negative solutions for the efficiency score and the weights the number of

constraints that are binding. We cannot have a feasible solution with just the efficiency

score positive and all weights zero. The extreme case is a unit becoming a self-evaluator

where only the weight for the self-evaluator becomes positive, and equal to one and the

same value for the efficiency score. All the (MxN) constraints in (2) are then binding,

but only two endogenous variables have positive solutions.
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Is it possible that no peers have an output of type m? If that should be the case we must

have:

(10)

But this is not possible by the assumption of variables being non-negative, so we can

conclude that for outputs it is necessary that at least one peer is producing the same

output as the unit under investigation for each of its outputs. The frontier must be fully

faceted in the output space.

Output orientation

In the case of outputs as categorical variables Equation (5) is the same. The same

conclusion as in the case of input orientation can be drawn: A per cannot employ more

inputs than the unit under investigation.

The constraint (6) for inputs now reads:

(11)

where the set Jn' contains peers employing inputs of type n, and the set Jn'' does not. The

same conclusions are valid: Peers may have fewer types of inputs than the unit under

investigation, but at least must have one type of input in common. One or more types of

inputs may be completely missing and thereby reducing the dimensionality of the

frontier.

For the outputs in the case of peers having outputs of a type not being produced by the

unit under investigation we have the same situation as shown in equation (8), implying

that this is possible. But since the equations of this type are inequalities they will not

influence the solutions for efficiency score and weights.

In the case of dividing the set into DMUs producing the output of type m and not we

have:
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(12)

Again we have, as from (10), that the set Jm' cannot be empty. There must be at least

one peer producing each of the outputs of DMUi under investigation.

The inverse of the efficiency score is in the optimal solution calculated from binding

constraints:

(13)

where M’ is the set of outputs for which (13) holds with equality. It is only outputs of

the type employed by the unit under investigation that will count in the solution for the

efficiency measure. If a peer should have more outputs these will not influence the

choice of this unit as a peer (i.e. the λj - values). The frontier will have the same

dimensionality as to outputs as the types produced by the unit under investigation. A

peer with fewer outputs than the unit under investigation can compensate, in the

expression (13) for an output not produced, for one element less in the sum of the

numerator of (13) by higher values for the outputs produced than the other peer DMUs

have.

PROPOSITION: Consider a DEA problem with categorical variables in the form of

inputs or outputs and at least one input- and one output variable being continuous.

Further, the variables are transformed into an exhaustive set of unique types of inputs

and outputs, and not all DMUs have a full set of inputs and outputs. Then calculating

either an input- or output oriented Farrell efficiency score for a unit implies that:
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i) the DMU under investigation will only be compared with peer DMUs having the

same or fewer types of inputs

ii) a peer will have at least one type of input in common with the unit under

investigation

iii) the DMU under investigation may be compared with peer DMUs having both

more and fewer types of outputs, but in the latter case the peer unit must have at

least one type of output in common  with the DMU under investigation

iv) in the set of peers all types of outputs of the DMU under investigation must be

represented.

REMARK: The results for the nature of peers is independent of whether the efficiency

measure is input- or output oriented. There is an asymmetry in the results for input and

outputs, cf. points i) and iii). This is due to the fact that the variables are constrained to

be non-negative, and the inequality constraints for outputs and inputs go in opposite

directions, see Models (2) and (3), or equations (5) and (8). More of inputs reduce

efficiency while more of outputs improve efficiency. There may be a “bias” against

peers having more outputs than the DMU under investigation, because such occurrences

do not influence the optimal solution while extra outputs in general draw resources. To

overcome this drawback such peers must be “extra” productive. In the same manner, if a

peer has fewer outputs than the DMU under investigation, then it has to be especially

productive in providing the more limited range of outputs.

4. A note on the literature

Controllable categorical variables in the form of outputs are in Banker and Morey

(1986) and Kamakura (1988) only treated as hierarchically ordered, e.g. outputs are

classified in categories as “poor” “average”, “good”, or similar orderings, with respect

to attributes like quality. The peer DMUs are restricted to be of same or higher service

orientation producers. Banker and Morey (1986) obtained the selection of peers from

the same or higher ranked groups by changing the objective function in (3) to

maximising the sum of (0-1) descriptor binary variables and adding new constraints

involving peer group identification, turning the computational problem into one of a
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mixed-integer LP model. Kamakura (1988) pointed out some inconsistency problems

and presented an improved version of the same type of model. The peers were

constrained to come  only from the same group of DMUs of a higher quality producing

DMUs. Kamakura imposed this constraint to avoid forming a reference point by

weighing together outputs from different quality classes, as permitted by Banker and

Morey.

Rosseau and Semple (1993) reformulated Kamakura’s procedure by removing the

constraint of peers belonging to the same group, in order to go back to the original

objective in Banker and Morey that "..DMUs included in the composite referent point

are necessarily of the same or higher service order" (p. 1624). But then mixing peers

belonging to different quality groups is accepted. The argument is that obtaining certain

levels of outputs with lower ranked inputs, or achieving higher ranked outputs for

certain levels of inputs, show a more efficient operation. But the point made in

Kamakura (1988) that mix of different qualities has no counterpart in real observations

still hangs in the air.

Charnes et al. (1994) acknowledged the criticism of Banker and Morey (1986) in

Nakamura (1988), and solved the problem of mixing peers from different quality groups

by simply doing away with different quality groups in a special way: For each DMU

being investigated the data set is split into two groups: lower quality and same or

higher. There is at least one continuous variable associated with each input or output

type. The values for the inputs or outputs are simply added together within each of the

two groups. The standard DEA LP model is then only run for DMUs belonging to sets

in preceding or their own category regarding inputs, to achieve a comparison with

DMUs in the same or more disadvantaged categories, or for DMUs belonging to same

or higher output quality groups concerning outputs. The same approach is adapted in

Cooper et al. (2000) in the case of categorical outputs. The Charnes et al. procedure will

then give the same structure of results as in Rosseau and Semple, but with the standard

LP formulation and no additional constraints.

If we assume that a single continuous output can be produced in e.g. three different

service categories; low, medium and high, we will in our reformulation have three types

of outputs measured by the continuous variable. Running an output-oriented DEA
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efficiency model of type (3) will then imply that DMUs with one service category, low

(high) (medium), may be compared with efficient DMUs having this single output

category, but also with DMUs having combinations of this category and one or both of

the two others. DMUs with a mix of service categories can have peers with different

combinations of outputs, e.g. an inefficient unit with two types of outputs, low and

medium can have peers with only low outputs, only medium outputs, both low and

medium, and both medium and high, low and high or all three types of outputs. Thus,

the standard DEA formulation (3) does not conform with the requirement of Banker and

Morey that “..DMUs included in the composite referent point are necessarily of the

same or higher service order”.

To further illustrate the differences between our general formulation and the

hierarchical approach in Charnes et al. (1994), the example used in Kamakura (1988)

converted to our approach is set out in Table 1.

Table 1. Three output quality categories

Unit Input Output
high

Output
medium

Output
low

A 1 2 0 0
B 5 4 0 0
C 2 0 0 2
D 4 0 3 0
E 1 0 1 0

The consequences of using the Charnes et al. (1994) procedure by ordering the output

categories from least to most desirable and selecting DMUs from the sets with the same

or higher ordering, can be illustrated using the data in Table 1. The unit with low quality

may be compared with DMUs from all the three quality groups, there are no restrictions

on the choice of peers or how reference points are related to the peers. The three output

columns in Table 1 are simply added together. For the case of medium quality DMUs

the peers can either have medium or high quality implying that the reference point on

the frontier can be a mix of medium and high quality DMUs, the output columns for

“Medium” and “High” in Table 1 are added together. For high quality DMUs this group

has to be run separately.
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Kamakura (1988) used a variable returns to scale specification of the DEA model (as

did Banker and Morey, 1986 and Charnes et al., 1994). This is achieved by adding the

following constraint to the DEA model (3):

∑
=

=
J

j
j

1

1λ                                                                                                                  (14)

The results from running model (3), with (14) as additional constraint in the general

mode with three outputs, and doing the hierarchical ordering as in Charnes et al., are set

out in Table 2. Our general model yields all DMUs efficient and each unit only

compared with DMUs having the same type of outputs. The apparently inefficient

DMUs B and D in the high quality and medium quality groups respectively becomes

technically efficient (but not scale efficient) due to the models really having only two

dimensions, and no unit dominating the other. Figure 1 illustrates the three frontiers for

the groups, the solid line between DMUs A and B, and the vertical and horizontal

extensions from A and B, constitute the frontier for the high quality group, the broken

line between DMUs E and D, including the vertical and horizontal extensions from the

points E and D, constitute the frontier for the medium quality group, and the vertical

and horizontal broken lines out from point C form the frontier for the low quality group

of one unit.

In general, in the case of DMUs having outputs only of one service category, as is the

case in Banker and Morey (1986) and Kamakura (1988), each unit will be compared

with DMUs of only the same category according to point ii) or iii) of the proposition

above. But this is the same as running separate DEA problems for each group.

Table 2. Results for the standard VRS model [(3) and (14)], and Charnes et al.(1994) ordering

Unit Efficiency
score
model (3)

Efficiency
score
for {high}

Efficiency score
for {medium+high}

Efficiency score for
{low+medium+high}

A 1 1 1 1
B 1 1 1 1
C 1 - - 0.8
D 1 - 0.86 0.86
E 1 - 0.5 0.5
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The Charnes et al. procedure treats the highest quality DMUs as one group and we have

the same results as in the standard DEA LP model for the high quality DMUs.

Considering high and medium quality DMUs we get DMUs D and E as inefficient and

the high quality DMUs being peers. Aggregating the continuous output for all quality

groups in Table 1 we get the efficiency scores in the last column in Table 2, and the low

quality unit appears as inefficient even disregarding the information that its output is of

lowest quality. Since the peers remain the same the efficiency scores for the medium

quality DMUs are replicated. The frontier for all DMUs together is formed by the line

between A and B and the vertical – horizontal extensions (the former going through E).

We may also consider inputs

being of low, medium and hig

we will in the standard mode

Assuming one or more con

oriented efficiency model, a u

can only be compared with D

with labour in all categories c

to only one type (be it of l

employing only a single type

gives identical results. (One

.

. .

.
.

A
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C
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BOutput

Input
1 2 3 4 5

1

2

3

4

s
Figure 1. The frontier
 as in Charnes et al., and take as example input (labour)

h quality, and hours used as the continuous variable. Then

l (2) have three input types all measured by hours as unit.

tinuous outputs, and running either an input- or output

nit using only labour of type low (high) (medium) quality

MUs using low (high) (medium) quality, whereas a unit

an be compared with DMUs using from all the three types

ow, medium or high quality). In the case of all DMUs

 of input, running separate DEA models for each group

 does not have to separate the groups before running a
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standard DEA programme, the solution will automatically have this separation

property.)

In Puig - Junoy (1998) it is stated that with respect to the hierarchical categorical input,

probability of survival at the time of hospitalisation, one is only interested in comparing

DMUs that employ the same types of inputs (p. 268). The model used is Charnes et al.

(1994). However, our standard model can easily accommodate the wish because the

categorical input can only be in one of three states for each DMU. Separate DEA

models may also, as well, have been run.

5. Conclusions

Categorical variables are often used when performing efficiency analyses of multiple

input- multiple output production units. A hierarchical structure has so far been imposed

in the literature, leaving us with a mixed integer LP programme if mix of differently

ranked peers is not allowed. A standard LP format of the DEA model can be used if a

special aggregation of types into two groups is done; according to lower or higher

ordered types compared with the situation for the DMU under investigation. The

procedure in Charnes et al. (1994) implies that all differences between types of variables

can be reduced to two, and the DEA model is only run for the one subset relevant for

the analysis. But then there are no restrictions on the mixing of peers with lower ranked

inputs, or higher ranked outputs respectively. It is implicitly assumed that it makes

sense to mix qualities in both these subsets. Without a hierarchical ordering the

formation of two subsets is not defendable, and with an ordering one may, as in

Kamakura (1988), question the procedure because mixes cannot be observed.

Our approach is designed for situations when it is not natural to order categorical

variables hierarchically. A standard LP format of the DEA model can be used, if both

categorical and continuous variables are present, by writing out all the combinations of

the categorical variables as different types of inputs and/or outputs. Most DMUs will

then not have full sets of positive variables. Using a standard LP DEA model of type (2)

or (3) will then not in general give the same results (with respect to efficiency scores
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and peers) as using the mixed integer-LP model of Banker and Morey (1986) or the

reformulation in Kamakura (1988), or the special aggregation introduced in Charnes et

al. (1994).

We have formulated a more general setting with no ordering of categories and

investigated the nature of the selected peers both in the input- and output dimension.

The special cases dealt with in the literature can easily be incorporated. If each DMU

has only one of the possible types of inputs or outputs, and a comparison only with

same or higher ranked types is wanted, formation of new subsets of DMUs as required

in Charnes et al. (1994), is not necessary, because employing the standard model with

the full set of types of variables will yield separate group results for DMUs with same

type of variable by definition.

The general result for the characterisation of peers is that there is a basic asymmetry

between inputs and outputs due to the inequality constraints going in opposite directions

and all variables restricted to being non-negative. More of inputs reduce efficiency

while more of outputs improve efficiency. A peer may have at most the same types of

inputs, but may have less than the DMU under investigation, but may have either fewer

or more outputs. There may thus be a mix of peers with different characteristics than the

DMU under investigation, but a peer must always have at least one input, and at least

one output, in common. Notice that such mix of peers may also be observable in

principle.

References

Banker, R. D. and R. C. Morey (1986): "The use of categorical variables in Data

Envelopment Analysis", Management Science 32(12), 1613-1627.

Charnes, A., W. W. Cooper, A. Y. Lewin and L. M. Seiford (eds.): Data Envelopment

Analysis: Theory, Methodology, and Applications, Boston/Dordrecht/London: Kluwer

Academic Publishers, 1994, Section 3.3 Categorical inputs and outputs, pp. 52-54.



18

Cooper, W. W., L. M. Seiford, and K. Tone (2000): Data Envelopment Analysis. A

comprehensive text with models, applications, references and DEA-solver software,

Boston/Dordrecht/London: Kluwer Academic Publishers, Section 7.4 DEA with

categorical DMUs, 193-197.

Erlandsen, E. and F. R. Førsund (2001): “Efficiency in the Provision of Municipal

Nursing- and Home-Care Services: the Norwegian Experience”, in K. J. Fox (ed.):

Efficiency in the public sector, Boston/Dordrecht/London: Kluwer Academic

Publishers, forthcoming.

Førsund, F. R. and R. Zanola (2001): "Selling Picasso paintings: The efficiency of

auction houses", ICER Working Paper No 7/2001.

Kamakura, W. A. (1988): "A note on the use of categorical variables in Data

Envelopment Analysis", Management Science 34(10), 1273-1276.

Puig - Junoy, J. (1998): "Technical efficiency in the clinical management of critically ill

patients", Health Economics 7, 263-277.

Rousseau, J. J. and J. Semple (1993): “Categorical outputs in Data Envelopment

Analysis,” Management Science 39(3), 384-386.


	Handling of categorical variables
	Table 1. Three output quality categories
	Table 2. Results for the standard VRS model [(3) and (14)], and Charnes et al.(1994) ordering
	References



