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1 Introduction

Jewitt (1986) proposed a general framework to compare attitudes towards different
forms of risk. In particular given a relation R on a space of distribution functions he
characterized the dual relation R◦ on a space of utility functions such that∫

u dF ≥
∫
u dG implies

∫
v dF ≥

∫
v dG, (1.1)

whenever (F,G) ∈ R and (u, v) ∈ R◦.
In particular, if (F,G) ∈ R holds when G is a degenerate distribution function and

F is any distribution function, (1.1) provides the usual Arrow-Pratt characterization
of comparative risk aversion (see Pratt (1964)): (u, v) ∈ R◦ iff u(·) = k ◦ v(·), with k
increasing concave.

If (F,G) ∈ R means that F is preferred to G by all agents with an increasing
convex utility, we obtain the characterization due to Ross (1981), according to which
(u, v) ∈ R◦ iff v(·) = αu(·) + w(·) with α ≥ 0 and w increasing convex.

The concept of risk used by Ross (1981), is based on the idea of mean preserving
spread, namely of a shift of probability from the center to the tail of a distribution
that leaves the expectation unaltered (see Rothschild and Stiglitz (1970, 1972)). The
opposite shift will be called a mean-preserving contraction.

Menezes et al. (1980) examined a concept of risk, called downside risk, that in-
volves a mean preserving spread and a mean preserving contraction, where the con-
traction happens on the right of the spread. Formally, given a < b < c, we will
consider a probability transfer such that every subinterval of (−∞, a) ∪ (b, c) will
have more mass, and every subinterval of (a, b) ∪ (c,∞) will have less mass, and the
first two moments µ1, µ2 do not change. We will call this transfer a (µ1, µ2)-preserving
downside spread. We will call the opposite transfer a (µ1, µ2)-preserving downside
contraction. A sequence of (µ1, µ2)-preserving downside spreads will be called an in-
crease in downside risk. The above definition of (µ1, µ2)-preserving downside spread
is quite general and does not imply the existence of a density.

The following simple example of (µ1, µ2)-preserving downside spread is taken from
Menezes et al. (1980). On the set {0, 1, 2, 3} consider the two lotteries given by the
probability vectors p = (0, 3/4, 0, 1/4) and p′ = (1/4, 0, 3/4, 0); they have same mean
and variance, and most people report preference for the former. In fact p′ = p+ s+ c
where s = (1/4,−1/2, 1/4, 0) is a spread and c = (0,−1/4, 1/2,−1/4) is a contraction
occurring on the right of the spread ; thus p′ is obtained from p by shifting dispersion
from right to left, and the change from p to p′ is the prototype increase in downside
risk.

As shown by Menezes et al. (1980), every decision maker, whose utility function
u has convex derivative, will dislike a increase in downside risk. For smooth utility
functions, convex derivative is equivalent to nonnegative third derivative.

The tools that Jewitt (1986) employed are drawn from the theory of convex-
ity cones, as developed by Karlin and Novikoff (1963), based on ideas of Hopf and
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Popoviciu (for the relevant references see Karlin and Studden (1966)).
A central result in Jewitt’s paper is a theorem due to Amir and Ziegler (1968) that

allows to decompose the dual of the intersection of two cones of (utility) functions.
In this note we will show how a characterization of comparative risk love à la Ross

can be easily obtained from Jewitt’s result, and we will try to apply similar ideas to
downside risk. We will see that a useful decomposition holds for downside risk love,
but not for downside risk aversion. We will provide a counterexample and give a
heuristics for the non-decomposability. Section 2 introduces some notation, Section 3
deals with risk, and Section 4 treats the case of downside risk. Proofs are contained
in Section 5.

2 Notation

We introduce some concepts and notations that are needed for the construction. We
work with utilities in C = C[0, 1], the Banach space of continuous real functions
on [0, 1] with the supremum norm. Its dual space is M = M [0, 1], the space of
Radon measures on [0, 1] (representable as functions of bounded variation on [0, 1],
and including all distribution functions on [0, 1] as well as their differences). The
duality is µ(f) =

∫
f dµ (see Edwards (1995)).

For n ≥ 0, let Cn ⊆ C be the cone of functions φ that are convex with respect to
the extended Tchebycheff system (1, t, t2, . . . , tn−1), that is functions such that∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
t0 t1 . . . tn+1

t20 t21 . . . t2n+1
...

tn−1
0 tn−1

1 . . . tn−1
n+1

φ(t0) φ(t1) . . . φ(tn+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
≥ 0,

for all choices of {ti}n+1
0 satisfying 0 < t0 < t1 < · · · < tn+1 < 1. These cones are

called convexity cones.
The cone Cn is the closure of the set of smooth functions with nonnegative n-th

derivative. The cone C1 is the set of nondecreasing functions. The cone C2 is the set
of convex functions. The cone C3 is the set of functions with convex derivative.

Given a set of functions K ⊆ C, the set K∗ = {µ ∈ M : µ(f) ≥ 0 ∀f ∈ K} is
the dual cone of K. Notice that all convexity cones contain the constant functions.
Therefore for any µ ∈ C∗n we have µ(1) =

∫
dµ = 0. Hence, modulo re-normalization,

µ can be interpreted as as a difference of probability measures. The bi-dual of K is
K∗∗ = {f ∈ C : µ(f) ≥ 0 ∀µ ∈ K∗}, which is the closed convex hull of K.

3



3 Risk

A probability change in the dual of a convexity cone is one which is favored by all
utility functions in the cone. For instance a first-order stochastic dominance shift is
in C∗1 since it is favored by all non-decreasing functions. An increase in risk is in C∗2
since it is favored by all convex functions.

An element of C∗1 + C∗2 is the sum of two shifts of the above types, namely, it
corresponds to an increase in return and in risk. As a particular case of a general
result due to Amir and Ziegler (1968) we have the following proposition

Proposition 3.1. C∗1 + C∗2 = [C1 ∩ C2]
∗.

Recall that u more risk averse (à la Ross) than v if(
µ ∈ [C∗1 + C∗2 ] and

∫
u dµ ≥ 0

)
imply

∫
v dµ ≥ 0. (3.1)

As Jewitt (1986) noticed, this corresponds to

v ∈ ([C1 ∩ C2] ∪ {u})∗∗,

that is, v(x) = αu(x)+w(x) for some α ≥ 0 and w ∈ [C1∩C2]. This way he obtained
the characterization of Ross. For increasing utility functions, it is also equivalent, as
is easily seen, to

∃λ > 0 such that ∀x, y ∈ R
u′′(x)

v′′(x)
> λ >

u′(y)

v′(y)
. (3.2)

To compare intensities of risk love in the Ross-Jewitt vein one clearly needs an-
other trade-off, namely, increase in return versus decrease in risk, i.e. we will assume
µ ∈ C∗1 −C∗2 (a decrease in risk is what the concave functions, i.e. those in −C2, favor).
The following proposition is an immediate consequence of Proposition 3.1.

Proposition 3.2. C∗1 − C∗2 = [C1 ∩ −C2]
∗.

Proof. For each µ ∈M define a ν ∈M as follows:

µ
(
1[0,x]

)
= −ν

(
1[1−x,1]

)
, ∀x ∈ [0, 1],

where 1A is the indicator of the set A.
We can associate to each φ ∈ C a ψ ∈ C such that

φ(x) = −ψ(1− x), ∀x ∈ [0, 1].

As a consequence of the above definitions we have µ(φ) = ν(ψ).
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Since ψ ∈ C1 iff φ ∈ C1 and ψ ∈ −C2 iff φ ∈ C2, we have

µ ∈ C∗1 iff ν ∈ C∗1 ,
µ ∈ C∗2 iff ν ∈ −C∗2 .

Furthermore µ ∈ C∗1 + C∗2 (i.e. µ = µ1 + µ2, with µ1 ∈ C∗1 and µ2 ∈ C∗2) iff ν ∈ C∗1 − C∗2
(i.e. ν = ν1 + ν2, with ν1 ∈ C∗1 and ν2 ∈ −C∗2).

In order to see this it is enough to choose, for i = 1, 2, νi such that

µi

(
1[0,x]

)
= −νi

(
1[1−x,1]

)
,

As a consequence of Proposition 3.1 we obtain C∗1 − C∗2 = [C1 ∩ −C2]
∗.

One then defines v to be more risk attracted than u if(
µ ∈ C∗1 − C∗2 and

∫
v dµ ≥ 0

)
imply

∫
u dµ ≥ 0. (3.3)

The above proposition gives the desired characterization: v is more risk loving than
u iff v(x) = αu(x) + w(x) for some α ≥ 0 and w decreasing convex. This is also
equivalent to the following separation of derivative-ratios

∃λ > 0 such that ∀x, y ∈ R
u′′(x)

v′′(x)
< λ <

u′(y)

v′(y)
. (3.4)

It is interesting to see that the fact that u is more risk averse than v does not
imply that v is more risk loving than u. This is different from the comparative
characterization of risk aversion à la Arrow-Pratt, based on the idea of total insurance,
namely of substitution of a random variable with a constant. In the Ross-Jewitt
approach, partial insurance is allowed and a random variable is replaced by a less
risky one, not necessarily a constant.

4 Downside risk

Menezes et al. (1980) studied the attitude of an agent who experiences a mean-and-
variance-preserving combination of an increase in risk on the left tail and a decrease
in risk on the right tail of a distribution. They called this downside risk, and showed
that downside risk aversion corresponds to a utility function with convex derivative.
In our terminology a decision maker is downside risk averse if her utility function
u ∈ −C3. Therefore a signed measure µ is an increase in downside risk if µ ∈ [−C3]

∗.
Of course the love counterpart is: µ is a decrease in downside risk if µ ∈ C∗3 .

Analogous to what we have seen in the previous section, the convexity-cones
approach to comparative downside risk aversion, based on the risk-return tradeoff, is
to define u to be more downside risk averse than v if
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(
µ ∈ C∗1 − C∗3 and

∫
u dµ ≥ 0

)
imply

∫
v dµ ≥ 0. (4.1)

The love counterpart is: v is more downside risk loving than u if(
µ ∈ C∗1 + C∗3 and

∫
v dµ ≥ 0

)
imply

∫
u dµ ≥ 0. (4.2)

In both cases, one looks for a representation v = αu + w where w has concave
derivative (and is increasing or decreasing in each to the two cases), and, as before,
in each case the representation hinges on the decomposability of the relevant cone.

Unlike the case of risk, only one of the desired decompositions holds.

Proposition 4.1. C∗1 + C∗3 = [C1 ∩ C3]
∗.

Proposition 4.2. C∗1 − C∗3 $ [C1 ∩ −C3]
∗.

The content of the last proposition is that there are u more downside risk averse
than v according to (3.1) which are not of the type u = αv+w where w is (decreasing)
with convex derivative. In other words, the convex-derivative property of the (affine)
transformation is stronger than u being more downside risk averse than v. On the
other hand, for smooth utility functions existence of the above transformation can be
proved directly (see Modica and Scarsini (2002)).

The decomposability result of Proposition 4.1 and the parallel non-decomposability
stated in Proposition 4.2 appear quite puzzling, at first sight. Already Amir and
Ziegler (1968) proved the surprising result that a decomposition is available for the
dual cone of the intersection of two or three consecutive convexity cones, but not for
the dual cone of the intersection of four convexity cones. In our case the convexity
cones whose intersection we are considering are not consecutive: We intersect either
C1 and C3 or C1 and −C3. In the fist case, even if C2 is missing, the decomposition of
the dual of the intersection is available. In the second case it is not. It is well known
that good results can be obtained for the sequence of cones {Cn}n∈N or, equivalently,
for the sequence {(−1)n+1Cn}n∈N. Proposition 4.1 refers to a pair of cones taken from
either one of these sequences, and this justifies the availability of the decomposition,
even if the cones are not consecutive.

On the other hand there is no well-behaved sequence of convexity cones where
the pair of Proposition 4.2 can be embedded and that’s why the decomposition is not
available here.

5 Proofs

In all cases, the inclusion of the sum of duals in the dual of the intersection is a
direct consequence of definitions; proofs are needed to show that a given µ in the
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dual of the intersection is decomposable in a sum. Most arguments in the sequel
are applications of ideas of Amir and Ziegler (1968) and Karlin and Studden (1966).
Some complications arise from dealing with non-consecutive cones.

In each case the starting point is a useful characterization of the dual in terms of
the extreme rays of the corresponding cone. And in each case, it can be checked by
applying the approximation methods of Karlin and Studden (1966, ch. XI) that the
smooth functions are dense in the relevant cone.

Basic notation: for µ ∈M , and t ∈ [0, 1] let

Pµ(t) =

∫ 1

t

dµ(x), Qµ(t) =

∫ t

0

dµ(x).

We will write

P 2µ(t) =

∫ 1

t

Pµ(x) dx, Q2µ(t) =

∫ t

0

Q(x) dx,

and for n > 2

P nµ(t) =

∫ 1

t

P n−1µ(x) dx, Qnµ(t) =

∫ t

0

Qn−1µ(x) dx.

Lemma 5.1. µ ∈ [C1 ∩ C3]
∗ iff∫ 1

0

dµ = 0, P 3µ(t) ≥ 0 and Q3µ(t) ≥ 0 ∀t ∈ [0, 1]. (5.1)

Proof. First observe that

P 3µ(t) =

∫ 1

0

τ2(x; t) dµ(x), and Q3µ(t) =

∫ 1

0

ψ2(x; t) dµ(x), (5.2)

where

τ2(x; t) = 1[t,1](x)(x− t)2/2, ψ2(x; t) = −1[0,t](x)(x− t)2/2, x ∈ [0, 1].

Since the constant function, and the functions τ2(·; t), ψ2(·; t) ∈ C1 ∩ C3 for all
t ∈ [0, 1], we get the necessity part of the proposition.

For sufficiency, suppose that µ satisfies conditions (5.1) and integrate a smooth
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φ ∈ C1 ∩ C3. Then obtain (using Pµ(0) = 0)∫ 1

0

φ(x) dµ(x) = −
∫ 1

0

φ(x) dPµ(x)

=

∫ 1

0

φ′(x)Pµ(x) dx

= −
∫ 1

0

φ′(x) dP 2µ(x)

= φ′(0)P 2µ(0) +

∫ 1

0

φ′′(x)P 2µ(x) dx

= φ′(0)P 2µ(0) +

∫ t

0

φ′′(x)[P 2µ(0)−Q2µ(x)] dx−
∫ 1

t

φ′′(x) dP 3µ(x)

= φ′(t)P 2µ(0)−
∫ t

0

φ′′(x) dQ3µ(x)−
∫ 1

t

φ′′(x) dP 3µ(x)

= φ′(t)P 2µ(0)− φ′′(t)
(
Q3µ(t)− P 3µ(t)

)
+

∫ t

0

φ(3)(x)Q3µ(x) dx+

∫ 1

t

φ(3)(x)P 3µ(x) dx.

By positivity and the endpoint conditions at t = 0, 1 of P 3µ and Q3µ, there exists t
such that Q3µ(t)−P 3µ(t) = 0; take t equal to this value in the last expression above,

and you are left with only positive terms (recall that P 2µ(0) =
∫ 1

0
x dµ(x) ≥ 0).

Proof of Proposition 4.1. Given µ ∈ [C1 ∩ C3]
∗, we want a decomposition µ = µ1 + µ2

with µ1 ∈ C∗1 and µ2 ∈ C∗3 . Again from Karlin and Novikoff (1963), or Amir and
Ziegler (1968), the conditions on µ1 and µ2 are

Pµ1(0) = 0, Pµ1(t) ≥ 0, ∀t ∈ [0, 1], (5.3)

Pµ2(0) = 0, P 2µ2(0) = 0, P 3µ2(0) = 0, P 3µ2(t) ≥ 0, t ∈ (0, 1). (5.4)

Recall thatP 2µ2(0) =
∫ 1

0
x dµ2(x) and P 3µ2(t) = 2−1

∫ 1

t
(x− t)2 dµ2(x).

Call A = P 2µ(0). Given Pµ(0) = 0, it easily checked that

Q3µ(t) = P 3µ(t) + At− P 3µ(0). (5.5)

From Lemma 5.1, A ≥ 0. Suppose A = 0. Since the last two conditions on µ in
the lemma assert non-negativity of P 3µ and Q3µ on [0, 1], and equation (5.5) (with
t = 1) and A = 0 then implies P 3µ(0) ≤ 0, we may conclude that if A = 0 then also
P 3µ(0) = 0. But in this case µ ∈ C∗3 (apply (5.4) to µ), and decomposition obtains
with µ1 ≡ 0.

So assume A > 0. Then, since

d

dt
P 3µ(t)

∣∣∣
t=0

= −P 2µ(0) < 0,
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and P 3µ(t) ≥ 0 all t, it must be P 3µ(0) > 0. Letting B = P 3µ(0), and using (5.5),
the conditions on µ in Lemma 5.1 can then be written as

Pµ(0) = 0, P 2µ(0) = A > 0, P 3µ(0) = B > 0,

P 3µ(t) ≥ 0, P 3µ(t) ≥ B − At, ∀t ∈ [0, 1].
(5.6)

On the other hand, using µ2 = µ− µ1 and writing conditions (5.4) in terms of µ and
µ1 we obtain conditions on µ1 equivalent to (5.3) and (5.4), which in the present case
are

Pµ1(0) = 0, Pµ1(t) ≥ 0 ∀t, P 2µ1(0) = A,

P 3µ1(0) = B, P 2µ1(t) ≤ P 3µ(t) ∀t ∈ [0, 1].
(5.7)

Starting with (5.6), we look for a µ1 satisfying (5.7). Take a function F on [0, 1]
such that F (1) = DF (1) = D2F (1) = 0, and define µ1 as

P 3µ1 = F. (5.8)

Then µ1 satisfies (5.7) iff F satisfies

F (0) = B, F (t) ≤ P 3µ(t) ∀t ∈ [0, 1],

DF (0) = −A, D2F (0) = 0, D2F (t) ≥ 0 ∀t ∈ [0, 1].
(5.9)

Notice that at t = 0, F is required to be equal to P 3µ with its first two derivatives;
and at t = 1 it is required to be equal to P 3µ with its first derivative. For the rest, F
has to be convex and dominated by P 3µ. If an F constant on a left neighborhood of
t = 1 and satisfying (5.9) exists, the proposition is proved (with µ1 defined by (5.8)).

We already observed that Q2µ(t) = P 2µ(0)−P 2µ(t); then Q2µ(1) = A > 0 which,
together with Q3µ(t) ≥ 0 all t, implies Q3µ(1) > 0; so from (5.5) letting t = 1 we get
A > B. Hence there is t0 ∈ (0, 1) such that B − At0 = 0. Define

F1(t) = 1[0,t0](t)(B − At).

This F1 satisfies (5.9) (with convexity replacing D2F ≥ 0) except smoothness at t0.
To smooth it around t0 (and end up with a function still below P 3µ) we need to
exclude that P 3µ(t0) = 0. But if this were the case, by smoothness of P 3µ we would
have P 3µ(t) < B−At on a left neighborhood of t0, contradicting the last requirement
of (5.6). Therefore we can smooth F1 around t0 (as done in Amir and Ziegler (1968)
for example) to get the wanted F .

To characterize the dual of C1 ∩ −C3 define the following family of extreme rays
for t ∈ (0, 1]:

π2(x; t) = 1[0,t)(x)
(1− t)x2

2
+ 1[t,1](x)

−t2 + tx(2− x)

2

=

∫ x

x1=0

∫ x1

x2=0

[
(1− t)1[0,t)(x2)− t1[t,1](x2)

]
dx2 dx1.
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The last equality is elementarily checked, and it easily gives∫ 1

0

π2(x; t)dµ(x) =
[
(1− t)B − P 3µ(t)

]
≡ H(t), (5.10)

where as before B = P 3µ(0). Incidentally, it will be again A = P 2µ(0).

Lemma 5.2. µ ∈ [C1 ∩ −C3]
∗ iff∫ 1

0

dµ(x) = 0,

∫ 1

0

x2 dµ(x) ≥ 0,

∫ 1

0

−(x− 1)2 dµ(x) ≥ 0, and∫ 1

0

π2(x; t) dµ(x) ≥ 0, ∀t ∈ (0, 1).

Proof. Necessity is obvious since the constant function, and the functions x2, −(x−
1)2, and π2(x; t) are in the cone C1 ∩ −C3 for all t ∈ [0, 1].

For sufficiency take a smooth φ ∈ C1∩−C3 and integrate. The first equality below is
obtained by using as usual dµ(x) = −dPµ(x), Pµ(x)dx = −dP 2µ(x) and Pµ(0) = 0;
then we use the fact that for the H defined in (5.10) we have dH(t) = [P 2µ(t)−B] dt,
and H(0) = H(1) = 0.∫ 1

0

φ(x) dµ(x) = −
∫ 1

0

φ′(x) dP 2µ(x)

= −φ′(1)P 2µ(1) + φ′(0)P 2µ(0)

∫ 1

0

φ′′(x) [dH(x) +B dx]

= φ′(0)P 2µ(0) +B

∫ 1

0

φ′′(x) dx+ φ′′(1)H(1)

− φ′′(0)H(0)−
∫ 1

0

φ(3)(x)H(x) dx

= φ′(0)A+B[φ′(1)− φ′(0)]−
∫ 1

0

φ(3)H(x) dx

= φ′(1)B + φ′(0)[A−B]−
∫ 1

0

φ(3)(x)H(x) dx.

We have

B = P 3µ(0) =

∫ 1

0

x2

2
dµ(x) ≥ 0

by hypothesis, and

A = P 2µ(0) =

∫ 1

0

x dµ(x),

so using
∫ 1

0
dµ(x) = 0 we get

A−B =

∫ 1

0

x(2− x)

2
dµ(x) =

∫ 1

0

(
x(2− x)

2
− 1

2

)
dµ(x) =

∫ 1

0

−(x− 1)2

2
dµ(x) ≥ 0
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by hypothesis. Again by assumption, H,φ′ and φ(3) are also non-negative. The desired
result then follows.

Notice that although the condition
∫ 1

0
x dµ(x) ≥ 0 does not appear in the lemma,

we have seen that it does hold:
∫ 1

0
x dµ(x) = A ≥ B ≥ 0.

Proof of Proposition 4.2. We show that there exists µ ∈ [C1 ∩−C3]
∗ which admits no

representation of the form µ = µ1 + µ2 with µ1 ∈ C∗1 and µ2 ∈ −C∗3 . The conditions
for µ1 ∈ C∗1 are still those in (5.3); those on µ2 are found from (5.4) by observing that
µ2 ∈ −C∗3 iff −µ2 ∈ C∗3 , hence they are

Pµ2(0) = P 2µ2(0) = P 3µ2(0) = 0, and P 3µ2(t) ≤ 0, t ∈ (0, 1).

As before using µ2 = µ−µ1 and rewriting the above conditions, we find that µ admits
representation of the wanted type iff there exists µ1 satisfying

Pµ1(0) = 0, Pµ1(t) ≥ 0 ∀t ∈ (0, 1),

P 2µ1(0) = A, P 3µ1(0) = B, and P 3µ1(t) ≥ P 3µ(t) ∀t ∈ (0, 1).
(5.11)

We now rewrite the conditions on µ in Lemma 5.2. Given
∫ 1

0
dµ(x) = 0, the

condition
∫ 1

0
−(x−1)2 dµ(x) ≥ 0 amounts to A ≥ B; also,

∫ 1

0
x2 dµ(x) = 2B. Finally,

using (5.10) it is seen that the last condition in the Lemma 5.2 is P 3µ(t) ≤ B(1− t)
for all t ∈ (0, 1), which obviously holds also for t = 0, 1. Hence we conclude that
µ ∈ [C1 ∩ −C3]

∗ iff∫ 1

0

dµ(x) = 0, A ≥ B ≥ 0, and P 3µ(t) ≤ B(1− t) ∀t ∈ [0, 1], (5.12)

where A = P 2µ(0) =
∫ 1

0
x dµ(x) and B = P 3µ(0) = 1

2

∫ 1

0
x2 dµ(x).

If A = 0 then also B = 0, and the decomposition is trivially obtained, with µ1 ≡ 0.
We now give an example of µ satisfying (5.12), with A > 0 and B = 0, which cannot
be decomposed. Recalling that

P 3µ(t) =

∫ 1

0

τ2(x; t) dµ(x) =

∫ 1

t

(x− t)2

2
dµ(x),

conditions (5.12) in the present case read∫ 1

0

dµ(x) = 0,

∫ 1

0

x dµ(x) > 0,

∫ 1

0

x2 dµ(x) = 0, and∫ 1

t

(x− t)2 dµ(x) ≤ 0 ∀t ∈ [0, 1].

(5.13)
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Take a function S on [0, 1] satisfying the following conditions.

S(0) = S(1) = 0,

∫ 1

0

S(x) dx > 0,

∫ 1

0

xS(x) dx = 0,∫ 1

t

(x− t)S(x) dx ≤ 0 ∀t ∈ [0, 1].

(5.14)

If we define µ through
Pµ(x) = S(x),

we see that µ satisfies (5.13) (and viceversa).

Furthermore if we define R(t) =
∫ 1

t
(x− t)S(x) dx, then

R′(t) = −
∫ 1

t

S(x) dx =

∫ t

0

S(x) dx− A, (5.15)

and if
∫ 1

0
xS(x) dx = 0 we also have R(0) = 0.

If we choose

S(t) = 1[0, 1
8
](t) t+ 1( 1

8
, 1
4
](t)

(
−t+ 1

4

)
+ 1[ 3

4
, 7
8
](t)

1

7

(
3
4
− t

)
+ 1( 7

8
,1](t)

1

7
(x− 1) ,

then conditions (5.14) are satisfied. The first three conditions are easily verified.
For the last one, which is R(t) ≤ 0 for all t ∈ [0, 1], consider that R′(t), increases
on [0, 1/4] from −A to a positive value, then remains constant up to t = 3/4, then
decreases to zero, which it reaches at t = 1. Therefore R(t) decreases on [0, 1/8], then
increases; since R(0) = R(1) = 0, it must be R(t) ≤ 0 for all t ∈ [0, 1].

To finish the proof we shall show that µ is not decomposable. Suppose it were,
with µ = µ1 + µ2, µ1 ∈ C∗1 and µ2 ∈ −C∗3 . If we define, for i = 1, 2,

Si =

∫ 1

t

dµi,

and νi as dνi(x) = Si(x) dx, then we have

ν1 ∈ (C+)∗, ν2 ∈ −C∗2 ,

C+ being the cone of positive functions. Therefore their densities S1 and S2 should
in particular satisfy

S1(t) ≥ 0 ∀t,
∫ 1

0

S2(x) dx = 0,

∫ 1

0

xS2(x) dx = 0. (5.16)

This and S = S1 + S2 give
∫ 1

0
xS(x) dx =

∫ 1

0
xS1(x) dx; and the integral on

the left is zero by (5.14), thus by non-negativity and right continuity of S1 (5.16)

implies that the latter is identically zero. On the other hand
∫ 1

0
S2(x) dx = 0 implies∫ 1

0
S1(x) dx =

∫ 1

0
S(x) dx, which is strictly positive by (5.14). A contradiction has

been reached.
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