
 
INTERNATIONAL CENTRE FOR ECONOMIC RESEARCH 

 
 
 
 

WORKING PAPER SERIES 
 
 

 
Michael Mania and Marina Santacroce 

 
 
 

EXPONENTIAL UTILITY MAXIMIZATION  
UNDER PARTIAL INFORMATION 

 
 
 
 

Working Paper no. 24/2008 
 
 
 
 
 

APPLIED MATHEMATICS AND QUANTITATIVE METHODS 
WORKING PAPER SERIES 

 
 
 

 
 
 

 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6929059?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Exponential Utility Maximization

under Partial Information

Michael Mania1 and Marina Santacroce2

1 A. Razmadze Mathematical Institute, M. Aleksidze St. 1, Tbilisi, Georgia and Georgian-American
University, 3, Alleyway II, Chavchavadze Ave. 17, A, Tbilisi, Georgia. e-mail : misha.mania@gmail.com

2 Department of Mathematics, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino,

Italy. e-mail : marina.santacroce@polito.it

Abstract

We consider the exponential utility maximization problem under partial information. The
underlying asset price process follows a continuous semimartingale and strategies have to be con-
structed when only part of the information in the market is available. We show that this problem is
equivalent to a new exponential optimization problem, which is formulated in terms of observable
processes. We prove that the value process of the reduced problem is the unique solution of a
backward stochastic differential equation (BSDE), which characterizes the optimal strategy. We
examine two particular cases of diffusion market models, for which an explicit solution has been
provided. Finally, we study the issue of sufficiency of partial information.
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1 Introduction

Investors acting in the market often have only limited access to the information flow. Besides, they
may not be able or may not want to use all available information even if they have access to the full
market flow. In such cases investors take their decisions using only part of the market information.
We study the problem of maximizing the expected exponential utility of terminal net wealth, when
the asset price process is a continuous semimartingale and the flow of observable events does not
necessarily contain all information on the underlying asset’s prices.
We assume that the dynamics of the price process of the asset traded on the market is described by
a continuous semimartingale S = (St, t ∈ [0, T ]) defined on a filtered probability space (Ω,A ,A =
(At, t ∈ [0, T ]), P ), satisfying the usual conditions, where A = AT and T <∞ is a fixed time horizon.
Suppose the interest rate to be equal to zero and the asset price process to satisfy the structure
condition, i.e., the process S admits the decomposition

St = S0 +Nt +
∫ t

0
λud〈N〉u, 〈λ ·N〉T <∞ a.s., (1)
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where N is a continuous A-local martingale and λ is a A-predictable process.
Let G be a filtration smaller than A

Gt ⊆ At, for every t ∈ [0, T ].

The filtration G represents the information that the investor has at his disposal. Hence, hedging
strategies have to be constructed using only information available in G.

Let U(x) = −e−αx be an exponential utility function, where α > 0 is a fixed constant.
We consider the exponential utility maximization problem with random payoff H at time T ,

to maximize E[−e−α(x+
∫ T
0 πudSu−H)] over all π ∈ Π(G),

which is equivalent to the problem (without loss of generality we can take x = 0)

to minimize E[e−α(
∫ T
0 πudSu−H)] over all π ∈ Π(G), (2)

where Π(G) is a certain class of G-predictable S-integrable processes (to be specified later) and
(
∫ t

0 πudSu, t ∈ [0, T ]) represents the wealth process related to the self-financing strategy π.
The utility maximization problem with partial information has been considered in the literature

under various setups. In most papers (see, e.g., [14, 11, 25, 31]) the problem was studied for market
models where only stock prices are observed, while the drift can not be directly observed, i.e. under
the hypothesis FS ⊆ G.
We also consider the case when the flow of observable events G does not necessarily contain all
information on prices of the underlying asset, i.e., when S is not a G-semimartingale in general. We
show that the initial problem is equivalent to a certain problem of maximizing the filtered terminal net
wealth and apply the dynamic programming method to the reduced problem. Such an approach, in
the context of mean variance hedging, was considered in [18] (for the mean-variance hedging problem
under partial information see also [27, 4, 24]).

Let us introduce an additional filtration F = (Ft, t ∈ [0, T ]), which is the augmented filtration gen-
erated by FS and G. The price process S is also a F -semimartingale and the canonical decomposition
of S with respect to the filtration F is of the form (see, e.g., [13])

St = S0 +
∫ t

0
λ̂Fu d〈M〉u +Mt, (3)

where λ̂Fu denotes the F -predictable projection of λ and

Mt = Nt +
∫ t

0
[λu − λ̂Fu ]d〈N〉u (4)

is a F -local martingale. Besides 〈M〉 = 〈N〉 and these brackets are FS-predictable.
Let us consider the following assumptions:
A) 〈M〉 is G-predictable and d〈M〉tdP a.e. λ̂F = λ̂G, hence for each t

E(λt|FSt− ∨Gt) = E(λt|Gt), P − a.s. (5)
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B) any G-martingale is an F -local martingale,
C) the filtration G is continuous,
D) for any G-local martingale m(g), 〈M,m(g)〉 is G-predictable,
E) H is an AT -measurable bounded random variable, such that P - a.s.

E[eαH |FT ] = E[eαH |GT ]. (6)

Let us make some remarks on conditions A)-E). It is evident, that if FS ⊆ G, then G = F and
conditions A), B), D) and equality (6) of condition E) are satisfied. Condition B) is satisfied if and
only if the σ-algebras FSt ∨ Gt and GT are conditionally independent given Gt for all t ∈ [0, T ] (see
Theorem 9.29 in Jacod (1979)). Recall that Condition C) means that all G-local martingales are
continuous. Under condition B) the continuity of F implies the continuity of G, but not vice-versa.
So, the filtration F may be not continuous in general. Equality (6) is satisfied if, e.g., H is of the
form f(η, ξ), where η is a GT -measurable random variable and ξ is AT -measurable random variable
independent of FT .

We shall use the notation Ŷt for the G-optional projection of Yt (note that under the presence con-
ditions for all processes we considered the optional projection coincides with the predictable projection
and therefore we use for them the same notation). Under condition A) S admits the decomposition

St = S0 +
∫ t

0
λ̂ud〈M〉u +Mt, (7)

where λ̂t = λ̂Gt . Moreover, condition A) implies that

Ŝt = E(St|Gt) = S0 +
∫ t

0
λ̂ud〈M〉u + M̂t, (8)

where M̂t is the G-local martingale E(Mt|Gt).
Under these assumptions, we show in Proposition 3.1 that the initial optimization problem (2) is

equivalent to the problem

to minimize E[e−α(
∫ T
0 πudŜu−H̃)+α2

2

∫ T
0 π2

u(1−κ2
u)d〈M〉u ] (9)

over all π ∈ Π(G), where

κ2
t =

d〈M̂〉t
d〈M〉t

and H̃ =
1
α

lnE(eαH |GT ).

To prove the main result we will also make the following assumption:

F)
∫ T

0 λ̂2
td〈M〉t ≤ C, P − a.s..

We prove (Theorem 1) that under assumptions A)-F) the value process V of the problem (9) is the
unique bounded strictly positive solution of the following BSDE

Yt = Y0 +
1
2

∫ t

0

(ψuκ2
u + λ̂uYu)2

Yu
d〈M〉u +

∫ t

0
ψudM̂u + Lt, YT = E[eαH |GT ], (10)
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where L is a G-local martingale orthogonal to M̂ . To show the existence of a solution of this equation
we use recent results of [30] and [21] on BSDEs with quadratic growth and driven by martingales.

Moreover the optimal strategy exists and is equal to

π∗t =
1
α

(λ̂t +
ψtκ

2
t

Yt
). (11)

We also examine two particular market diffusion models.
In section 4 we consider a market model with one risky asset, when the drift of the return process S
changes value from 0 to µ 6= 0 at some random time τ

dSt = µI(t≥τ)dt+ σdWt.

The change-point τ admits a known prior distribution, although the variable τ itself is unknown and it
cannot be directly observed. Agents in the market have only knowledge of the measurement process S
and not of the Brownian motion and of the random variable τ . In this case we give an explicit solution
of problem (2) in terms of the a posteriori probability process pt = P (τ ≤ t|FSt ) which satisfies the
stochastic differential equation (SDE)

pt = p0 +
µ

σ

∫ t

0
pu(1− pu)dW̃u + γ

∫ t

0
(1− pu)du.

For this and for the formulation of the change-point problem, the reader is referred to [28].
In section 5, we consider a diffusion market model consisting of two risky assets with the following
dynamics

dSt =µ(t, η)dt+ σ(t, η)dW 1
t ,

dηt =b(t, η)dt+ a(t, η)dWt,

where W 1 and W are standard Brownian motions with correlation ρ. η represents the price of a
nontraded asset (e.g. an index) and S denotes the process of returns of the tradable one. We consider
problem (2): an agent is hedging a contingent claim H trading with the liquid asset S and using only
the information on η. Under suitable conditions on µ, σ, b, a and H, namely 1)-4) of section 5, we give
an explicit expression of the optimal amount of money which should be invested in the liquid asset.

In section 6 we study the issue of sufficiency of partial information of the optimization problem
(2). The filtration G is said to be sufficient (for A) if

inf
π∈Π(A)

E[e−α(
∫ T
0 πudSu−H)] = inf

π∈Π(G)
E[e−α(

∫ T
0 πudSu−H)]. (12)

We give conditions (Proposition 5 and Theorem 2) which guarantee the sufficiency of filtration G.

2 Main definitions and auxiliary facts

Denote byMe(F ) the set of equivalent martingale measures for S, i.e., the set of probability measures
Q equivalent to P such that S is a F -local martingale under Q. For any Q ∈ Me(F ), let Zt(Q) be
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the density process (with respect to the filtration F ) of Q relative to P .
It follows from (7) that the density process Zt(Q) of any element Q of Me(F ) is expressed as an
exponential martingale of the form

Et(−λ̂ ·M + L),

where L is a F -local martingale strongly orthogonal to M and Et(X) is the Doléans-Dade exponential
of X. If condition F) is satisfied, the local martingale Zmint = Et(−λ̂ · M) is a true martingale,
dQmin/dP = ZminT defines the minimal martingale measure for S on F .

Let us define the classes of admissible strategies

Π(F ) = {π : F − predictable, π ·M ∈ BMO(F )},

Π(G) = {π : G− predictable, π ·M ∈ BMO(F )}.

It is evident that Π(G) ⊆ Π(F ).

Remark 1 Note that if π ∈ Π(G), then π · M̂ ∈ BMO(G). Indeed, since κ2 ≤ 1 (see, e.g., [18]) for
any G-stopping time τ (which is also F -stopping time)

E(〈π · M̂〉T − 〈π · M̂〉τ |Gτ ) = E(
∫ T

τ
π2
uκ

2
ud〈M〉u|Gτ ) ≤

≤ E(E(
∫ T

τ
π2
ud〈M〉u|Fτ )|Gτ ) ≤ ||π ·M ||2BMO(F ).

Under conditions A)-C) the process M̂t = E(Mt|Gt) admits the representation (see, e.g., Proposition
2.2 of [18])

M̂t =
∫ t

0

̂
(
d〈M,m(g)〉u
d〈m(g)〉u

)dmu(g) + Lt(g), (13)

where m(g) is any G-local martingale and L(g) is a G-local martingale orthogonal to m(g). In
particular, if condition D) is also satisfied, then

M̂t =
∫ t

0

d〈M,m(g)〉u
d〈m(g)〉u

dmu(g) + Lt(g), (14)

and

〈M,m(g)〉t = 〈M̂,m(g)〉t (15)

for any G-local martingale m(g).

Lemma 1 Let conditions A)-D) be satisfied. Then

E(Et(M)|Gt) = Et(M̂), (16)

where M̂t = E(Mt|Gt).
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Proof. The process E(Et(M)|Gt) is a strictly positive G-local martingale and there exists a G-local
martingale M̃ such that

E(Et(M)|Gt) = Et(M̃).

Therefore

M̃t =
∫ t

0

1
E(Eu(M)|Gu)

dE(Eu(M)|Gu). (17)

From (13), applied to the continuous F -local martingale

Et(M) = 1 +
∫ t

0
Eu(M)dMu

we have

E(Et(M)|Gt) = 1 +
∫ t

0
E
(
Eu(M)

d〈M,m(g)〉u
d〈m(g)〉u

|Gu
)
dmu(g) + L̃t,

where L̃ is a G-local martingale orthogonal to m(g). Therefore, by condition D)

E(Et(M)|Gt) = 1 +
∫ t

0
E
(
Eu(M)|Gu

)d〈M,m(g)〉u
d〈m(g)〉u

dmu(g) + L̃t

and from (17) we obtain that

M̃t =
∫ t

0

d〈M,m(g)〉u
d〈m(g)〉u

dmu(g) +
∫ t

0

1
E(Eu(M)|Gu)

dL̃t.

Taking the mutual characteristics with respect to m(g) of the both sides of this equality we have

〈M̃,m(g)〉t = 〈M,m(g)〉t

and by (15)

〈M̃,m(g)〉t = 〈M̂,m(g)〉t

for any G-local martingale m(g). By the hypothesis 〈M〉 is G-predictable, we know that M can be
localized by G-stopping times and this implies that M̂ is a G-local martingale. Since also M̃ is a
G-local martingale, by arbitrariness of m(g), we have that M̂ and M̃ are indistinguishable. �

Corollary 1 If conditions A)-D) are satisfied, then for any π ∈ Π(G)

E(Et(π ·M)|Gt) = Et(π̂ ·M) = Et(π · M̂).

For all unexplained notations concerning the martingale theory used below we refer the reader to
[3, 10, 15].
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3 Utility Maximization Problem

Let us introduce the value process of problem (9):

Vt = ess inf
π∈Π(G)

E[e−α(
∫ T
t πudŜu−H̃)+α2

2

∫ T
t π2

u(1−κ2
u)d〈M〉u |Gt], (18)

where, we recall that,

H̃ =
1
α

lnE[eαH |GT ], κ2
t =

d〈M̂〉t
d〈M〉t

.

Let

Vt(G) = ess inf
π∈Π(G)

E[e−α(
∫ T
t πudSu−H)|Gt] (19)

be the value process of the problem (2).

Proposition 1 Let conditions A)-E) be satisfied. Then Vt = Vt(G) and the problems (2) and (9) are
equivalent. Moreover, for any π ∈ Π(G)

E[e−α(
∫ T
t πudSu−H)|Gt] = E[e−α(

∫ T
t πudŜu−H̃)+α2

2

∫ T
t π2

u(1−κ2
u)d〈M〉u |Gt].

Proof. Taking the conditional expectation with respect to FT and using condition E), we have that

E[e−α
∫ T
t πudSu+αH |Gt] = E

(
e−α

∫ T
t πudSuE[eαH |FT ]|Gt

)
= E

(
e−α(

∫ T
t πudSu−H̃)|Gt

)
. (20)

Let s ∈ [0, T ], t ≥ s and denote by Est(M) = Et(M)
Es(M) . Using successively decomposition (7),

condition A), Lemma 1 for the strictly positive G-local martingale {E(Est(M)|Gt), t ≥ s} with s ∈
[0, T ], decomposition (8) of Ŝ and equality κ2

t = d〈M̂〉t/d〈M〉t, we have

E[e−α(
∫ T
t πudSu−H̃)|Gt]

= E[e−α
∫ T
t πudMu−α

2

2

∫ T
t π2

ud〈M〉u+α2

2

∫ T
t π2

ud〈M〉u−α
∫ T
t πuλ̂ud〈M〉u+αH̃ |Gt]

= E[EtT (−απ ·M)e
α2

2

∫ T
t π2

ud〈M〉u−α
∫ T
t πuλ̂ud〈M〉u+αH̃ |Gt]

= E[E(EtT (−απ ·M)|GT )e
α2

2

∫ T
t π2

ud〈M〉u−α
∫ T
t πuλ̂ud〈M〉u+αH̃ |Gt]

= E[EtT (−απ · M̂)e
α2

2

∫ T
t π2

ud〈M〉u−α
∫ T
t πuλ̂ud〈M〉u+αH̃ |Gt]

= E[e−α
∫ T
t πudM̂u−α

2

2

∫ T
t π2

ud〈M̂〉u+α2

2

∫ T
t π2

ud〈M〉u−α
∫ T
t πuλ̂ud〈M〉u+αH̃ |Gt]

= E[e−α
∫ T
t πudŜu+α2

2

∫ T
t π2

u(d〈M〉u−d〈M̂〉u)+αH̃ |Gt]

= E[e−α(
∫ T
t πudŜu−H̃)+α2

2

∫ T
t π2

u(1−κ2
u)d〈M〉u |Gt]

which together with (20) implies the equivalence of (2) and (9). �
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Remark 2 If conditions A)-D) are satisfied and H is bounded and GT -measurable, then H̃ = H and
problem (2) is equivalent

to minimize E[e−α(
∫ T
0 πudŜu−H)+α2

2

∫ T
0 π2

u(1−κ2
u)d〈M〉u ].

Remark 3 It is evident that since H is bounded, there will be a positive constant C, Vt ≤ C. Besides
if condition F) is satisfied then we have that Vt ≥ c for a positive constant c directly by duality issues.
Indeed, if Vt(F ) = ess infπ∈Π(F )E[e−α(

∫ T
t πudSu−H)|Ft], then it is well known that under condition F),

Vt(F ) ≥ c, (see e.g. [2] or [17]). Therefore

Vt = ess inf
π∈Π(G)

E[e−α(
∫ T
t πudSu−H)|Gt] = (21)

ess inf
π∈Π(G)

E
[
E
(
e−α(

∫ T
t πudSu−H)|Ft

)
|Gt
]
≥ E(V F

t |Gt) ≥ c. (22)

Lemma 2 The martingale part of any bounded strictly positive solution of (10) is in BMO.

Proof. Let Y be a bounded strictly positive solution of (10).
By Ito’s formula and the boundary condition we write

Y 2
T − Y 2

τ = E2(eαH |GT )− Y 2
τ =

∫ T

τ
2Yt(ψtdM̂t + dLt) +

∫ T

τ
(ψtκ2

t + λ̂tYt)2d〈M〉t

+ 〈ψ · M̂〉T − 〈ψ · M̂〉τ + 〈L〉T − 〈L〉τ ,

where τ is a G-stopping time. Without loss of generality we may assume that ψ ·M̂+L is a square inte-
grable martingale, otherwise we can use localization arguments. After taking conditional expectation,
we see that

E[〈ψ · M̂〉T − 〈ψ · M̂〉τ |Gτ ] + E[〈L〉T − 〈L〉τ |Gτ ] ≤ C, (23)

which implies assertion of the Lemma. �

Theorem 1 Let H be a bounded AT -measurable random variable, 〈M〉 be G-predictable and let con-
ditions B), C) and F) be satisfied. Then the value process Vt is the unique solution of the BSDE

Yt = Y0 +
1
2

∫ t

0

(ψuκ2
u + λ̂uYu)2

Yu
d〈M〉u +

∫ t

0
ψudM̂u + Lt, (24)

YT = E(eαH |GT ), 〈M̂, L〉 = 0

in the class of processes satisfying the two-sided inequality

c ≤ Yt ≤ C, (25)

where c and C are strictly positive constants. Besides the optimal strategy of the problem (9) exists in
the class Π(G) and is equal to

π∗t =
1
α

(λ̂t +
κ2
tψt
Yt

). (26)

If conditions A)-F) are satisfied, then Vt = Vt(G) and π∗ defined by (26) is the optimal strategy also
for the problem (2).
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Proof. Let Yt be a strictly positive process satisfying Equation (24).
Writing Ito’s formula for the process Zt = lnYt, we find that Z satisfies

dZt =
1
2

[
(ψ̃tκ2

t + λ̂t)2 − ψ̃2
t κ

2
t

]
d〈M〉t −

1
2
d〈L̃〉t + ψ̃tdM̂t + dL̃t, (27)

with the boundary condition ZT = lnE(eαH |GT ) = αH̃. Recall that we denoted by H̃ = 1
α lnE(eαH |GT ).

In the previous equation we set ψ̃t = 1
Yt
ψt and L̃t = ( 1

Y ·L)t. The existence of a solution of the previous
BSDE follows from [30] or [21], where new results on the existence and uniqueness of solutions are
proved for BSDEs with quadratic growth driven by continuous martingales.

Now we should show that the solution is unique and coincides with the value process V and that
the strategy π∗ is optimal.
For any π ∈ Π(G), let us denote the process e−α

∫ t
0 πudŜu+α2

2

∫ t
0 π

2
u(1−κ2

u)d〈M〉u by Jt(π).
Let us consider Yt, solution of (24) satisfying (25). By using Ito’s formula for the product YtJt(π),

d(YtJt(π)) = YtJt(π)
(
−απtdŜt +

α2

2
π2
t (1− κ2

t )d〈M〉t +
α2

2
π2
t d〈M̂〉t

)
+ Jt(π)

(
ψtdM̂t + dLt +

1
2

(λ̂tYt + ψtκ
2
t )

2

Yt
d〈M〉t

)
− Jt(π)ψtαπtκ2

td〈M〉t

and

d(YtJt(π)) = YtJt(π)
[
(
ψt
Yt
− απt)dM̂t +

1
Yt
dLt +

1
2

(απt − (λ̂t +
ψt
Yt
κ2
t ))

2d〈M〉t)
]
.

Therefore

YtJt(π) =Y0Et((
ψ

Y
− απ) · M̂ +

1
Y
· L)e

1
2

∫ t
0 (απu−(λ̂u+ψu

Yu
κ2
u))2d〈M〉u). (28)

In Equation (28), Y J(π) is written as the product of a strictly positive increasing process and a
uniformly integrable martingale. In fact, by (23) and since π ∈ Π(G) implies that π · M̂ ∈ BMO(G)
(see Remark 2.1), the process ( ψY − απ) · M̂ + 1

Y · L) is a BMO(G)-martingale, thus, the exponential
martingale Et(( ψY − απ) · M̂ + 1

Y · L) is a uniformly integrable martingale by [12]. Therefore, Y J(π)
is a submartingale. Using the boundary condition YT = E(eαH |GT ), we find

YtJt(π) ≤ E(JT (π)eαH̃ |Gt), a.s.

hence

Yt ≤ E(e−α
∫ T
t πudŜu+α2

2

∫ T
t π2

u(1−κ2
u)d〈M〉u+αH̃ |Gt) a.s..

This is true for any π ∈ Π(G), and, recalling the definition of Vt, we immediately see that

Yt ≤ ess inf
π∈Π(G)

E[e−α
∫ T
t πudŜu+α2

2

∫ T
t π2

u(1−κ2
u)d〈M〉u+αH̃ |Gt] = Vt a.s.. (29)

Let us check the opposite inequality Yt ≥ Vt a.s..
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Let us take π̃u = λ̂uYu+ψuκ2
u

αYu
. By Ito’s formula for YtJt(π̃), similarly to (28), we find that the process

is a strictly positive local martingale hence a supermartingale. The supermartingale property and the
boundary condition give

Yt ≥ E[e−α
∫ T
t π̃udŜu+α2

2

∫ T
t π̃2

u(1−κ2
u)d〈M〉u+αH̃ |Gt] a.s.. (30)

Let us show that π̃ belongs to the class Π(G).
From condition F) follows that λ̂ ·M is in BMO(F ) and by (23) (since Y ≥ c and κ2

t ≤ 1) we have
that ψκ2

Y ·M is also in BMO(F ). Thus

1
α

(λ̂+
ψκ2

Y
) · M ∈ BMO(F )

which implies that π̃ ∈ Π(G). Therefore,

E[e−α
∫ T
t π̃udŜu+α2

2

∫ T
t π̃2

u(1−κ2
u)d〈M〉u+αH̃ |Gt] ≥ Vt a.s.. (31)

Hence from (29), (30) and (31) we have that

Yt = Vt, a.s.. (32)

Therefore, (30), (31) and (32) give the equality

E[e−α
∫ T
t π̃udŜu+α2

2

∫ T
t π̃2

u(1−κ2
u)d〈M〉u+αH̃ |Gt] = Vt a.s..

which means that π̃ = π∗ is optimal. It follows from Proposition 3.1 that if A)-F) are satisfied, then
Vt = Vt(G) and π∗ is the optimal strategy of the problem (2). �

Remark 4 In terms of Equation (27) the optimal strategy is expressed as

π∗t =
1
α

(λ̂t + ψ̃tκ
2
t ). (33)

Remark 5 One can see from the proof of the unicity that condition F) can be replaced by the weaker
condition λ̂ ·M is in BMO(F ).

If FSt ⊆ Gt, then 〈M〉 is G-predictable, since it is FS-predictable. Besides, Gt = Ft ≡ FSt ∨ Gt
and conditions A), B), D) and equality (6) of condition E) are satisfied. So, in this case, M̂t = Mt

and κ2
t = 1 for all t ∈ [0, T ]. Since FS ⊆ G, S is a G-semimartingale with canonical G-decomposition

St = S0 +
∫ t

0
λ̂ud〈M〉u +Mt, M ∈Mloc(G) (34)

and for any π ∈ Π(G)

E
(
e−α(

∫ T
t πudSu−H)|Gt

)
= E

(
e−α(

∫ T
t πudSu−H̃)|Gt

)
,

with H̃ = 1
α lnE(eαH |GT ), where H̃ = H if H is GT -measurable.

So, taking the G-decomposition (34) in mind, problem (2) is equivalent to the problem

to minimize E(e−α(
∫ T
0 πudSu−H̃)) over all π ∈ Π(G). (35)

Thus, we have the following corollary of Theorem 1:
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Corollary 2 Let FS ⊆ G ⊆ A and let conditions C), F) be satisfied and H be a bounded AT -
measurable random variable. Then, the value process V is the unique solution of the BSDE

Yt = Y0 +
1
2

∫ t

0

(ψu + λ̂uYu)2

Yu
d〈M〉u +

∫ t

0
ψudMu + Lt, YT = E(eαH |GT ), (36)

satisfying 0 < c ≤ Yt ≤ C. Moreover, the optimal strategy is equal to

π∗t =
1
α

(λ̂t +
ψt
Yt

). (37)

Remark 6 Note that in the case of full information Gt = At, we additionally have

M̂t = Mt = Nt, λ̂t = λt, YT = eαH

and Equation (36) takes the form

Yt = Y0 +
1
2

∫ t

0

(ψu + λuYu)2

Yu
d〈N〉u +

∫ t

0
ψudNu + Lt, YT = eαH . (38)

Equations of type (38) (or equivalent to (38)) were derived in [8, 9, 29] for BSDEs driven by
Brownian motion and in [17] for BSDEs driven by martingales.

4 Application to the disorder problem

As an example we consider a market with one risky asset, where the drift of this asset changes value
(from 0 to µ, µ 6= 0) at a random time, which cannot be directly observed.

Let (Ω,A ,A = (At, t ∈ [0, T ]), P ), be a filtered probability space, where A = AT , hosting a
Brownian motion W and a random variable τ with distribution

P (τ = 0) = p and P (τ > t|τ > 0) = e−γt, for all t ∈ [0, T ]

for some known constants p ∈ [0, 1[ and γ > 0. The Brownian motion W and the random variable τ
are assumed to be independent.
The dynamics of the asset price S̃ is determined by the SDE

dS̃t = S̃t(µI(t≥τ)dt+ σdWt),

where µ 6= 0 and σ2 > 0. By dSt = dS̃t
S̃t
, we introduce the return process which satisfies

dSt = µI(t≥τ)dt+ σdWt. (39)

So, agents in the market do not observe the Brownian motion and the random instant τ , but only the
measurement process S (or S̃). The filtration G is generated by the observations process Gt = FSt =
σ(Su, 0 ≤ u ≤ t). So, we have

FSt = Gt ⊆ At.

11



We consider the optimization problem (2), where the strategy πt is interpreted as a dollar amount
invested in the stock at time t. Assume that the contingent claim H is of the form H = g(ST , ζ),
where g is a positive bounded function of two variables and ζ is an AT -measurable random variable
independent of FST . ζ can be the terminal value of a non traded asset.
Let pt = P (τ ≤ t|FSt ) be the a posteriori probability process. With respect to the filtration G = FS

the process S admits the decomposition

St = S0 + µ

∫ t

0
pudu+ σW̃t, (40)

where W̃t = 1
σ (St − S0 − µ

∫ t
0 pudu) is a Brownian motion, an innovation process, with respect to the

filtration FS (see, e.g., [16]).
The measure Q defined by

dQ = ET (−µ
σ
p · W̃ )dP

is a martingale measure for S on FS . It is evident that F ) is satisfied.

It follows from [28] that the process pt satisfies the stochastic differential equation

pt = p0 +
µ

σ

∫ t

0
pu(1− pu)dW̃u + γ

∫ t

0
(1− pu)du. (41)

Moreover, (pt, FSt ) is a strong Markov process.
In this case

Nt = σWt, Mt = M̂t = σW̃t, κ2
t = 1 λt =

µ

σ2
I(τ≤t), λ̂t =

µ

σ2
pt.

By Corollary 2, the value process of problem (35) satisfies the following BSDE

Yt = Y0 +
1
2

∫ t

0

(σψu + µ
σpuYu)2

Yu
du+

∫ t

0
σψudW̃u, YT = E(eαH |FST ), (42)

with Lt = 0, since any FS-local martingale is representable as a stochastic integral with respect to W̃
(see, e.g., Theorem 5.17 in [16]). Besides, the process Zt = lnYt is the solution of the linear equation
(here we set ψ̃ = ψ

Y )

Zt = Z0 +
∫ t

0
(µpuψ̃u +

µ2

2σ2
p2
u)du+

∫ t

0
σψ̃udW̃u, ZT = lnE(eαH |FST ). (43)

Since µptdt+ σdW̃t = dSt, (43) can be written in the following equivalent form

Zt = Z0 +
1
2
µ2

σ2

∫ t

0
p2
udu+

∫ t

0
ψ̃udSu, ZT = lnE(eαH |FST ). (44)

The solution of this equation is expressed as

Zt = E
(
EtT (−µ

σ
p · W̃ )(lnE(eαH |FST )− µ2

2σ2

∫ T

t
p2
udu)|FSt

)
. (45)
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Besides, taking t = T in Equation (44), one can find the integrand ψ̃ by the martingale representation
property

lnE(eαH |FST )− µ2

2σ2

∫ T

0
p2
udu = c+

∫ T

0
ψ̃udSu. (46)

Since the left side of (46) is the difference of two FST -measurable random variables, by the martingale
representation theorem, there exist two predictable S-integrable processes ψ̃(1) and ψ̃(2), such that

lnE(eαH |FST ) = c1 +
∫ T

0
ψ̃u(1)dSu (47)

− µ2

2σ2

∫ T

0
p2
udu = c2 +

∫ T

0
ψ̃u(2)dSu. (48)

Thus, the logarithm of the value process is the sum of two parts Zt(1) and Zt(2)

Zt = EQ
(

lnE(eαH |FST )|FSt
)
− EQ

( µ2

2σ2

∫ T

t
p2
udu|FSt

)
= Zt(1) + Zt(2).

With regard to Zt(1), we first observe that

E(eαH |FST ) = E(eαg(ζ,ST )|FST ) = f(ST ),

where

f(S) = E(eαg(ζ,ST )|ST = S) =
∫ ∞

0
eαg(u,S)dFζ(u).

In the last equality we used the independence of ζ and ST . Note that f > 1, since g is positive. Since
St = S0 +σW t and W t = W̃t+ µ

σ

∫ t
0 pudu is a Q-Brownian motion, by the Markov property of S under

(Q,FS) we easily see that

EQ
(

lnE(eαH |FST )|FSt
)

= EQ
(

ln f(ST )|St
)

and

G(t, x) ≡ EQ(ln f(ST )|St = x) =
1√

2πσ2(T − t)

∫
R

ln f(y)e
− (y−x)2

2σ2(T−t)dy. (49)

Since G ∈ C1,2([0, T [×R) and Zt(1) is a Q-martingale, by Ito’s formula

Zt(1) = G(t, St) = G(0, S0) +
∫ t

0
Gx(t, St)dSt. (50)

Comparing (50) and (47) we see that ψ̃t(1) = Gx(t, St), dPdt a.e..
While, with regard to Zt(2), let us observe that under the measure Q the process pt satisfies the

SDE

pt = p0 +
µ

σ

∫ t

0
pu(1− pu)

1
σ
dSu +

∫ t

0
(1− pu)(γ − µ2

σ2
p2
u)du, (51)

where 1
σSt is a Brownian motion under the measure Q.
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Therefore Zt(2) can be represented as

Zt(2) = − µ2

2σ2
U(t, pt),

where

U(t, x) = EQ(
∫ T

t
p2
udu|pt = x). (52)

Let R(t, x) be a solution of the linear PDE

Rt(t, x) +
µ2

2σ2
x2(1− x)2Rxx(t, x) +

(
γ − µ2

σ2
x2
)
(1− x)Rx(t, x) + x2 = 0, R(T, x) = 0, (53)

where Rt, Rx and Rxx are partial derivatives of R. The existence of a solution of (53) from the class
∈ C1,2([0, T ]× (0, 1)) follows from [23].

It follows from the Ito formula for R(t, pt), taking in mind that R(t, x) solves equation (53), that
the process

R(t, pt) +
∫ t

0
p2
udu = R(0, p0) +

µ

σ2

∫ t

0
Rx(u, pu)dSu (54)

is a martingale under Q. Using the martingale property and the boundary condition

R(t, pt) = EQ(
∫ T

t
p2
udu|F

p
t )

and from (52) we obtain that R(t, pt) = U(t, pt). Comparing the Q martingale parts of (48)and (54)
we obtain that dPdt a.e..

ψ̃t(2) = − µ3

2σ4
pt(1− pt)Rx(t, pt).

Thus, we proved

Proposition 2 The value process of problem (35) is equal to

Vt = eG(t,St)− µ2

2σ2R(t,pt)

and the optimal strategy π∗ is equal to

π∗t =
µpt
ασ2

(1− µ2

2σ2
(1− pt)Rx(t, pt)) +

1
α
Gx(t, St),

where G(t, x) is defined by (49), R(t, x) satisfies the linear PDE (53) and pt is a solution of SDE (51).

Remark 7 The optimal wealth process is the sum of two components, a hedging fund

1
α

∫ t

0
Gx(u, Su)dSu

(which is zero if H = 0) and an investment fund

µ

ασ2

∫ t

0
pu
(
1− µ2

2σ2
(1− pu)Rx(u, pu)

)
dSu.

This fact is a consequence of wealth independent risk aversion of the exponential utility function,
which makes the investors behavior not depending on his initial endowment.
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Remark 8 IfH = 0 and τ is deterministic, τ = t0, then Rx = 0 and the optimal strategy is µ
ασ2 I(t≥t0).

If t0 = 0, then we obtain Merton’s optimal strategy π∗ = µ
ασ2 , (see [19]).

5 Diffusion model with correlation.

In this section we deal with a model with two assets one of which has no liquid market. First we
consider an agent who is finding the best strategy to hedge a contingent claim H, trading with the
liquid asset but using just the information on the non tradable one. Then we specialize the result to
the case when the model is Markovian and H depends only on the nontraded asset’s price at time T .
Finally, we solve the problem for full information when H is function only of the nontraded asset and
compare the obtained result.
Let S and η denote respectively the return of the tradable and the price of the non tradable assets.
We assume S and η have the following dynamics

dSt =µ(t, η)dt+ σ(t, η)dW 1
t , (55)

dηt =b(t, η)dt+ a(t, η)dWt, (56)

where W 1 and W are correlated Brownian motions with constant correlation ρ ∈ (−1, 1).
The coefficients µ, σ, a and b are non anticipative functionals such that

1)
∫ T

0
µ2(t,η)
σ2(t,η)

dt is bounded,
2) σ2 > 0, a2 > 0,
3) equation (56) admits a unique strong solution,
4) H is bounded and measurable with respect to the σ-algebra F ηT ∨ σ(ξ), where ξ is a random

variable independent of S.

Note that under conditions 2) and 3), FS,η = FW
1,W , F η = FW . So, we will have

Ft = FS,ηt ⊆ At and Gt = F ηt .

Here FW
1,W (resp. FW ) is an augmented filtration generated by W 1 and W (resp. W ). So the

filtration F ηt is continuous and the condition C) is satisfied.
Since FT = FS,ηT , assumption 4) implies that condition E) is fulfilled.
Condition F) is here represented by 1).

We consider the optimization problem

to minimize E[e−α(
∫ T
0 πudSu−H)] over all π ∈ Π(F η), (57)

where π represents the dollar amount the agent invests in the stock and, constructing the optimal
strategy, he uses only the information based on η.
Let us observe that

Mt =
∫ t

0
σ(u, η)dW 1

u , 〈M〉t =
∫ t

0
σ2(u, η)du, λt =

µ(t, η)
σ2(t, η)

.
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We denote the market price of risk by

θt =
µ(t, η)
σ(t, η)

. (58)

It is convenient to think of W as a linear combination of two independent Brownian motions W 0 and
W 1, thus

Wt = ρW 1
t +

√
1− ρ2W 0

t . (59)

It is evident that W is a Brownian motion also with respect to the filtration FW
0,W 1

(which is equal
to FW

1,W ) and condition B) is satisfied. Therefore, by Proposition 2.2 in [18],

M̂t = ρ

∫ t

0
σ(u, η)dWu.

Hence, 〈M̂〉t = ρ2
∫ t

0 σ
2(u, η)du = ρ2〈M〉t and κ2

t = ρ2, therefore Ŝ satisfies

dŜt = µ(t, η)dt+ ρσ(t, η)dWt.

Since any F η local martingale is represented as a stochastic integral with respect to W and σ(t, η) is
F ηt -adapted, condition D) is also satisfied.

Therefore, it follows from Proposition 1, that under conditions 1)-4) the optimization problem (57)
is equivalent to the problem

to minimize E[e−α(
∫ T
0 πudŜu−H̃)+α2

2
(1−ρ2)

∫ T
0 π2

uσ
2(u,η)du] over all π ∈ Π(F η), (60)

where H̃ = 1
α lnE(eαH |F ηT ).

We shall show that in this case problem (60) admits an explicit solution.

Let Q̃ be the measure defined by
dQ̃

dP
= ET (−ρ θ ·W ). (61)

Note that Q̃ is a martingale measure for Ŝ (on F η)and by Girsanov’s theorem, under the measure Q̃,

W̃t = Wt + ρ

∫ t

0
θudu

is a Brownian motion.

Proposition 3 Let us assume conditions 1)-4). Then, the value process related to problem (60) is
equal to

Vt =
(
EQ̃[e(1−ρ2)(αH̃− 1

2

∫ T
t θ2udu)|F ηt ]

) 1
1−ρ2 . (62)

Moreover, the optimal strategy π∗ is identified by

π∗t =
1

ασ(t, η)
(
θt +

ρht

(1− ρ2)(c+
∫ t

0 hudW̃u)

)
, (63)

where ht is the integrand of the integral representation

e(1−ρ2)(αH̃− 1
2

∫ T
0 θ2t dt) = c+

∫ T

0
htdW̃t. (64)
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Proof. Conditions 1)-4) imply that the assumptions A)-F) are satisfied. Thus, according to Theorem 1,
the value process Vt related to the problem (60) is the unique bounded solution of Equation (24). In
this case, after the change of variables x ≡ ρσψ, the BSDE (24) can be written

Yt = Y0 +
1
2

∫ t

0
[
(θuYu + xuρ)2

Yu
]du+

∫ t

0
xudWu, YT = E(eαH |F ηT ). (65)

Besides, the equation for the logarithm of the value process takes the following form

dZt = −1
2

[ϕ2
t (1− ρ2)− 2ϕtρθt − θ2

t ]dt+ ϕtdWt, ZT = αH̃. (66)

Note that ϕt = xt
Yt

.
Under Q̃, Equation (66) becomes

dZt = −1
2

[ϕ2
t (1− ρ2)− θ2

t ]dt+ ϕtdW̃t, ZT = αH̃. (67)

From (67), using the boundary condition ZT = αH̃, we have

Z0 +
∫ T

0
ϕtdW̃t −

1− ρ2

2

∫ T

0
ϕ2
tdt = −1

2

∫ T

0
θ2
t dt+ αH̃. (68)

Multiplying both parts of this equation by 1− ρ2 and taking exponentials we obtain

c ET ((1− ρ2)ϕ · W̃ ) = e(1−ρ2)(αH̃− 1
2

∫ T
0 θ2t dt), (69)

where c = e(1−ρ2)Z0 .
Since

∫ T
0 θ2

t dt and H̃ are F ηT -measurable and H̃ is bounded, by the martingale representation theorem
and Bayes rule, there exists a F η-predictable function h, such that the martingale EQ̃

(
e(1−ρ2)(αH̃− 1

2

∫ T
0 θ2udu)|F ηt

)
admits the representation

EQ̃[e(1−ρ2)(αH̃− 1
2

∫ T
0 θ2udu)|F ηt ] = c+

∫ t

0
hudW̃u. (70)

Therefore, taking conditional expectations in (69),

Et((1− ρ2)ϕ · W̃ ) = 1 + c−1

∫ t

0
hudW̃u. (71)

Thus,

(ϕ · W̃ )t = (1− ρ2)−1

∫ t

0
(c+

∫ s

0
hudW̃u)−1hsdW̃s

and dPdt a.e.

ϕt = (1− ρ2)−1(c+
∫ t

0
hudW̃u)−1ht. (72)

Note that, since we changed the variables (x ≡ ψρσ) in (65), the processes ψ̃ from (27) and ϕ are
related by the equality ψ̃ = ϕ/ρσ. Therefore, it follows from (33) that the optimal hedging strategy
is (63).
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Using the martingale property of ϕ · W̃ and the boundary condition, from (67) we obtain

Zt = EQ̃
(
αH̃ +

1
2

∫ T

t

(
(1− ρ2)ϕ2

u − θ2
u

)
du|F ηt

)
. (73)

Now let us express Zt in a more explicit form.
From (64), we have

(1− ρ2)(αH̃ − 1
2

∫ T

0
θ2
t dt) = ln(c+

∫ T

0
hudW̃u)

and, by Ito’s formula,

d ln(c+
∫ t

0
hudW̃u) =

ht

c+
∫ t

0 hudW̃u

dW̃t −
1
2

h2
t

(c+
∫ t

0 hudW̃u)2
dt.

From this equation, using (72), we have

(1− ρ2)−1

(
ln(c+

∫ T

0
hudW̃u)− ln(c+

∫ t

0
hudW̃u)

)
=
∫ T

t
ϕudW̃u −

1
2

(1− ρ2)
∫ T

t
ϕ2
udu.

Taking conditional expectation with respect to the measure Q̃, we find that

(1− ρ2)
2

EQ̃(
∫ T

t
ϕ2
udu|F

η
t ) = EQ̃(−αH̃ +

1
2

∫ T

0
θ2
udu|F

η
t ) + ln(c+

∫ t

0
hudW̃u)(1−ρ2)

−1

(74)

If we substitute (74) in (73), we have that

Zt =
1
2

∫ t

0
θ2
udu+ ln(c+

∫ t

0
hudW̃u)(1−ρ2)

−1

which implies that the value process of problem (60) is

Vt = e
1
2

∫ t
0 θ

2
udu(c+

∫ t

0
hudW̃u)(1−ρ2)

−1

,

which is equal to (62), by (70). �

Remark 9 If H = 0, like in the pure investment problem, and µ, σ are constants (or if the mean
variance tradeoff

∫ T
0 θ2

t dt is deterministic), then h = 0 by (70),

Vt = e−
1
2
θ2(T−t) and π∗t =

µ

ασ2

is the optimal investment strategy for maximizing exponential utility (as in the Merton’s model),
which keeps a constant dollar amount invested in the stock.

Remark 10 If H 6= 0, µ, σ are constants, but ρ = 0, it follows from (63) that the same strategy
is optimal. In this case H̃ = f(η) is independent of the traded asset and the risk is “completely
unhedgeable”.
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Remark 11 If ρ2 = 1, then the solution of Equation (66) gives the value process is

Vt = eE
Q̃(αH̃− 1

2

∫ T
t θ2udu|F

η
t ).

The same result is obtained by taking the limit as ρ→ ±1 in (62), since for any t, we have

lim
ρ→±1

(
EQ̃[e(1−ρ2)(αH̃− 1

2

∫ T
t θ2udu)|F ηt ]

) 1
1−ρ2 = eE

Q̃(αH̃− 1
2

∫ T
t θ2udu|F

η
t ).

Note that if ρ2 = 1, to avoid arbitrage opportunities, the coefficients of (55), (56) must be related by

µ(t, η) = ± b(t, η)
a(t, η)

σ(t, η), if ρ = ±1.

We move on to considering a contingent claim H = f(ηT ) and we assume also the Markov structure
of the coefficients. Introduce the function

R(t, x) = EQ̃[e(1−ρ2)(αf(ηT )− 1
2

∫ T
t θ2(u,ηu)du)|ηt = x].

Then we can express R(t, x) as a solution of a linear PDE and h in terms of the first derivative of R.
Classical results yield that, under some regularity conditions on the coefficients, R ∈ C1,2([0, T ]× R)
and satisfies the following PDE (see, e.g.,[5])

Rt(t, x) +
1
2
a2(t, x)Rxx(t, x) +Rx(t, x)(b(t, x)− ρθ(t, x)a(t, x))−R(t, x)

1− ρ2

2
θ2(t, x) = 0, (75)

with terminal condition R(T, x) = eα(1−ρ2)f(x), where Rt, Rx and Rxx are partial derivatives of
R. On the one hand, let us observe that

R(t, ηt) = c e
1−ρ2

2

∫ t
0 θ

2(u,ηu)duEt((1− ρ2)ϕ · W̃ ),

hence R(t, ηt) is solution of the following backward equation

dR(t, ηt) = R(t, ηt)[(1− ρ2)ϕtdW̃t +
(1− ρ2)

2
θ2(t, ηt)dt], R(T, ηT ) = eα(1−ρ2)f(ηT ). (76)

Writing the Ito formula for R(t, ηt) and comparing with (76) we obtain that

ϕt =
Rx(t, x)a(t, x)
(1− ρ2)R(t, x)

.

Using representation (64), in an analogous way, one can write

R(t, ηt) = e
1−ρ2

2

∫ t
0 θ

2(u,ηu)du(c+
∫ t

0
hudW̃u).

Thus,

ht = e−
1−ρ2

2

∫ t
0 θ

2(u,ηu)duRx(t, ηt)a(t, ηt).
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The optimal strategy π∗ in this case takes the following form

π∗t =
1

ασ(t, ηt)

(
θ(t, ηt) +

Rx(t, ηt)
(1− ρ2)R(t, ηt)

ρa(t, ηt)
)
,

where R(t, x) satisfies the PDE (75).

Now we deal with the case of full information. To this end, we consider the same market model
(55)-(56) consisting of two risky assets, one of which is non traded, and denote by S̃t the asset price
of the traded one. Thus, the dynamics of the prices are respectively:

dS̃t =S̃t(µ(t, η)dt+ σ(t, η)dW 1
t ) (77)

dηt =b(t, η)dt+ a(t, η)dWt. (78)

Let the coefficients µ, σ, a and b satisfy conditions 1)-3) and let H be a bounded F ηT -measurable
random variable.

We consider the problem

to minimize E
(
e−α(

∫ T
0 πtdS̃t−H)

)
over all π ∈ Π(F S̃,η), (79)

where πt represents the number of stocks held at time t and is adapted to the filtration F S̃,ηt .
We assume an agent is trading with a portfolio of stocks S̃ in order to hedge a contingent claim
H = f(η), written on the non traded asset. Notice that the agent builds his strategy using all
market information, and Gt = F S̃,ηt = At. The market is incomplete, since η is non tradable and the
contingent claim H is not attainable by the wealth process Xπ

t = x +
∫ t

0 πudS̃u, by means of a self
financing strategy π.

This problem was earlier studied in [1, 6, 7, 20, 22], for the model (77)-(78) (which is sometimes also
called the “basis risk model”) with constant coefficients µ and σ. In the case of constant coefficients
µ, σ, assuming the Markov structure of b and a, in [22] (see also [6]) an explicit expression for the
value function related to the problem (79) is given, which is

v(t, y) =
(
EQ[e(1−ρ2)(αf(ηT )− 1

2
(T−t)µ

2

σ2 |ηt = y]
) 1

1−ρ2

, (80)

where the measure Q is defined by
dQ

dP
= ET (−θ ·W 1). (81)

Note that, although the measures Q and Q̃, defined in (61), are different, the process ηt has the same
law under both of them and the value process Vt of Equation (62) (in case H = f(η)) and the value
function (80) are related by the equality

Vt = v(t, ηt).

Note that (75) coincides with Equation (15) of [22] for constant coefficients µ and σ.
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Using Theorem 1, we shall show that if H is F ηT -measurable, then Vt, defined by (62), coincides
with the value process related to problem (79) also in a non Markovian setting and that the optimal
amount of money depends only on the observation coming from the non traded asset.

Under assumptions 1)-3), straightforward calculations yield that

Mt = M̂t =
∫ t

0 S̃uσ(u, η)dW 1
u , 〈M〉t = 〈M̂〉t =

∫ t
0 S̃

2
uσ

2(u, η)du and
λt = µ(t,η)

S̃tσ2(t,η)
, besides the orthogonal part will be expressed as a stochastic integral with respect to

W 0.

Thus, according to Theorem 1, the value process related to problem (79) is the unique bounded
solution of the BSDE

Yt = Y0 +
1
2

∫ t

0

(ψu + θuYu)2

Yu
du+

∫ t

0
ψudW

1
u +

∫ t

0
ψ⊥u dW

0
u , YT = eαH (82)

and the optimal strategy is of the form

π∗t =
1

ασ(t, η)S̃t

(
θt +

ψt
Yt

)
, (83)

where θt is defined in (58).

Proposition 4 The process

Yt =
(
EQ[e(1−ρ2)(αH− 1

2

∫ T
t θ2udu)|F ηt ]

) 1
1−ρ2 (84)

is the unique bounded strictly positive solution of Equation (82). Besides, the optimal strategy is

π̃∗t =
1

ασ(t, η)S̃t

(
θt +

ρht

(1− ρ2)(c+
∫ t

0 hudW̃u)

)
, (85)

where h is defined by (64).

Proof.

Using (64) and Ito’s formula, we find that

dYt = d
(
e

1
2

∫ t
0 θ

2
udu(EQ[e(1−ρ2)(αH− 1

2

∫ T
0 θ2udu)|F ηt ])

1
1−ρ2

)
= d

(
e

1
2

∫ t
0 θ

2
udu(c+

∫ t

0
hudW̃u)

1
1−ρ2

)
= e

1
2

∫ t
0 θ

2
udu(c+

∫ t

0
hudW̃u)

1
1−ρ2

1
2
θ2
t dt+ e

1
2

∫ t
0 θ

2
udu×

×
[

1
1− ρ2

(c+
∫ t

0
hudW̃u)

ρ2

1−ρ2 htdW̃t +
1
2

ρ2

(1− ρ2)2
(c+

∫ t

0
hudW̃u)

ρ2

1−ρ2
−1
h2
tdt

]
=

1
2

[
(θtYt + φtρ)2

Yt
]dt+ φt(ρdW 1

t +
√

1− ρ2dW 0
t ), (86)
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where in the last equality, we introduced the symbol φ to denote

φt = e
1
2

∫ t
0 θ

2
udu

1
1− ρ2

(c+
∫ t

0
hudW̃u)

ρ2

1−ρ2 ht. (87)

Comparing (86) with (82), we see that Yt is a bounded solution of (82), where ψt = φtρ and ψ⊥t =
φt
√

1− ρ2. By the uniqueness of (82), we obtain (84).
To obtain the optimal strategy, we substitute the expressions of ψt = φtρ, where φ is specified by (87),
and of Yt, written in terms of the representation (64), in (83). �

Remark 12 Note that Yt satisfies also the BSDE (65), related to problem (57), which is simpler
than (82). This follows either from the proof of Proposition 3 or directly from (86), since ρdW 1

t +√
1− ρ2dW 0

t = Wt.

So, the optimization problems (57) and (79) are equivalent since the corresponding value processes
coincide and the optimal strategies of these problems are related by the equality

π∗t = π̃∗t S̃t.

This means that, if H = f(η), the optimal dollar amount invested in the assets is the same in both
problems and is based only on the information coming from the non traded asset η. We deduce that
if the contingent claim does not depend on the stock but only on the non traded asset η, we need the
same optimal amount of money to hedge with the stock S in both situations: if we consider just the
information on η and if we use all the information of the market.

Remark 13 If we consider the optimization problem

to minimize E
(
e−α(

∫ T
0 πtdS̃t−H)

)
over all π ∈ Π(F η), (88)

where πt represents the number of stocks held at time t and is adapted to the filtration F ηt , then
this problem is not equivalent to (57) and (79). Indeed, the optimal quantity of assets in (79) is not
F η-predictable and then it is evident that

π∗t 6= π̃∗t S̃t,

where π∗ and π̃∗ denote respectively the optimal strategies of (57) and (88).
Theorem 1 cannot be applied directly to problem (88). In fact, for the process S̃, condition A) is not
satisfied and the equivalent F η-adapted problem for (88) is more complicated.

6 Sufficiency of filtrations

In this section we study the issue of sufficiency of partial information for the optimization problem
(2).
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Let Vt(A) and Vt(G) be the value processes of the problem corresponding respectively to the cases
of full and partial information

Vt(A) = ess inf
π∈Π(A)

E[e−α(
∫ T
t πudSu−H)|At],

Vt(G) = ess inf
π∈Π(G)

E[e−α(
∫ T
t πudSu−H)|Gt].

It is convenient to express the optimization problem as the set

OΠ = {(Ω,A ,A, P ), S,H}

formed by the filtered probability space, the asset price process S and the terminal reward H.

Definition 1 The filtration G is said to be sufficient for the optimization problem OΠ if V0(G) =
V0(A), i.e., if

inf
π∈Π(A)

E[e−α(
∫ T
0 πudSu−H)] = inf

π∈Π(G)
E[e−α(

∫ T
0 πudSu−H)], (89)

where Π(A) (respectively Π(G)) is the class of A- predictable (respectively G- predictable) processes
π such that π ·N ∈ BMO(A).

Note that for the model (55)-(56) satisfying conditions 1)-3) the filtration Gt = F ηt is sufficient, if
At coincides with the filtration FS,ηt and if H is F ηT -measurable. Our aim is to give sufficient conditions
for (89) for a more general model.

In this section we shall use the following assumptions:

A
′
) 〈N〉 is G-predictable,

B
′
) any G-martingale is an A-local martingale,

C
′
) the filtration G is continuous,

D
′
) λ and 〈N,m(g)〉 (for any G-local martingale m(g)) are G-predictable,

E
′
) H is a GT -measurable bounded random variable,

F
′
)
∫ T

0 λ2
td〈N〉t ≤ C, P − a.s..

Remark 14 These assumptions are similar to A)-F), but there are several differences. Here we don’t
use the auxiliary filtration F and conditions A

′
)−F ′) are formulated in terms of filtration A, e.g., D

′
)

and E
′
) are conditions on A-decomposition terms of S and in assumptions B

′
) and E

′
) the filtration

F is replaced by A) (so, they are stronger). On the other hand, condition A
′
) is the first part of A)

and C
′
) is the same as C).

Throughout this section we shall assume that conditions A
′
), B

′
), C

′
) and F

′
) are satisfied.

Under conditions A
′
), B

′
), C

′
)

Ŝt = E(St|Gt) = S0 +
∫ t

0
λ̂ud〈N〉u +N t, (90)
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where N t admits the representation (the proof is similar to [15] (Theorem 1 of Ch.4.10 ))

N t =
∫ t

0

̂
(
d〈N,m(g)〉u
d〈m(g)〉u

)dmu(g) + Lt(g), (91)

for any G-local martingale m(g). Here L(g) is a G-local martingale orthogonal to m(g). Note that
N t is equal to E(Nt|Gt) if λ is G-predictable.
It follows from (91) that

〈N,m(g)〉G = 〈N,m(g)〉 (92)

for any G-local martingale m(g), where by AG we denote the dual G-predictable projection of the
process A.

Note that k2
t = d〈N〉t/d〈N〉t ≤ 1 and, like in section 2, one can show that π · N ∈ BMO(G) for

any π ∈ Π(G).

Lemma 3 Let V0(A) = V0(G). Then Vt(G) = E(Vt(A)|Gt). If in addition FS ⊆ G, and conditions
B
′
), E

′
) are satisfied, then Vt(A) = Vt(G) for all t ∈ [0, T ].

Proof. If V0(A) = V0(G) then the optimal strategy π∗ for V0(A) is G-predictable. Therefore

Vt(A) = E
(
e−α(

∫ T
t π∗udSu−H)|At

)
(93)

and taking conditional expectations with respect to Gt we obtain the equality Vt(G) = E(Vt(A)|Gt).
If FS ⊆ G and H is GT -measurable then

E
(
e−α(

∫ T
t π∗udSu−H)|At

)
= E

(
e−α(

∫ T
t π∗udSu−H)|Gt

)
= Vt(G), (94)

since by condition B
′
) the σ-algebras At and GT are conditionally independent with respect to Gt.

Thus, (93) and (94) imply the equality Vt(A) = Vt(G). �

Proposition 5 Let conditions A
′
), B

′
), C

′
) and F

′
) be satisfied. Then Vt(A) = Vt(G) if and only if

H is GT -measurable and the process Vt(A) satisfies the BSDE

Yt = Y0 +
1
2

∫ t

0

(ψuk2
u + λ̂uYu)2

Yu
d〈N〉u +

∫ t

0
ψudNu + Ñt, YT = eαH , (95)

where Ñ is a G-local martingale orthogonal to N and k2
t = d〈N〉t/d〈N〉t.

Proof. Let Vt(A) = Vt(G). This implies that eαH = E(eαH |GT ) and H is GT -measurable. According
to Corollary 2 (more exactly, by (36)) Vt(A) is the unique (bounded strictly positive) solution of the
BSDE

Yt = Y0 +
1
2

∫ t

0
Yu
(
λu +

ϕu
Yu

)2
d〈N〉u +

∫ t

0
ϕudNu + Lt, YT = eαH (96)

and the optimal strategy is of the form

π∗t =
1
α

(λt +
ϕt
Yt

). (97)
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Since Vt(A) = Vt(G), the optimal strategy π∗ is G-predictable, hence π∗ = π̂∗, i.e.,

λt +
ϕt

Vt(A)
= λ̂t +

ϕ̂t
Vt(A)

. (98)

Therefore (96), (98) and condition A
′
) imply that the martingale part mt =

∫ t
0 ϕudNu+Lt is a G-local

martingale. By the Galtchouk-Kunita-Watanabe (G-K-W) decomposition of m with respect to N∫ t

0
ϕudNu + Lt =

∫ t

0
ψudNu + Ñt, (99)

where ψ is a G-predictable N -integrable process and Ñ is a G-local martingale orthogonal to N (since
mt =

∫ t
0 ϕudNu + Lt is G-adapted). It is evident that

ψt =
d〈m,N〉t
〈N〉t

and ψtk
2
t =

d〈m,N〉t
〈N〉t

. (100)

Taking first the mutual characteristics (with respect to N) and then G-dual predictable projections
of both parts in (99) ∫ t

0
ϕ̂ud〈N〉u =

∫ t

0

d〈m,N〉u
d〈N〉u

d〈Nu, N〉Gu + 〈N, Ñ〉Gt . (101)

It follows from (92) that 〈N,N〉G = 〈N〉 and 〈N, Ñ〉G = 〈N, Ñ〉 = 0. Therefore∫ t

0
ϕ̂ud〈N〉u = 〈N,m〉t

and

ϕ̂t =
d〈m,N〉t
d〈N〉t

= ψtκ
2
t . (102)

Substituting (98), (99) and (102) in (96) we obtain that Vt(A) satisfies (95).
Let us assume now, that Vt(A) satisfies equation (95). It follows from the proof of Theorem 1 that

the unique bounded strictly positive solution of equation (24) is the process

Vt = ess inf
π∈Π(G)

E[e−α(
∫ T
t πudŜu−H)+α2

2

∫ T
t π2

u(1−k2
u)d〈N〉u |Gt]. (103)

Note that here we don’t need condition D
′
), which is needed just to show the equivalence Vt(G) = Vt

in Proposition 1.
Thus Vt(A) = Vt. This implies that Vt(A) is G-adapted and the optimal strategy π∗ for Vt(A) is
G-predictable. Therefore

Vt(A) = ess inf
π∈Π(G)

E[e−α(
∫ T
t πudSu−H)|At] = E[e−α(

∫ T
t π∗udSu−H)|At]

and taking conditional expectations (with respect to Gt) in this equality we have

Vt(A) = E[e−α(
∫ T
t π∗udSu−H)|Gt] ≥ ess inf

π∈Π(G)
E[e−α(

∫ T
t πudSu−H)|Gt] = Vt(G). (104)

On the other hand Vt(G) ≥ E(Vt(A)|Gt) (this is proved similarly to (21)) which together with
inequality (104) implies the equality Vt(A) = Vt(G). �
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Corollary 3 Let conditions C
′
) and F

′
) be satisfied and let FS ⊆ G. Then

a) Vt(A) = Vt(G) if and only if H is GT -measurable and λ is G-predictable.

b) If in addition condition B
′
) is satisfied and H is GT -measurable, then V0(A) = V0(G) if and

only if λ is G-predictable.

Proof. Let H be a GT -measurable and λ is G-predictable. Since FS ⊆ G the square bracket 〈N〉 is
G-predictable and from (1) follows that N is G-adapted. Therefore, N = N and k2 = 1. This implies
that equations (95) and (96) coincide (note that λ = λ̂), hence Vt(A) satisfies (95) and Vt(A) = Vt(G)
by Proposition 5.

Let Vt(A) = Vt(G). Since 〈m,N〉 = 〈V (G), S〉 be G-predictable, ϕ = d〈m,N〉
d〈N〉 is G-predictable and

it follows from equality (98) that λ is also G-predictable.

The proof of the part b) follows from part a) and Lemma 3. �

Theorem 2 Let conditions A
′
)–F

′
) be satisfied. Then Vt(A) = Vt(G) and the filtration G is sufficient.

Proof. It follows from the proof of Theorem 1 (and Proposition (1)) that under conditions A
′
)− F ′)

the value process V (G) coincides with V (defined by (103)) and satisfies equation (95). It follows from
(92) and condition D

′
) that 〈N,N〉 = 〈N〉, which implies that

N t =
∫ t

0
k2
t dNt + L̃t, (105)

where L̃ is orthogonal to N . On the other hand under conditions A
′
) − F ′) and equality (92) also

imply that 〈Ñ ,N〉 = 〈Ñ ,N〉 = 0 (Ñ is defined by (95)), i.e., a local martingale orthogonal to N is also
orthogonal to N . Therefore plugging (105) into (95), by a change of variables ϕ = ψk2, we obtain that
equations (95) and (96) are equivalent (note that λ = λ̂ by D

′
)). This implies that Vt(G) = Vt(A). �

Remark 15 Note that under conditions A)–F) the filtration Gt is sufficient for the auxiliary filtration
Ft = FSt ∨Gt.

Remark 16 Of course, condition E
′
) is not necessary for the filtration G to be sufficient, i.e. the

filtration G can be sufficient for some claims H which are not GT -measurable. One can show that
Theorem 2 remains true if we replace condition E

′
) by assuming that in the G-K-W decomposition

H = EH+
∫ T

0 ϕHu dNu+LHT the processes ϕH , 〈LH〉 and 〈LH ,m(g)〉 (for any G-local martingale m(g))
are G-predictable.
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