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Abstract

This paper develops nonparametric estimation for discrete choice models based on the Mixed Multi-

nomial Logit (MMNL) model. It has been shown that MMNL models encompass all discrete choice

models derived under the assumption of random utility maximization, subject to the identification

of an unknown distribution G. Noting the mixture model description of the MMNL, we employ a

Bayesian nonparametric approach, using nonparametric priors on the unknown mixing distribution

G, to estimate the unknown choice probabilities. Theoretical support for the use of the proposed

methodology is provided by establishing strong consistency of a general nonparametric prior on G

under simple sufficient conditions. Consistency is defined according to a L1-type distance on the

space of choice probabilities and is achieved by extending to a regression model framework a recent

approach to strong consistency based on the summability of square roots of prior probabilities.

Moving to estimation, slightly different techniques for non-panel and panel data models are dis-

cussed. For practical implementation, we describe efficient and relatively easy to use blocked Gibbs

sampling procedures. A simulation study is also performed to illustrate the proposed methods and

the flexibility they achieve with respect to parametric Gaussian MMNL models.

Keyword: Bayesian consistency, Bayesian nonparametrics, Blocked Gibbs sampler, Discrete

choice models, Mixed Multinomial Logit, Random probability measures, Stick-breaking priors.
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1 Introduction

Discrete choice models arise naturally in many fields of applications, including marketing and trans-

portation science. Such choice models are based on the neoclassical economic theory of random utility

models (RUMs). Given a finite set of choices Φ = {1, . . . , J}, it is assumed that each individual has a

utility function

Uj = x′jβ + εj , for j ∈ Φ.

The values x = (x1, . . . ,xJ) are observed covariates, where xj ∈ Rd denotes the covariates associated

with each choice {j} ∈ Φ, the coefficient β is an unknown (preference) vector in Rd, and (ε1, . . . , εJ)

are random terms. Suppose that all Uj are distinct and that individual makes a choice {j} if and only

if Uj > Ul ∀l 6= j. The introduction of the random error terms εj ’s represents the departure from

classical economic utility models. The random errors account for the discrepancy between the actual

utility, which is known by the chooser, and that which is deduced by the experimenter who observes x

and the choice made by the individual. Hence, the deterministic statement of choice {j} is replaced by

the probability of choosing {j}, that is P{Uj > Ul ∀l 6= j}. The analysis of such a model depends on

the specifications of the errors. McFadden (1974) shows that the specification of independent Gumbel

error terms leads to the tractable Multinomial Logit (MNL) Model. This representation is written as

P({j} | β,x) =
exp{x′jβ}∑
l∈Φ exp{x′lβ}

for j ∈ Φ.

The MNL possesses the property of independence from irrelevant alternatives (IIA), which makes it

inappropriate in many situations. The probit and the generalized extreme value models have been

proposed as alternatives to the MNL, which do not exhibit the IIA property and are models derived

from dependent error structures. A drawback of the above mentioned procedures is that they are not

robust against model miss-specification.

The Mixed Multinomial Logit (MMNL) model, first introduced by Cardell and Dunbar (1980),

emerges as potentially the most attractive model. The book of Train (2003) gives a detailed discussion

of this model. The general MMNL choice probabilities are defined by mixing a MNL model over a

mixing distribution G. For a set of covariates x, the MMNL model is written as

P({j} | G,x) =
∫
Rd

exp{x′jβ}∑
l∈Φ exp{x′lβ}

G(dβ) for j ∈ Φ. (1)

McFadden and Train (2000) establish the important result that in theory all RUMs can be captured

by correct specification of G. Thus, a robust approach amounts to being able to employ statistical
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estimation methods based on a nonparametric assumption on G. However, statistical techniques have

only been developed for the case where G is given a parametric form. The most popular model is

when G is specified to be multivariate normal with unknown mean µ and covariance matrix τ :

P({j} | µ, τ ,x) =
∫
Rd

exp{x′jβ}∑
l∈Φ exp{x′lβ}

φ(β|µ, τ )dβ for j ∈ Φ, (2)

where φ(β|µ, τ ) represents a multivariate normal density with parameters µ and τ . We shall term

this model a Gaussian Mixed Logit (GML) model. Here, based on a sample of size n, one estimates

the choice probabilities by estimating µ and τ . Applications and discussions are, among others, in

Bhat (1998), Brownstone and Train (1999), Erdem (1996), Srinivasan and Mahmassani (2005) and

Walker, Ben-Akiva and Bolduc (2007). Additionally, Dubé et al. (2002) provide a discussion focused

on applications to marketing. The GML model is popular since it is flexible and relatively easy to

estimate via simulated maximum likelihood techniques or via Bayesian MCMC procedures. Other

choices for G include the lognormal and uniform distributions. Train (2003) discusses the merits and

possible drawbacks of Bayesian MCMC procedures versus simulated maximum likelihood procedures

for various choices of G. However, despite the attractive features of the GML, it does not encompass

all RUMs, hence, it is not robust against miss-specification.

In this article, we develop a nonparametric Bayesian method for the estimation of the choice prob-

abilities and we prove consistency for the posterior distribution. The idea is to model the mixing

distribution G via a random probability measure in order to fully exploit the flexibility of the MMNL

model. Many nonparametric priors are nowadays available for modeling G, like stick-breaking priors,

normalized random measures with independent increments and Dirichlet process mixtures. We estab-

lish consistency of the posterior distribution of G under neat sufficient conditions which are readily

verifiable for all these nonparametric priors. Consistency is defined according to a L1-type distance

on the space of choice probabilities by exploiting the square root approach to strong consistency of

Walker (2003a, 2004). We essentially show that the MMNL model is consistent if the prior on G

has the true mixing distribution in its weak support and satisfies a mild condition on the tails of the

prior predictive distribution. Then, we move to estimation and divide our discussion into methods for

non-panel and panel data. Specifically, for non-panel data models we use, as a prior for G, a mixture

of Dirichlet processes. Methods for panel data involve instead a Dirichlet mixture of normal densities.

For practical implementation, we describe efficient and relatively easy to use blocked Gibbs sampling

procedures, developed in Ishwaran and Zarepour (2000) and Ishwaran and James (2001).

The rest of the paper is organized as follows. In Section 2 we describe the Bayesian nonparametric
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approach by placing a nonparametric prior on the mixing distribution and present the consistency

result for the posterior distribution of G. In Section 3 we show how to implement a blocked Gibbs

sampling for drawing inference when a discrete nonparametric prior is used. Section 4 deals with

panel data with similar Bayesian nonparametric methods, where we define a class of priors for G that

preserves the distinct nature of individual preferences and specialize the blocked Gibbs sampler to

this setting. In Section 5 we provide an illustrative simulation study which shows the flexibility and

good performance of our procedure versus the parametric GML model. Finally, in Section 6 we give

a detailed proof of consistency.

2 Bayesian MMNL models

A Bayesian nonparametric model for the MMNL is specified by placing a nonparametric prior on the

mixing distribution G in (1):

P({j} | G̃,x) =
∫
Rd

exp{x′jβ}∑
l∈Φ exp{x′lβ}

G̃(dβ) for j ∈ Φ. (3)

Here G̃ denotes a random probability measure which takes values over the space P of probability

measures on Rd, the former endowed with the weak topology. The nonparametric distribution of G̃

is denoted by P. Model (3) can be equivalently expressed in hierarchical form as

Yi | βi
ind∼

exp{x′iYiβi}∑
j∈Φ exp{x′ijβi}

, for i=1, . . . , n, and Yi∈Φ,

βi | G̃
iid∼ G̃, for i=1, . . . , n, (4)

G̃ ∼ P

with xi = (xi1, . . . ,xiJ) the covariates and Yi the choice observed for individual i.

One can choose G̃ to be a Dirichlet process (Ferguson 1973), although there exist nowadays other

nonparametric priors that can be used, like stick-breaking processes (Ishwaran and James 2001) and

normalized random measure with independent increments (NRMI) (Regazzini, Lijoi and Prünster

2003). All these priors select discrete distribution almost surely (a.s.), whereas random probability

measures whose support contains continuous distributions can be obtained by using a Dirichlet process

mixture of densities in the spirit of Lo (1984). An important role in the sequel will be played by the

prior predictive distribution of G̃, say H, which is an element of P and is defined by

H(B) := E[G̃(B)] = P{β ∈ B}, (5)
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for all Borel set B of Rd, where E(·) denotes expectation. In the next section we show that an essential

condition for consistency of the posterior distribution is expressed in terms of H. This yields an easy

to use criterion for the choice of the prior for G̃ as H is readily obtained for all the nonparametric

priors listed above. Furthermore, one can embed a parametric model, such as the GML, within the

nonparametric framework via a suitable specification of the distribution H.

2.1 Posterior consistency

Bayesian consistency deals with the asymptotic behavior of posterior distributions with respect to

repeated sampling. The problem can be set in general terms as follows: suppose the existence of a

”true” unknown distribution P0 that generates the data, then check whether the posterior accumulates

in suitably-defined neighborhoods of P0. There exist two main approaches to the study of strong

consistency, that is consistency when the neighborhood of P0 is defined accordingly to the Hellinger

metric on the space of density functions. One is based on the metric entropy of the parameter space

and was set forth in Barron, Schervish and Wasserman (1999) and Ghosal, Ghosh and Ramamoorthi

(1999). The second approach was introduced by Walker (2003a, 2004) and has a more Bayesian flavor

in the sense that it relies on the summability of square roots of prior probabilities. For discussion the

readers is referred to Wasserman (1998), Walker, Lijoi and Prünster (2005) and Choudhuri, Ghosal

and Roy (2005). Strong consistency in mixture models for density estimation is addressed by Ghosal,

Ghosh and Ramamoorthi (1999) and Lijoi, Prünster and Walker (2005) by using the metric entropy

approach and the square root approach, respectively. As for the non-identically distributed case, we

mention Choi and Schervish (2007), Ghosal and Roy (2006). All these papers follow the metric entropy

approach. The square root approach is adopted by Walker (2003b) for nonparametric regression models

and by Ghosal and Tang (2006) for estimating transition densities in the context of Markov processes.

We face the issue of consistency for the MMNL model (3) by exploiting the square root approach

of Walker and its variation proposed in Lijoi, Prünster and Walker (2005) which makes use of metric

entropy in an instrumental way. We assume the existence of a G0 ∈ P such that the true distribution

of Y given X = x is given by

P0({j} | x) =
∫
Rd

exp(x′jβ)∑
l∈Φ exp(x′lβ)

G0(dβ).

The variables Xi’s are taken as independent draws from a common distribution M(dx) which is

supported on X ⊂ RJd. The distribution of an infinite sequence (Yi,Xi)i≥1 will be then denoted by
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P∞(G0,M). The posterior distribution of G̃ is given by

Pn(A) = P{G̃ ∈ A | (Y1,X1), . . . , (Yn,Xn)}

for any measurable set A of P. We give conditions on G0 and the prior predictive distribution of

P such that the posterior distribution Pn concentrates all probability mass in neighborhoods of G0

defined according to strong consistency of choice probabilities. To this aim, we look at the vector of

choice probabilities as a vector-valued function q : X → ∆, where ∆ is the J-dimensional probability

simplex. We define

q(x;G) =
[
P({1} | G,x), . . . ,P({J} | G,x)

]
, (6)

for any G ∈ P. On the space Q = {q(x;G) : G ∈ P} we define the L1-type distance

d(q1,q2) =
∫
X
|q1(x)− q2(x)|M(dx), (7)

where | · | stays for the Euclidean norm in ∆.

Definition 1 . P is consistent at G0 if, for any ε > 0,

Pn{G : d
(
q(· ;G),q(· ;G0)

)
> ε} → 0 a.s.– P∞(G0,M).

The main result is stated in the following theorem.

Theorem 1 . Let P be a prior on P with predictive distribution H and G0 be in the weak support

of P. Suppose that X is a compact subset of RJd. If

(i) P0({j} | x) > 0 for any j ∈ Φ and x ∈ X ,

(ii)
∫
Rd |β|H(dβ) < +∞,

then P is consistent at G0.

The compactness of the covariate space is a standard assumption in nonparametric regression problems.

Condition (i) is fairly reasonable, since it is guaranteed by a correct specification of the RUM: one can

always redefine the set of choices or the covariate space to fulfilled this requirement. Condition (ii) is

a mild condition on the tails of the prior predictive distribution H: it is satisfied by any distribution

with tails lighter than the Cauchy distribution.
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2.2 Illustration

It is worth considering Condition (ii) more in details for a variety of Bayesian MMNL models, obtained

from different specification of P. When G̃ is taken to be a Dirichlet process with base measure α = aF ,

where a > 0 is a constant and F ∈ P, then F coincides with H in (5). A larger class of Bayesian

MMNL models arise when G̃ is chosen to be a stick-breaking prior:

G̃(·) =
∑
k≥1

pkδZk(·) (8)

where the pk are positive random probabilities chosen to be independent of Zk and such that
∑

k≥1 pk =

1 a.s.. The Zk’s are random locations taken as independent draws from some nonatomic distribution

F in P. What characterizes a stick-breaking prior is that the random weights are expressible as

pk = Vk
∏k−1
i=1 (1 − Vi), where Vk’s are independent Beta(ak, bk) random variables for ak, bk > 0.

Examples of random probability measures in this class are given in Ishwaran and James (2001), see

also Pitman and Yor (1997) and Ishwaran and Zarepour (2000). They represent extensions of the

Dirichlet process, which has ak = 1 and bk = a ∀k, and they all have in common that the prior

predictive distribution H coincides with F .

The class of NRMI is another valid choice for P. Specifically, one can take G̃(·) = µ̃(·)/µ̃(Rd),

where µ̃ is a completely random measure with Poisson intensity measure ν(dv,dz) = ρ(dv|z)α(dz) on

(0,+∞)×Rd. Here ρ(· |z) is a Lévy density on (0,+∞) for any z and α is a finite measure on Rd such

that ψ(u) :=
∫
Rd×R+(1− e−uv)ρ(dv|z)α(dz) <∞, which is needed for guaranteeing that µ̃(Rd) <∞

a.s.. It can be shown that H(B) =
∫
B

∫ +∞
0 e−ψ(u)

{ ∫ +∞
0 e−uvvρ(dv|z)

}
duα(dz) for any Borel set B

of Rd. See also James, Lijoi and Prünster (2005). When ρ(dv|z) = ρ(dv) for each z (homogeneous

case), the prior predictive distribution reduces to

H(B) =
α(B)
α(Rd)

for any Borel B ⊂ Rd. (9)

The homogeneous NRMI includes, as a special case, the Dirichlet process and belongs, together with

the stick-breaking priors, to the class of species sampling models, for which (9) holds for some finite

measure α. Note that all the nonparametric priors belonging to this class allow an easy verification

of condition (ii).

The specification of the nonparametric prior in terms of a base measure α as in (9) allows to

introduce more flexibility via an additional level in the hierarchal structure (4). If we let the base

measure be indexed by a parameter θ, say αθ, and θ be random with probability density π(θ) on some
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Euclidean space Θ, then we obtain a mixture of Dirichlet process in the spirit of Antoniak (1974).

Then, Condition (ii) has to be verified for the convolution

H(B) =
∫

Θ

∫
B
Hθ(dz) π(θ)dθ, where Hθ(dz) =

αθ(dz)
αθ(Rd)

. (10)

It is quite straightforward to check that condition (ii) holds for the mixture of Dirichlet processes

implemented in the analysis of non-panel data of Section 3.

Finally, consider the case of Dirichlet process mixture models of Lo (1984), where G̃ is absolutely

continuous with respect to the Lebesgue measure on Rd with random density function specified as∫
ΘK(β, θ)Π̃(dθ). Here K(β, θ) is a nonnegative kernel defined on Rd ×Θ such that, for each θ ∈ Θ,∫
Rd K(z, θ)dz = 1, while Π̃ is a Dirichlet process prior with base measure aF and F a probability

measure on Θ. The distribution H is then absolutely continuous and is given by

H(B) =
∫
B

∫
Θ
K(z, θ)F (dθ) dz.

As in (10), verifying condition (ii) requires to study the tail properties of a convolution, this time

of K(z, θ) with respect to F (dθ). In the analysis of panel data, see Section 4, we adopt a Dirichlet

mixture model as continuous nonparametric prior for G̃ where the verification of (ii) can be readily

established.

3 Implementation for non-panel data

Assume we have a single observation for each individual and we want to account for the possibility

of ties among different individuals’ preferences. Therefore, we use a discrete nonparametric prior

for the mixing distribution. Take G̃ to be a Dirichlet process with base measure aF and denote its

law by P(dG|aF ), although the treatment can be easily extended to any other stick breaking prior.

Then, representation (8) holds with random probabilities p1, p2, . . . at locations Z1, Z2, . . . which are

iid draws from F . This translates into a Bayesian model for the MMNL as

P({j} | G̃,x) =
∑
k≥1

pk
exp{x′jZk}∑
l∈Φ exp{x′lZk}

for j ∈ Φ. (11)

One can then center G̃ on a parametric model like the GML in (2) by taking F to have normal density

φ(β|µ, τ ). In a parametric Bayesian framework, by placing priors on µ, τ , one is able to get posterior

estimates of µ, τ , but inference is restricted to the assumption of the GML model. The flexibility of
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the Bayesian nonparametric approach allows one to choose F based on convenience and ease of use and

to utilize, for instance, the attractive features of GML models while still maintaining the robustness

of a nonparametric approach.

In the case of the Dirichlet process, the parameters associated with F , for instance µ and τ , are

considered fixed. As observed in Section 2, one can introduce more flexibility in the model by treating

such parameters as random. Specifying θ = (µ, τ ), Fθ(dβ) to have density φ(β|θ)dβ and π(θ) the

density function for θ, the law of G̃ is given by the mixture
∫

Θ P(dG|aFθ)π(dθ). Equivalently, using

(8), a mixture of Dirichlet processes is defined by specifying each Zk | θ to be iid Fθ. Notice that,

conditional on θ, a prior guess for the choice probabilities is

E
[
P({j} | G̃,x) | θ

]
=
∫
Rd

exp{x′jβ}∑
l∈Φ exp{x′lβ}

Fθ(dβ) for j ∈ Φ. (12)

By the properties of the Dirichlet process, the prediction rule for the choice probabilities given

β1, . . . ,βn is given by

E
[
P({j} | G̃,x) | θ,β1, . . . ,βn

]
=

a

a+ n
P({j} | Fθ,x) +

n∑
i=1

1
a+ n

exp{x′jβi}∑
l∈Φ exp{x′lβi}

. (13)

where P({j} | Fθ,x) := E
[
P({j} | G̃,x) | θ

]
is given in (12) with a notation consistent with (1).

However, the variables βi’s are not observable, and hence one needs to implement computational

procedures to draw from their posterior distribution.

In this framework, a reasonable algorithm to use is the blocked Gibbs sampler developed in Ish-

waran and Zarepour (2000) and Ishwaran and James (2001). Indeed, since the multinomial logistic

kernel does not form a conjugate pair for β, marginal algorithms suffer from slow convergence, although

strategies for overcoming this problem can be found in MacEachern and Muller (1998).

3.1 Blocked Gibbs sampling

In this section we discuss how to implement a blocked Gibbs sampling algorithm for drawing inference

on a nonparametric hierarchical model with the structure

Yi | βi
ind∼ L(Yi,βi), for i = 1, . . . , n, and Yi ∈ Φ,

βi | G̃
iid∼ G̃, for i = 1, . . . , n, (14)

G̃ | θ ∼ P(dG|aFθ),

θ ∼ π(dθ),
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where L(Yi,β) = exp{x′iYiβ}/
∑

j∈Φ exp{x′ijβ} is the probability for Yi conditional on βi. The blocked

Gibbs sampler utilizes the fact that a truncated Dirichlet process, discussed in Ishwaran and Zarepour

(2000) and Ishwaran and James (2001), serves as a good approximation to the random probability

measure G̃ | θ in (14). We replace the conditional law P(dG|aFθ) with the law of the random

probability measure

G̃(·) =
N∑
k=1

pkδZk(·) 1 ≤ N <∞, (15)

where Zk | θ are iid Fθ and the random probabilities p1, . . . , pN are defined by the stick-breaking

construction

p1 = V1 and pk = (1− V1) · · · (1− Vk−1)Vk, k = 2, . . . , N (16)

with V1, V2, . . . , VN−1 iid Beta(1, a) and VN = 1, which ensures that
∑N

k=1 pk = 1. The law of G̃ | θ

in (15) is referred to as truncated Dirichlet process and will be denoted as PN(dG|αFθ). Moreover,

the limit as N →∞ will converge to a random probability measure with law P(dG|aFθ). Indeed, the

method yields an accurate approximation of the Dirichlet process for N moderately large since the

truncation is exponentially accurate. Theorem 2 in Ishwaran and James (2001) provides an L1–error

bound for the approximation of conditional density of Y = (Y1, . . . , Yn) given θ. Let

µN(Y|θ) =
∫ [ n∏

i=1

∫
Rd
L(Yi,βi)G(dβi)

]
PN(dG|aFθ)

and µ(Y|θ) its limit under the prior P(dG|aFθ). Then, one has

∥∥µN − µ∥∥
1

:=
∫ ∣∣µN(Y|θ)− µ(Y|θ)

∣∣dY ∼ 4ne−(N−1)/a ,

where the integral above is considered over the counting measure on the n-fold product space Φn. See

Ishwaran and James (2001) for more details.

The key to working with random probability measures like (15) is that it allows to perform blocked

updates for p = (p1, . . . , pn) and Z = (Z1, . . . , Zn) by recasting the hierarchical model (14) completely

in terms of random variables. To this aim, define the classification variables K = {K1, . . . ,Kn} such

that, conditional on p, each Ki is independent with distribution

P{Ki ∈ · | p} =
N∑
k=1

pkδk(·).

That is P{Ki = k | p} = pk for k = 1, . . . , N so that Ki identifies the Zk associated with each βi:

βi = ZKi . In this setting a sample β1, . . . ,βn from (15) produces n0 ≤ min(n,N) distinct values.
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The blocked Gibbs algorithm is based on sampling K,p,Z, θ from the distribution proportional to[
n∏
i=1

L(Yi,βi)

][
n∏
i=1

N∑
k=1

pkδZk(dβi)

]
π(p)

[
N∏
k=1

Fθ(dZk)

]
π(dθ),

where π(p) denotes the distribution of p defined in (16). This augmented likelihood is an expression

of the augmented density when P(dG|aFθ) is replaced by PN(dG|aFθ).

Before describing the algorithm, we specify choices for Fθ and θ which agree with the GML model.

Set θ = (µ, τ ) and specify the density of Fθ to be φ(β|µ, τ ). Let λ denote a positive scalar. We choose

a Multivariate Normal-Inverse Wishart distribution for µ, τ , where specifically µ | τ is a Multivariate

Normal vector with mean parameter m and scaled covariance matrix λ−1τ and τ is drawn from an

Inverse-Wishart distribution with degrees of freedom ν0 and scale matrix S0. Denote this distribution

for µ, τ as N-IW(m, λ−1τ , ν0,S0). Our specification is similar to that used in Train (2003, Chapter

12) for a parametric GML model for panel data.

Algorithm 1

1. Conditional draw for K. Independently sampleKi according to P{Ki ∈ ·|p,Z,Y} =
∑N

k=1 pk,i δk(·),

for i = 1, . . . , n, where

(p1,i, . . . , pN,i) ∝
(
p1L(Yi, Z1), . . . , pNL(Yi, ZN )

)
.

2. Conditional draw for p. p1 = V ∗1 , pk = (1− V ∗1 ) · · · (1− V ∗k−1)V ∗k , k = 2, . . . , N − 1 and V ∗N = 1

where, if ek records the number of Ki values which equal k,

V ∗k
ind∼ Beta

(
1 + ek, a+

∑N
l=k+1 el

)
, k = 1, . . . , N − 1.

3. Conditional draw for Z. Let {K∗1 , . . . ,K∗n0
} denote the unique set of Ki values.

For each k /∈ {K∗1 , . . . ,K∗n0
} draw Zk | µ, τ from the prior Multivariate Normal density φ(Z|µ, τ ).

For j = 1, . . . , n0, draw ZK∗
j

:= β∗j from the density proportional to φ(β∗j |µ, τ )
∏
{i :Ki=K∗

j }
L(Yi,β∗j )

by using, for example, a standard Metropolis-Hastings procedure.

4. Conditional draw for θ = (µ, τ ). Conditional on τ ,K,Z,Y, draw µ from a Multivariate Normal

distribution with parameters
λm + n0β̄n0

λ+ n0
and

τ

λ+ n0
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where β̄n0
= n−1

0

∑n0
j=1 β∗j . Conditional on K,Z,Y, draw τ from and Inverse–Wishart distribu-

tion with parameters

ν0 + n0 and
ν0S0 + n0Sn0 +R(β̄n0

,m)
ν0 + n0

,

where

Sn0 =
1
n0

n0∑
j=1

(β∗j − β̄n0
)(β∗j − β̄n0

)′ and R(β̄n0
,m) =

λn0

λ+ n0
(β̄n0

−m)(β̄n0
−m)′.

Notice that, when n0 = 1, Steps 3 and 4 reduce to the MCMC steps for a parametric Bayesian

model. Iterating the steps above produces a draw from the distribution Z,K,p, θ | Y. Thus, each

iteration m defines a probability measure G(m)(·) =
∑N

k=1 p
(m)
k δ

Z
(m)
k

(·), which eventually approximates

draws from the posterior distribution of G̃ | Y. Consequently, one can approximate the posterior

distributional properties of the choice probabilities P({j} | G̃,x) by constructing (iteratively)

P({j} | G(m),x) =
N∑
k=1

p
(m)
k

exp{x′jZ
(m)
k }∑

l∈Φ exp{x′lZ
(m)
k }

,

see (11). For instance, an histogram of the P({j} | G(m),x), for m = 1, . . . ,M , approximates the

posterior distribution. An approximation to the posterior mean E[P({j} | G̃,x) | Y] is obtained by

M−1
∑M

m=1 P({j} | G(m),x) or, alternatively, by

P̂ ({j} | x) :=
1
M

M∑
m=1

E
[
P({j} | G̃,x) | θ(m),β

(m)
1 , . . . ,β(m)

n

]
. (17)

where E
[
P({j} | G̃,x) | θ,β1, . . . ,βn

]
is given in (13) and β

(m)
i = Z

(m)

K
(m)
i

.

4 Bayesian modeling for panel data

The MMNL framework may also be used to model choice probabilities based on panel data. In the

panel data setting, each individual i is observed to make a sequence of choices at different time points.

The random utility for choosing j for individual i in choice situation t is given by

Uij t = x′ij tβi + εij t, j ∈ Φ

for times t = 1, . . . , Ti. The MMNL model can be described as follows [see Train (2003, Section 6.7)]:

given βi, the probability that a person makes the sequence of choices Yi = {Yi1, . . . , YiTi} is the

product of logit formulas

L(Yi,βi) =
Ti∏
t=1

exp{x′iYittβi}∑
j∈Φ exp{x′ij tβi}

.

12



The MMNL model is completed by taking the βi’s to be from a distribution G so that the unconditional

choice probability is specified by

P(Yi | G,xi) =
∫
Rd

Ti∏
t=1

exp{x′iYittβ}∑
j∈Φ exp{x′ij tβ}

G(dβ) =
∫
Rd
L(Yi,β)G(dβ),

where xi = {xij t, j ∈ Φ, t = 1, . . . , Ti} denotes the array of covariates associated to the sequence

of choices of individual i. Similar to the non-panel data setting, we wish to model G̃ as a random

probability measure in a Bayesian framework. While it is possible to choose G̃ to follow a Dirichlet

process, this would result in possible ties among the individual’s preferences βi. In order to preserve

the distinct nature of each individual’s preference, we assume that, given G̃, the βi’s are iid with

distribution G̃, where G̃ is a mixture of multivariate normal distributions with random mixing dis-

tribution Π̃. That is, G̃ has random density
∫

Θ φ(β|µ, τ )Π̃(dµ,dτ ), where Θ = Rd × S with S the

space of covariance matrices. Specifically, we take Π̃ to be a Dirichlet process with shape aF , F a

probability measure on Θ. Hence, the Bayesian MMNL model for individual i is expressible as

P(Yi | G̃,xi) =
∫
Rd
L(Yi,β)G̃(dβ) =

∫
Rd

∫
Θ
L(Yi,β)φ(β|µ, τ )Π̃(dµ, dτ ) dβ.

While one may use any choice for F , we take F (dµ,dτ ) to be the Multivariate Normal-Inverse-Wishart

distribution N-IW(m, λ−1τ ,S0, ν0) described in Section 3.

4.1 Blocked Gibbs algorithm for panel data

The explicit posterior analysis for the panel data case is quite similar to the non-panel case. The

main difference is that the (µi, τ i), i = 1, . . . , n, rather than β1, . . . ,βn, are drawn from the Dirichlet

process. Here we will briefly focus on the relevant data structure and then proceed to a description of

how to implement the blocked Gibbs sampler. The joint distribution of the augmented data can be

expressed using a hierarchical model as follows:

Yi | βi
ind∼ L(Yi,βi), for i = 1, . . . , n, and Yit ∈ Φ,

βi | µi, τ i
ind∼ φ(βi|µi, τ i) for i = 1, . . . , n (18)

µi, τ i | Π̃
iid∼ Π̃ for i = 1, . . . , n

Π̃ ∼ P(dΠ|aF )

Similar to the non-panel case, the blocked Gibbs sampler works by using the PN(dΠ|aF ) in place of

the law of the Dirichlet process P(dΠ|aF ). We now sample (K,p,Z,β1, . . . ,βn) from the distribution

13



proportional to [
n∏
i=1

L(Yi,βi)φ(βi|µi, τ i)

][
n∏
i=1

N∑
k=1

pkδZk(dµi,dτ i)

]
π(p)

N∏
k=1

F (dZk).

Here we use the fact that (µi, τ i) = ZKi , for i = 1, . . . , n. To approximate the posterior law of various

functionals cycle through the following steps:

Algorithm 2

1. Conditional draw for K. Independently sample Ki according to

P{Ki ∈ · | p,Z,β1, . . . ,βn,Y} =
N∑
k=1

pk,i δk(·), for i = 1, . . . , n,

where (p1,i, . . . , pN,i) ∝
(
p1φ(βi|Z1), . . . , pNφ(βi|ZN )

)
.

2. Conditional draw for p. p1 = V ∗1 , pk = (1− V ∗1 ) · · · (1− V ∗k−1)V ∗k , k = 2, . . . , N − 1 and V ∗N = 1

where, for ek records the number of Ki values which equal k,

V ∗k
ind∼ Beta

(
1 + ek, a+

∑N
l=k+1 el

)
, k = 1, . . . , N − 1.

3. Conditional draw for Z. Let {K∗1 , . . . ,K∗n0
} denote the unique set of Ki values. For each

k /∈ {K∗1 , . . . ,K∗n0
} draw Zk = (µk, τ k) from the prior N-IW(m, λ−1τ ,S0, ν0). For j = 1, . . . , n0,

draw ZK∗
j

:= (µ∗j , τ
∗
j ) as follows: (a) conditional on τ ∗j ,K,β1, . . . ,βn,Y, draw µ∗j from a Mul-

tivariate Normal distribution with parameters

λm + eK∗
j
β̄
∗
j

λ+ eK∗
j

and
τ ∗j

λ+ eK∗
j

where β̄
∗
j = (eK∗

j
)−1

∑
{i :Ki=K∗

j }
βi; (b) conditional on K,β1, . . . ,βn,Y, draw τ ∗j from an

Inverse-Wishart distribution with parameters

ν0 + eK∗
j

and
ν0S0 + eK∗

j
Sj +R(β̄∗j ,m)

ν0 + eK∗
j

where

Sj =
1
eK∗

j

∑
{i :Ki=K∗

j }

(βi − β̄
∗
j )(βi − β̄

∗
j )
′ and R(β̄∗j ,m) =

λeK∗
j

λ+ eK∗
j

(β̄∗j −m)(β̄∗j −m)′.

4. Conditional draw for β1, . . . ,βn. For each j = 1, . . . , n0, draw independently βi for i ∈ {l : Kl =

K∗j } from the density proportional to L(Yi,βi)φ(βi|µ∗j , τ ∗j ) by using, for example, a standard

Metropolis-Hastings procedure.
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5 Simulation Study

In this section we present some empirical evidence that shows how the MMNL procedures perform

overall and relative to GML models. We proceed to the estimation of the choice probabilities and the

mixing distribution based on simulated data. Two different artificial datasets are generated for the

simulation study: the first set (dataset 1) is produced for studying non-panel data model, while the

second set (dataset 2) is designed to study models with panel data. In both cases we consider a RUM

with three possible responses (J = 3) relative to the utilities U1, U2 and U3,
U1 = x11β1 + x12β2 + ε1

U2 = x21β1 + x22β2 + ε2

U3 = x31β1 + x32β2 + ε3

As for dataset 1, we choose ε1, ε2, ε3
iid∼ Standard Gumbel and β = (β1, β2)′ iid∼0.5×δ(−5,5) +0.5×δ(5,−5).

For each individual i we randomly generate (componentwise) its covariates xi = (x11, x12, x21, x22, x31, x32)

independently from a Uniform (−2, 2) distribution. Set Yi = j if Uij > Uil, l 6= j, for j = 1, 2, 3. Re-

peat this procedure n times independently to get a dataset with (Yi,xi) for i = 1, . . . , n. As for dataset

2, we assume there are n individuals each making Ti = 10 choices for i = 1, . . . , n. Then, we simulate

data using the same model used to generate dataset 1. The only change is that β is drawn from the two

component mixture of bivariate normal distributions, β
iid∼0.5×N((−5, 5)′, 2I) + 0.5×N((5,−5)′, 2I),

where I is the identity matrix. We apply our procedures to the estimation of choice probabilities

P({j} | G,x) for j = 1, 2, 3 based on the set of covariates x = (1.0,−0.9, 1.0, 0.2, 1.0, 0.9). We also

sample β variates from their posterior and get the estimate of the mixing distribution G.

The prior parameters for the specifications of the Bayesian MMNL models for panel and non-panel

data (pertaining to the explicit models in Section 3 and 4) are set to be a = 1, ν0 = 2, m = (0, 0)′

and S0 = I. Additionally we use N = 100 and perform estimation for different choices of the scale

parameter λ. A parametric GML model is also estimated for comparison with the same specifications

for ν0, m, S0 and combinations of λ’s. In all cases we use the estimator (17) based on an initial burn-in

of 10000 cycles and additional 10000 Gibbs cycles (M = 10000) for the estimation. In addition, to

measure how good of our estimates are, we define a measure, Root Mean Square (RMS) value, as

RMS =

√√√√ 1
J

∑
j∈Φ

1
M

M∑
m=1

(
P({j} | G(m),x)− Ptrue({j} | x)

)2
.
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Simulation results using dataset 1 (n = 500) and dataset 2 (n = 100, Ti = 10) are summarized in

Table 1 for λ = 0.01, 0.1, 1, together with RMS values, for both the GML and the MMNL models.

They show that the performance of the nonparametric MMNL estimators is overall better than that of

the parametric GML model, as indicated by a smaller RMS, and that the improvement is more evident

for the non-panel case than for the panel case. Moreover, as we decrease λ, the estimates of choice

probabilities in the MMNL model remain stable for the non-panel case and are more accurate for the

panel case. An interpretation of an increase of accuracy is as follows: a smaller λ corresponds to a

more diffuse H, the prior predictive distribution of G̃. Since H is different from the distribution used

to simulate the β’s in the data generating process, we get evidence that a diffuse H helps in capturing

the true form of the mixing distribution G. Note also that a smaller λ yields a smaller RMS, the latter

being a measure of the combination of the accuracy and the variability of the posterior variates of

P({j} | G,x). An examination of their autocorrelation functions along the chain shows that a smaller

λ causes a slower mixing of the Gibbs sampler, which increases the component of variability in the

RMS. See Figure 1. The decrease in RMS then shows that such precision loss is more than balanced

by an higher accuracy of the estimate, although one should also control the convergence properties of

the Gibbs sampler by avoiding to take λ too small.

[Table 1 and Figure 1 about here]

We also investigated the sensitivity of the results to the prior parameter ν0, where a larger ν0

corresponds to a more concentrated Inverse-Wishart distribution on S0. We did not observe sensible

differences in the estimation by varying ν0 and we decided to set ν0 = 2 and S0 = I as a default

noninformative choice for these parameters, see Train (2003, Section 12). The nonparametric prior on

G is also dependent on the total mass a, which is positively related to the number of components in

the mixture distribution of the β’s. Generally, a = 1 is considered a default choice for a finite mixture

model with fixed but uncertain number of components. We also performed estimation for larger a,

observing almost identical results: a = 1 was in fact sufficient for detecting the two–components

mixture we used in generating the data. Although we have not done so, the blocked Gibbs procedures

described in Section 3 and 4 can be easily extended to place an additional prior on a. Furthermore,

the truncation level of N = 100 in (15) is sufficiently large as we observed almost identical estimation

results from runs of the blocked Gibbs sampler with larger values of N .

Finally, we perform estimation using the MMNL model for different sample sizes for both dataset 1

and dataset 2 in order to get confirmation of the consistency results of Section 2. The prior parameters
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are set to be a = 1, ν0 = 2, m = (0, 0)′ and S0 = I, N = 100 and λ = 1. Table 2 reports the results

by showing, in fact, a sensible decrease of RMS for both non-panel and panel data as the number

of observations increases. In addition, Figure 2 reports the histograms of samples for β1 from its

marginal posterior distribution against the mixing distribution used in the data generating process:

it shows how the approximation of the true mixing distribution G improves as more and more data

become available.

[Table 2 and Figure 2 about here]

6 Proof of Theorem 1

Throughout this section, we work with the family of multinomial logistic kernels:

kj(x,β) =
exp(x′jβ)∑
l∈Φ exp(x′lβ)

, j = 1, . . . , J.

For qj(x;G) denoting the j-th element of the vector q(x;G), we have that qj(x;G) =
∫
Rd kj(x,β)G(dβ).

Note that qY (x;G0) is the joint density of (Y,X) with respect to the counting measure on the integer

set Φ and the measure M(dx) on X .

For the proof of Theorem 1 the following Lemma is essential, stating that, on the space P, the

weak topology and the topology induced by the L1-distance d defined in (7) are equivalent.

Lemma 1 . Let dw be any distance that metrizes the weak topology on P and (Gn)n≥1 be a

sequence in P. Then dw(Gn, G0)→ 0 iff d
(
q(· ;Gn),q(· ;G0)

)
→ 0.

Proof. For the ”if” part, it is sufficient that dw(Gn, G0)→ 0 implies
∫
X
∣∣qj(x;Gn)−qj(x;G0)

∣∣M(dx)→

0 for an arbitrary j ∈ Φ. The latter is a consequence of the definition of weak convergence and an

application of Scheffé’s theorem, since kj(x,β) is bounded and continuous in β for each x ∈ X . To

show the converse, we prove that G distant from G0 in the weak topology implies that q(· ;G) is

distant from q(· ;G0) in the L1-distance d. Define a weak neighborhood of G0 as

V =
{
G :

∣∣∣∣ ∫
Rd

∫
X
kj(x,β)M(dx) G(dβ)−

∫
Rd

∫
X
kj(x,β)M(dx) G0(dβ)

∣∣∣∣ < δ, j ∈ Φ
}
.

Since
∫
X kj(x,β)M(dx) is a bounded continuous function on Rd for each j, G ∈ V c implies that

dw(G,G0) > δ. Based on the following inequalities

d
(
q(· ;G),q(· ;G0)

)
≥ max

j∈Φ

∫
X

∣∣qj(x;Gn)− qj(x;G0)
∣∣M(dx)

≥ max
j∈Φ

∣∣∣∣ ∫
X

∫
Rd
kj(x,β)G(dβ) M(dx)−

∫
X

∫
Rd
kj(x,β)G0(dβ) M(dx)

∣∣∣∣
17



and an application of Fubini’s theorem, it follows that, for any ε < δ and anyG ∈ V c, d
(
q(· ;G),q(· ;G0)

)
>

ε. The proof is then complete. 2

Remark 1 . Lemma 1 has two important consequences: (a) both Q and P are separable spaces

under the metric d, (b) the statement of Theorem 1 is equivalent to saying that Pn accumulates all

probability mass in weak neighborhood of G0.

Define Λn(G) =
∏n
i=1 qYi (Xi;G)

/
qYi (Xi;G0), such that the posterior distribution of G can be written

as

Pn(A) =

∫
A Λn(G)P(dG)∫
P Λn(G)P(dG)

(19)

We now take A = {G : d
(
q(· ;G),q(· ;G0)

)
> ε}, and we will, as is usual with the Bayesian consistency

literature, consider separately the numerator and the denominator of (19). To this aim, define In =∫
P Λn(G)P(dG). Relying on the separability of P under the topology induced by d, see Remark 1, for

any η > 0 we can cover A with a countable union of disjoint sets Aj such that

Aj ⊆ A∗j = {G : d
(
q(· ;G),q(· ;Gj)

)
< η}, (20)

and {Gj}j≥1 is a countable set in P such that d
(
q(· ;Gj),q(· ;G0)

)
> ε for any j. Consider that

Pn(A) =
∑
j≥1

Pn(Aj) ≤
∑
j≥1

√
Pn(Aj) =

∑
j≥1

√
I−1
n

∫
Aj

Λn(G)P(dG).

Hence, Theorem 1 holds if we prove that, for all large n,

∀c > 0, In > exp(−nc) a.s. (21)

∃b > 0 :
∑
j≥1

√∫
Aj

Λn(G)P(dG) < exp(−nb) a.s. (22)

As for (21), consider the Kulback-Leibler (K-L) support condition of P defined by

P
{
G :

∫
X
K(G0, G|x)M(dx) < ε

}
> 0, ∀ε > 0 (23)

where K(G0, G|x) =
∑

j∈Φ qj(x;G0) log[qj(x;G0)/qj(x;G)]. If P satisfies condition (23), then (21)

holds. To see this, it is sufficient to note that the K-L divergence of qY (X;G) from qY (X;G0) with

respect to the measure M(dx) on X and the counting measure on Φ is given by
∫
K(G,G0|x)M(dx).

Then, by the compactness of X , the law of large number leads to

1
n

n∑
i=1

log
qYi (Xi;G0)
qYi (Xi;G)

→
∫
X
K(G0, G | x)M(dx) a.s..

18



Result in (21) then follows from standard arguments, see, e.g., Wasserman (1998). Lemma 2 below

states that (23) is satisfied under the hypotheses of Theorem 1.

Lemma 2 . If G0 lies in the weak support of P and Condition (i) of Theorem 1 holds, then G0 is

in the K-L support of P according to (23).

Proof. It is sufficient to show that, for any j ∈ Φ and for any η < 1, there exists a δ such that

|qj(x;G)/qj(x;G0)− 1| ≤ η whenever G is in Wδ, a δ-weak neighborhood of G0. In fact, this implies

that: ∫
X
qj(x;G0) log

[
qj(x;G0)
qj(x;G)

]
M(dx) ≤

∫
X
qj(x;G0)

∣∣∣∣qj(x;G0)
qj(x;G)

− 1
∣∣∣∣M(dx)

≤
∫
X
qj(x;G0)

( η

1− η

)
M(dx) ≤ η

1− η

which, in turn, leads to the thesis by the arbitrariness of j.

Let c = infx∈X qj(x;G0), which is positive by Condition (i) of Theorem 1, and assume G ∈Wδ for

a δ that will be determined later. Note that, for any ρ > 0, one can set Mρ > 0 such that G0{β : |β| >

Mρ − δ} < ρ. Then, using the Prokhorov’s metric, G ∈ Wδ implies that G{β : |β| > Mρ} < ρ + δ.

Note also that the family of functions {kj(x,β), x ∈ X}, as β varies in the compact set {|β| ≤Mρ},

is uniformly equicontinuous. By an application of the Arzelà-Ascoli’s theorem we know that, given a

γ > 0, there exist finitely many points x1, . . . ,xm such that, for any x ∈ X , there is an index i such

that

sup
|β|≤Mρ

∣∣kj(x,β)− kj(xi,β)
∣∣ < γ. (24)

For an arbitrary x ∈ X , choose the appropriate xi such that (24) holds, so that

∣∣∣∣ qj(x;G)
qj(x;G0)

− 1
∣∣∣∣ ≤ 1

c

(∣∣∣∣ ∫ kj(xi,β) G(dβ)−
∫
kj(xi,β) G0(dβ)

∣∣∣∣+∫ ∣∣kj(x,β)− kj(xi,β)
∣∣ G(dβ) +

∫ ∣∣kj(x,β)− kj(xi,β)
∣∣ G0(dβ)

)
:=

I1 + I2 + I3

c

We have that G ∈Wδ implies I1 ≤ δ. As for I2, we have

I2 =
∫
|β|≤Mρ

∣∣kj(x,β)− kj(xi,β)
∣∣G(dβ) +

∫
|β|>Mρ

∣∣kj(x,β)− kj(xi,β)
∣∣G(dβ)

≤ γ + 2 G{β : |β| > Mρ} ≤ γ + 2(ρ+ δ).
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Similar arguments lead to I3 ≤ γ + 2ρ. Finally we get∣∣∣∣ qj(x;G)
qj(x;G0)

− 1
∣∣∣∣ ≤ 3δ + 2γ + 4ρ

c
,

so that, for given η < 1, it is always possible to choose δ, ρ (by tightness of G0) and γ (by the

Arzelà-Ascoli’s theorem) small enough such that the right hand side in the last inequalities is smaller

than η. The proof is then complete. 2

We now aim at showing that (22) holds under the hypotheses of Theorem 1 by extending the method

set forth by Walker (2004) for strong consistency. In order to simplify the notation, let Λn j =∫
Aj

Λn(G)P(dG), where (Aj)j≥1 is the covering of A in (20). The following identity is the key:

Λn+1 j/Λn j = qnAj
Yn+1

(Xn+1)
/
qYn+1

(Xn+1;G0), (25)

where qnAjl (Xn+1) =
∫

P ql(Xn+1;G)PnAj (dG), l ∈ Φ, and PnAj is the posterior distribution restricted,

and normalized, to the set Aj . Note that (25) includes the case of n = 0 and Λ0 j = P(Aj). By using

conditional expectation we have that:

E
[
Λ1/2
n+1 j | (Y1,X1) . . . , (Yn,Xn),Xn+1

]
= Λ1/2

n j

∑
l∈Φ

√
q
nAj
l (Xn+1)ql(Xn+1;G0)

= Λ1/2
n j

(
1− h

[
qnAj (Xn+1),q(Xn+1;G0)

])
where qnAj (Xn+1) = [qnAj1 (Xn+1), . . . , qnAjJ (Xn+1)] and, for q1,q2 ∈ ∆,

h(q1,q2) = 1−
∑

j∈Φ
√
q1jq2j .

Note that h(q1,q2) is a variation of the Hellinger distance
√∑

j∈Φ(q1/2

1j − q
1/2

2j )2 on ∆ and that

h(q1,q2) ≤ 1. By taking the conditional expectation with respect to (Y1,X1) . . . , (Yn,Xn) only,

we get the following identity:

E{Λ1/2
n+1 j | (Y1,X1) . . . , (Yn,Xn)} = Λ1/2

n j

(
1−

∫
X h
[
qnAj (x),q(x;G0)

]
M(dx)

)
. (26)

Since the Hellinger distance and the Euclidean distance are equivalent metrics in ∆, it can be proved

that, for (qn)n≥1 ∈ Q and q0 ∈ Q,∫
X
h
[
qn(x),q0(x)

]
M(dx)→ 0 iff d(qn,q0)→ 0. (27)
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The equivalence in (27) can be used to show that
∫
X h
[
qnAj (x),q(x;G0)

]
M(dx) is bounded away

from zero. In fact, take Gj defined in (20) and note that, by triangular inequality,∫
X
h
[
qnAj (x),q(x;G0)

]
M(dx) ≥

∫
X
h
[
q(x;Gj),q(x;G0)

]
M(dx)

−
∫
X
h
[
qnAj (x),q(x;Gj)

]
M(dx).

Since d
(
q(· ;Gj),q(· ;G0)

)
> ε, (27) assures the existence of a positive constant, say ε2, such that∫

X h
[
q(x;Gj),q(x;G0)

]
M(dx) > ε2. Now, choose η in (20) such that, for eachG ∈ Aj ,

∫
X h
[
q(x;G),q(x;Gj)

]
M(dx) <

ε2, where we have used (27) again. Since qnAj (x) does not correspond exactly to a particular

G ∈ Aj , we use the convexity of the distance h
[
q(x;G),q(x;Gj)

]
in its first argument to show

that
∫
X h
[
qnAj (x),q(x;Gj)

]
M(dx) < ε2. Note in fact that, by Jensen’s inequality,∫

X
h
[
qnAj (x),q(x;Gj)

]
M(dx) =

∫
X

(
1−
∑
l∈Φ

√∫
P ql(Xn+1;G)PnAj (dG) ql(x;Gj)

)
M(dx)

≤
∫

P

∫
X
h
[
q(x;G),q(x;Gj)

]
M(dx) PnAj (dG) < ε2.

Hence, there exists a ε3 > 0 such that
∫
X h
[
qnAj (x),q(x;G0)

]
M(dx) > ε3.

From (26) it now follows that

E(Λ1/2
n+1 j) < (1− ε3)n

√
P(Aj).

and an application of Markov’s inequality leads to

P
{∑
j≥1

Λ1/2
n j > exp(−nb)

}
< exp(nb)(1− ε3)n

∑
j≥1

√
P(Aj).

Therefore, (21) holds for any b < − log(1 − ε3) from an application of the Borel-Cantelli’s lemma,

provided that the following summability condition is satisfied:

∑
j≥1

√
P(Aj) < +∞. (28)

Lemma 3 below shows that P satisfies condition (28) under the stated hypotheses, and, in turn, it

completes the proof of Theorem 1.

Lemma 3 . Let H ∈ P be the prior predictive distribution of P and assume Condition (ii) of

Theorem 1 to hold. Then, (28) is verified.
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Proof. The proof goes along the arguments used by Lijoi, Prünster and Walker (2005). Take

δ to be any positive number in (0, 1) and (an)n≥1 any increasing sequence of positive numbers such

that an → +∞. Also, let a0 = 0. Define Cn = {β : |β| ≤ an} and consider the family of subset of P

defined by

Ban,δ =
{
G : G(Cn) ≥ 1− δ, G(Cn−1) < 1− δ

}
(29)

for each n ≥ 1. These sets are pairwise disjoint and
⋃
n Ban,δ = P. For the moment, let us assume

that the metric entropy of Ban,δ with respect to the distance d is uniformly bounded in n, that is the

number of η-balls in the distance d that covers Ban,δ is finite for any n. Then, summability in (28) is

implied by: ∑
n≥1

√
P(Ban,δ) < +∞. (30)

In order to prove (30), note that Ban,δ ⊂ {G : G(Ccn−1) > δ′} for some δ′ > δ. An application of

Markov’s inequality leads to P(Ban,δ) ≤ (1/δ′)H(Ccn−1), hence, (30) is implied by
∑

n≥1

√
H(Ccn−1) <

+∞. Next, we have that∫
Rd
|β|H(dβ) =

∑
n≥1

∫
Ccn−1/C

c
n

|β|H(dβ) ≥
∑
n≥1

an−1[H(Ccn−1)−H(Ccn)],

by a second application of Markov’s inequality, so that Condition (ii) of Theorem 1 assures that∑
n≥1 an−1[H(Ccn−1) − H(Ccn)] < +∞. If we now take an ∼ n2, it is easy to see that H(Ccn) =

o(n−(2+r)) for some r > 0. For example,

∑
n≥1

(n− 1)2[H(Ccn−1)−H(Ccn)] =
∑
n≥1

(2n− 1)H(Ccn).

This in turn ensures the convergence of
∑

n≥1H(Ccn−1)α for any α such that (2 + r)−1 < α < 1, which

includes the case of α = 1/2. Condition (30) is then verified.

In order to complete the proof, it remains to show that the metric entropy of Ban,δ with respect

to the distance d is uniformly bounded in n. It is actually sufficient to reason in terms of the distance

over P induced by

dj(q1,q2) =
∫
X
|q1j(x)− q2j(x)|M(dx)

for an arbitrary j ∈ Φ, since maxj dj(q1,q2) ≤ d(q1,q2) ≤ J maxj dj(q1,q2). Let G be a set in Q

and, for δ > 0, denote by J(δ,G ) the metric entropy of G with respect to dj , that is the logarithm of

the minimum of all k such that there exists q1, . . . ,qk ∈ Q with the property that ∀q ∈ G there exists

22



an i such that dj(q,qi) < δ. The result is then stated as follows: for Gan,δ =
{
q(x;G) : G ∈ Ban,δ

}
,

there exists an Mδ < +∞ depending only on δ such that, for any n,

J(δ,Gan,δ) < Mδ (31)

The proof of (31) consists in a sequence of three steps.

Step (1). Define Ca = {β : |β| ≤ a} and Fa = {q(x;G) : G(Ca) = 1}. Then

J(2δ,Fa) ≤
(

2aK
δ

+ 1
)d(

1 + log
1 + δ

δ

)
, (32)

where K is a constant that depends on the total volume of the space X . It is easy to show that, for any

j ∈ Φ, the kernel kj(x,β) is a Lipschitz function in β with Lipschitz constant Kx = maxi≤J{|xj−xi|}.

Hence, ∫
X
|kj(x,β1)− kj(x,β2)|M(dx) ≤ K|β1 − β2|,

where K = supx∈X Kx < +∞. Given δ, let N be the smallest integer greater than 4aK/δ and cover

Ca with a set of balls Ei of radius 2a/N so that, for any β1,β2 ∈ Ei, |β1−β2| < 4a/N . This leads to∫
X |kj(x,β1)− kj(x,β2)|M(dx) ≤ δ. The number of balls necessary to cover Ca is then smaller than

Nd. Using arguments similar to those used in Ghosal, Ghosh and Ramamoorthi (1999, Lemma 1), it

can be shown that J(2δ,Fa) ≤ Nd
(
1 + log[(1 + δ)/δ]

)
, from which (32) follows.

Step (2). Define Fa,δ = {q(x;G) : G(Ca) ≥ 1− δ}. Then

J(δ,Fa,δ) ≤ Kδa
d. (33)

for a constant Kδ depending on δ. To see this, take q(x;G) ∈ Fa,δ and denote by G∗ the probability

measure in P defined by G∗(A) = G(A ∩ Ca)/G(Ca), so that q(x;G∗) belongs to Fa. It is easy to

verify that dj
(
q(· ;G∗),q(· ;G)

)
< 2δ. It follows that J(3δ,Fa,δ) ≤ J(δ,Fa) from which (33) follows.

Step (3). We follow here a technique used by Lijoi, Prünster and Walker (2005, Section 3.2). For

the sequence (an)n≥1 introduced before, define

FU
an,δ = {q(x;G) : G(Cn) ≥ 1− δ} and FL

an,δ = {q(x;G) : G(Cn) < 1− δ}.

By construction, Gan,δ ⊂ FU
an,δ

and Gan,δ ⊂ FL
an−1,δ

. Moreover, FL
an−1,δ

↓ ∅ as n increases to +∞,

thus, for any η > 0, there exists an integer n0 such that, for any n ≥ n0, J(η,FL
an,δ

) ≤ J(η,FU
an0 ,δ

).

By (33) it follows that

J(η,Gan,δ) ≤ Kδa
d
n0

(34)

23



for any n ≥ n0, but, since Gan,δ ⊂ FU
an,δ

and FU
an,δ
↑ Q, (34) is true also for any n < n0. Result (31)

is then verified by setting Mδ = Kδa
d
n0

. 2
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dataset 1 (non-panel case)
λ = 1 λ = 0.1 λ = 0.01

GML
(n = 500)

True Est (95% C. I.) Est (95% C. I.) Est (95% C. I.)
P({1} | G,x) .4980 .3203 (.2907,.3501) .3201 (.2908,.3509) .3201 (.2908,.3507)
P({2} | G,x) .0167 .3348 (.3308,.3377) .3348 (.3307,.3377) .3348 (.3307,.3377)
P({3} | G,x) .4853 .3449 (.3191,.3715) .3451 (.3185,.3715) .3450 (.3186,.3715)

RMS .2258 .2258 .2258

MMNL
(n = 500)

True Est (95% C. I.) Est (95% C. I.) Est (95% C. I.)
P({1} | G,x) .4980 .4856 (.4748,.4945) .4857 (.4750,.4946) .4857 (.4752,.4948)
P({2} | G,x) .0167 .0257 (.0069,.0551) .0259 (.0073,.0552) .0258 (.0070,.0553)
P({3} | G,x) .4853 .4886 (.4615,.5057) .4884 (.4618,.5059) .4885 (.4609,.5057)

RMS .0137 .0137 .0136

dataset 2 (panel case)
λ = 1 λ = 0.1 λ = 0.01

GML
(n = 100,
Ti = 10)

True Est (95% C. I.) Est (95% C. I.) Est (95% C. I.)
P({1} | G,x) .4939 .4585 (.4476,.4685) .4585 (.4477,.4684) .4585 (.4477,.4683)
P({2} | G,x) .0279 .0521 (.0378,.0675) .0522 (.0379,.0678) .0524 (.0381,.0679)
P({3} | G,x) .4782 .4894 (.4717,.5061) .4893 (.4712,.5056) .4891 (.4710,.5056)

RMS .0266 .0266 .0267

MMNL
(n = 100,
Ti = 10)

True Est (95% C. I.) Est (95% C. I.) Est (95% C. I.)
P({1} | G,x) .4939 .4586 (.4495,.4670) .4597 (.4522,.4675) .4596 (.4530,.4666)
P({2} | G,x) .0279 .0494 (.0329,.0679) .0479 (.0309,.0678) .0471 (.0296,.0669)
P({3} | G,x) .4782 .4920 (.4705,.5107) .4924 (.4694,.5117) .4933 (.4706,.5126)

RMS .0265 .0257 .0257

Table 1: Simulation results for dataset 1 (top) and for dataset 2 (bottom) with x =
(1.0,−0.9, 1.0, 0.2, 1.0, 0.9) and different λ values. The estimates (Est), the credible intervals (C.I.)
and the RMS values are presented.
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Figure 1: Autocorrelation functions for the choice probability P({1} | G,x) for dataset 1 (left) and
dataset 2 (right), obtained from the posterior sample of the β’s for the MMNL model with prior hyper
parameter λ = 0.01 (dashed) and λ = 1 (dotted).
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dataset 1 (non-panel case)
n = 50 n = 100 n = 500

True Est (95% C. I.) Est (95% C. I.) Est (95% C. I.)
P({1} | G,x) .4980 .4927 (.3739,.5685) .5145 (.4674,.5421) .4856 (.4748,.4945)
P({2} | G,x) .0167 .1046 (.0180,.2384) .0489 (.0067,.1242) .0257 (.0069,.0551)
P({3} | G,x) .4853 .4027 (.2970,.4794) .4366 (.3683,.4767) .4886 (.4615,.5057)

RMS .0867 .0440 .0137

dataset 2 (panel case)
n = 10, Ti = 10 n = 50, Ti = 10 n = 100, Ti = 10

True Est (95% C. I.) Est (95% C. I.) Est (95% C. I.)
P({1} | G,x) .4939 .5956 (.5491,.6273) .4176 (.4018,.4308) .4586 (.4495,.4670)
P({2} | G,x) .0279 .0527 (.0125,.1042) .0562 (.0359,.0807) .0494 (.0329,.0679)
P({3} | G,x) .4782 .3517 (.2892,.3953) .5261 (.4973,.5492) .4920 (.4705,.5107)

RMS .0977 .0556 .0265

Table 2: MMNL model: simulation results for dataset 1 (top) and for dataset 2 (bottom) with x =
(1.0,−0.9, 1.0, 0.2, 1.0, 0.9) and different number of observations. The estimates (Est), the credible
intervals (C.I.) and the RMS values are presented.
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dataset 1 (non-panel case)
n = 50 n = 100 n = 500

−15 −10 −5 0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

−15 −10 −5 0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

−15 −10 −5 0 5 10 15
0.
00

0.
05

0.
10

0.
15

0.
20

dataset 2 (panel case)
n = 10, Ti = 10 n = 50, Ti = 10 n = 100, Ti = 10
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Figure 2: MMNL model: histogram of sampled β1’s from their posterior distribution for dataset 1 (top)
and for dataset 2 (bottom) with x = (1.0,−0.9, 1.0, 0.2, 1.0, 0.9) and different number of observations.
The solid lines represent the true mixing distribution.
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