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Abstract

In this paper we study the existence of bubbles for pricing equilibria in a pure exchange

economy à la Lucas, with infinitely lived homogeneous agents. The model is analyzed under

fairly general assumptions: no restrictions either on the stochastic process governing dividends’

distribution or on the utilities (possibly unbounded) are required. We prove that the pricing

equilibrium is unique as long as the agents exhibit uniformly bounded relative risk aversion. A

generic uniqueness result is also given regardless of agent’s preferences. A few ”pathological”

examples of economies exhibiting pricing equilibria with bubble components are constructed.

Finally, a possible relationship between our approach and the theory developed by Santos and

Woodford on ambiguous bubbles is investigated. The whole discussion sheds more insight on the

common belief that bubbles are a marginal phenomenon in such models.
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1 Introduction

The main objective of this paper is to test how reasonable is the conjecture that multiple equilibria,

or bubbles1, are a negligible phenomenon in sequential equilibrium models of Lucas-type [15], with

infinitely lived homogeneous agents. While we have not been lucky in proving that optimizing

behavior of a representative agent with smooth preferences is enough to rule out bubbles, regardless

of the random behavior of the economy, in the present work we definitely provide robust arguments

that confine their appearance to a very restrictive class. This is achieved for a more general model

than the original Lucas’ one, in a framework similar to that developed in [11]. Two important aspects

are implemented. First, no restriction on the probabilistic law of dividends is postulated (a similar

setting can be found in [13] as well, but for different purposes). Second, nearly no boundedness

assumption on both dividends and trading prices is assumed, as well as on utilities. The only

hypotheses maintained are the differentiability of preferences and the zero short-sales constraint.

Surprisingly, until recently the issue of bubbles in such a model has not attracted much atten-

tion. On the other hand, rather few examples of bubbles can be found in the literature. At least

two reasons may explain this ”lack of interest”. First, since all bubble-producing factors are ab-

sent in Lucas-style models, it has been taken for granted that they should emerge only in rather

special circumstances. This view-point is easily captured by consulting the by now wide literature

on intertemporal asset pricing models (see [19], [4], [22], [6], [9], [14], [8], [16], [18], [10]). Per-

haps, this intuition suggested that economies such that the equilibrium allocation is given by the

initial resources deserved no further investigation, thus addressing more attention toward analyzing

equilibrium models with heterogeneous agents as well as with various debt constraints.

A second reason for the scarce interest in studying price bubbles in Lucas-type models is perhaps

due to the well known analytical difficulties in formulating some necessary condition of transversality

at infinity (see Ekeland and Scheinkman [7] and Kamihigashi [12]). Results available in the literature

show that this is a hard task in the stochastic setting, unless severe restrictions are imposed (see [24]

and [21]).
1We are aware that the terminology here adopted may give rise to misinterpretations. Our model is a peculiar case

in which the assets fundamental value is unambiguously defined, and thus bubble existence turns out to be equivalent

to price indeterminacy. By slightly relaxing some assumptions (e.g. separability or differentiability of preferences), or

by considering heterogeneity of individuals, indeterminacy and bubbles immediately get unrelated. For example, in

[23] an economy is constructed such that the unique equilibrium is supported by positively priced fiat-money. We shall

turn on the distinction between multiple equilibria and bubbles at the end.
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Two recent papers stimulated the present research. Santos and Woodford [18] established general

results on rational bubbles within a quite broad scenario of sequential equilibrium economies where

traders have rational expectations. They proved that perpetual assets in non-zero net supply cannot

give rise to unambiguous price bubbles and, in addition, to any sort of bubbles whenever prefer-

ences satisfy a certain property of discounting. However, it is important to stress that Santos and

Woodford’s analysis rests on the simplified assumption that the underlying stochastic environment

has a tree structure with finitely many information sets at each instant of time. This allows them

to provide an elegant theory of asset pricing which extends to an infinite-horizon dynamic context

Kreps’ arbitrage approach. Besides this, it is very important to remark that their analysis is some-

what different than ours: they are concerned with the issue of whether a given equilibrium involves

a bubble component. Indeed, a natural consequence of dynamical incompleteness of markets is that

the present value of the streams of future dividends is not uniquely determined, causing several

complications and additional types of bubbles (the so-called ambiguous bubbles). We discuss some

of these aspects that are in common with our results in Section 5.

The second paper, due to Kamihigashi [11], resembles closely our approach. To further strengthen

the broadly accepted idea of marginality of bubbles, he provides a condition that assures the unique-

ness of equilibrium not properly related to discounting properties of agent’s preferences. To construct

an example of multiple equilibria in a two-period economy where there are countably many states

of the world, he needs to use a consumer’s utility function that is unbounded. Moreover, he makes

an important remark by observing that the presence of positive bubbles in his example is related to

the violation of the Euler equation.

Owing to the generality of our setting, we must first study carefully the consistency of the model,

in order to formulate suitable necessary and sufficient conditions for price equilibria to exist such

that they include the fundamental values of assets. This is pursued in Section 2 where we show that

the standard Euler equation is not necessary to construct the classical theory of assets equilibrium

valuation. In place of the stochastic Euler equation, we shall utilize an Euler inequality as an

optimality necessary condition. It is soon realized that the imposition of the Euler equations is not

fully justified and may preclude potential bubbles.

Section 3, where the main results of this paper are given, is devoted to make precise the notion

of ”fragility” for potential multiple equilibria. We establish a result (Theorem 3) that character-

izes potential price indeterminacy precisely as a borderline phenomenon: a slight modification of

the amounts of assets, or that of dividends, has the effect that multiple equilibria disappear. To
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strengthen our argument, we then show that all preferences exhibiting uniformly bounded relative

risk aversion fall outside the class of models having bubbles (Theorem 4).

It is natural, after having outlined multiplicity of equilibria as a possible outcome only in a non-

generic set of economies, to devote our attention to the study of this ”tiny” category. We are able to

provide a rough classification of bubbles into two categories. All this is argued in Section 4 where we

construct two polar examples of bubbles. It turns out that agent’s unbounded relative risk-aversion

is the key ingredient in their construction.

Finally, Section 5 is dedicated to the already mentioned issue of ambiguous bubbles introduced

by Santos and Woodford [18]. Two assumptions ruling out ambiguous bubbles and their connection

with the theory developed in the previous sections are investigated. The first one generalizes an

assumption on agent’s impatience already studied in [18]. The second one is a transversality condition

at infinity that turns out to be sufficient for non-existence of ambiguous bubbles. Their relation with

Kamihigashi [11] uniqueness condition is discussed.

Most of the proofs are gathered in the final Appendix.

2 The Set-up

Let us formalize the model that closely follows [15]. There are k productive assets, each in fixed

supply, that produce random quantities of a single perishable consumption good in all time periods.

Consumers are identical in terms of preferences and endowments. At each trading time there are spot

markets both for the consumption good and for shares in the assets. The uncertainty is modelled

by a probability space (Ω,F,µ) where F = {F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ F} is a filtration of σ-algebras
describing the revelation of information. The asset dividends d =

©
dt (ω) ∈ Rk+, t = 0, 1, 2, ...}

form an F-adapted process which represents the amount of the consumption good yielded by one

unit of each single asset. The process w = {wt (ω)} is the non-negative F-adapted process of exoge-
nous endowments of the consumption good. We shall denote by Et (·) the conditional expectation2

E (· | Ft).
Households’ preferences are given by the separable life-time utility

E0

∞X
t=0

ut [ct(ω),ω]

2 In general, the initial σ-algebra F0 may not be the trivial one and thus the operator E0 does not agree necessarily
with the expectation E. This is not a merely empty generalization. It enables us to treat time t homogeneously. Every

result obtained for t = 0 is immediately translated to any epoch t.
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defined over the consumption processes c ={ct(ω)}. Each instantaneous utility ut is not necessarily
uniform across states and the above series needs not be convergent. A process of assets holding

strategy is denoted by y = {yt(ω)}. The initial endowment of each asset is normalized to one, i.e.,
y0 = e = (1, 1, ..., 1) ∈ Rk.

Here are the main assumptions to be effective throughout this paper. Even where it is not

explicitly specified, properties pertaining all the functions involved must hold almost surely with

respect to the measure µ. For vectors notation, a superscript will denote its component. For instance,

dit(ω) is the dividend payed by asset i, at epoch t when the state of the world is ω.

A. 1 0 < dt(ω) · e +wt (ω) =
Pk
i=1 d

i
t(ω) +wt (ω) < +∞ a.s. for all t.

A. 2 For each t, utilities ut (·, ·) are B1 ⊗ Ft-measurable, where B1 is the Borel σ-algebra in R+,
and, ut (·,ω) are concave, strictly increasing and differentiable over R++, for each fixed ω.

A.1 could be relaxed by admitting the total good supply dt · e + wt to vanish with positive
probability. However this requires the marginal utility to be finite at zero, thus generating some

further formal complications. Needless to say, Assumption A.2 encompasses standard unbounded

utilities, like logarithm, having ut (0,ω) = −∞ with positive probability, as well as functions having

infinite derivative at zero.

A contingent plan (c,y) = {ct (ω) , yt (ω)}, t ≥ 0, is said to be feasible if:

i) ct (ω) ≥ 0 are Ft-measurable variables for all t ≥ 0;

ii) yt (ω) ≥ 0 are Ft−1-measurable for t ≥ 1 and y0 = e =(1, 1, ..., 1);

iii) ct (ω) + pt (ω) · [yt+1 (ω)− yt (ω)] ≤ dt(ω) · yt (ω) +wt (ω) a.s. for t ≥ 0.

Below we give the definition of Arrow-Radner sequential equilibrium, where Brock’s [3] concept

of weak maximality is adopted. To ease notation, from now on we will drop the argument ω of all

the random functions under study. By abusing a bit notation, we shall also write ut (ct) instead

of ut (ct (ω) ,ω) and the derivative D1ut (c,ω) will be denoted by u0t (c). Symbols X− and X+ will

denote the negative and the positive part of a random variable X, respectively. We also recall that,

for non-negative random vectors Y (ω) ∈ Rk, the notation Et (Y ) < +∞ means Et (|Y |) < +∞ or,

equivalently, Et (Y · e) < +∞. For a measurable set A ∈ F , the indicator function of A will be

denoted by 1A.
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Definition 1 An equilibrium is an F-adapted price process p such that:

i) 0 ≤ pt < +∞ a.s. for all t;

and the plan c∗ = {c∗t } = {dt · e +wt}, y∗ = {e} satisfies the two conditions:

ii) E0 [ut(c∗t )− ut(ct)]− < +∞ a.s. for all t,

iii) lim supN→+∞E0
PN−1
t=0 [ut(c

∗
t )− ut(ct)] ≥ 0 a.s.

for any feasible plan (c,y) where the yt’s are essentially bounded, for each t ≥ 1.

Here we are given the standard notion of no-trade equilibrium in which agents hold their assets

forever, and consume all their available income dt · e + wt at each trading date. The framework
adopted here is similar to that in [11], where a discounted, single-asset model has been analyzed.

We want to remark that the restriction concerning boundedness of the yt’s is needed for technical

reasons. It will only be effective whenever sufficient conditions of optimality are used (see proof of

Theorem 1). It will also be seen that, at least for the fundamental prices, the plan c∗ satisfies the

stronger property of optimality lim infN→+∞E0
PN−1
t=0 [ut(c

∗
t )− ut(ct)] ≥ 0. Henceforth, we shall

always write {c∗t } to denote the equilibrium consumption allocation c∗= {dt · e +wt}.

In the remaining part of this section, we build up the equilibrium analysis for our general frame-

work. Though the whole discussion on the determination of pricing equilibrium as sum of its funda-

mental value and the speculative bubble is familiar in macroeconomics and finance (see Blanchard

and Fischer [2]), we believe it is worth being reported here owing to the generality of our setting

and the stress we shall put on a supermartingale property that turns out to characterize the bubble

component. It is important remarking that we do not restrict prices to belong to some pre-chosen

space as well as we maintain the weak notion of optimality. Both restrictions on prices or the use of

stronger concepts of optimality might rule out possible pricing bubbles.

The starting point is formula (1) below, which turns out to be a short-run first-order condition,

that takes the form of an Euler inequality rather than equality.

Proposition 1 Under A.1-2, if p is an equilibrium then

u
0
t−1
¡
c∗t−1

¢
pt−1 ≥ Et−1

h
u
0
t (c

∗
t ) (pt + dt)

i
(1)

for t ≥ 1.
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One could ask in what cases equality in (1) is necessarily true. This requires to perform the

left-hand derivative in the proof of this proposition. That is problematic insofar, once again, a priori

restrictions on prices pt are needed. It is not difficult to show that (1) holds with equality if the

following two qualifications are satisfied:

pt · e ≤Mtc
∗
t (2)

for some scalar Mt, and

Et−1 [ut (c∗t )− ut (ζdt · e +wt)] < +∞ (3)

for some ζ < 1. For instance, either conditions are true when the states of the world are finite at

trading date t. We shall also see later that a sufficient requirement for (3) is that ut exhibits bounded

relative risk-aversion.

Inequality (1) will be enough to build up pricing analysis within our general setting. As usual,

by iterating (1) starting from t we get

u
0
t (c

∗
t ) pt ≥ Et

NX
s=1

u
0
t+s

¡
c∗t+s

¢
dt+s +Et

h
u
0
t+N

¡
c∗t+N

¢
pt+N

i
which, by taking the limsup over N , yields

u
0
t (c

∗
t ) pt ≥ Et

∞X
s=1

u
0
t+s

¡
c∗t+s

¢
dt+s + limsup

N→+∞
Et
h
u
0
t+N

¡
c∗t+N

¢
pt+N

i
. (4)

Since u
0
t (c

∗
t ) pt < +∞, by (i) of Definition 1, and the last term is non-negative, we infer both

conditions (5) and (6) displayed in the following proposition.

Proposition 2 Under A.1-2, a necessary condition for equilibria to exist is

E0

∞X
t=1

u
0
t (c

∗
t )dt < +∞. (5)

In this case

u
0
t (c

∗
t ) pt ≥ Et

∞X
s=1

u
0
t+s

¡
c∗t+s

¢
dt+s (6)

for all t ≥ 0.

In view of (6), let us define

u
0
t (c

∗
t ) pt = Et

∞X
s=1

u
0
t+s

¡
c∗t+s

¢
dt+s + u

0
t (c

∗
t ) bt (7)
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where the ”bubble” component bt (ω) ∈ Rk+ is Ft-measurable. Accordingly, we define the market
fundamental (adapted) process f = {ft} as

ft =
1

u
0
t (c

∗
t )
Et

∞X
s=1

u
0
t+s

¡
c∗t+s

¢
dt+s. (8)

Thanks to (7), if p is an equilibrium, then p = f + b, with b = {bt}. We have here the traditional
definition of speculative bubble as the difference between the price of the asset and its fundamental

value. Clearly, the fundamental price process f satisfies Euler inequality (1) with equality, i.e.:

u
0
t−1
¡
c∗t−1

¢
ft−1 = Et−1

h
u
0
t (c

∗
t ) (ft + dt)

i
while the non-negative price bubble b is a supermartingale.

u
0
t−1
¡
c∗t−1

¢
bt−1 ≥ Et−1

h
u
0
t (c

∗
t ) bt

i
. (9)

We obtain, in our general setting, the property that a bubble ”never starts” in the rational expecta-

tions equilibrium (see [18]) but, as will be seen in Section 4, the possibility for a bubble component

to exist and burst as time goes on, cannot be excluded.

It is interesting to sketch prices evolution according to the standard Euler equation, i.e., as long

as (1) holds with equality. In this case (4) turns into

u
0
t (c

∗
t ) pt = Et

∞X
s=1

u
0
t+s

¡
c∗t+s

¢
dt+s + lim

N→+∞
Et
h
u
0
t+N

¡
c∗t+N

¢
pt+N

i
and

u
0
t (c

∗
t ) bt = lim

N→+∞
Et
h
u
0
t+N

¡
c∗t+N

¢
pt+N

i
(10)

while the bubble process obeys the martingale difference equation

u
0
t−1
¡
c∗t−1

¢
bt−1 = Et−1

h
u
0
t (c

∗
t ) bt

i
Clearly, in such a case the bubble component, if it exists, can never burst.

Next statement establishes fundamental values f to be an equilibrium, thus ensuring the suffi-

ciency of (5) as well. This kind of results are usually proven by means of familiar sufficient conditions

of transversality. Nonetheless, owing to the special nature of constraints, we prefer resorting to a

more direct method. Details are reported in the Appendix. It should be noted that we do not assume

the present value of future wealths E0
P∞
t=1 u

0
t (c

∗
t )wt to be finite.
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Theorem 1 Under A.1-2 and the additional condition E0 [u0t (c∗t )wt] <∞ for all t ≥ 0, a necessary
and sufficient condition for an equilibrium to exist is that

E0

∞X
t=1

u
0
t (c

∗
t )dt < +∞. (11)

An equilibrium is given by the market fundamental values:

ft =
1

u
0
t (c

∗
t )
Et

∞X
s=1

u
0
t+s

¡
c∗t+s

¢
dt+s.

3 Main Results

In this section we present results ruling out the emergence of multiple equilibria. The first sufficient

criterion has been established by Kamihigashi [11]. Its proof reflects the intuition that, if a bubble

occurred, an infinitely lived consumer could gain by permanently reducing his holding of the asset.

To be more specific, it allows for a uniform downward perturbation within the feasible set without

facing an infinite loss.

Theorem 2 A sufficient condition for the fundamental price f given in (8) to be the unique equilib-

rium is that for some scalar 0 < ζ < 1

E0

∞X
t=1

[ut (dt · e +wt)− ut (ζdt · e +wt)] < +∞ (12)

To illustrate the strength of (12), consider the standard case in which the utilities are discounted,

i.e., ut (c) = βtu (c). If the preference function u is bounded, then (12) is trivially true. Therefore,

possible violation to (12) requires u to be unbounded. We refer to [11] (Theorem 5.1) for several

assumptions on u (c) guaranteeing qualification (12).

The following criterion will play a central role in proving Theorems 3 and 4.

Corollary 1 A sufficient condition for (12) is

E0

∞X
t=1

u
0
t (ζdt · e +wt) dt < +∞ (13)

for some scalar 0 < ζ < 1.

This corollary is an immediate consequence of concavity of ut’s that entails

ut (dt · e +wt)− ut (ζdt · e +wt) ≤ (1− ζ)u
0
t (ζdt · e +wt)dt · e
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and thus (13) implies (12).

It is worth also noticing that, again in force of concavity,

ut (dt · e +wt)− ut (ζdt · e +wt) ≥ (1− ζ)u
0
t (c

∗
t )dt · e

which reveals (12) to be sufficient for (11). Therefore, Kamihigashi’s criterion implies existence and

uniqueness simultaneously.

A slight modification of the proof of Theorem 2 establishes a further specification of (12) focussing

on a single asset i and upon the occurrence of some event A ∈ Fs.

Proposition 3 If for an event A ∈ Fs, one has

Es

∞X
t=s+1

1A
£
ut (c

∗
t )− ut

¡
c∗t − (1− ζ)dit

¢¤
< +∞ (14)

for some scalar 0 < ζ < 1, then the bubble component, for the ith component pit, vanishes after epoch

s, as long as A occurs. That is, bit (ω) = 0, for t ≥ s and almost all ω ∈ A.

A remarkable consequence of Proposition 3 is the absence of a positive bubble component for fiat

money assets, i.e., assets for which dit (ω) ≡ 0 for all t. In fact, in such a case, (14) is trivially true,
irrespectively of agent’s preferences. This extends Corollary 3.2 in [18] to our setting.

The intuition behind next fragility result rests behind the evident similarity between necessary

condition for existence of at least one equilibrium (11) and sufficient condition for uniqueness (13).

The idea of fragility can be easily grasped through two parallel arguments: consider the economy

parametrized either on the initial assets endowment y0 = e or on the dividend stream d = {dt}, then
any slight perturbation of the parameter forces a possible bubble to disappear.

Theorem 3 If a price bubble occurs for an initial endowment y0 = v ∈ Rk++, then there is only
one equilibrium for each initial endowment v À v, while there are no equilibria at all for each

endowment v ¿ v. Likewise, if for some dividend sequence d = {dt} a bubble arises, then there is
only one equilibrium for dividends {ζdt}, with ζ > 1, and there are no equilibria if ζ < 1.

This theorem amounts to saying that uniqueness and non-existence of equilibrium are the sole

robust configurations, while bubbles are a borderline phenomenon that may only arise when the set

of equilibria is about to become empty. To further illustrate this point, let us focus on economies

parametrized with respect to dividends {ζdt}, where ζ ∈ (0,∞). For sake of simplicity, assume k = 1

10



and F0 to be the trivial algebra. Consider the function

J (ζ) = E0
∞X
t=1

u0t (ζdt +wt) dt

which turns out to be non-increasing and right-continuous. If J (ζ) < +∞ for all ζ, there is always

uniqueness. Likewise, J (ζ) = +∞ for all ζ, implies no equilibria. Therefore, the only interesting case

happens when there is a jump from +∞ to a finite value at some (unique) critical level ζb, which is

the unique parameter value such that bubbles may arise. Note also that, as long as J (ζb) = +∞, a
sudden change through the two stable configurations is witnessed and no bubble can occur. However,

the existence of a threshold ζb, such that J (ζb) < +∞ (i.e. such that (13) fails), is not enough to

generate a bubble: (12) must be violated as well.

We have not been able to single out classes of models assuring the existence of bubbles along this

argument. For instance, the two-period economies studied in Example 1 of the next section enjoy

this property, but other examples analyzed in [17] lead to different outcomes. On the other hand, an

important class where condition (12) is not necessary at all has to be mentioned: in the deterministic

model bubbles can never arise, regardless of (12). This case will be briefly recovered in Section 5.

Let us end this section by presenting another strong argument in favor of bubble fragility. Unlike

Theorem 3, formulated without resorting to any specification of agent’s preferences, next statement

is related to agent’s risk aversion. We give a sufficient condition for (13) in the spirit of assumptions

(L2) and (U2) in [11] that implies to be J (ζb) = +∞ for the critical value (if any).

Theorem 4 Assume preferences ut exhibit uniformly bounded relative risk aversion, i.e.,

−u
00
t (c) c

u
0
t (c)

≤ R (15)

for all c ≥ 0, t ≥ 0 and for some scalar R. Then pricing equilibrium is uniquely determined, whenever
it exists3.

Note that this result encompasses almost all agent preferences in conceivable economic models.

4 Bubbles Examples

All the criteria formulated in the previous section are only sufficient conditions, hence, it is not clear

at this stage whether or not examples of economies in which equilibrium valuations contain positive

bubbles actually exist. Theorems 3 and 4 make clear that their construction is not a simple matter.
3 It must be emphasized that twice differentiability hypothesis on preferences is not necessary at all. It is sufficient

that some R exists such that u0t(c,ω)c
R are nondecreasing for all t and for a.e. ω.
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In view of Theorem 2, the first step in trying to construct bubbles is the following rough classifi-

cation distinguishing two polar cases in which sufficient criterion (12) is violated.

1. For all ζ < 1,

E0

∞X
t=1

[ut(c
∗
t )− ut(ζdt · e +wt)] = +∞

with positive probability, but there is a time N > 1 and some constant ζ < 1 such that

EN−1
∞X
t=N

[ut(c
∗
t )− ut(ζdt · e +wt)] < +∞.

2. For all time N ≥ 1 and all ζ < 1,

EN−1
∞X
t=N

[ut(c
∗
t )− ut(ζdt · e +wt)] = +∞

with positive probability.

By virtue of Proposition 3, economies falling into the first category, exhibit prices having bt = 0

for t ≥ N −1, and therefore bubbles, if any, must eventually burst after some time. Not surprisingly,
it turns out that their occurrence is related to the violation of the Euler equation. Models with

bubble component belonging to the second class, seem less dependent on violation of Euler equality,

as it will emerge clearly in Example 2 below.

Despite of a somewhat common view-point, we show that bubbles do occur, that is, the borderline

set described in Theorem 3 may be non-empty. An example of bubbles of the first type has already

been given by [11]. Here, we propose a general construction.

Example 1 Let (Ω,F , µ) be a probability space modelling the world states. The uncertainty is
completely revealed at time t = 1. Therefore, F0 = {∅,Ω}, and Ft = F for t ≥ 1. The dividends of
a single asset are d0 > 0, d1 (ω) > 0 and dt (ω) = 0 for t ≥ 2. Endowments are w0 = w1 = 0 and
wt = w > 0 for t ≥ 2. Agent’s preferences are given by ut = βtv(c). Regarding to the utility v, it is

assumed to satisfy the two requirements

E [v0(d1)d1] < +∞
E [v(d1)− v(ζd1)] = +∞

(16)

for all ζ < 1. The fundamental values turn out to be

f0 =
β

v0 (d0)
E
£
v0(d1)d1

¤
and ft (ω) = 0for t > 0.
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Clearly, a consequence of Proposition 3 is that no bubbles can arise for t ≥ 1.
We show the existence of a positive bubble component at t = 0. Since pt = ft = 0 for t ≥ 1, if we

set y1 = 1+ δ, consumptions are c0 = d0 − p0δ, c1 = (1+ δ)d1, ct = w, for t ≥ 2. By evaluating the
objective function over this consumption plan, it is immediate to see that p0 will be an equilibrium

if the convex function

ϕ(δ) = v(d0)− v(d0 − p0δ) + βE [v(d1)− v((1+ δ)d1)]

defined over the interval −1 ≤ δ < d0/p0, achieves its minimum at δ = 0. In view of (16), ϕ(δ) = +∞
if δ < 0 and ϕ(0) = 0. Thanks to convexity, the optimum lies at zero whenever ϕ

0
+(0) ≥ 0. Simple

calculations lead toD+ϕ(0) = v
0
(d0)p0−βE

h
v
0
(d1)d1

i
≥ 0, which amounts to p0 ≥ f0. Consequently,

any price p0 ≥ f0 is an equilibrium and the Euler equation is violated when p0 > f0. Observe that

here the violation of the Euler equation is due the failure of (3), while (2) remains true.

To complete this example, we need to specify functions v satisfying both conditions in (16). Set

Ω = {1, 2, .....} and F = 2Ω. In view of Theorem 4, a good candidate turns out to be v (c) = −e 1c ,
exhibiting unbounded relative risk aversion close to the origin. Let d1 (n) = n−1 be the dividend

payed at epoch 1 by the asset and µn be any probability defined over states satisfying

µn ∼
e−n

n2+α

as n→∞ and with α > 0. The first hypothesis of (16) becomes

E
£
v0(d1)d1

¤
= E

³
e
1
d1 d−11

´
=

∞X
n=1

ennµn < +∞

where the series converges since ennµn is asymptotically equivalent to n
−(1+α). Regarding to the

second one of (16), observe that

E [v(d1)− v(ζd1)] = E
³
e

1
ζd1 − e 1

d1

´
=

∞X
n=1

³
e
n
ζ − en

´
µn

where the terms of this series are asymptotically equivalent to

n−(2+α)
h
en(ζ

−1−1) − 1
i

which go to infinity as n→∞, and so E [v(d1)− v(ζd1)] = +∞.
Obviously, this bubble is not robust at all. To test its fragility, set the dividend to be d1 (n) =

ζn−1. Then the fundamental values are the unique equilibrium for ζ > 1, while, there are no

equilibria if ζ < 1, since the first of (16) fails.
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It should be noted that the assumption of having infinitely many observable states at time t = 1

becomes crucial in order to violate the Euler equation. Since Example 1 represents essentially a

two-period economy, here the ”infinity” feature of the economy is spread along states over a single

period. On the contrary, next example features the existence of second-kind bubbles by means of

a truly infinite-horizon economy with finitely many information nodes at every trading date. As a

consequence, Euler equation can never be violated. In this circumstances, multiple equilibria may

arise by modeling agents having increasing relative risk-aversion over time.

Example 2 (Bubbles and Petersburg assets) Let Ω = {1, 2, ...} and the σ-algebra Ft be generated
by the finite partition {1}, {2}, . . ., {t}, {t+ 1 , t + 2, . . .}. If we set the dividends of a single
perpetual asset to be dt (ω) > 0 for ω = t and dt (ω) = 0 otherwise, it is easy to realize that for any

equilibrium one has pt (ω) = 0 for all ω ≤ t, while pt (ω) > 0 for ω ≥ t + 1, no matter whatever
preferences and exogenous resources are given.

Given that the informational structure is finite at any trading date, it is simpler to describe it by

means of an event-date tree. Among the t+ 1 information sets of Ft, we label st = {t+ 1, t+ 2, ....}
and mt = {t}. The remaining nodes will be little relevant and thus we do not assign them any

particular symbol. With this notation at hand, all nodes st have two immediate successors st+1 and

mt+1, while all others nodes have only one immediate successor. According to this notation, we have

d
¡
mt
¢
> 0 and d (·) = 0 elsewhere, while p

¡
st
¢
> 0 and p (·) = 0 elsewhere. We now specialize

the elements of this tree. The probability measure will be defined through the uniform transition

probabilities

π
¡
mt+1 | st¢ = π

¡
st+1 | st¢ = 1/2.

The agents’ preferences are

u
¡
mt, c

¢ ≡ vt (c) = −2tt−2−αc−t
with α > 0, and linear elsewhere. More specifically, u

¡
st, c

¢
= βtc with 0 < β < 1. Clearly,

preferences display unbounded relative risk aversion along states mt since vt’s relative risk-aversion

index equals t+ 1. The dividends payed by the asset are d
¡
mt
¢
= 1, for all t ≥ 1, and 0 elsewhere.

At each date t, the endowments are w
¡
mt
¢
= 0 and w (·) = w > 0 at each other node.

Condition (12) fails, given that for ζ < 1

E0

∞X
t=1

[vt (1)− vt (ζ)] =
∞X
t=1

t−2−α
¡
ζ−t − 1¢ =∞ (17)
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We can easily calculate the Euler equation along states st. By using the shorthand pt ≡ p
¡
st
¢

pt = (1/2)
£
βpt+1 + β−tv0t+1 (1)

¤
. (18)

By iterating (18), we get

pt = β−t
∞X
s=1

2−sv0t+s (1) + lim
n→∞ 2

−nβnpt+n

where the first addendum is its fundamental value and the second is the bubble component. Note

that this series converges since
∞X
s=1

2−sv0t+s (1) = 2
t
∞X
s=1

(t+ s)−1−α <∞

and the bubble component obeys the martingale law bt+1 = 2β−1bt.

Next proposition states formally that such trading prices with positive bubble component are

consistent with equilibrium requirements.

Proposition 4 All prices pt = ft + bt with bubble component growing along states st according to

the difference equation bt+1 = 2β−1bt, with b0 ≥ 0, are equilibria.

The structure of this event-date tree resembles the Petersburg game and it could slightly be

modified to get several more elaborated examples. Note, for instance, that here the bubble component

will burst with probability 1 (although it grows exponentially). However, it is not difficult to modify

the probability law over Ω so that the bubble does not burst with positive probability. In the

original working paper version of this article [17], we derive another example of Petersburg asset,

having countably many nodes at every date, that exhibits a bubble due to the continuous violation of

the Euler equation at each trading date. This confirms our intuition on pursuing an Euler inequality

rather than equality to develop the equilibrium theory of Section 2.

5 Ambiguous Bubbles

It is well known from the finite-horizon theory that state-prices can be determined by non-existence

of opportunities for pure intertemporal arbitrage profits. In our general probabilistic structure, this

can be taken into account by conveniently adopting the following terminology. Given an equilibrium

price process p, an adapted sequence at (ω) of strictly positive functions will be termed a (pseudo)

state-prices consistent with p, if

atpt = Et [at+1 (pt+1 + dt+1)] (19)
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holds for all t ≥ 0. Strictly speaking, the at’s are not the traditional state-prices of Finance, because
they are distorted by the probability law. However, there is a one-to-one correspondence with state

prices, as long as the stochastic process is given through finite information nodes. In fact, in this

case (19) amounts to

a
¡
st
¢
p
¡
st
¢
=

X
st+1|st

π
¡
st+1 | st¢ a ¡st+1¢ £p ¡st+1¢+ d ¡st+1¢¤

where π
¡
st+1 | st¢ is the transition probability and st, st+1 are adjacent nodes (we are using here

the notation in [18]). After multiplying by µ
¡
st
¢
, we get

a
¡
st
¢
p
¡
st
¢
=

X
st+1|st

a
¡
st+1

¢ £
p
¡
st+1

¢
+ d

¡
st+1

¢¤
,

which is the traditional intertemporal no-arbitrage equation and a
¡
st
¢
= a

¡
st
¢
µ
¡
st
¢
are the familiar

state-prices. Clearly, formulation (19) suits better when the states are not necessarily finite.

The theory developed Section 2 can be easily embedded into this approach that uses (19). For

instance, we would have

a0p0 = E0

∞X
t=1

atdt + lim
N→∞

E0 [aNpN ] (20)

which might generate a different splitting between the fundamental solution and the bubble compo-

nent, with respect to the classical decomposition discussed in Section 2.

According to [18], a pricing equilibrium p (possibly the unique one) is said ambiguously to in-

volve a speculative bubble if one has limt→∞E0 [atpt] = 0 for some state-price process at, while

limt→∞E0 [a0tpt] > 0 for some other process a0t. On the contrary, an equilibrium p involves unam-

biguously no bubble, provided that limt→∞ E0 [atpt] = 0 holds regardless of state-price processes at

which are chosen.

As a matter of fact, the only example in [18] of bubbles for Lucas’ models (Example 4.5) is an

economy exhibiting an ambiguous bubble, as the bubble component depends crucially on different

state-prices adopted. To see why this sort of bubble must be considered outside the theory discussed

in the previous sections, it suffices observing that the equilibrium so constructed is unique and (12)

is fulfilled. Example 3 presented later will display similar features (another example generalizing the

binomial tree of [18] is reported in [17]).

In the following we investigate the relationship between Kamihigashi’s condition (12) and other

two criteria that exclude the occurrence of ambiguous bubbles. We treat separately each single asset

and, since its price may vanish with positive probability, we make use of the following notation. For
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a given equilibrium and for a fixed asset i, let P it =
©
pit = 0

ª
be the zero-price event belonging to

Ft. Clearly, from (19), it turns out that P it ⊂ P it+1.
The first assumption is related to agent’s preferences.

A. 3 There is a non-negative scalar sequence {σt}, having the following properties:

i)
∞X
t=1

σt = +∞

ii) for every integer s and A ∈ Fs with µ(A) > 0 and A ⊂
¡
P is
¢c, there exists a scalar ζ = ζ (s,A),

with 0 < ζ < σ−1s , depending on s and A and such that the consumption stream ec = {ect},
defined as

ect =

c∗t , for 0 ≤ t ≤ s− 1,
c∗t + ζdit, for t = s,

c∗t − ζσsd
i
t, for t ≥ s+ 1

overtakes c∗ over A. That is:

lim infN→+∞ E0
PN−1
t=0 1A [ut (ect)− ut (c∗t )] =

E0
P∞
t=0 1A [ut (ect)− ut (c∗t )] > 0.

The second assumption does not rely on preferences, but it is directly constructed along a given

equilibrium.

A. 4 For each fixed asset i

lim
T→∞

TX
t=0

dit
pit
= +∞ (21)

holds uniformly (adopting the convention
PT
t=0 d

i
t/p

i
t = +∞ over P it ).

A few comments are in order. A.3 is closely related to the assumption A.2 on agent’s impatience

postulated by Santos andWoodford [18] as well as the uniform lower bound on impatience assumption

in Magill and Quinzii [16]. Indeed Theorem 3.3 in [18] on non-occurrence of bubbles, regardless of

the state prices chosen, basically rests on their assumption on impatience. Note that our A.3 is

considerably weaker that theirs. A.4 is a transversality condition at infinity related to the exclusion

of rolling-over debts in Ponzi strategies. It is also linked to Cass’ efficient condition (see [5]): in the
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deterministic setting (21) amounts to saying that the equilibrium allocation is efficient. However,

this is no longer true in the stochastic framework4.

Let us establish at once the relationship between these two different assumptions and (12).

Proposition 5 A.3 =⇒ (12). A.3 =⇒ A.4.

Caution is needed to interpret these implications. A.3 is a property on the preferences, while A.4

is a transversality hypothesis on one single equilibrium. Implication A.3 =⇒ A.4 means that all the

price equilibria will satisfy that transversality condition, provided A.3 is true. The proof of this part

is given in the Appendix. The first implication deserves explanation as well. From (i) of A.3, some

time N will exist so that σN > 0. If we set A = Ω in (ii), we can infer

E0
X

t≥N+1

£
ut (c

∗
t )− ut

¡
c∗t − ζσNd

i
t

¢¤
< E0

£
uN
¡
c∗N + ζdiN

¢− uN (c∗N)¤ <∞
where the last inequality is true in force of (ii) of Definition 1. Therefore, (14), which is a specification

of (12), is valid at least for t ≥ N + 1.

Next statement is our main result on non-existence of ambiguous bubbles.

Theorem 5 If a pricing equilibrium p satisfies A.4, then pit unambiguously involve no bubble.

It is worth observing that A.3, while more restrictive than (12), guarantees our desired property

of non-existence of ambiguous bubbles. On the contrary, next example shows that (12) does not

guarantee this property. Furthermore, it also shows that, despite of having (a bit improperly) labelled

A.3 as a condition on impatience, as a matter of fact it involves a more complicated interplay between

the discounting and the nature of dividend process.

Example 3 (Petersburg asset and ambiguous bubbles) The asset structure is similar to that of

Example 2. Ω = {1, 2, . . .} and Ft are generated by the finite set partition {1}, {2} , . . ., {t},
{t+ 1, t+ 2, . . .}. Let µ (n) > 0, for all n, be an assigned probability over Ω. Once again, the

dividends of a single asset be dt (ω) > 0 for ω = t and dt (ω) = 0. We know that for any pricing

equilibrium one has pt (ω) = 0 for all ω ≤ t, while pt (ω) > 0 for ω ≥ t+1, irrespectively of preferences
and exogenous resources.

4We are indebted to an anonymous referee to have drawn our attention on this interpretation. See also [17] for

further qualifications.
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The series (21) goes to infinity trivially, but the limit is never uniform across states since

µ

Ã
TX
t=1

dt
pt
≥ N

!
=

TX
n=1

µ (n)

for all N > 0, and consequently A.4 fails. Therefore, in view of Proposition 5, A.3 fails as well.

Note that this price process could well be the unique equilibrium determined by one agent having

preferences satisfying (12). Now we show that there is always a valuation bubble in this class of

economies.

To see this is convenient to adopt the tree notation of Example 2. With the notation st =

{t+ 1, t+ 2, ....} and mt = {t}, we must specify the state-price sequence a ¡st¢ along states st.
Elsewhere, the state prices can be any. Let us fix any number 0 ≤ ∆ < p

¡
s0
¢
and any sequence

a
¡
mt
¢
such that

P∞
t=1 a

¡
mt
¢
d
¡
mt
¢
<∞. If we define

a
¡
st
¢
= p

¡
st
¢−1 "

∆
£
p
¡
s0
¢−∆¤−1 ∞X

s=1

a (ms)d (ms) +
∞X

s=t+1

a (ms)d (ms)

#

it is readily seen that such state prices are consistent with the equilibrium since

a
¡
st
¢
p
¡
st
¢
= a

¡
st+1

¢
p
¡
st+1

¢
+ a

¡
mt+1

¢
d
¡
mt+1

¢
Moreover,

lim
t→∞

a
¡
st
¢
p
¡
st
¢

a (s0)
= ∆,

which proves the existence of a positive bubble along the states st. Clearly this bubble is ambiguous

since it disappears by setting ∆ = 0. In this circumstance, the prices equal the fundamental values

according to a certain state-price process (of course, this last assertion is also a consequence of

Theorem 3.1 in [18]).

A few words on the context where the various assumptions discussed in this section can be used

are needed. Actually, they play significantly different roles. The state-price approach addresses more

general intertemporal pricing models than the one examined in the previous sections. Preferences

must not necessarily be time-separable and differentiable. Moreover, the method (Theorem 5 in

particular) applies also to heterogeneous agents models. To stay inside our original focus, it must

be assumed that the set of state-prices contains the process at = u0t(c∗t ) (namely, the Euler equation

must hold). Under this hypothesis, any price equilibrium p with respect to some state-price that

satisfies A.4 is the market fundamental value which unambiguously involves no bubble. On the
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other hand, whenever A.3 holds there is a unique price equilibrium which does not contain a bubble

component regardless of the chosen state-price process.

Let us conclude with a simple but interesting application of the discussion above: the assets

pricing in deterministic sequential markets. As already mentioned, assumption A.4 boils down to

the condition of efficiency. Hence, A.4 must hold true along any price equilibrium. Consequently,

Theorem 5 implies that no ambiguous bubble may arise with no uncertainty. We give a formal

statement of this since it is a straightforward and meaningful consequence of the approach based

on A.4. Moreover, our statement is slightly more general than other results available in literature.

It could be derived from Theorem 3.1 in [18] and from Theorem 6.1 in [10] as well, though both

require the present value of the aggregate endowment to be finite, an assumption not required in our

statement.

Proposition 6 Any price sequential equilibrium in markets without uncertainty satisfies A.4 and

therefore Theorem 5 applies.

The last result clearly implies uniqueness of price equilibrium in the differentiable case. As long

as non-differentiability is assumed, like in Gilles-LeRoy example (see [9], [11] and [17]), equilibrium

indeterminacy is possible, with no bubbles involved. As said at the beginning, this is one case where

the two concepts, bubbles and multiple equilibria, get totally unrelated.

6 Concluding Remarks

Is the issue of price bubbles in intertemporal capital asset pricing models with one representative

agent basically closed? The answer is yes, as long as one follows the traditional valuation by means of

fundamental value. We have indeed added further strong arguments in favor of fragility of occurrence

of bubbles. Of course, some theoretical issues remain still open and interesting enough to deserve

further investigation. One of them is the identification of classes of models in which sufficient criterion

(12) turns out to be necessary as well. In view of Theorem 3, this would allow a characterization for

models with a unique equilibrium for ζ > 1, no equilibria for ζ < 1 and an equilibrium involving some

bubble component for ζ = 1. Actually, some examples studied in [17] tell us that formal elaborations

in this direction are a difficult task.

As long as one tries to encompass the theory developed by Santos and Woodford [18] into this

point of view, several technical difficulties arise. Their Theorem 3.1 on non-existence of unambiguous
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bubbles must definitely be regarded as one of the main contributions on bubbles fragility, and we

do not know to what extent it could be modified to fit our setting. The roots of our treatment

rest upon the asymptotic behavior of series (21) which is closely related to the exclusion of Ponzi

schemes. Up to our knowledge, such an approach seems novel and this series happens to exhibit a

strong relationship with the exclusion of valuation bubbles, as established in Theorem 5.

Let us add some more comments on the construction of bubbles. As it has been argued in Section

4, the occurrence of bubbles seems to be another form of paradox related to the economics of infinity

(some kind of paradoxes has well been described in Shell [20]). Roughly speaking, we have met two

paradoxes of infinity.

The first one, the milder one, arises when an infinite number of states of the world is observable,

at least at some trading date. The traditional first order condition (Euler equation), valid for a

uniformly interior equilibrium, is no longer necessarily true. This has led to the construction of the

so-called bursting bubbles that violate the Euler equation (Example 1). It must be underlined that

this kind of bubbles is not related to the infinite-horizon setting. They do survive in finite-horizon

economies (Kamihigashi’s example is just performed for a two-period economy). It should also be

noted that the violation of the Euler equation here has nothing to do with the violation of the Euler

equations in heterogeneous agents models with debts constraints. We have in mind Bewley’s [1]

consumption smoothing example with positively valued fiat money (see [14] and [18]). There, it is

not possible to uniformly perturb downward the equilibrium trading plan, because the borrowing

constraint is binding and, consequently, the failure of the Euler equation is the rule.

The second type of bubbles requires a truly infinite-horizon economy (Example 2). In this case

no violation of the Euler equation is required. The paradox of infinity here is originated by violating

the already cited principle asserting that whenever a bubble occurred, an infinitely lived agent might

gain by permanently reducing the asset holding. For instance, if the agent has increasing relative

risk-aversion through time5, this rule may be no longer true.

7 Appendix

The short-run optimality conditions stated in Proposition 1 require a preliminary lemma.

5Note also that the focus on risk-aversion in our model has a respectable antecedent in Lucas’ paper, where the

relation between asset prices elasticity and relative risk aversion is pointed out.
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Lemma 1 Under A.1-2, if p is a pricing equilibrium process, thenn
u
0
t−1
¡
c∗t−1

¢
pt−1 −Et−1

h
u
0
t (c

∗
t ) (dt + pt)

io
· y ≥ 0 (22)

for all t ≥ 1 and for all random vectors y (ω) ≥ 0, Ft−1-measurable, essentially bounded and such
that pt−1 · y ≤ γc∗t−1, for some number γ > 0, depending on y.

Proof. Fix y (ω) and consider the function

J (ε) = ut−1
¡
c∗t−1

¢− ut−1 (ct−1) +Et−1 [ut (c∗t )− ut (ct)]
for 0 ≤ ε ≤ ε0, with ε0 small enough and where

yt = e + εy

ct−1 = c∗t−1 − εpt−1 · y
ct = c

∗
t + ε (pt + dt) · y

By construction, yt > 0, ct > 0 and in force of (ii), ct−1 > 0 as long as ε < γ−1. Clearly J (0) = 0. It

is readily seen that such perturbation must leave the agent worse-off. Therefore, it must be J (ε) ≥ 0.
Moreover, J (ε) is well defined because J (ε) < +∞; this is true as ct ≥ c∗t and thus ut (c∗t )−ut (ct) ≤ 0.
Take a decreasing sequence εn → 0 and consider the sequence ε−1n [J (εn)− J (0)] ≥ 0. The limit
J
0
+ (0) must be non-negative, provided it does exist. It is immediately seen that

J
0
+ (0) = u

0
t−1
¡
c∗t−1

¢
pt−1 · y −Et−1

h
u
0
t (c

∗
t ) (pt + dt) · y

i
where the second addendum holds by the monotone convergence theorem, since the functions ε−1n [ut (c∗t )− ut (ct)]
0 converge to u

0
t (c

∗
t ) (pt + dt)·y decreasingly in force of concavity of ut. From J 0+ (0) ≥ 0, (22) follows.

Proof of Proposition 1. Fix an integer n and define the event An = {ω : |pt−1 (ω)| ≤ n
and c∗t−1(ω) ≥ n−1

ª ∈ Ft−1. As n → ∞, An ↑ Ω \ N , where µ (N) = 0. Consider the function

y (ω) = 1Anv, where v ∈ Rk+ is any fixed vector. This Ft−1-measurable function meets assumptions
(i) and (ii) of Lemma 1 and thus we can write:

1An

n
u
0
t−1
¡
c∗t−1

¢
pt−1 −Et−1

h
u
0
t (c

∗
t ) (pt + dt)

io
· v ≥ 0.

As vector v ≥ 0 is arbitrary, it follows

u
0
t−1
¡
c∗t−1

¢
pt−1 ≥ Et−1

h
u
0
t (c

∗
t ) (pt + dt)

i
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for all ω ∈ An. As n goes to infinity, it is true almost surely and this completes the proof.

Proof of Theorem 1. Observe that E0
h
u
0
(c∗t ) pt

i
< +∞ for any price sequence satisfying (1),

provided that p0 < +∞, as it has been assumed. This has two implications. First, E0
h
u
0
(c∗t ) pt · y

i
<

+∞, for all essentially bounded functions y (ω) . Second, Es
h
u
0
(c∗t ) pt · y

i
< +∞ for s ≥ 0, as well.

Let (ct, yt) be any feasible consumption-portfolio plan for a price process satisfying (1). Multiplying

the budget constraint by u
0
t ≡ u0t (c∗t ), we obtain

u
0
tct ≤ u

0
tpt · (yt − yt+1) + u

0
tdt · yt + u

0
twt

Taking the expected value and exploiting (1)

Et−1
h
u
0
tct
i
≤ Et−1

h
(pt + dt)u

0
t

i
· yt −Et−1

h
u
0
tpt · yt+1

i
+Et−1

h
u
0
twt
i

≤ u0t−1pt−1 · yt −Et−1
h
u
0
tpt · yt+1

i
+Et−1

h
u
0
twt
i
.

Note that index t is taken greater than 0 and Et−1
h
u
0
tpt · yt+1

i
is finite, as yt+1 is assumed to be

essentially bounded. Taking now the expected value E0 and summing up from t = 1 to t = N

E0
PN
t=1 u

0
tct ≤ u

0
0p0 · y1 −E0

h
u
0
NpN · yN+1

i
+ E0

PN
t=1 u

0
twt ≤ u00p0 · y1 +E0

PN
t=1 u

0
twt.

By adding the first term u
0
0c0 ≤ u

0
0p0 · (e− y1) + u

0
0d0 · e + u00w0, and by using (7), we get

E0

NX
t=0

u
0
tct ≤ u

0
0b0 · e +E0

NX
t=0

u
0
tc
∗
t +E0

∞X
t=N+1

u
0
tdt · e

that is true for all N , for any feasible consumption sequence and where b0 is the price bubble at

epoch 0. To conclude, from the concavity property ut (c∗t )− ut (ct) ≥ u0t (c∗t ) (c∗t − ct), it follows that

E0

NX
t=0

[ut (c
∗
t )− ut (ct)] ≥ E0

NX
t=0

u
0
t (c

∗
t ) (c

∗
t − ct) ≥ −u

0
0 (b0 · e)−E0

∞X
t=N+1

u
0
tdt · e

and, in force of (11),

lim inf
N→∞

E0

NX
t=0

[ut (c
∗
t )− ut (ct)] ≥ − (b0 · e)u

0
0

Therefore, if the market prices agree with the fundamental values ft, that is b0 = 0, we obtain the

desired property of optimality.

Proof of Theorem 2. It follows the same line of the proof of Lemma 4.1 in [11] and therefore

we shall only sketch it. Consider the asset holding strategy y1 defined by y10 = e and y
1
t = e − εv
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for t ≥ 1, where v is a fixed vector in Rk++ and ε satisfies the condition 0 < εv ≤ (1 − ζ)e, being

ζ defined in (12). Let c1 be the corresponding consumption stream. Now, for α ∈ (0, 1), define the
plan yα = (1− α) e + αy1 with the relative consumptions cα = (1− α)c∗ + αc. By concavity,

α−1 [ut (c∗t )− ut (cαt )] ≤ ut (c∗t )− ut
¡
c1t
¢
.

Since cαt ≤ c∗t , from t ≥ 1 on, sums are increasing and, by taking the limit as N → ∞ and then

expectation, the following inequalities are true:

0 ≤ E0
∞X
t=0

α−1 [ut (c∗t )− ut (cαt )] ≤ E0
∞X
t=0

£
ut (c

∗
t )− ut

¡
c1t
¢¤
< +∞

where the first is due to optimality of plan c∗ (see (iii) of Definition 1), whilst the second is valid

by (12). As α ↓ 0, the functions above increase, therefore, through repeated applications of the
monotone convergence theorem, we get

u
0
0 (c

∗
0) p0 ≤ E0

∞X
t=1

u
0
t (c

∗
t )dt. (23)

In view of (6), (23) yields p0 = f0, and the proof is complete because, from (9), b0 = 0 implies bt = 0

for all t.

Proof of Proposition 3. It is a straightforward variant of Theorem 2. It will suffice to consider

the assets holding strategy yi defined by yi0 = e and y
i
t = e− εei for t ≥ 1, where ε > 0 is sufficiently

small and ei is the vector having zero components but the ith, which equals one. The corresponding

consumption stream ci is given by ci0 = c
∗
0+ εpi0 and c

i
t = c

∗
t − εdit for t ≥ 1. Remaining steps closely

follows those of the preceding proof.

Proof of Theorem 3. Suppose there is some bubble when the initial assets supply is y0 = v ∈
Rk++. Since (11) must be fulfilled, one has

E0

∞X
t=1

u
0
t (dt · v +wt) dt < +∞

Take any initial vector v such that vÀ v. Then, there is some ζ < 1 for which ζvÀ v. Monotonicity

of u0t implies

E0

∞X
t=1

u
0
t(ζdt · v +wt)dt < +∞

which is the sufficient condition (12) for the equilibrium with initial asset holding v to be unique.

Likewise, assume that, for y0 = v¿ v, equilibria do exist, hence

E0

∞X
t=1

u
0
t(dt · v +wt)dt < +∞
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which in turn entails

E0

∞X
t=1

u
0
t(ξdt · v +wt)dt < +∞

for all ξ > 1. By picking ξ > 1 and ζ < 1 so that v¿ ξv¿ ζv¿ v,

E0

∞X
t=0

u
0
t (ζdt · v +wt) dt < +∞

must hold. But this contradicts the assumption that some bubble occur for y0 = v. Clearly, a similar

line of reasoning applies for a perturbation of the dividends dt.

Proof of Theorem 4. Let us utilize sufficient condition (13) formulated in Corollary 1. We

first observe that if there is a constant M(ζ), independent of t, such that

u
0
t (ζc+ h) ≤M(ζ)u

0
t (c+ h) (24)

for some ζ < 1 and for all c ≥ 0, h ≥ 0, t ≥ 0, then (11) implies (13). In force of (15), the function
u
0
t (c+ h) c

R is non-decreasing, as can be checked by calculating its derivative. Thus u
0
t (ζc+ h) ζ

R ≤
u
0
t (c+ h) for ζ ≤ 1, and (24) is valid by setting M(ζ) = ζ−R.

Proof of Proposition 4. Denote by yt+1 ≡ y
¡
st
¢
a feasible trading plan. It finances consump-

tions

c
¡
st
¢
= pt (yt − yt+1) +w, c

¡
mt
¢
= yt

and c (·) = w elsewhere. Furthermore

E0
PN
t=0 [ut (c

∗
t )− ut (ct)] =

PN
t=1 2

−t [vt (1)− vt (yt)]+PN
t=0 2

−tβtpt (yt+1 − yt)
(25)

The proof will be accomplished by considering strategies yt separately in the two following exhaustive

classes: a) lim supt→∞ yt ≥ 1; b) lim supt→∞ yt < 1.
By means of the inequality

vt (1)− vt (yt) ≥ v0t (1) (1− yt)

the right-hand side of (25) is greater than

PN
t=1 2

−t+1βt−1
£
pt−1 − 2−1β1−tv0t (1)− 2−1βpt

¤
(yt − 1)

+2−NβNpN (yN+1 − 1) = 2−NβNpN (yN+1 − 1)
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where equality holds thanks to (18). Since 2−NβNpN → b0 ≥ 0, in the case (a)

lim sup
N→∞

2−NβNpN (yN+1 − 1) ≥ 0

and our claim is proven. Consider now case (b). Taking limits in (25), we get

∞X
t=1

2−t [vt (1)− vt (yt)]−
∞X
t=0

2−tβtpt (yt − yt+1)

provided that the two series make sense. The first series diverges. In fact, it turns out to be

definitively yt ≤ ζ for some ζ < 1 and the series diverges by virtue of (17). Thus, our claim will be

true provided that the second series does not diverge. On the other hand,P∞
t=0 2

−tβtpt (yt − yt+1) =
P∞
t=0 2

−tβtpt (1− yt+1)−
P∞
t=1 2

−tβtpt (1− yt)
=
P∞
t=1 2

−t+1βt−1
¡
pt−1 − 2−1βpt

¢
(1− yt)

=
P∞
t=1 2

−tv0t (1) (1− yt)
≤P∞

t=1 2
−tv0t (1) <∞

where the third equality uses (18), and the desired result is proven.

Proof of Proposition 5. To show the implication A.3 =⇒ A.4, we claim the events

At =
©
dit/p

i
t < σt

ª ⊂ ¡P it ¢c
to be µ-negligible for all t. Arguing by contradiction, suppose that µ (As) > 0 for some s. Then,

picking ζ, relatively to As as in A.3, one can rewrite this event as As =
©
ζdis − ζσsp

i
s < 0

ª
or,

equivalently, in vector notation

As =
©
ζdis + ps · [(e− ζσsei)− e] < 0

ª
(26)

where ei denote the Rk vector with all null entries but the ith equals 1.

We now construct a plan {ect, eyt} as follows: {ect, eyt} = {c∗t , e} for all ω ∈ Ω, if t < s and for

ω /∈ As if t ≥ s. If ω ∈ As, then {ecs, eys} = ©c∗s + ζdis, e
ª
and {ect, eyt} = ©c∗t − ζσsd

i
t, e− ζσsei

ª
for

t ≥ s+ 1. By using (26),¡
c∗s + ζdis

¢
+ ps · [(e− ζσsei)− e] ≤ c∗s = ds · e +ws and

c∗t − ζσsd
i
t + pt · 0 = dt · (e− ζσsei) +wt for t ≥ s+ 1.

and thus {ect, eyt} is feasible. By construction we have
E0

N−1X
t=0

[ut (ect)− ut (c∗t )] = E0 N−1X
t=0

1As [ut (ect)− ut (c∗t )]
26



for all N ≥ 1. Taking the liminf, A.3 entails

lim inf
N→+∞

N−1X
t=0

E0 [ut (ect)− ut (c∗t )] > 0
which contradicts weak optimality of plan {c∗t , e}. Concluding, µ (At) = 0, for all t and, consequently,
dit/p

i
t ≥ σt for almost all ω ∈ Ω. This implies our assert.

To prove Theorem 5, some more notation and one preliminary lemma are required. Let us

introduce the scalar sequence byit defined recursively as:
byit+1 = µ1+ ditpit

¶ byit. (27)

and where the initial condition byi0 is assumed to be a strictly positive scalar. Clearly, byit+1 is well
defined over

¡
P it
¢c.

Lemma 2 Let {pt, at} be two F-adapted processes satisfying (19). Given the sequence byit defined
above, if we agree upon setting pitbyit+1 = 0 over P it , then the process atpitbyit+1 is a supermartingale.

Proof. Set Cit =
¡
P it
¢c. By definition,

Et−1
£
atp

i
tbyit+1¤ = Et−1 h1Citatpitbyit+1i

According to (27)

1Cit (p
i
tbyit+1) = 1Cit (pit + dit)byit

that, by means of (19), leads to

Et−1
£
atp

i
tbyit+1¤ = Et−1

h
at1Cit (p

i
t + d

i
t)byiti ≤

Et−1
£
at(p

i
t + d

i
t)
¤ byit = at−1pit−1byit

as was to be shown.

Proof of Theorem 5. We shall extend the sequence byit+1, defined in (27), by setting byit+1 =∞
over P it . Clearly, byit+1 is an extended-value and increasing sequence. According to (27),

byit+1 = tY
k=0

µ
1+

dik
pik

¶ byi0.
By means of the first of the inequalities

27



1+
NX
t=0

αt ≤
NY
t=0

(1+ αt) ≤ exp
Ã

NX
t=0

αt

!
(28)

that holds for all sequences of scalars αt ≥ 0 and all N ≥ 1, from (21) it follows that the sequencebyit →∞ uniformly.

Fix any pseudo state-prices at consistent with p. We know from Lemma 2 that atpitbyit+1 is a
supermartingale. Hence, E0

£
atp

i
tbyit+1¤ ≤ a0p

i
0byi1. This means E0 h1Citatpitbyit+1i ≤ a0p

i
0byi1, where

Cit =
¡
P it
¢c. Since the sequence byit diverges uniformly, for any N we can find a time T so thatbyit+1 ≥ N for all t ≥ T . Hence, E0

h
1Citatp

i
t

i
≤ N−1a0pi0byi1. On the other hand, E0 h1P it atpiti = 0,

which gives E0
£
atp

i
t

¤ ≤ N−1a0pi0byi1 and, in turn, E0 £atpit¤→ 0 as t→∞. Now, in view of (20), we
can infer that the bubble component relative to the selected state-prices vanishes.

Proof of Proposition 6. Let us focus on a single asset. If prices pit eventually vanish, nothing

is to be proved. Hence set pit > 0 for all t. Arguing by contradiction, suppose A.4 fails, namely

∞X
t=0

dit
pit
=M < +∞.

From the second inequality in (28), it follows

∞Y
t=0

µ
1+

dit
pit

¶
≤ exp

Ã ∞X
t=0

dit
pit

!
= eM

Therefore, the deterministic increasing sequence byit, defined in (27) is bounded by eMbyi0. So, if we
take byi0 < e−M , we shall have byit < 1 for all t. We claim that this leads to a contradiction. It suffices

constructing the following plan. If ei denotes the vector having zero components but the ith equal

to one, then let eyt = e− gtbyitei
where g0 = 0 and gt = 1 for all t ≥ 1. It is feasible because eyt > 0 and finances consumptions

ect = c∗t + (gt+1 − gt) pitbyit+1
Clearly ec0 = c∗0 + pi0byi1, while ect = c∗t for all t ≥ 1. This contradicts the optimality of c∗t .
References

[1] T. Bewley, The Optimum Quantity of Money, in ”Models of Monetary Economies” (J. Kareken

and N. Wallace, Eds.), Federal Reserve Bank, Minneapolis, 1980.

28



[2] O. J. Blanchard and S. Fisher, ”Lectures on Macroeconomics”, Cambridge MIT Press, Cam-

bridge, 1989.

[3] W. A. Brock, On Existence of Weakly Maximal Programmes in a Multi-Sector Economy, Rev.

Econ. Stud. 37 (1970), 275-280.

[4] W. A. Brock, Asset Prices in Production Economy, in ”The Economics of Information and

Uncertainty”, (J. McCall, Ed.), 1-43, University of Chicago Press, Chicago, 1982.

[5] D. Cass, On Capital Overaccumulation in the Aggregative Model of Economic Growth: A

complete Characterization, J. Econ. Theory 4 (1972), 200-223.

[6] D. Duffie, ”Security Markets”, Academic Press, New York, 1988.

[7] I. Ekeland and J. A. Scheinkman, Transversality Conditions for Some Infinite Horizon Discrete

Time Optimization Problems, Math. Oper. Res. 11 (1986), 216-229.

[8] L. G. Epstein and T. Wang, Intertemporal Asset Pricing Under Knightian Uncertainty, Econo-

metrica 62 (1994), 283-322.

[9] C. Gilles and S. F. LeRoy, Bubbles and Charges, Int. Econ. Rev. 33 (1992), 323-339.

[10] K. X. D. Huang and J. Werner, ”Valuation Bubbles and Sequential Bubbles”, Department of

Economics, University of Minnesota, 1997.

[11] T. Kamihigashi, Uniqueness of Asset Prices in an Exchange Economy with Unbounded Utility,

Econ. Theory 12 (1998), 103-122.

[12] T. Kamihigashi, ”Necessity of Transversality Conditions for Infinite-Horizon Problems”, De-

partment of Economics, State University of New York at Stony Brook, 1999.

[13] M. Kandori, Equivalent Equilibria, Int. Econ. Rev. 29 (1988), 401-417.

[14] N. R. Kocherlakota, Bubbles and Constraints on Debt Accumulation, J. Econ. Theory 57 (1992),

245-256.

[15] R. Lucas, Asset Prices in an Exchange Economy, Econometrica 46 (1978), 1429-1445.

[16] M. Magil and M. Quinzii, Incomplete Markets over an Infinite Horizon: Long-lived Securities

and Speculative Bubbles, J. Math Econ. 26 (1996), 133-170.

29



[17] L. Montrucchio and F. Privileggi, On Fragility of Bubbles in Equilibrium Asset Pricing Models

of Lucas-Type, Working Paper of the Dept. of Public Policy and Collective Choice ”Polis” 5,

Alessandria, Italy (1999).

[18] M. S. Santos and M. Woodford, Rational Asset Pricing Bubbles, Econometrica 65 (1997), 19-57.

[19] J..A. Scheinkman, ”Notes on Asset Pricing”, University of Chicago, 1977.

[20] K. Shell, Notes on the Economics of Infinity, J. Polit. Econ. 79 (1971), 1002-1011.

[21] S. I. Takekuma, Optimal Growth under Uncertainty: a Complete Characterization of Weakly

Maximal Programs, Hitotsubashi J. Econ. 33 (1992), 169-182.

[22] J. Tirole, On the Possibility of Speculation under Rational Expectation, Econometrica 50

(1982), 1163-1181.

[23] C. A. Wilson, Equilibrium in Dynamic Models with an Infinity of Agents, J. Econ. Theory 24

(1981), 95-111.

[24] I. Zilcha, Characterization by Prices of Optimal Programs under Uncertainty, J. Math. Econ. 3

(1976), 173-183.

30



INTERNATIONAL CENTRE FOR ECONOMIC RESEARCH

WORKING PAPER SERIES

Luigi Montrucchio and Fabio Privileggi

ON FRAGILITY OF BUBBLES IN EQUILIBRIUM ASSET PRICING
MODELS OF LUCAS-TYPE

Working Paper no. 5/2001
April 2001

APPLIED MATHEMATICS
WORKING PAPER SERIES


