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degli Studi di Torino, Piazza Arbarello 8, 10122 Torino, Italy. e-mail : igor@econ.unito.it

Motivation: Expressed sequence tags (ESTs) analyses are a fundamental tool for gene

identification in organisms. Given a preliminary EST sample from a certain library, several

statistical prediction problems arise. In particular, it is of interest to estimate how many

new genes can be detected in a future EST sample of given size and also to determine the

gene discovery rate: these estimates represent the basis for deciding whether to proceed

sequencing the library and, in case of a positive decision, a guideline for selecting the size

of the new sample. Such information is also useful for establishing sequencing efficiency in

experimental design and for measuring the degree of redundancy of an EST library.

Results: In this work we propose a Bayesian nonparametric approach for tackling sta-

tistical problems related to EST surveys. In particular, we provide estimates for: a)

the coverage, defined as the proportion of unique genes in the library represented in the

given sample of reads; b) the number of new unique genes to be observed in a future

sample; c) the discovery rate of new genes as a function of the future sample size. The

Bayesian nonparametric model we adopt conveys, in a statistically rigorous way, the avail-

able information into prediction. Our proposal has appealing properties over frequentist

nonparametric methods, which become unstable when prediction is required for large fu-

ture samples. EST libraries studied in Susko and Roger (2004), with frequentist methods,

are analyzed in detail.

1 Introduction

Expressed Sequence Tags (ESTs) are generated by partially sequencing randomly isolated gene tran-

scripts that have been converted into cDNA. From their introduction Adams et al. (1991), ESTs have

played an important role in the identification, discovery and characterization of organisms as they

provide an attractive and efficient alternative to full genome sequencing. The resulting transcript

sequences and their corresponding abundances are the main focus of interest providing the identifi-

cation and level of expression of genes. Despite the novel advances in sequencing technology Emrich

et al. (2007), EST projects aimed at library construction and sequencing still incur in big expenses

and therefore suitable cost-effectiveness thresholds must be established. This suggests that there is

1



the need for assessing the relative redundancy of various libraries prepared from the same organism

in order to detect which one yields new genes at a higher rate. Indeed, there are ‘normalization’ pro-

tocols which aim at making the frequencies of genes in the library more uniform typically improving

the discovery rate. However, performing such protocols is expensive. Hence, the decision, whether to

proceed with sequencing of a non–normalized library or to resort to a normalization procedure, has

to balance carefully the involved costs: such a decision is necessarily based on statistical estimates of

the coverage of the given sample, of the expected number of new genes in a future sample and on the

future discovery rate. Note that ideally one would like to sequence the smallest possible portion of

the library and, based on the outcome, predict the tentative future sequencing well beyond the size

of the given dataset.

The main statistical issues to be faced, once an initial sample of EST is available, are as follows:

a) Coverage: Coverage can be seen as the proportion of genes in the library represented in the

initial sample or, equivalently, the probability that a new read will not produce a new gene. The

coverage estimate provides a first description of redundancy of the library.

b) Expected number of new genes: Having observed an initial sample of size n generated from the

cDNA library and estimated its coverage, prediction of outcomes of further reads is in order.

The first question to answer is: ‘How many new unique genes are expected to be detected in an

additional EST dataset of targeted size m?’ Such estimates provide, then, an overall measure

of redundancy of the library with reference to a further EST survey.

c) Discovery rate: In addition to the expected number of genes in a future sample of size m, it is

also important to establish the rate at which the probability of discovering a new gene decays as

more and more reads are recorded. In other words, interest lies in determining the probability

that the n + m + 1–th read leads to a new gene, given the observed initial sample of size n and

regardless of the experimental outcome yielded by the m intermediate draws. The availability of

the discovery rate as a function of the size of the future sample m, represents then a pointwise

predictive measure of the evolution of redundancy as the sequencing ideally proceeds.

Note that the combination of the measures under b) and c) provide a natural guideline for selecting

the size of a future sample m. Supposing the targeted number of new genes is j, the expected number

of new genes allows to select the minimum survey size m̄ which leads to j new genes. Then, one can

resort to the discovery rate: in case it is relatively low around m̄, it may be convenient to reduce the

size of the future sample in a way that the discovery rate does not fall below a threshold suggested

by the problem at issue. On the other hand, if the discovery rate around m̄ is still relatively high,

one may decide to enlarge the survey size. Moreover, the information conveyed by b) and c) is useful

in comparing libraries and, again, it is worth considering these estimates together. Indeed, suppose

we have to compare two libraries and that, for a fixed size m of the additional sample, library 1

yields a larger expected number of new genes but a lower discovery rate in comparison with library

2. If the sample size m is increased to m + m′, for m′ sufficiently large, the comparison between

the two libraries can lead to different conclusions in the sense that a larger number of new genes is
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predicted for library 2. This happens because library 1 features a lower discovery rate, which implies

that, within the additional m′ draws, the expected number of new genes is lower for library 1. With

reference to ‘normalization’ protocols, this means that the decision whether to carry it out or not

should depend also on the foreseen sample size. For instance, the normalized Mastigamoeba balamuthi

data we analyze exhibit a higher discovery rate, with respect to the non–normalized one, for small m.

But, since the discovery rate has a faster decay, it appears that, already for moderately large m, the

effect of the ‘normalization’ is exhausted producing fewer number of new genes.

The three questions raised above can be seen as particular instances of classical species sampling

problems: indeed, in the present context each species takes on the meaning of gene and the population

is given by the library. Species problems appear in a variety of different applied situations such as

astronomy, ecology, linguistics, machine learning, population biology. We now briefly recall well–

known estimation methods which have recently been applied to EST data and then outline the key

ideas of our Bayesian nonparametric approach.

1.1 Estimation methods

The main frequentist tools, that are useful for inference on the cDNA library properties described in

the previous section, are based on the theory set forth in Good (1953) and Good and Toulmin (1956),

where nonparametric estimators for the sample coverage and the expected number of new species

to be detected in a future sample of size m given the initial sample are provided. The estimator

of the sample coverage Good (1953) coincides with the proportion of distinct species represented by

at least two units in the sample. Good attributes the original idea to Turing and this explains why

it is usually referred to as Turing estimator. The popular Good–Toulmin estimator for the number

of new species to be observed in a future sample is derived in Good and Toulmin (1956) and, as a

by–product, they also are able to evaluate the discovery probability. Recently, the interest in species

sampling problems has remarkably grown, mainly due to their importance in genomics. Indeed, Mao

(2004) studies various properties of the Good–Toulmin estimator and shows that it can be also viewed

as a non–parametric empirical Bayes estimator. In Susko and Roger (2004), the authors suggest a

parametric variation of the Good–Toulmin estimator. An alternative to it is presented in Wang et

al. (2005), where the detection of ESTs from each gene in EST sequencing is modeled by means of

a Poisson process whose intensity is governed by some unknown distribution. It is to be noted that

all frequentist nonparametric approaches lead to reliable estimates for the number of new genes in an

additional sample only if its size is not too large. For instance, if the size of the additional survey

m is larger than the initial sample n, it is well–known that the Good–Toulmin predictor can become

a monotone decreasing function of m: this leads to the paradox of predicting fewer new genes by

enlarging the additional sample size m. Even the nonparametric alternative proposed in Wang et al.

(2005) yields reliable results only when m ≤ 2n. This fact is also outlined in Mao (2007). Hence,

one needs to resort to a parametric framework if one wishes to predict the number of new genes for

large m. As we will see, the relative dimension of m with respect to n is not an issue in a Bayesian

nonparametric framework, and the expected number of new genes that will be discovered in m further

reads is monotone increasing with respect to m.
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The application of Bayesian methods in this area of research is, to the authors’ knowledge, quite

modest even if the Bayesian learning scheme is very well suited for making predictions with EST data.

An early contribution, based on a model for sampling from a finite population, is provided by Hill

(1979) where posterior estimates of the coverage are obtained. However, computational problems do

not allow, in this approach, a direct and effective evaluation of the expected number of new species in

a future sample. Recently, Lijoi et al. (2007) have proposed new Bayesian nonparametric estimators

for the problems a)–c) mentioned above. The prior distribution they employ is induced by a family of

exchangeable Gibbs random partitions. See Pitman (2006) for an interesting review of recent advances

and applications of the theory of Gibbs random partitions. Their application to a Bayesian inferential

framework is very useful since they provide a general scheme which encompasses some of the most

notable nonparametric priors such as the Dirichlet and the two parameter Poisson–Dirichlet process.

In this paper, we adapt the general formulas derived in Lijoi et al. (2007) to the case in which

the prior distribution is the two parameter Poisson–Dirichlet process prior. It will be seen that the

expressions we obtain can be evaluated exactly and do not need for any supplementary simulation

scheme. Moreover, such a Bayesian approach does not incur in any problem for large values of m

since all possible behaviors of future EST data are incorporated in the probabilistic model.

1.2 Outline of the paper

The outline of the paper is as follows. In Section 2 we present the four EST datasets we analyze

together with the results arising from the application of our Bayesian nonparametric approach. In

Section 3 we describe Pitman’s sampling formula and explain why it constitutes a natural framework

in which EST sequences can be embedded. Then, the resulting estimators are provided and the

empirical Bayes approach for tuning the prior parameters is discussed. Section 4 contains some

concluding remarks.

2 EST Datasets and results

The datasets we analyze consist of ESTs samples obtained from cDNA libraries from two different

organisms: the amitochondriate protist Mastigamoeba balamuthi (non-normalized and normalized

libraries, where the normalized library was prepared from the non-normalized library) and Naegleria

gruberi libraries, prepared from cells grown under different culture conditions, aerobic and anaerobic.

These data sets have been previously analyzed in Susko and Roger (2004), where a full account of their

preparation is detailed. It is worth mentioning that our approach assumes full-length cDNA clones

and high quality sequence reads. Therefore, possible errors associated with the clustering procedure

are not considered. For the statistical identification and evaluation of types of clustering errors one

may incur in EST sequencing, the reader is referred to Wang et al. (2004).

Specifically, each EST survey consists of n reads with k unique genes and corresponding frequencies

n1, . . . , nk, i.e. ni is the number of tags displaying the i–th gene in the initial sample of size n. Clearly,
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∑k
i=1 ni = n. The reads can equivalently be clustered according to their level of expression, that is

rl ≡
k∑

i=1

I{ni = l}, for l = 1, 2, . . . , s (1)

where I(A) is an indicator of A: I(A) = 1 if A is true and 0 otherwise. Note that s represents the

maximum level of expression among unique genes in the sample and that the number of positive rl’s

is typically smaller than s.

Below the four EST samples are summarized using the compact notation set in (1). For example,

the survey of the naeglaria aerobic library produces n = 959 reads with k = 473 unique genes,

which are clustered into 17 levels of expression 1, 2, . . . , 12, 16, 17, 18, 27, 55. For the first level we have

r1 = 346, meaning that 346 genes appear just once, that is n1 = n2 = · · · = n346 = 1. For the second

level r2 = 57 implies that 57 genes appear twice and, hence, n347 = n348 = · · · = n403 = 2 and so on

up to r55 = 1, which means that 1 gene is represented 55 times yielding n473 = 55.

Data: EST surveys information clustered into levels of expression. Source: Susko and Roger (2004)
Library 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 27 55 k n

N. Aer. 346 57 19 12 9 5 4 2 4 5 4 1 0 0 0 1 1 1 1 1 473 959

N. Anaer. 491 72 30 9 13 5 3 1 2 0 1 0 1 3 0 0 0 0 0 0 631 969

M. Non–n. 378 33 21 9 6 1 3 1 1 1 0 0 1 0 5 0 0 0 0 0 460 715

M. Norm. 200 21 14 4 3 3 1 0 1 0 0 0 0 1 0 0 0 0 0 0 248 363

Table 1: Non–normalized and normalized Mastigamoeba libraries: the first column provides the size of the

additional sample in % of the size of the initial sample, the second the actual size of the additional survey,

the third presents the expected number of new genes and the fourth the discovery probability. The estimates

in the third and fourth column are accompanied by the 95% highest posterior density intervals.

%n m Expected number of new Probability of discovering

genes in a additional sample a new gene at the

of size m (n+m+1)–th read

Mastigamoeba non-normalized

50 358 180 ∈ (158 , 204) 0.481 ∈ (0.466 , 0.498)

100 715 346 ∈ (312 , 382) 0.452 ∈ (0.434 , 0.470)

150 1072 503 ∈ (458 , 550) 0.430 ∈ (0.411 , 0.449)

200 1430 654 ∈ (599 , 711) 0.412 ∈ (0.393 , 0.433)

250 1788 799 ∈ (734 , 866) 0.398 ∈ (0.379 , 0.419)

300 2145 939 ∈ (865 , 1015) 0.386 ∈ (0.367 , 0.407)

Mastigamoeba normalized

50 182 94 ∈ (79 , 111) 0.493 ∈ (0.475 , 0.512)

100 363 180 ∈ (156 , 206) 0.456 ∈ (0.434 , 0.479)

150 544 260 ∈ (229 , 293) 0.428 ∈ (0.406 , 0.452)

200 726 336 ∈ (299 , 375) 0.406 ∈ (0.384 , 0.430)

250 908 408 ∈ (365 , 453) 0.389 ∈ (0.366 , 0.412)

300 1089 477 ∈ (428 , 528) 0.374 ∈ (0.351 , 0.398)
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Table 2: Aerobic and anaerobic libraries: the first column provides the size of the additional sample in %

of the size of the initial sample, the second the actual size of the additional survey, the third presents the

expected number of new genes and the fourth the discovery probability. The estimates in the third and fourth

column are accompanied by the 95% highest posterior density intervals.

%n m Expected number of new Probability of discovering

genes in an additional sample a new gene at the

of size m (n+m+1)–th read

Naegleria aerobic

50 480 162 ∈ (138 , 188) 0.318 ∈ (0.307 , 0.329)

100 959 307 ∈ (271 , 345) 0.290 ∈ (0.277 , 0.303)

150 1438 441 ∈ (394 , 488) 0.270 ∈ (0.257 , 0.282)

200 1918 566 ∈ (510 , 624) 0.254 ∈ (0.241 , 0.267)

250 2398 685 ∈ (619 , 751) 0.242 ∈ (0.229 , 0.255)

300 2877 798 ∈ (725 , 873) 0.231 ∈ (0.219 , 0.244)

Naegleria anaerobic

50 484 231 ∈ (206 , 258) 0.450 ∈ (0.440 , 0.461)

100 969 440 ∈ (402 , 478) 0.412 ∈ (0.400 , 0.424)

150 1454 632 ∈ (583 , 683) 0.384 ∈ (0.371 , 0.397)

200 1938 812 ∈ (753 , 873) 0.362 ∈ (0.349 , 0.375)

250 2422 983 ∈ (915 , 1053) 0.344 ∈ (0.332 , 0.357)

300 2907 1146 ∈ (1069 , 1225) 0.330 ∈ (0.317 , 0.342)

We applied the Bayesian nonparametric method detailed in Section 3 to these datsets and obtained

the following results. Denote the unknown proportion of genes (in the whole library) belonging to the

i–th class is denoted by pi. Then, the coverage of the initial sample of size n is given by

C =
∑

i:ni>0

pi, (2)

which is precisely the proportion of unique genes represented in the initial sample. Our estimates

for the coverage are 0.47 and 0.45 for the non–normalized (n = 715) and normalized (n = 363)

Mastigamoeba, respectively. This means that, by virtue of the ‘normalization’, an initial sample of

about half the size produces almost the same coverage. Moreover, we get 0.64 and 0.49 for the aerobic

(n = 959) and anaerobic (n = 969) Naegleria, respectively: clearly, the sequencing for the tissue

cultured aerobically is more effective reaching a remarkably higher coverage with an initial sample of

the same size. It is worth noting that our results for the coverage match exactly the ones obtained in

Susko and Roger (2004), where the frequentist estimator described in Good (1953) was exploited.

Turning attention to predicting the outcomes of future sequencing for the libraries at issue, we

focus on the expected number of new genes in an additional sample of size m and on the discovery rate.

The first index provides an overall measure of redundancy with respect to the additional sample of size

m, whereas the discovery rate predicts the trend at which the discovery probability decays as more and

more reads come in. Adopting a Bayesian nonparametric approach these quantities can be estimated
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rigorously and exactly since such an approach is naturally designed for prediction. In contrast note

that, as already anticipated, the Good–Toulmin estimator becomes highly variable and unstable if

the size of the additional sample m is larger than the size of the initial sample n. In particular, the

Good–Toulmin estimator often produces negative values as estimates for the number of new genes if

m ∈ (n, 2n) and almost always behaves badly for m > 2n. Such a phenomenon can be seen in Figure

1 for the two Naegleria libraries. In order to overcome these problems, frequentist methods typically

give up the flexibility of the nonparametric approach and resort to parametric models, whose fit can

be a delicate issue. For instance, Susko and Roger (2004) resort to an approximated version of the

Good–Toulmin estimator which assumes a parametric model for the expression levels rl.
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Figure 1: Expected number of new genes in an additional sample for the Naegleria gruberi aerobic and

anaerobic libraries arising from the application of the Good–Toulmin estimator and of the Bayesian

nonparametric estimator.

In order to give a complete picture, it is important to accompany our point estimates by the 95%

highest posterior density intervals, which represent the Bayesian counterpart to frequentist confidence

intervals (see Bernardo and Smith, 1994). In Tables 1 and 2 the results arising by the application of

the Bayesian nonparametric method are displayed.

As for the Mastigamoeba libraries, an interesting phenomenon takes place: the survey of the normal-

ized library has achieved almost the same coverage (0.45) as the non–normalized library (0.47), but

considering an additional sample it exhibits a significantly faster decay in the discovery rate. Figure 2
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compares the discovery rate for the two libraries. It is worth pointing out that our estimates predict

that the discovery rates associated to both libraries coincide for m = 125 yielding a discovery proba-

bility of 0.508. For larger m the non–normalized exhibits a higher discovery rate. This implies that

at some point also the estimates for the expected number of new genes in the additional sample will

coincide: indeed, this is estimated to happen for m = 270, for which 137 new genes are predicted to be

identified from both libraries. Hence, for m > 270 the expected number of new genes is systematically

higher for the non–normalized library. For instance, if m = 1089, just 477 new genes are expected

for the normalized library and 510 for the non–normalized. Taking m larger, at some point even the

highest posterior density intervals will not overlap anymore. Such a behavior hints toward the fact

that, in deciding whether to perform a ‘normalization’ protocol, the sizes of the samples to be drawn

from the libraries is a variable to be taken into account.
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Figure 2: Bayesian nonparametric estimates of the discovery rate associated to the non–normalized

and normalized Mastigamoeba libraries.

As for the Naegleria libraries the behavior is apparent in the sense that the anaerobic library system-

atically produces more new genes and the discovery probability is sensibly higher at the considered

levels of m. Note that the aerobic library presents a slightly slower decay rate but an extremely large

m is required for matching the expected number of genes of the anaerobic one. Figure 3 displays

the estimated decay rate of the discovery probability for both libraries with the corresponding 95%

highest posterior density intervals.
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Figure 3: Expected number of new genes in an additional sample and corresponding 95 % highest

posterior density intervals for the Naegleria gruberi aerobic and anaerobic libraries arising from the

application of the Bayesian nonparametric method.

3 A Bayesian nonparametric approach

The primary aim of the Bayesian approach to inference is prediction and Bayesian methods are tailored

for conveying the available information into prediction. In particular, for EST sequencing, the main

problem of frequentist methods is represented by difficulty of incorporating not yet observed unique

genes into the model. This can then produce unpleasant behaviors of estimators such as the one

exhibited by the Good–Toulmin estimator discussed before. In contrast, the Bayesian nonparametric

approach naturally incorporates the fact that further sequencing will feature new unique genes and

leads to consistent predictions.

In our framework we are going to consider a sample of n EST data yielding Kn distinct gene species

with corresponding frequencies N = (N1, . . . , NKn). Clearly Kn ∈ {1, . . . , n} and
∑Kn

j=1 Nj = n. Our

basic model is the so–called Pitman’s sampling formula (Pitman, 1995) which consists in a probability

distribution for Kn and the frequencies N of the form

Pr[Kn = k, N = n] =
∏k−1

i=1 (θ + iσ)
(θ + 1)n−1

k∏

j=1

(1− σ)nj−1 (3)

where σ ∈ (0, 1), θ > 0, n = (n1, . . . , nk) and (a)n = a(a + 1) · · · (a + n − 1) is the ascending
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factorial with (a)0 ≡ 1. Formula (3) is a generalization of the famous Ewens’ sampling formula Ewens

(1972) which can be recovered by letting σ tend to zero and it represents a fundamental tool in

modern probability theory. See Pitman (2006). Recently, it has found many interesting applications

for bacterial taxonomy Gyllenberg and Koski (2001), clustering of microarray gene expression data

Zhaohui (2006), mixture models Ishwaran and James (2001), linguistics Teh (2006), among others.

In a Bayesian nonparametric setting, one alternatively obtains model (3) by selecting the two

parameter Poisson–Dirichlet process as a prior for the genes proportions within the library. This clearly

makes the sequence of tags exchangeable, thus implying that the order of appearance of the tags does

not influence probability assessments. Such an assumption, which constitutes the Bayesian analog

of the frequentist assumption of independent and identically distributed data, is clearly reasonable

in the context of EST sequences. Note that we implicitly assume that the sequence of tags can be

extended to infinity. However, the size of the library represents an upper bound for the number of

unique genes that will be observed and it is always finite, thus implying that all the estimates we are

going to obtain will be finite.

As mentioned before, the Bayesian nonparametric approach has the advantage of yielding in a

straightforward way predictive distributions for future observations given the data. Considering Pit-

man’s sampling formula, the probability of detecting a new gene from a future observation, given a

sample of n tags containing k distinct genes, is

(θ + kσ)/(θ + n) (4)

whereas the probability of re-observing the j–th unique gene coincides with

(nj − σ)/(θ + n) j = 1, . . . , k. (5)

See Pitman (2006). Hence, the coverage coincides with

1− (θ + kσ)/(θ + n). (6)

As it has already pointed out, in the analysis of ESTs one is also interested in evaluating: (i) the

expected number of new genes that will be recorded in a further sample of size m and (ii) the discovery

probability, which is the probability of observing a new gene in the (n + m + 1)–th draw, given the

initial sample of size n. The basis for deriving estimators for these quantities is represented by the

distribution of the number of new genes to be observed in an additional sample given the initial

sample. Such a posterior probability, which can be seen as the predictive distribution for the outcome

of additional m reads, is given by

P (k,n)
m (j) =

(θ + 1)n−1

(θ + 1)m+n−1

∏k+j−1
i=k (θ + iσ)

σj

1
j!

j∑

i=0

(−1)i

(
j

i

)
(n− (i + k)σ)m (7)

See Lijoi et al. (2007) for details on its derivation. From (7) Bayes estimators (under quadratic loss

function) for both the expected number of new genes and the dicovery probability have been obtained,

within general Gibbs random partition models, in Lijoi et al. (2007). The expected number of new
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genes observed in a future sample of size m coincides with

E(k,n)
m =

m∑

j=1

j
(k + θ/σ)j

(θ + n)m

1
j!

j∑

i=0

(−1)i

(
j

i

)
(n− (i + k)σ)m (8)

and the discovery probability turns out to be equal to

D̂(k,n)
m =

θ +
[
k + E

(k,n)
m

]
σ

θ + n + m
. (9)

Moreover, the highest posterior density intervals can be derived in a quite straightforward way from

(7). The only point left to discuss concerns the specification of the parameters (σ, θ). In order to avoid

subjective inputs in the model, (σ, θ) is fixed according to an empirical Bayes rule which consists in

choosing σ and θ that maximize (3) corresponding to the observed sample (k, n1, . . . , nk), i.e.

(σ̂, θ̂) = arg max
(σ,θ)

∏k−1
i=1 (θ + iσ)
(θ + 1)n−1

k∏

j=1

(1− σ)nj−1. (10)

Figure 4 provides with the contour plots corresponding to the two Naegleria gruberi datasets: the

parameters maximizing (3) turned out to be (σ̂, θ̂) = (0.67, 46.3) for the aerobic case and (σ̂, θ̂) =

(0.66, 155.5) for the anaerobic case. On the other hand, for the two Mastigamoeba balamuthi datasets

(normalized and non–normalized) (10) yields (σ̂, θ̂) = (0.77, 46) and (σ̂, θ̂) = (0.7, 57), respectively.

These parameters have then be used for computing the estimators (8) and (9) for the 4 datasets,

whose results are reported in Section 2.

At this point it is worth pointing out how the structure of the data influences the choice of the

parameters (σ, θ). Indeed, the value of θ is linked to the number of distinct genes observed in the

n–sample: the larger k/n the larger θ̂. On the other hand, the value of σ is determined by the

configuration of the frequencies n1, . . . , nk. Moreover, one may note that, for a given value of θ, the

expected number of new genes in (8) is an increasing function of σ: as σ increases one expects that a

larger number of new genes is going to be observed in a further m–sample. This is also confirmed by

the behavior of E
(k,n)
m as σ varies. Indeed, Figure 3 suggests an almost linear increase of E

(k,n)
m , as a

function of m, and accordance with linearity is higher the closer σ is to 1. In contrast, when σ is low

and close to 0 the function is concave and E
(k,n)
m increases at a lower rate as σ increases.

4 Conclusions

In this paper we have presented a Bayesian nonparametric approach, which relies on Pitman’s sam-

pling formula, for prediction problems arising in sequencing of EST libraries. This provides a fully

probabilistic model which conveys, in a statistically rigorous way, the available information into pre-

diction. No parametric assumption is made and the prior is fixed using an empirical Bayes approach,

thus leaving no room for subjective input. The resulting estimators are applied to four EST libraries

and lead to interesting and coherent predictions of the outcome of additional sequencing. The arising

information is of great value for researchers providing guidelines in: establishing the quality of a cer-

tain library; deciding whether to perform a normalization protocol; choosing whether to proceed with

sequencing from a certain library; determining the size of an additional EST survey etc.
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Figure 4: Contour plots of Pitman’s sampling formula corresponding to the two Naegleria gruberi

datasets: aerobic (right) and anaerobic (left)

It is important to remark that our Bayesian nonparametric approach does not incur in problems

usually exhibited by frequentist methods. In particular, no ad–hoc adjustments or introduction of

parametric components is necessary for predicting future reads if their number is larger than the

initial survey. Finally, it is worth remarking that the estimators presented here can be easily adapted

to take into account joint data from multiple libraries leading to Bayesian analogs of the estimators

set forth in Susko and Roger (2004).
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Appendix

Here we briefly describe how the estimators in (8) and (9) are derived by simplifying the expressions

provided in Lijoi et al. (2007). In particular, one finds out that E
(k,n)
m =

∑m
j=0 j P

(k,n)
m (j), where the

P
(k,n)
m (j)’s are displayed in (7) and can be deduced from equation (8) in Lijoi et al. (2007). The further

simplification yielding the expression of E
(k,n)
m in (8) is obtained by observing that (θ + 1)n−1/(θ +

1)n+m−1 = 1/(θ + n)m and ∏k+j−1
i=k (θ + iσ)

σj
= (k + θ/σ)j

As far as the determination of (9), note that

D̂(k,n)
m =

m∑

j=0

P
(k+j,m+n)
1 (1)P (k,n)

m (j)

where P
(k+j,m+n)
1 (1) is the probability of observing a new gene at the (n + m + 1)–th draw given the

in the previous sample, of size n + m, there have been detected k + j distinct genes. Hence, by virtue

of the prediction structure associated with the two parameter Poisson–Dirichlet process as outlined

in Section 3, one has P
(k+j,m+n)
1 (1) = (θ + (k + j)σ)/(θ + n + m). From this one deduces

D̂(k,n)
m =

m∑

j=0

θ + (k + j)σ
θ + n + m

P (k,n)
m (j) =

θ + kσ

θ + n + m

m∑

j=0

P (k,n)
m (j) +

σ

θ + n + m

m∑

j=0

j P (k,n)
m (j)

and one obtains the expression in (9) since
∑m

j=0 P
(k,n)
m (j) = 1.
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