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Abstract

We provide some counterexamples showing that some concepts of positive depen-
dence are strictly stronger than others. In particular we will settle two questions posed
by Pemantle (2000) and Pellerey (2002) concerning respectively association versus weak
association, weak association versus supermodular dependence, and supermodular de-
pendence versus positive orthant dependence.
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1 Introduction

Several concepts of stochastic dependence have been introduced in the past forty years.

Some of them can be derived from positive dependence orderings by comparing a random

vector with a vector having the same marginals, but independent components. For instance

supermodular dependence and positive orthant dependence are of this type.

As all dependence concepts can be used to derive descriptive statistics for multivariate

data sets, it is of great importance to know the relations between them. Many implications

among different dependence concepts are well known. The reader is referred to Joe (1997)

or Müller and Stoyan (2002) for an extensive treatment of the topic.

In this note we will provide some counterexamples and show that some concepts of

dependence are strictly stronger than others. In particular we will show that association and

weak association are not equivalent, and we will give an example of a random vector which

is positive orthant dependent but not positive supermodular dependent. This settles two

questions posed by Pemantle (2000) and Pellerey (2002), respectively.

We will also prove that supermodular dependence does not imply weak association.

2 Main results

In the following the terms increasing and decreasing will be used in the weak sense. The

space Rd will be equipped with the componentwise order, i.e. x ≤ y will mean xi ≤ yi for

all i ∈ {1, . . . , d}.

A random vector X is stochastically increasing in the random vector Y if E[φ(X)
∣∣Y = y]

is an increasing function of y for all increasing functions φ for which the expectation is

defined.

Given a random vector X we indicate by X⊥ the random vector whose univariate marginal

distributions coincide with the marginals of X, and whose components are independent.

Given (X1, . . . , Xd) and I ⊂ {1, . . . , d}, we denote by XI the vector (Xi : i ∈ I).
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A function f : Rd → R is supermodular, if

f(x ∨ y) + f(x ∧ y) ≥ f(x) + f(y) for all x and y, (1)

where the lattice operators ∧ and ∨ are defined as

x ∧ y = (min{x1, y1}, . . . , min{xd, yd})

and

x ∨ y = (max{x1, y1}, . . . , max{xd, yd}).

We call PX the distribution of X. Given two probability measures PX, PY on Rd we say

that PX ≤sm PY if ∫
φ dPX ≤

∫
φ dPY (2)

for all supermodular functions φ on Rd; see Müller and Stoyan (2002), Chapter 3.9 for a

detailed treatment of that order relation.

If (2) holds for all functions φ that are indicators of upper (lower) orthants, then we say

that PX ≤uo PY (PX ≤lo PY).

If PX ≤uo PY and PX ≤lo PY hold simultaneously, then we say that they are comparable

in concordance order, written as PX ≤c PY. This definition is due to Joe (1990).

Definition. A random vector X = (X1, . . . , Xd) is

• conditionally increasing (CI) if XI is stochastically increasing in XJ for all I, J ⊂

{1, . . . , d} with I ∩ J = ∅,

• associated if Cov[f(X), g(X)] ≥ 0, for all increasing functions f, g,

• weakly associated if Cov[f(XI), g(XJ)] ≥ 0, for all I, J ⊂ {1, . . . , d} with I ∩ J = ∅,

for all increasing functions f, g,

• positive supermodular dependent (PSMD) if PX⊥ ≤sm PX,

• positive upper orthant dependent (PUOD) if PX⊥ ≤uo PX,

• positive lower orthant dependent (PLOD) if PX⊥ ≤lo PX,
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• positive orthant dependent (POD) if PX⊥ ≤c PX.

The following implications are well known.

(a) If X is CI, then it is associated (Müller and Scarsini (2001)).

(b) If X is associated, then it is weakly associated (obvious).

(c) If X is weakly associated, then it is PSMD (Christofides and Vaggelatou (2003)).

(d) If X is PSMD then it is POD (Müller and Stoyan (2002)).

When d = 2 the situation is far simpler: For instance PUOD, PLOD, POD, PSMD, and

weak association are equivalent.

The question whether in general weak association implies association was given as an

open problem in Pemantle (2000). The following counterexample settles the question in the

negative.

Example 1. It is well known that there are bivariate random vectors, which are POD but

not associated. Take for example (X1, X2) such that

P (X1 = 0, X2 = 0) = P (X1 = 2, X2 = 2) = 2/9,

P (X1 = 0, X2 = 2) = P (X1 = 2, X2 = 0) = 1/9,

P (X1 = 1, X2 = 1) = 3/9.

Let X3, . . . , Xd be independent and independent of (X1, X2).

By choosing the increasing indicator functions

f(x1, x2) = I[2,∞)(max(x1, x2)) and g(x1, x2) = I[1,∞)×[1,∞)(x1, x2)

we see that Cov(f(X1, X2), g(X1, X2)) = −2/81 < 0 and hence (X1, X2) is not associated,

but it is POD, and therefore weakly associated (since the two latter concepts coincide for

d = 2).

Concatenations of weakly associated random vectors that are independent among each

other are weakly associated again, therefore (X1, . . . , Xd) is weakly associated, but not as-

sociated.
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Christofides and Vaggelatou (2003) proved that weak association implies supermodular

dependence. The following example shows that the converse implication fails to hold.

Example 2. Take X as in Example 5.1 of Block et al. (1985). This means that it has a

distribution on {0, 1}4 with P (X = (0, 0, 0, 0)) = 4/24,

P (X = (0, 1, 1, 1)) = P (X = (1, 0, 1, 1)) = P (X = (1, 1, 0, 1)) = P (X = (1, 1, 1, 0))

= P (X = (1, 1, 1, 1)) = 2/24,

and the probabilities of the ten other possible outcomes are all 1/24.

To prove that X is PSMD it suffices to check that E[φ(X)]−E[φ(X⊥)] ≥ 0 for all symmet-

ric supermodular functions φ, since the distribution of X is symmetric (for the interaction

between integral stochastic orderings of symmetric distributions and integral stochastic or-

derings defined through symmetric functions, see Scarsini and Shaked (1990)). Without loss

of generality assume that φ(0, 0, 0, 0) = 0. Then if we define a = 1/24, we have

E[φ(X)]− E[φ(X⊥)] =
a

2
[φ(1, 1, 1, 1) + 4φ(1, 1, 1, 0)− 6φ(1, 1, 0, 0)− 4φ(1, 0, 0, 0)] ≥ 0 (3)

for all symmetric supermodular φ. To see this notice that by symmetry

φ(1, 1, 1, 1) + 4φ(1, 1, 1, 0)− 6φ(1, 1, 0, 0)− 4φ(1, 0, 0, 0)

= [4φ(1, 1, 1, 0)− 4φ(1, 1, 0, 0)− 4φ(0, 0, 1, 0) + 4φ(0, 0, 0, 0)]

+ [φ(1, 1, 1, 1)− φ(1, 1, 0, 0)− φ(0, 0, 1, 1) + φ(0, 0, 0, 0)]

and both terms in square brackets are nonnegative by the assumption of supermodularity of

φ.

The inequality in (3) implies that X is PSMD. However X is not weakly associated, since

P (X1 = X2 = X3 = X4 = 1) =
1

16
+

a

2
<

(
1

4
+ a

)2

= P (X1 = X2 = 1)P (X3 = X4 = 1).

The POD concept is strictly weaker than all other notions of positive dependence men-

tioned in this paper. Our final counterexample in dimension d = 3 shows that POD does

not imply PSMD (the question was posed to us by Pellerey (2002)).
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Example 3. For d ≥ 4 Joe (1990) and for d = 3 Müller and Scarsini (2000) proved that

PX ≤c PY does not imply PX ≤sm PY. The counterexamples involve discrete distributions.

Any counterexample for the dependence orderings, involving discrete distributions on a

finite support, can be transformed into a counterexample for the corresponding dependence

concept.

Indeed, let PX, PY be such that PX ≤c PY but not PX ≤sm PY, and let the support of

PX, PY be a subset of a finite lattice. Take α > 0 small enough such that for some measure

Q, the measure αPX + (1−α)Q is a uniform distribution on the finite lattice, and therefore

a product measure. Since the above orders are preserved under mixtures, we have

αPX + (1− α)Q ≤c αPY + (1− α)Q,

but not

αPX + (1− α)Q ≤sm αPY + (1− α)Q.

Hence if Z is distributed according to αPY + (1− α)Q, then Z is POD, but not PSMD.

Notice that PX ≤sm PY implies that they have the same marginals, therefore the marginals

of αPX + (1−α)Q and αPY + (1−α)Q are equal, too. From the construction we then have

that Z⊥ has distribution αPX + (1− α)Q.

As an explicit counterexample consider the following case, with d = 3, taken from Müller

and Scarsini (2000). There X is uniformly distributed on the set

A = {(2, 2, 1), (2, 1, 2), (1, 2, 2), (1, 1, 1), (0, 0, 2), (2, 0, 0)}

and Y is uniformly distributed on the set

B = {(2, 2, 2), (2, 1, 1), (1, 2, 1), (1, 1, 2), (2, 0, 2), (0, 0, 0)}.

These vectors are such that PX ≤c PY, but not PX ≤sm PY.

Choose α = 6/27, and Q uniformly distributed on the 21 points of the set {0, 1, 2}3 \A.

Then the probability measure αPY + (1 − α)Q assigns probability 2/27 to the points in

B and probability 1/27 to the points in {0, 1, 2}3 \ (A ∪ B), and the probability measure

αPX + (1− α)Q is uniform on the lattice {0, 1, 2}3. Therefore αPY + (1− α)Q is POD, but

not PSMD.
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Remark. Notice that of the various definitions of positive dependence some are in prin-

ciple directly checkable once the distribution functions are given (e.g. PUOD, PLOD, CI).

However association, weak association and PSMD are not directly checkable, because they

would require checking an inequality for all possible multivariate increasing functions f, g,

or for all supermodular functions φ.

It is known that for association it is sufficient to consider the indicator functions of

upper sets. In the case of distributions supported on a finite lattice some enumeration

criteria for upper sets have been studied by Sampson and Whitaker (1988, 1989). Even in

this case the complexity of the problem is very high, which makes it often difficult to find

counterexamples.
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