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This paper provides the construction in a Bayesian setting of the Fleming-Viot measure-
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nonparametrics and population genetics. Via a generalisation of the Blackwell-MacQueen
Pólya-urn scheme, a Markov particle process is defined such that the associated process
of empirical measures converges to the Fleming-Viot diffusion. The stationary distribution,
known from Ethier and Kurtz (1994), is then derived through an application of the Dirichlet
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1 Introduction and preliminaries

The Fleming-Viot process, introduced by Fleming and Viot (1979), is a diffusion on
the space P(E) of Borel probability measures on E, endowed with the topology of
weak convergence, where E is a locally compact complete separable metric space,
called the type space. The general form of the generator which provides the Fleming-
Viot process is given by (cf. Ethier and Kurtz, 1993)

Aφ(µ) =
1
2

∫
E

∫
E

µ(dx){δx(dy)− µ(dy)} ∂2φ(µ)
∂µ(x)∂µ(y)

+
∫

E
µ(dx) G

(
∂φ(x)
∂µ(·)

)
(x) +

∫
E

∫
E

µ(dx)µ(dy)R
(

∂φ(µ)
∂µ(·)

)
(x, y)

+
∫

E

∫
E

µ(dx)µ(dy)(σ(x, y)− 〈σ, µ2〉)∂φ(µ)
∂µ(·)

where
∂φ(µ)
∂µ(x)

= lim
ε→0+

ε−1{φ(µ + εδx)− φ(µ)}

and we take the domain D(A) to be the set of all φ ∈ B(P(E)), where B(P(E))
is the set of bounded functions on P(E), of the form

φ(µ) = F (〈f1, µ〉, . . . , 〈fm, µ〉) = F (〈f , µ〉),

where 〈f, µ〉 =
∫

fdµ and, for m ≥ 1, f1, . . . , fm ∈ D(A) and F ∈ C2(Rm). Also, G

is the generator of a Feller semi-group on the space Ĉ(E) of continuous functions
vanishing at infinity, known as the mutation operator, R is a bounded linear opera-
tor from B(E) to B(E2), known as the recombination operator, and σ ∈ Bsym(E2)
is called selection intensity function. We assume throughout the paper that R ≡ 0,
i.e. there is no recombination in the model.

Ethier and Kurtz (1994) showed that when there is no selection nor recombina-
tion, and the mutation operator is

Gf(x) =
1
2
θ

∫
{f(z)− f(x)}ν0(dz), (1)

where θ > 0 and ν0 is a non atomic probability measure, then the stationary distri-
bution of the Fleming-Viot process (in this case often called neutral diffusion model)
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is the Dirichlet process with parameter (θ, ν0), denoted by Πθ,ν0 . A recent contri-
bution by Walker et al. (2007) showed how the neutral diffusion model is strictly
related to Bayesian nonparametrics.

Assuming (1) holds, let φ(µ) = 〈f, µm〉, for f ∈ B(Em), where µm denotes a
m-fold product measure, and consider a diploid selection function σ ∈ Bsym(E2)
and no recombination. Then the generator of the Fleming-Viot process is

1
2

∑
1≤i6=j≤m

(
〈Φijf, µm−1〉 − 〈f, µm〉

)
+

m∑
j=1

〈Gjf, µm〉 (2)

+
m∑

j=1

(
〈σj·(·, ·)f, µm+1〉 − 〈σ(·, ·)⊗ f, µm+2〉

)
where Gj is G operating on f as a function of xj alone, Φijf is the function of
m− 1 variables obtained by setting the ith and the jth variables in f equal, σj·(·, ·)
denotes σ(xj , xm+1) and σ(·, ·)⊗f denotes σ(xm+1, xm+2)f(x1, . . . , xm). Ethier and
Kurtz (1994) showed that in this case the stationary distribution is

Π(dµ) = Ce〈σ,µ2〉Πθ,ν0(dµ) (3)

where C is a constant and 〈σ, µ2〉 =
∫

σ(x, y)µ(dx) µ(dy).
The purpose of the present work is to extend Walker et al. (2007) and further

detail how Bayesian nonparametrics is connected to population genetics, and to
the Fleming-Viot diffusion in particular. More specifically, this paper provides the
construction in a Bayesian setting of the Fleming-Viot process with diploid selection,
whose generator is given by (2) and whose stationary distribution is known to be
(3). The outline of the construction is the following. First, a hierarchical model
in the Bayesian nonparametric framework is introduced, and the key predictive
density, which generalises the Blackwell-MacQueen Pólya urn scheme (Blackwell
and MacQueen, 1973), is computed. Then an En-valued Markov jump process
is constructed, whose transitions are based on the new predictive density, and it
is shown that, with a particular choice for the selection function, the associated
process of empirical measures converges to a Fleming-Viot process with diploid
fertility selection. Finally, by means of Gibbs sampling techniques, it is shown that
the stationary distribution of the measure-valued diffusion is the de Finetti measure
of the exchangeable variables introduced in the hierarchical model. The Fleming-
Viot process with haploid selection is then derived as a special case.
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2 The underlying model

For each even n, let Pn denote a pairing of {1, . . . , n}, such that given Pn, k is paired
with jk.

Consider the Dirichlet process mixture model, introduced by Lo (1984), in the
following setting:

p̃n(y1 = 1, . . . , yn = 1|x1, . . . , xn, Pn) =
∏
k

n σ̃n(xk, xjk
) (4)

x1, . . . , xn|µ
i.i.d.∼ µ

µ ∼ Πθ,ν0

Pn ∼ π(Pn) ∝ 1.

The product in (4), which is taken over n/2 terms that cover all pairs, is to be
regarded as the density of the vector (y1, . . . , yn) computed at (1, . . . , 1), condi-
tionally on (x1, . . . , xn) and on the pairing. The bounded symmetric function
σ̃n(x, y) ∈ Bsym(E2) is assumed to be chosen for each n. The vector (x1, . . . , xn)
is exchangeable, that is x1, . . . , xn are i.i.d. µ conditionally on µ, and µ is a ran-
dom distribution function distributed as a Dirichlet process with parameters (θ, ν0),
denoted by Πθ,ν0 . Last, π(Pn) is the distribution of the pairing, assumed to be
uniform.

It is well known that given a sample of size n − 1 from a random distribution
function which is a Dirichlet process, the predictive density for the next observation
is

pn(dxn|x1, . . . , xn−1) =
θ ν0(dxn) +

∑n−1
k=1 δxk

(dxn)
θ + n− 1

which is known as the Blackwell-MacQueen urn-scheme (see Blackwell and Mac-
Queen, 1973). For this reason the notation pn(x1, . . . , xn) will be used to denote the
unconditional joint density of x1, . . . , xn.

We are interested in constructing a Markov process which converges to the
Fleming-Viot process with diploid selection, and derive its stationary distribution.
Given the hierarchical model, in the next section a predictive distribution for the
x’s conditionally on the y’s will be derived, which will be the transition density of
the En-valued particle process we will define in Section 5. The hierarchical model
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will also play a central role in the derivation of the de Finetti measure of the infinite
exchangeable sequence x1, x2, . . . conditionally on y1, y2, . . . , in that the key step
will be Gibbs sampling the joint law of the x’s and µ, conditionally on the y’s, which
will be done in Section 4. Finally it will remain to show that the so found de Finetti
measure is the distribution, when n tends to infinity and for fixed t ≥ 0, of the
limiting empirical measure of the particle forming the En-valued Markov process,
and is also the stationary distribution of the measure-valued process associated with
the constructed particle process; that is of the Fleming-Viot process with diploid
selection.

3 Conditional predictive density

Let pn(x1, . . . , xn) be the exchangeable density associated with the Blackwell-MacQueen
urn-scheme as above. The hierarchical model induces a generalisation of pn via the
functions σ̃n(x, y), by writing

qn(x1, . . . , xn, Pn|y = 1) ∝ pn(x1, . . . , xn)
∏
k

σ̃n(xk, xjk
) (5)

where y = 1 denotes (y1 = 1, . . . , yn = 1), the conditioning on which will be from
now on implicit. Removing one element of the vector x1, . . . , xn, say xi, then the
predictive, jointly with Pn, is

qn(dxi, Pn|x−i) ∝ pn(dxi|x−i) σ̃n(xi, xji)

where x−i denotes (x1, . . . , xi−1, xi+1, . . . , xn). Now

qn(Pn|x−i) ∝
∫

pn(dxi|x−i) σ̃n(xi, xji);

and since from (5) we can write

qn(dxi|x−i, Pn) =
pn(dxi|x−i) σ̃n(xi, xji)∫
pn(dxi|x−i) σ̃n(xi, xji)

we obtain

qn(dxi|x−i) ∝
∑
j 6=i

qn(Pn|x−i)
pn(dxi|x−i) σ̃n(xi, xj)∫
pn(dxi|x−i) σ̃n(xi, xj)

∝ pn(dxi|x−i)
n∑

j 6=i

σ̃n(xi, xj).
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Thus we have

qn(dxi|x−i) =
pn(dxi|x−i)

∑n
j 6=i σ̃n(xi, xj)∫

pn(dxi|x−i)
∑n

j 6=i σ̃n(xi, xj)
. (6)

When pn is derived from the Dirichlet process prior, the predictive for xi is

pn(dx|x−i) =
θ ν0(dx) +

∑n
k 6=i δxk

(dx)
θ + n− 1

(7)

and the predictive (6) can be written,

qn(dxi|x−i) =
θ
∑n

j 6=i σ̃n(xi, xj) ν0(dxi) +
∑n

k 6=i

∑n
j 6=i σ̃n(xi, xj) δxk

(dxi)∫ (
θ
∑n

j 6=i σ̃n(xi, xj) ν0(dxi) +
∑n

k 6=i

∑n
j 6=i σ̃n(xi, xj) δxk

(dxi)
)

=
θn νn(dxi) +

∑n
k 6=i

∑n
j 6=i σ̃n(xi, xj) δxk

(dxi)
θn +

∑n
k 6=i

∑n
j 6=i σ̃n(xk, xj)

(8)

where θn and νn denote

θn = θ

∫ n∑
j 6=i

σ̃n(xi, xj) ν0(dxi) (9)

and

νn(dxi) =

∑n
j 6=i σ̃n(xi, xj) ν0(dxi)∫ ∑n
j 6=i σ̃n(xi, xj) ν0(dxi)

. (10)

Expression (8) will be the transition density of the Markov particle process, of
Section 5, and the full conditional distribution driving the Markov chain constructed
via a Gibbs sampler in the next section.

Observe in (8) that a larger σ̃n implies a larger probability for the the first
coordinate of being selected to update xi, that means the larger the σ̃n the higher
the fitness of the individual who is going to have an offspring. In population genetics
terms such a function describes the intensity of fertility selection. When σ̃n(x, y) ≡ 1
for all n we recover the Dirichlet case, that is (7).

Note that from (5) it is also possible to derive the distribution of the pairing.
Indeed

qn(Pn) ∝
∫

pn(x1, . . . , xn)
∏
k

σ̃n(xk, xjk
) dx1 . . .dxn

from which is also clear the key role of the selection function, in the sense that a
pair with higher fitness will give a higher value of σ̃n. Thus, those individuals which
are fitter when paired will increase the probability of that specific pair occurring.
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4 Gibbs sampling the model

Consider now a Gibbs sampler algorithm (see Gelfand and Smith, 1990) implemented
on

(x1, . . . , xn, µ)

where at each iteration x1, . . . , xn are sampled from the full conditionals (8), that is
qn(dxi|x−i), and µ is sampled from the Dirichlet process conditional on (x1, . . . , xn),
denoted by Πθ,ν0(·|x1, . . . , xn).

The stationary distribution of the En-valued Markov chain generated by (x1, . . . , xn)
is given by qn(x1, . . . , xn). Further, since

p̃n(y1 = 1, . . . , yn = 1|µ, Pn) =
{

n

∫∫
σ̃n(x, y)µ(dx)µ(dy)

}n/2

which does not depend on Pn, the stationary distribution of the chain of random
distribution functions is

Πn(dµ) ∝
{

n

∫∫
σ̃n(x, y)µ(dx)µ(dy)

}n/2

Πθ,ν0(dµ). (11)

Note that P(E) with Prohorov’s metric is separable and complete, so that {Πn, n ≥
1} is tight. If we now put

σ̃n(x, y) =
1
n

+
2
n2

σ(x, y)

and take the limit as n →∞, we obtain

Π∞(dµ) ∝ exp
{∫∫

σ(x, y)µ(dx)µ(dy)
}

Πθ,ν0(dµ)

which is the stationary distribution of the chain of random distribution functions
when the sample size grows to infinity, and is also the de Finetti measure of the
infinite exchangeable sequence (x1, x2, . . . ) .

5 The particle process and the associated measure-valued

process

In this section we construct an En-valued Markov particle process based on (8) and
an associated P(E)-valued process, derive their respective generators in a special
case for the function σ̃n, and show that in the limit for large n the latter converges
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to the generator of the Fleming-Viot process with diploid fertility selection.
Consider a vector of n particles. Instantaneously after each transition, a particle

xi, for 1 ≤ i ≤ n, is selected with uniform probability and a holding time is sampled
from an exponential distribution of parameter λn,i = λn(xi). At the next transition,
the ith particle is replaced with a random sample from (8). Since the holding time
depends on xi which belongs to the current state only, the process is clearly Markov.
Note that there is a Markov chain embedded at jump times, and since the transition
densities are given by qn(dxi|x−i), the chain is otherwise obtained by implementing
a Gibbs sampler on qn(x1, . . . , xn), of which (8) is the full conditional distribution.
This ensures that qn is the stationary distribution of either the En-valued chain and,
given that between jumps the vector is constant, the process.

The generator of the En-valued process is

Anf(x) =
n∑

i=1

πn
i λn,i

∫ [
f(ηi(x|y))− f(x)

]
×

(
θn νn(dy) +

∑n
k 6=i

∑n
j 6=i σ̃n(y, xj) δxk

(dy)
θn +

∑n
k 6=i

∑n
j 6=i σ̃n(xk, xj)

)

=
n∑

i=1

λn,i θn

n
(
θn +

∑n
k 6=i

∑n
j 6=i σ̃n(xk, xj)

) ∫ [fηi(x|y)− f(x)]νn(dy)

+
n∑

i=1

n∑
k 6=i

n∑
j 6=i

λn,i σ̃n(xk, xj)

n
(
θn +

∑n
k 6=i

∑n
j 6=i σ̃n(xk, xj)

) [fηi(x|xk)− f(x)]

where ηi(x|z) = (x1, . . . , xi−1, z, xi+1, . . . , xn). If we let the Poisson rate be

λn,i =
n
(
θn +

∑n
k 6=i

∑n
j 6=i σ̃n(xk, xj)

)
2

(12)

we obtain
n∑

i=1

1
2

θn

∫
[f(ηi(x|y))− f(x)]νn(dy) +

∑
1≤k 6=i6=j≤n

1
2

σ̃n(xk, xj)[f(ηi(x|xk))− f(x)].

(13)

Consider now a particular choice for σ̃n given earlier, i.e.

σ̃n(x, y) =
1
n

+
2
n2

σ(x, y) (14)

where σ is a bounded symmetric function on E2. Note that if σ(x, y) ≡ 0, then (9)
reduces to θ, (10) to ν0 and λn,i to n(θ +n− 1)/2, as in the neutral case (cf. Walker
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et al., 2007). Using also (9), (10) and (14) in (13) yields

Anf(x) =
n∑

i=1

n∑
j 6=i

1
2
θ

∫
[fηi(x|y)− f(x)]

(
1
n

+
2σ(y, xj)

n2

)
ν0(dy)

+
1
2n

∑
1≤k 6=i6=j≤n

[fηi(x|xk)− f(x)]

+
1
n2

∑
1≤k 6=i6=j≤n

σ(xk, xj)[fηi(x|xk)− f(x)]

=
1
n

n∑
i=1

n∑
j=1

G
n,σj

i f(x)

+
1
2

∑
1≤k 6=i≤n

[fηi(x|xk)− f(x)]

+
1
n2

∑
1≤k 6=i6=j≤n

σ(xk, xj)[fηi(x|xk)− f(x)]

where
Gn,σjf(x) =

1
2
θ

∫
[f(y)− f(x)]

(
1 +

2σ(y, xj)
n

)
ν0(dy)

and G
n,σj

i is the operator Gn,σj applied to the i-th coordinate.
As in Donnelly and Kurtz (1999), define now for m ≤ n the probability measure

on Em

µ(m) =
1

n(n− 1) . . . (n−m + 1)

∑
1≤i1 6=···6=im≤n

δ(xi1
,...,xim )

and for f ∈ B(En)
φ(µ) = 〈f, µ(n)〉

and
Anφ(µ) = 〈Anf, µ(n)〉

where 〈f, µ〉 =
∫

fdµ. Then the generator for the process of empirical measures in
the n-dimensional case is

Anφ(µ) =
1
n

n∑
i=1

n∑
j 6=i

〈Gn,σj

i f, µ(n)〉

+
1
2

∑
1≤k 6=i≤n

〈Φkif − f, µ(n)〉

+
1
n2

∑
1≤k 6=i6=j≤n

〈σk,j(·, ·)(Φkif − f), µ(n)〉
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where σk,j(·, ·) denotes σ(xk, xj), and Φkif is the function of f where the coordinate
at level k has replaced the coordinate at level i.

Observe now that for f ∈ B(Em), m < n,

n∑
i=m+1

n∑
j 6=i

〈Gn,σj

i f, µ(m)〉 = 0,

n∑
i=m+1

n∑
k 6=i

〈Φkif − f, µ(n)〉 = 0

and
n∑

i=m+1

n∑
k 6=i

n∑
j 6=i

〈σk,j(·, ·)(Φkif − f), µ(n)〉

given that in all cases xi is not an argument of f and thus f does not change, and
also

m∑
i=1

n∑
k=m+1

〈Φkif − f, µ(n)〉 = 0

given that
〈Φkif, Z(n)

n 〉 = 〈f, Z(n)
n 〉

when xk is not an argument of f . Hence, when f ∈ B(Em), m < n,

Anφ(µ) =
1
n

m∑
i=1

m∑
j 6=i

〈Gn,σj

i f, µ(m)〉 (15)

+
n−m

n

m∑
i=1

〈Gn,σm+1

i f, µ(m+1)〉

+
1
2

∑
1≤k 6=i≤m

〈Φkif − f, µ(m)〉

+
1
n2

∑
1≤k 6=i6=j≤m

(
〈σkj(·, ·)Φkif, µ(m)〉 − 〈σkj(·, ·)f, µ(m)〉

)
+

n−m

n2

m∑
i=1

m∑
j 6=i

(
〈σij(·, ·)f, µ(m)〉 − 〈σ·j(·, ·)f, µ(m+1)〉

)
+

n−m

n2

∑
1≤k 6=i≤m

(
〈σk·(·, ·)Φkif, µ(m+1)〉 − 〈σk·(·, ·)f, µ(m+1)〉

)
+

(n−m)2

n2

m∑
i=1

(
〈σi·(·, ·)f, µ(m+1)〉 − 〈σ(·, ·)⊗ f, µ(m+2)〉

)
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where
σh·(·, ·)f = σ(xh, xm+1)f(x1, . . . , xm)

and
σ(·, ·)⊗ f = σ(xm+1, xm+2)f(x1, . . . , xm).

Note that in the fifth term we have σij since with the operator Φki the particle at
level i in f is now xk, which is also the difference between the two f in the last term,
which justifies the different dimension of integration.

Given now that

Gn,σjf(x) =
1
2
θ

∫
[f(y)− f(x)]

(
1 +

2σ(y, xj)
n

)
ν0(dy)

converges to

Gf(x) =
1
2
θ

∫
[f(y)− f(x)]ν0(dy)

we have that
〈Gn,σm+1

i f, µ(m+1)〉

converges to
〈Gif, µ(m+1)〉 = 〈Gif, µ(m)〉

due to the fact that the (m + 1)-th dimension in (16) vanishes in the limit.
Since in addition, for large n, µ(m) is essentially the product measure, the limiting

operator is

Aφ(µ) =
m∑

i=1

〈Gif, µm〉+
1
2

∑
1≤k 6=i≤m

〈Φkif − f, µm〉 (16)

+
m∑

i=1

(
〈σi·(·, ·)f, µ(m+1)〉 − 〈σ(·, ·)⊗ f, µ(m+2)〉

)
which is the generator of the Fleming-Viot process with diploid fertility selection.
For relative compactness conditions and weak convergence see Donnelly and Kurtz
(1999).

Observe that for σ ≡ 0, i.e. when there is no selection, (16) reduces to the
generator of the neutral Fleming-Viot, whose stationary distribution is the Dirich-
let process. This is coherent with the generalisation of the predictive distribution
described in Section 3, since σ ≡ 0 reduces the new predictive to the the Blackwell-
MacQueen case.
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6 Stationary distribution

As stated in the introduction, it was shown by Ethier and Kurtz (1994) that the
measure-valued process with generator (16) has stationary distribution given by (3).
In this section we provide a different proof of this result, based on the construction
of the previous sections. In particular, in Section 4 the use of the Gibbs sampler
together with the hierarchical framework introduced in Section 2, enabled us to
elicit the stationary distribution of the chain of random distribution functions. What
remains to do is to connect the de Finetti measure of the sequence with the empirical
measure of the particle, when the population size goes to infinity.

Theorem 6.1. Let E be a locally compact complete separable metric space, and
let {µt, t ≥ 0} be the Fleming-Viot process on P(E) with generator given by (16).
Then

Π∞(dµ) = C exp
{∫

E2

σ(x, y) µ(dx)µ(dy)
}

Πθ,ν0(dµ) (17)

is the stationary distribution of {µt, t ≥ 0}, where Πθ,ν0 denotes the Dirichlet process
with parameters (θ, ν0) and C is a constant.

Proof. Since the transition density of the En-valued particle process is given by
(8), it follows that (x1, . . . , xn|µ, y1 = 1, . . . , yn = 1) are i.i.d. µ and µ ∼ Πn, where
Πn is (11), from which

lim
n→∞

1
n

n∑
i=1

δxi

has distribution Π∞ (see for example Aldous, 1985). That is, for fixed t ≥ 0 the
limiting distribution for large n of the empirical measure of the particles (x1, . . . , xn)
is given by the de Finetti measure of the infinite exchangeable sequence (x1, x2, . . . )
conditional on (y1 = 1, y2 = 1, . . . ). Also, as noted in Section 5, the measure valued
process is constant between two consecutive jumps of the particle process, and this
implies that Πn is the de Finetti measure of the particles in every t ≥ 0.

Since further the CP(E)[0,∞) martingale problem for A is well posed (cf. Ethier
and Kurtz, 1993), the result follows from Lemma 4.9.1 of Ethier and Kurtz (1986).
�

Clearly, when σ(x, y) ≡ 0 we recover the Dirichlet process.
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7 Haploid case

The Fleming-Viot process with haploid fertility selection has got generator given by

1
2

∑
1≤i6=j≤m

(
〈Φijf, µm−1〉 − 〈f, µm〉

)
+

m∑
j=1

〈Gjf, µm〉 (18)

+
m∑

j=1

(
〈σj(·)f, µm〉 − 〈σ(·)⊗ f, µm+1〉

)
where σj(·) denotes σ(xj) and σ(·)⊗ f denotes σ(xm+1)f(x1, . . . , xm) (cf. Donnelly
and Kurtz, 1999). Its stationary distribution is

Π(dµ) = Ce2〈σ,µ〉Πθ,ν0(dµ) (19)

where 〈σ, µ〉 =
∫

σ(x)µ(dx). Note that (19) is a special case of (3), when σ(x, y) =
σ(x) + σ(y). See also Ethier and Shiga (2000).

A construction analogous to that exposed so far can be done starting from the
following Dirichlet process mixture model:

pn(y1 = 1, . . . , yn = 1|x1, . . . , xn) =
n∏

i=1

σ̃n(xi) (20)

x1, . . . , xn|µ
i.i.d.∼ µ

µ ∼ Πθ,ν0 .

From this we obtain

p(x1, . . . , xn|y1 = 1, . . . , yn = 1) ∝ p(x1, . . . , xn)
n∏

i=1

σ̃n(xi)

from which the (n− 1) predictive density for

p(x1, . . . , xn|y1 = 1, . . . , yn = 1) = qn(x1, . . . , xn)

can be written

qn(dx|x1, . . . , xj−1, xj+1, . . . , xn) =
θn νn(dx) +

∑n
i6=j σ̃n(xi) δxi(dx)

θn +
∑n

i6=j σ̃n(xi)
(21)

where
θn = θ

∫
σ̃n(x) ν0(dx) (22)
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and
νn(dx) =

σ̃n(x) ν0(dx)∫
σ̃n(x) ν0(dx)

. (23)

Defining a Markov particle process as in Section 5, where now the transition density
for the new particle is given by (21), and letting

λn,j =
n
(
θn +

∑
i6=j σ̃n(xi)

)
2

we obtain
n∑

j=1

1
2
θn

∫
[fηj(x|y)− f(x)]νn(dy) +

∑
1≤i6=j≤n

1
2
σ̃n(xi)[fηj(x|xi)− f(x)].

Consider now a particular choice for σ̃n, that is

σ̃n(x) = 1 +
2
n

σ(x)

where σ is a bounded nonnegative measurable function on E; this yields

Anf(x) =
n∑

j=1

1
2
θ

∫
[fηj(x|y)− f(x)]{1 + 2σ(y)/n}ν0(dy)

+
1
2

∑
1≤i6=j≤n

[fηj(x|xi)− f(x)] +
∑

1≤i6=j≤n

n−1σ(xi)[fηj(x|xi)− f(x)].

Proceeding as in Section 5 we can derive the generator for the process of the empirical
measures in the n-dimensional case

Anφ(µ) =
n∑

j=1

〈Gn
j f, µ(n)〉+

1
2

∑
1≤i6=j≤n

〈Φijf − f, µ(n)〉 (24)

+
∑

1≤i6=j≤n

n−1σ(xi)〈Φijf − f, µ(n)〉

where
Gnf(x) =

1
2
θ

∫
[f(z)− f(x)]{1 + 2σ(z)/n}ν0(dz). (25)

When f ∈ B(Sm), m < n

Anφ(µ) =
m∑

j=1

〈Gn
j f, µ(m)〉+

1
2

∑
1≤i6=j≤m

〈Φijf − f, µ(m)〉

+
1
n

∑
1≤i6=j≤m

(
〈σi(·)Φijf, µ(m)〉 − 〈σi(·)f, µ(m)〉

)
+

n−m

n

m∑
j=1

(
〈σj(·)f, µ(m)〉 − 〈σ(·)⊗ f, µ(m+1)〉

)
.

14



The limiting operator hence is

Aφ(µ) =
m∑

j=1

〈Gjf, µm〉+
1
2

∑
1≤i6=j≤m

〈Φijf − f, µm〉 (26)

+
m∑

j=1

(
〈σj(·)f, µm〉 − 〈σ(·)⊗ f, µm+1〉

)
.

where Gn has been replaced by G, defined in (1).
Following an analogous procedure to that used in the proof of Theorem 6.1, one

can show that the stationary distribution of the Fleming-Viot process with generator
(26) is (19), as we know from Ethier and Kurtz (1994) and Ethier and Shiga (2000).

8 Discussion

This paper provides an explicit construction of the Fleming-Viot process with fer-
tility selection in a Bayesian nonparametric framework. The construction shows
how to tackle a specific class of population genetics problems with instruments that
are widely used in Bayesian settings, like urn schemes, the Gibbs sampler and the
Dirichlet process mixture model, hence pointing out useful connections between
the two fields. We believe that the used techniques simplify the investigation of
Fleming-Viot processes, especially for what regards the elicitation of the stationary
distribution, and shed new light on the connections between the empirical measure
of the particle and the de Finetti measure underlying the model, thus clarifying the
role of the individuals with respect to the measure-valued process from a Bayesian
viewpoint.
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