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Abstract

We study the properties of ultramodular functions, a class of func-
tions that generalizes scalar convexity and that naturally arises in
some economic and statistical applications.

1 Introduction

1.1 Outline

In this paper we study in detail the properties of ultramodular functions, a
class of functions that generalizes scalar convexity. They arise naturally in
some economic and statistical applications and it seems to us that ultramod-
ular functions provide, at least for some uses, the appropriate extension of
one-dimensional convexity.
A function f : A ⊆ Rn → R is said to be ultramodular if its increments

are increasing, namely

f (x+ h)− f (x) ≤ f (y + h)− f (y) (1)

for all x, y ∈ A and h ≥ 0 with x ≤ y and x + h, y + h ∈ A. Scalar convex
functions satisfy (1), but this is no longer the case for convex functions of
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several variables. As a matter of fact, for such functions ultramodularity and
convexity are quite unrelated properties, as it will be seen later.
Ultramodular functions are supermodular, that is, for them it holds

f (x ∨ y) + f (x ∧ y) ≥ f (x) + f (y)

for all suitable x and y. The converse, however, is in general false and this
observation motivates our choice of the terminology �ultramodular.� Specif-
ically, the set of bounded ultramodular functions is the intersection of the
class of supermodular functions and the class of the functions that are sepa-
rately convex in each variable. To exemplify further, functions having second
partial derivatives are supermodular if and only if it holds ∂2f/∂xi∂xj ≥ 0
for all i 6= j, while they are ultramodular if ∂2f/∂xi∂xj ≥ 0 for all i, j. From
an economic viewpoint ultramodular functions then reßect a stronger form of
complementary than supermodular ones (cf. Topkis [24]). In this vein, ultra-
modular functions appeared in papers dealing with cost games (see Sharkey
and Telser [21], Sharkey [22], and Moulin [14] and [15]).
Ultramodular functions are much better behaved than supermodular ones.

Our main purpose in the paper is to show that they feature nice regularity
properties, comparable to those of multidimensional convex functions, which
make them analytically tractable. This will be seen in Sections 4 and 5. In
particular, Section 4 gives the basic properties of ultramodular functions,
while Section 5, the heart of paper, is devoted to their main regularity prop-
erties. We will show that under mild assumptions ultramodular functions
feature neat continuity, Lipschitzianity, and differentiability properties. In
Section 6 we provide an application of such properties to the representa-
tion of cores of convex measure games, thus extending previous results we
established in [12].

1.2 Related Literature

Before moving to study these properties, we devote the rest of the introduc-
tion to some historical remarks on the different research areas, both pure and
applied, where ultramodular functions came up.
We have already mentioned how ultramodular functions have been used

in economics to model complementarities. In game theory they pop up in
dealing with transferable utility measure games, that is, cooperative games
of the form f ◦P , where P is a vector measure and f a function deÞned over
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the range of P . This class of games plays an important role in mathematical
economics, and standard examples include exchange economies with trans-
ferable utilities and models of production technology (see, e.g., [2] and [7]).
For our purposes the key observation, elaborated in Example 5 of Subsection
3.3, is that a measure game is convex provided f is ultramodular. There-
fore, ultramodular functions come up in game theory when dealing with the
important class of convex measure games.
In statistics, ultramodular functions now play a central role in modelling

stochastic orders and positive dependence among random vectors, as dis-
cussed at length in Muller and Scarsini [16] (see also the references therein
contained). In this Þeld they have been called �directionally convex func-
tions,� a term we prefer not to use as it might give the wrong impression
that they are deÞned in terms of properties of directional derivatives.
In mathematics, to the best of our knowledge ultramodular functions Þrst

appeared in Wright [26], who deÞned them on the real line. He just called
them �convex functions,� and some authors use the term Wright convexity
for them (see, e.g., Roberts and Varberg [18]). Inter alia, he observed that
scalar functions satisfying (1) are mid-convex, and so they fall into a class of
functions known since Jensen [8]. In two related papers, Kenyon [9] and Klee
[10] showed that Wright convex functions are a proper subclass of the mid-
convex functions. Brunk [3] later proved some Jensen-type inequalities for
ultramodular functions deÞned on intervals of Rn (see Proposition 19 below).
He called them �functions having nondecreasing increments.�
From a rather different angle, Choquet [4, p. 172] deÞnes a similar class

of functions, even though he requires also the Þrst difference to be non-
negative, and so the function itself to be non-decreasing. He realized that
deÞnition (1) can be extended to functions deÞned on abstract domains with
some algebraic structure. This important observation permits to deal with
set functions � the so-called convex (supermodular) capacities � that enjoy
properties similar to (1) and that play an important role in mathematical
economics.
Finally, a classic area of mathematics where ultramodular functions arise

is the Bernstein-Hausdorff theory of absolutely and completely monotonic
functions on the real line (see Widder [25]). They are analytic functions
representable by Laplace-Stieltjes integrals and having derivatives such that
either f (k) (x) ≥ 0 for all k or (−1)k f (k) (x) ≥ 0 for all k. Interestingly, Bern-
stein proposed a deÞnition of these functions by means of Þnite differences,
which is somewhat related to (1).
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2 Preliminaries

2.1 Sets

Given any x, y ∈ Rn, x ≤ y means xi ≤ yi for each i, while we write
x ¿ y when xi < yi for each i. Given any x, y ∈ Rn, the bounded order
interval [x, y] is the set {z ∈ Rn : x ≤ z ≤ y}. In a similar way, it is possible
to introduce unbounded order intervals, which include Rn. For instance,
[a,+∞] = {x ≥ a} and [−∞, a] = {x ≤ a}. An order interval [x, y] is called
solid if x ¿ y. For convenience, throughout the paper I denotes a generic
order interval in Rn, bounded or unbounded.
Special importance will have the unit order interval [0, 1]n, for which we

keep this notation in place of [0, 1]. It plays a special role as we can transform
any solid interval [a, b] into [0, 1]n via the order-preserving isomorphism x→
A (x− a), where A is the diagonal matrix with entries λi = (bi − ai)−1.
As usual, ei denotes the i-th unit vector of the canonical base of Rn, while

int (A), cl (A), and ext (A) denote the interior, the closure, and the set of
extreme points of A, respectively. Finally, we denote by |x|1 the l1 normPn

i=1 |xi| of x ∈ Rn, by |x| the Euclidean norm
Pn

i=1 x
2
i , and by x · y the

scalar product in Rn.

2.2 Functions

A function f : A ⊆ Rn → R is:

(i) increasing (decreasing, resp.) if f (x) ≤ f (y) (f (x) ≥ f (y), resp.)
whenever x ≤ y in Rn.

(ii) calm from below at a ∈ A if there are K > 0 and ε > 0 such that
f (x) ≥ f (a)−K kx− ak for all x ∈ A with kx− ak ≤ ε.

(iii) upper Lipschitz at a ∈ A if there is K > 0 such that f (x) − f (a) ≤
K kx− ak for each x ∈ A;

(iv) (globally) Lipschitz if there isK > 0 such that |f (x)− f (y)| ≤ K kx− yk
for all x, y ∈ A;

(v) locally Lipschitz if for all a ∈ A there are K > 0 and ε > 0 such that
|f (x1)− f (x2)| ≤ K kx1 − x2k for all x1, x2 ∈ A with kx1 − ak < ε
and kx2 − ak < ε.
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Given a bounded function f : A ⊆ Rn → R, with A convex, the upper
(concave) envelope f of f is deÞned as

f (x) = inf {h (x) : h ≥ f , h is affine} .

The function f is concave and upper semicontinuous.
For a function f : A ⊆ Rn → R, the standard directional derivative at x

in the direction h is given by

f 0 (x;h) = lim
t↓0
f (x+ th)− f (x)

t
;

while the Clarke directional derivative at x in the direction h is given by

f 0 (x;h) = lim sup
y→x, t↓0

f (y + th)− f (y)
t

.

The Clarke differential ∂0f (x) at x is given by

∂0f (x) =
©
p ∈ Rn : f 0 (x;h) ≥ p · h ∀h ∈ Rnª .

When f is convex, ∂0f (x) reduces to the standard subdifferential

{m ∈ Rn : f (y) ≥ f (x) +m (y − x) ∀y ∈ A} .

2.3 Set Functions

Ultramodular functions are closely connected with a class of set functions
called games. Given a σ-algebra Σ of subsets of a space Ω, a game ν : Σ→ R
is a set function such that ν (∅) = 0. In game theory, Ω is the set of players,
Σ is the collection of admissible coalitions that players can form, and ν (E)
is the worth of coalition E (see [2]).
A game ν is monotone if ν (E) ≤ ν (F ) whenever E ⊆ F , it is convex

(supermodular) if ν (E ∪ F ) + ν (E ∩ F ) ≥ ν (E) + ν (F ) for all E,F ∈ Σ,
and it is additive if ν (E ∪ F ) = ν (E) + ν (F ) for all pairwise disjoint sets
E,F ∈ Σ. Additive games are often called charges; ba (Σ) is the set of all
bounded charges.
A fundamental set associated with a game ν is the core, deÞned by:

core (ν) = {m ∈ ba (Σ) : m (Ω) = ν (Ω) and m (E) ≥ ν (E) ∀E ∈ Σ} . (2)
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The core is therefore the set of suitably normalized charges that setwise
dominate the game ν.
Finally, let B (Σ) be the set of all bounded Σ-measurable functions X :

Ω→ R. For all games ν of bounded variation (i.e., games that can be written
as differences of two monotone games) we can deÞne the Choquet integralZ

Xdν =

Z ∞

0

ν (X ≥ t) dt+
Z 0

−∞
[ν (X ≥ t)− ν (Ω)] dt,

for all X ∈ B (Σ), where on the right we have two Riemann integrals (since
ν is of bounded variation, these integrals exist for all X ∈ B (Σ) as ν (X ≥ t)
is of bounded variation in t).

3 Ultramodular Sets and Functions

3.1 Ultramodular Sets

A collection {x, y, z, w} of vectors in Rn is a test quadruple if x ≤ y ≤ w
and x + w = y + z. The elements of a test quadruple can be viewed as the
vertices of a quadrilateral centered at (x+ w) /2.
We now introduce a class of sets that are closed under the formation of

test quadruples.

DeÞnition 1 A set A ⊆ Rn is said to be ultramodular if given any triple
x, y, w ∈ A with x ≤ y ≤ w, we have z ∈ A whenever x+ w = y + z.

For example, order intervals are ultramodular sets. More generally, any
set

Qn
i=1Ai, with each Ai ⊆ R ultramodular, is ultramodular. Notice that

ultramodular sets can be Þnite; for example, a test quadruple itself is an
ultramodular set.
The next result shows that a rather good description of ultramodular set

is possible, provided the set is sufficiently �solid.�

Proposition 1 A set A in Rn is ultramodular whenever the following con-
dition holds:

x, y ∈ A and x ≤ y =⇒ [x, y] ∈ A. (3)

The converse is true provided at least one of the following properties holds:
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(i) A is open,

(ii) A = cl (int (A)) ,

(iii) int (A) 6= ∅ and A has a smallest and largest element.

Note that (3) implies that the intersection of A with any straight line
with non-negative slope is necessarily convex.
By Proposition 1, we have the following characterization of ultramodular

sets in the real line: a set A in R is ultramodular if it is convex; the converse
is false unless A has nonempty interior (Þnite ultramodular sets in R are
simple examples of ultramodular sets in R with empty interiors that are not
convex).
The betweenness property (3) suggests that order intervals are the most

relevant examples of ultramodular sets in Rn and for this reason we will often
consider ultramodular functions deÞned on order intervals.

3.2 Ultramodular Functions

We now present ultramodular functions. Though ultramodular sets are the
natural domain for this class of functions, in the deÞnition we do not require
the domain to be ultramodular.

DeÞnition 2 A function f : A ⊆ Rn → R is said to be ultramodular if

f (z)− f (x) ≤ f (w)− f (y) (4)

for all test quadruples {x, y, z, w} in A.

If we set h = z − x = w − y, (4) can be written as

f (x+ h)− f (x) ≤ f (y + h)− f (y) , (5)

where by construction x ≤ y and h ≥ 0. Though the equivalent form (5)
is more intuitive because it uses increasing increments, formulation (4) is
superior. In fact, even when the domain A is ultramodular, in (5) we must
always specify that it has to hold for all x ≤ y and h ≥ 0 such that x + h,
y + h ∈ A.
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Note that ultramodularity can be also deÞned by saying that the second
difference

42
h,kf (x) = f (x+ h+ k)− f (x+ h)− f (x+ k) + f (x)

is non-negative for all admissible h, k ≥ 0.
Ultramodular functions are supermodular provided the domain A is a

lattice. In fact, the collection {x ∧ y, x, y, x ∨ y} is a test quadruple for all
x, y ∈ A, and so (4) reduces to f (x) + f (y) ≤ f (x ∨ y) + f (x ∧ y), which is
the deÞnition of supermodularity.
Ultramodular functions f deÞned on an order interval [0, a], with f (0) =

0, are superadditive as well. In fact, {0, x, y, x+ y} is a test quadruple for
all x, y ∈ [0, a] with x + y ∈ [0, a], and so, by (4), for all such x, y we have
f (x+ y) − f (x) ≥ f (y) − f (0) = f (y). In turn, this implies that non-
negative ultramodular functions are increasing.
Besides supermodular and superadditive functions, convex functions are

the other classic class of functions related with ultramodular functions. Wright
[26] showed that in the scalar case ultramodularity is equivalent to con-
vexity, provided f is continuous. This equivalence fails without continu-
ity. For example, consider any solution f of the Cauchy functional equation
ψ (x+ y) = ψ (x) + ψ (y) on [0, 1]. The function f is clearly ultramodular,
but it might well be non convex unless it is assumed to be continuous. In
this case the ultramodular function f is unbounded on [0, 1] and it is a quite
�wild� function.
When n > 1, ultramodularity and convexity are altogether independent

notions. There are convex functions that are not ultramodular (e.g., f(x) =
kxk) and, vice versa, ultramodular functions that are not convex (e.g., f(x) =Qn
i=1 xi). In the sequel we will see other examples.

3.3 Examples

Next we present some examples that illustrate the previous deÞnitions of
ultramodular sets and functions.

1. Discrete ultramodular sets A in R are simple to classify. If we assume
that A contains a Þrst element a0, then A is a countable (Þnite or inÞnite)
collection A = {a0, a1, ...., an, ...}, with an = a0 + nh for some h > 0. In
particular, a function f : A→ R is ultramodular if and only if

f (an)− f (an−1) ≤ f (an+1)− f (an)
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for all n ≥ 1.
2. Let H be an Hamel basis of R on the Þeld of rationals, including the
number 1. Consider the set A =

©
x ∈ R : x =Ph∈H rhh

ª
where h → rh

are functions with Þnite support and taking values on the set of the integers
Z. Actually, A is a subgroup of (R,+) invariant for the translation, namely,
A + n = A for all n ∈ Z. Clearly, the set A ∩ [0, 1] is an uncountable
ultramodular set. Indeed, the set A is not measurable. Suppose A were
measurable with Lebesgue measure λ (A) > 0. Given that A+ A = A, by a
classical result of Steinhaus, A should contain an open set. Hence A = R, a
contradiction. We infer that λ (A) = 0, but this leads to a new contradiction.
Clearly, even the groups (1/p)A, with p ∈ N have zero measure. On the other
hand, (1/1!)A ⊆ (1/2!)A ⊆ ... ⊆ (1/n!)A ⊆ ..., and ∪∞n=1 (1/n!)A = R. We
deduce that λ (R) = 0. Therefore, A and A ∩ [0, 1] are not measurable.
3. An interesting Þnite ultramodular set is ext [0, 1]n = {0, 1}n. This set,
which is both ultramodular and a lattice, will play an important role in the
sequel. The properties of ultramodularity and supermodularity agree for
functions deÞned on {0, 1}n. Moreover, all such functions have a natural
extension ef to the whole order interval [0, 1]n given byef (x) = X

k=(k1,...,kn)∈{0,1}n
f (k)xk11 · · · xknn (1− x1)1−k1 · · · (1− xn)1−kn .

This extension preserves ultramodularity and it is the multivariate Bernstein
polynomial of degree at most one in each variable. We will see more on this
in Section 7.

4. Though it is outside the scope of this paper to extend the notion of
ultramodularity to abstract algebraic structures, an important example has
to be mentioned. Let Σ be an algebra of subset of a space Ω. The algebra
Σ is a lattice under the natural partial order ⊆ and it can be viewed as
an ultramodular set. In fact, using indicator functions, given any chain
A ⊆ B ⊆ C there always exists an element Z ∈ Σ such that 1A+1C = 1Z+1B.
The unique solution is Z = C \ B. Therefore, {A,B,C \B,C} is a test
quadruple. This argument leads easily to the following two conditions on
games ν : Σ→ R,

ν (A ∪B) + ν (A ∩B) ≥ ν (A) + ν (B) , (6)

ν (A ∪H)− ν (A) ≤ ν (B ∪H)− ν (B) , (7)
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where the latter inequality must hold for all A,B,H ∈ Σ such that A ⊆ B
and B ∩ H = ∅. By Choquet [4], the supermodularity condition (6) is
equivalent to the ultramodularity condition (7). As already mentioned, in
economics literature games ν satisfying either (6) or (7) are known as convex
games (see Shapley [20]).

5. A measure game is a game of the form ν = f ◦P , where P = (P1, ..., Pn) :
Σ → Rn is a vector measure with each Pi non-atomic, Þnite, and positive,
and where f : R (P ) → R is a function deÞned on the range R (P ) of the
vector measure, with f (0) = 0. The next result, whose main part is due to
Choquet [4, pp. 193-194], relates convex measure games and ultramodular
functions. We refer to [11] for a proof.

Proposition 2 A measure game f ◦ P : Σ → R is convex whenever f :
R (P )→ R is ultramodular. The converse holds when R (P ) = [0, 1]n.

Proposition 2 extends to non-continuous f the well-known fact that, when
f is continuous, a scalar measure game f ◦P is supermodular if and only if f
is convex. As a matter of fact, in the next subsection it will shown that scalar
convexity and ultramodularity are no longer equivalent without continuity,
and so the standard result fails, while Proposition 2 still holds.

4 Basic Properties
We begin with a simple characterization of ultramodular functions, related
to similar results for supermodular functions (see [24, Thms 2.61 and 2.62]).

Proposition 3 Let f : A =
Qn
i=1Ai → R be a function deÞned on the direct

product of ultramodular sets Ai. Then, f is ultramodular if and only if it is
separately ultramodular and has increasing differences on

Qn
i=1Ai.

For a function f : A ⊆ Rn → R, deÞne the difference operator ∆εif (x) by

f (x) = f (x+ εei)− f (x) ,
where ε > 0, and x + εei ∈ A. The next result is a simple consequence of
Proposition 3.

Corollary 4 For a function f : I ⊆ Rn → R, the following conditions are
equivalent:
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(i) f is ultramodular.

(ii) f is supermodular and it is separately ultramodular.

(iii) For all x ∈ Rn, 1 ≤ i, j ≤ n, and all ε, δ > 0,

∆εi∆
δ
jf (x) ≥ 0.

Next we consider the closure properties of ultramodular functions.

Proposition 5 Let f, g : A ⊆ Rn → R be two ultramodular functions and
let h : B ⊆ R → R be an ultramodular function deÞned on an ultramodular
set B containing the range of f . Then:

(i) the sum αf + βg is ultramodular if α and β are non-negative scalars;

(ii) the product fg is ultramodular provided f and g are both non-negative
and monotone;

(iii) the composition h ◦ f is ultramodular provided h is increasing.

The closure property (ii) of Proposition 5 is noteworthy. For instance,
consider the function f : Rn++ → R deÞned by f (x) = xα11 x

α2
2 · · · xαnn , with

αi ≥ 1 for each 1 ≤ i ≤ n. It is ultramodular since it is the product of
the powers xα with α ≥ 1, which, being scalar positive convex functions,
are ultramodular. This function f (x) is not convex: in fact, for convex
functions property (ii) does not hold, that is, in general they are not closed
under products, unless they are scalar. Therefore, (ii) is an important closure
property satisÞed by ultramodular functions, but not by convex functions.

The next Lemma provides a useful minorization for supermodular func-
tions. For any function f : I ⊆ Rn → R, with n > 1, and any point x in I,
deÞne the scalar function

fi (t;x) = f (x1, ..., xi−1, t, xi+1, ..., xn)

for i = 1, 2, ..., n.
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Lemma 6 Let f : A =
Qn
i=1Ai → R be a function deÞned on the direct

product of lattices Ai. For all x ∈ A, we have

f (x) ≥
nX
i=1

fi (xi; x)− (n− 1) f (x) (8)

if either x ∈ A ∩ [x,+∞] or x ∈ A ∩ [−∞, x]. Moreover, the remainder

R (x) = f (x)−
nX
i=1

fi (xi; x)− (n− 1) f (x) , (9)

is supermodular, increasing on A ∩ [x,+∞] and decreasing on A ∩ [−∞, x].

Inspection of the proof shows that (8) holds also for functions satisfying
the single crossing property, though property (9) no longer holds in this case.1

Ultramodularity per se does not preclude very irregular behavior, as
shown by the discontinuous solutions of the Cauchy functional equation men-
tioned in Section 3.2. Fortunately, this is prevented by a mild local bound-
edness assumption, as it will be seen in the next section. The next result
provides a Þrst instance where such condition has interesting implications.

Proposition 7 Let f : [a, b] ⊆ Rn → R be ultramodular. Then, the following
conditions are equivalent:

(i) f is locally bounded from below at a;

(ii) f is bounded;

(iii) f is separately convex in [a, b].

In this case, f is convex along all the line segments in [a, b] with non-
negative slope.

In view of Proposition 7, for the sake of brevity from now on we replace
the condition �locally bounded from below� with �bounded.�
Proposition 7 has two consequences. The Þrst one completes, in a sense,

Corollary 4.

1This class of functions, which extend supermodular functions, is studied in depth in
[13].
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Corollary 8 Let f : [a, b] ⊆ Rn → R be a bounded function. Then, f is
ultramodular if and only if it is supermodular and separately convex.

Corollary 9 Let f : [a, b] ⊆ Rn → R be a bounded function. Then, both f
and −f are ultramodular if and only if f is affine.

To see why Corollary 9 holds, notice that f , being both supermodular
and submodular, is separable (see [23]). Therefore, f is affine by Proposition
7.

5 Main Properties
In this section we present the main properties of ultramodular functions that
we discovered. In establishing them, we make use of the basic results ob-
tained in the previous section, as well as of the auxiliary results on Bernstein
polynomials and linear cores that will be presented in the next section.

5.1 Homogeneity

We begin by showing that ultramodular functions are never positively homo-
geneous, unless they are linear.

Theorem 10 Let f : [0, 1]n → R be an ultramodular function, with f (0) =
0. Then, f is positively homogeneous if and only if it is linear.

Besides its intrinsic interest, this result also shows another important
difference between convex and ultramodular functions. In fact, Theorem 10
is altogether false for convex functions: there are important convex functions
that are positively homogeneous, such as norm functions, gauge functions,
and support functions f (x) = maxa∈K a ·x. By Theorem 10, none of them is
ultramodular. The same is true for the Choquet functionals f (x) =

R
xdν,

where v : 2N → R is any Þnite game, and for the functions f (x) = maxa∈K a·
x−minb∈T b · x.
We can also establish a further related property. Given a function f :

[0, 1]n → R, say that a point x ∈ [0, 1]n is linear if f (x) + f (1− x) = f (1).
Clearly, all points x ∈ [0, 1]n are linear whenever f is linear. The converse is
false, even for ultramodular functions; in fact, all points of a non continuous
solution of the Cauchy functional equation are linear. The next result shows
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that things go much better under continuity: in this case the existence of even
a single interior linear point forces an ultramodular function to be linear.

Theorem 11 Let f : [0, 1]n → R be a continuous ultramodular function,
with f (0) = 0. Then, f admits a linear point x ∈ (0, 1)n if and only if it is
linear.

For continuous positively homogenous functions, Theorem 11 implies
Theorem 10. In fact, all points α1, with α ∈ (0, 1), are interior linear points
of a positively homogeneous function. Without continuity, however, Theorem
11 is false, while Theorem 10 still holds.

5.2 Continuity

Despite their differences, ultramodular functions share some of the remark-
able continuity and Lipschitzianity properties of convex functions deÞned on
polytopes (see Gale et al. [6]).

Theorem 12 Let f : I = [a, b] ⊆ Rn → R be ultramodular and bounded.
The following properties hold:

(i) f is Lipschitz continuous on any compact set C ⊆ int (I);
(ii) f is locally Lipschitz (and so continuous) on int (I);

(iii) f is upper Lipschitz (and so upper semicontinuous) at each point x ∈ I.
Next we show that by adding mild conditions at the endpoints a and b,

we get full-ßedged continuity and Lipschitzianity on the whole I.

Theorem 13 Let f : I = [a, b] ⊆ Rn → R be ultramodular and bounded.
Then,

(i) f is continuous on I if and only if it is lower semicontinuous at both a
and b,

(ii) f is globally Lipschitz on I if and only if it is calm from below at both
a and b.

Remark. Theorem 12 has a weaker version if f : C ⊆ Rn → R is ultra-
modular and bounded on a convex set C, which is not necessarily an order
interval. In this case, we can still prove that f is locally Lipschitz on Int (C).
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5.3 Differentiability

Turn now to the differentiability properties of ultramodular functions. The
two main ingredients have already been singled out: a bounded ultramodular
function is convex along the positive directions and it is locally Lipschitz.
Therefore, two differential notions will play a role, the subdifferential and
the Clarke differential, both introduced in the Preliminaries.
In order to state the results, we need some notions. For a function f :

A ⊆ Rn → R, its �positive� subdifferential ∂±f (x) at x is given by the set

{m ∈ Rn : f (y) ≥ f (x) +m (y − x) ∀y ∈ A ∩ ([x,∞] ∪ [−∞, x])} .
In the scalar case, ∂±f (x) agrees with the standard subdifferential. We
denote by f+i (x) and f

−
i (x) the one-sided partial derivatives

f+i (x) = lim
t↓0
f (x+ tei)− f (x)

t
and f−i (x) = lim

t↑0
f (x+ tei)− f (x)

t
.

The one-sided gradients are denoted by ∇+f (x) =
¡
f+1 (x) , ..., f

+
n (x)

¢
and

∇−f (x) =
¡
f−1 (x) , ..., f

−
n (x)

¢
. Clearly, ∇+f (x) = ∇−f (x) if and only if f

has partial derivatives at x. In this case, the one-sided gradients reduce to
the standard gradient ∇f (x).
Finally, ∂if (x) denotes the �partial� subdifferential of f , namely, the

subdifferential of the scalar function fi (t; x).
We begin with two lemmas of independent interest, which describe sub-

differentials and directional derivatives of ultramodular functions.

Lemma 14 Let f : (a, b) ⊆ Rn → R be ultramodular and bounded. For any
x ∈ (a, b) the set ∂±f (x) is not empty and compact, and

∂±f (x) =
£∇−f (x) ,∇+f (x)

¤
=

nY
i=1

∂if (x) . (10)

Moreover, it holds

∇−f (x) ,∇+f (x) ∈ ∂0f (x) ⊆ ∂±f (x) . (11)

A noteworthy immediate implication of (10) is that ∂±f (x) is a singleton,
consisting of the gradient ∇f (x), if and only if the function f has partial
derivatives at x.
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Lemma 15 Let f : (a, b) ⊆ Rn → R be ultramodular and bounded. Then,
f 0 (x; .) is linear over both Rn+ and Rn−. Moreover,

f 0 (x;h) = f 0 (x;h) =
½ ∇+f (x) · h if h ≥ 0
∇−f (x) · h if h ≤ 0. .

By Theorem 12(ii), a bounded ultramodular function f : [a, b] ⊆ Rn → R
is locally Lipschitz on (a, b). Hence, by the Rademacher Theorem, there
is a full measure set A ⊆ [a, b] on which f is strictly differentiable. The
next theorem, which rests on Lemmas 14 and 15, shows that ultramodular
functions have further nice differentiability properties.

Theorem 16 Let f : [a, b] ⊆ Rn → R be ultramodular and bounded. Then,

(i) f is strictly differentiable at x ∈ (a, b) if and only if it has partial
derivatives at x;

(ii) if f has partial derivatives on an open subset of [a, b], then it is of class
C1 there.

(iii) if x ∈ (a, b), then f 0 (x;h) exists for all h ∈ Rn+ ∪ Rn−, it is increasing
in x, and f 0 (x;h) = f0 (x;h) for all h ∈ Rn+ ∪Rn−.

Remark. These properties still hold for bounded ultramodular functions
deÞned over an open convex set.

By point (iii), for bounded ultramodular functions the directional deriva-
tives f 0 (x;h) exist at each x in the positive directions, and they are increasing
in x. The next theorem characterizes continuous ultramodular function via
the monotonicity of directional derivatives in the canonical directions ei.

Theorem 17 Let f : (a, b) → R be separately continuous. Then, f is ul-
tramodular if and only if the directional derivative f 0 (x; ei) exists for each
i = 1, ..., n and it is increasing in x.

As an immediate corollary of this result we have the neat differential
characterizations of ultramodularity mentioned in the introduction.

Corollary 18 Suppose f : (a, b) → R has Þrst order partial derivatives.
Then, f is ultramodular if and only if its gradient ∇f (x) is increasing. If,
in addition, f has the second order partial derivatives, then f is ultramodular
if and only if ∂2f/∂xi∂xj ≥ 0 for all i, új = 1, ..., n.
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We close the section by considering some Jensen-type inequalities of ultra-
modular functions. We have already seen in Proposition 7 that ultramodular
functions are convex along the positively oriented directions. By elaborating
on this result we can prove the next result, essentially due to Brunk [3].

Proposition 19 Let f : [0, 1]n → R be an ultramodular function. If f is
continuous, then Z

(f ◦ γ) dµ ≥ f
µZ

γdµ

¶
(12)

for each continuous and non-decreasing curve γ : [0, 1] → [0, 1]n and each
Borel probability measure µ on [0, 1].

An important special case of Proposition 19 is when the measure µ has
Þnite support. In this case, the result says that for each sequence {xi}ni=1 ⊆
[0, 1]n with x1 ≤ x2 ≤ · · · ≤ xn, it holds

Pn
i=1 tif (xi) ≥ f (

Pn
i=1 tixi)

whenever {ti}ni=1 is a sequence of positive numbers such that
Pn

i=1 ti = 1.

6 An Application to Convex Games
The differentiability properties of ultramodular functions can be used to es-
tablish some useful properties of convex measure games, which we have in-
troduced in Example 5 of Subsection 3.3.
Let ν : B (Σ) → R be the Choquet functional associated with a convex

measure game ν = g ◦ P , namely, ν (X) = R Xd (f ◦ P ) for all X ∈ B (Σ).
Using the differentiability properties of ultramodular functions, we can estab-
lish the following result about the Gateaux differentiability of the Choquet
functional ν. It signiÞcantly sharpens condition (i) of Theorem 10 in [12] by
disposing of all differentiability assumptions on f .
In the statement, BI (Σ) denotes the space of all bounded Σ-measurable

injective functions, while GX = (G1X , ..., G
n
X) is the vector of cumulative

distribution functions GiX deÞned by GiX (q) = Pi (X ≥ q) for each q ∈ R
and each i = 1, ..., n.

Theorem 20 Let ν = f ◦ P be a measure game over a Borel space (Ω,Σ),
with f continuous and ultramodular on [0, 1]n. The associated Choquet func-
tional ν : B (Σ) → R is Gateaux differentiable at each X ∈ BI (Σ), and its
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differential is given by

hDν (X) , Y i =
nX
i=1

Z
f+i (GX ◦X)Y dPi. (13)

In [12] we established a core representation of convex games based on
Gateaux derivatives and we showed that this representation takes a particu-
larly stark form for measure games. Using Theorem 20, we can improve such
representation for cores of measure games by disposing of all differentiability
assumptions on f .
In order to do so, we need some further notation. Observe that, by the

continuity of f , core (f ◦ P ) consists of countably additive measures that are
absolutely continuous with respect to P =

Pn
i=1 Pi. Hence, by the Radon-

Nikodym Theorem, we can write core (f ◦ P ) ⊆ L1
¡
Ω,Σ, P

¢
; in particular,

we denote by co the closed convex hull in the norm topology of L1
¡
Ω,Σ, P

¢
.

Given any two X, Y ∈ B (Σ), we write X ∼ Y if they are comonotonic,
that is, if [X (ω)−X (ω0)] [Y (ω)− Y (ω0)] ≥ 0 for any ω,ω0 ∈ Σ. Once
restricted to BI (Σ), ∼ is an equivalence relation, and BI (Σ) / ∼ denotes
the set of equivalence classes determined by ∼ on BI (Σ). With a slight
abuse of notation, X ∈ BI (Σ) / ∼ means that X is a representative of one
of the equivalence classes determined by ∼.
We can now state the result. We omit its proof since we can use the same

argument used to prove Theorem 12 in [12], with Theorem 20 now in place
of Theorem 10 of [12].

Theorem 21 Let ν = f ◦ P be a measure game over a Borel space (Ω,Σ),
with f continuous and ultramodular on [0, 1]n. We have

core (ν) = co

(
nX
i=1

Z
f+i (GX ◦X)

dPi

dP
: X ∈ BI (Σ) / ∼

)
where dPi/dP is the Radon-Nikodym derivative of Pi with respect to P .

7 Some Useful Tools
In this section we introduce Bernstein polynomials and linear cores, two
objects naturally associated with ultramodular functions. They will play a
central role in proving the main properties of ultramodular functions stated
in Section 5.
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7.1 Bernstein Polynomials

We begin by studying the Bernstein polynomials associated with an ultra-
modular function; in the Appendix we will use them to prove Theorems 10
and 11.
Given a function f : [0, 1]n → R and an n-tuple m = (m1,m2, ...,mn)

with non-negative integer components, the Bernstein polynomial Bmf is

Bmf (x) =
m1X
k1=0

m2X
k2=0

....
mnX
kn=0

f

µ
k1
m1
, ...,

kn
mn

¶ nY
i=1

µ
mi

ki

¶
xkii (1− xi)mi−ki .

If f is continuous, then Bmf → f uniformly over [0, 1]n as m1 → ∞,m2 →
∞, ...,mn → ∞ (see, e.g., [19]). The next result, essentially due to Brunk
[3], relates ultramodular functions and its Bernstein polynomials (we omit
its proof).

Proposition 22 If a function f : [0, 1]n → R is ultramodular, then all its
Bernstein polynomials Bmf are ultramodular on [0, 1]n. The converse is true
provided f is continuous.

Of special interest is B(1,...,1)f , the least-degree Bernstein polynomial as-
sociated with f : [0, 1]n → R. For convenience, set Bf = B(1,...,1)f . We
have

Bf (x) =
X

k=(k1,...,kn)∈ext[0,1]n
f (k)xk11 · · · xknn (1− x1)1−k1 · · · (1− xn)1−kn ,

which is a polynomial of Þrst degree in each variable (see Example 3 of Section
3). Clearly, all functions that agree on the extreme points of [0, 1]n share the
same polynomial Bf .
We have the following useful inequalities (the game νf will be introduced

momentarily before Lemma 24).

Lemma 23 Let f : [0, 1]n → R be an ultramodular function, with f (0) = 0
and locally bounded from below at 0. Then,

f (x) ≤ Bmf (x) ≤ Bf (x) ≤ Bf (x) =
Z
xdνf . (14)

for all x ∈ [0, 1]n and all m = (m1,m2, ...,mn).2

2Here
R
xdνf is a Choquet integral with respect to the Þnite game νf , which will be

introduced momentarily before Lemma 24.
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In the scalar case, Bf represents the chord joining the points (0, f (0)) and
(1, f (1)), which by convexity lies above the function f . The inequality f ≤
Bf can be viewed as the multidimensional version of this simple geometric
property of scalar convex functions. The polynomial Bf is ultramodular and
it is common to all ultramodular functions agreeing with f on ext [0, 1]n; in
particular, it is Owen�s multilinear extension of the game νf .

7.2 Linear Core

DeÞnition 3 Given a function f : [a, b] → R, its linear core Lcore (f) is
the set:

{m ∈ Rn : m · (b− a) = f (b)− f (a) and m · (x− a) ≥ f (x)− f (a) ∀x ∈ [a, b]}

DeÞnition 3 is inspired by the standard deÞnition of the core of a game,
reported in (2). The linear core consists of all suitably normalized vectors
whose associated linear functionals hm, ·i pointwise dominate the function f .
There is an immediate but useful characterization of linear cores in terms of
superdifferentials ∂f of f , given by (cf. [11]):

Lcore (f) = ∂f (a) ∩ ∂f (b) . (15)

Before moving on, we give couple of examples.

Example. When [a, b] is the unit order interval [0, 1]n and f : [0, 1]n → R is
such that f (0) = 0, we have

Lcore (f) = {m ∈ Rn : m · x ≥ f (x) for all x ∈ Rn and m · 1 = f (1)} .

For example, consider the ultramodular function f : [0, 1]n → R deÞned by
f (x) = xα11 x

α2
2 · · · xαnn with αi ≥ 1 for each 1 ≤ i ≤ n. It is easy to check

that

Lcore (f) =
(
m ∈ Rn+ :

nX
i=1

mi = 1

)
(16)

Example. Consider the convex (but not ultramodular) function f (x) =
max {x1, x2, ...., xn}. It is easy to see that Lcore (f) = ∅.
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As shown by the last example, the linear core may be empty. Fortunately,
ultramodular functions always have nonempty linear cores. To see why this
is the case and, more generally, to study the properties of Lcore (f), it is
important to introduce a class of Þnite games naturally associated with the
functions f : [0, 1]n → R having f (0) = 0.
Consider the restriction of f on the extreme points of [0, 1]n. These points

can be identiÞed with elements of the space {0, 1}n, as well as with the
points of the range {δ (E) : E ⊆ {1, ..., n}} of the vector Dirac measure δ =
(δ1, ..., δn) : 2

{1,...,n} → Rn, where each δi is the Dirac measure concentrated
on the singleton {i}. This makes it possible to associate to each function f
the Þnite game νf : 2{1,...,n} → R deÞned by

νf (E) = f (δ (E)) ,

for all subsets E of {1, ..., n}. The game νf is the extremal game associated
with f .
The next lemma shows two key properties of extremal games. In reading

the lemma, recall that since each m ∈ core (νf ) can be written as m =Pn
i=1miδi, the measure m can be identiÞed as a vector m = (m1, ...,mn) ∈

Rn. Hence, up to this identiÞcation, core (νf) can be viewed as a subset of
Rn and this is why we use below the symbol ∼=.

Lemma 24 Let f : [0, 1]n → R be a function on [0, 1]n with f (0) = 0. Then:

(i) the game νf is convex if f is supermodular;

(ii) it holds core (νf) ∼= Lcore (f) if f is separately convex.

By Corollary 8, bounded ultramodular functions are characterized by
being both supermodular and separately convex. Therefore, since cores of
convex games are nonempty (see [20]), Lemma 24 implies that the linear cores
of bounded ultramodular functions are nonempty. This and other properties
will be established in the next result.

Theorem 25 Let f : [0, 1]n → R, with f (0) = 0, be ultramodular and
bounded. Then, Lcore (f) is nonempty and

core (νf) ∼= Lcore (f) = Lcore
¡
f
¢
. (17)
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Moreover,

f (x) = min
m∈Lcore(f)

m · x =
Z
xdνf (18)

for all x ∈ [0, 1]n, and νf = νf .
Example. Consider again the function f (x) = xα11 x

α2
2 · · · xαnn with αi ≥ 1

for each 1 ≤ i ≤ n. Its upper concave envelope f is given by the function
min {x1, x2, ...., xn}, which is concave and supermodular. In particular, f has
a nonempty linear core given by (16), in accordance with (17).

As a corollary, we have the following useful characterization of the single-
ton case in terms of Bernstein polynomials.

Corollary 26 Let f : [0, 1]n → R, with f (0) = 0, be ultramodular and
bounded. Then, Lcore (f) is a singleton if and only if Bf is a linear polyno-
mial.

Notice that the relation core (νf) ∼= Lcore (f) makes it possible to de-
scribe Lcore (f) by means of known results on cores of Þnite convex games.
For example, from some classic results of Shapley [20] on cores of convex
games, it follow immediately that Lcore (f) is a compact and convex poly-
tope.
We close by observing that, up to some obvious modiÞcations, Theorem

25 holds for any ultramodular function deÞned on an order interval. Only
for convenience we stated it for functions f deÞned on [0, 1]n and such that
f (0) = 0. In particular, if we interpret c = −f as a Þrm�s cost function, the
nonemptiness of the linear core in the general case is related to some results
on natural monopolies of Sharkey and Telser [21] (see also [24, Lemma 2.63]).
For example, in their language the nonemptiness of the linear core takes the
following form:

Proposition 27 Let f : A ⊆ Rn → R be ultramodular and bounded from
below, and suppose A satisÞes property (3). Then, f is supportable on A,
that is, for any x, y ∈ A with x ≤ y there exists a price vector p ∈ Rn such
that

f (z) ≤ f (x) + p · (z − x) (19)

for all z ∈ [x, y] and f (y) = f (x) + p · (y − x).
Naturally, the set of supporting price vectors is no longer compact, unless

[x, y] is solid.

22



8 Proofs
Proposition 1. The sufficiency of (3) is obvious. For, given any chain
x ≤ y ≤ w, consider the interval [x,w]. Let z be the point which makes
{x, y, z, w} a test quadruple. It is immediate to check that z ∈ [x, w].
As to the converse, we Þrst prove (iii). Let a and b be the Þrst and last

element of A, respectively. Then A ⊆ [a, b]. Moreover, as int(A) 6= ∅, we
have a ¿ b. By normalization, it is then without loss of generality to set
A ⊆ [0, 1]n, with 0 and 1 in A. Fixed an integer p, we divide the cube
[0, 1]n into pn small cubes of size 1/p. More precisely, set A1 = [0, 1/p] ,
A2 = [1/p, 2/p] ,....., Ap = [(p− 1) /p, 1] , which are real intervals. We can
decompose the cube [0, 1]n as

[0, 1]n =
[
i

A1i1 × A2i2 × ....×Anin,

where Ci = A1i1 ×A2i2 × ....×Anin is a generic cube of size 1/p and the multi-
index i = (i1, i2, .., in) runs over {1, 2, ..., p}n. All these cubes are labelled by
i.
It is easy to see that Ci ≤ Cj whenever i ≤ j. As int (A) 6= ∅, there

exists some integer p such that at least one cube of size 1/p such that Ci ⊆ A.
Hence, the cubes (1, 1, ..., 1) and (p, p, ..., p) are contained in A. In turn, this
implies that all the cubes (p − 1, p, ..., p),....., (p, p, ..., p− 1) are in A. By
iterating, we get that all cubes Ci are contained in A, so that A = [0, 1]n.
This completes the proof of (iii), since property (3) clearly holds in [0, 1]n.
Next, consider (i). Let x, y ∈ A with x ≤ y. As A is open, there exist two

points x1 and y1 in A such that x1 ≤ x ≤ y ≤ y1, with x1 ¿ y1. By what we
just proved, [x1, y1] ⊆ A.
Finally, we prove (ii). Let x, y ∈ A with x ≤ y. Assume Þrst that x¿ y.

By assumption, there are two sequences {an}n and {bn}n such that an → x,
bn → y, with an, bn ∈ int (A). Since x ¿ y, we can assume that an ¿ bn
for each n. On the other hand, as A is ultramodular, the set int (A) is
ultramodular as well. We deduce that [an, bn] ⊆ int (A). Now, we select
subsequences of an and bn in such a way that they converge monotonically to
x and y, coordinatewise (it is easy to see that this always possible). Denote
them again by an and bn. It is simple to prove that [an, bn] ⊆ int (A) implies
(x, y) ⊆ int (A). Hence, [x, y] ⊆ cl (int (A)) = A and this proves the theorem,
as long as x¿ y. The extension to the case x ≤ y is easy. ¥
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Proposition 3. The condition is clearly necessary. Let us prove that it
suffices. Let x = (xi) ≤ y = (yi) ∈ A, and h = (hi) ≥ 0. We can write

f (x+ h)− f (x)

=
nX
i=1

f (x1 + h1, ..., xi + hi, xi+1, ..., xn)− f (x1 + h1, ..., xi−1 + hi−1, xi, ..., xn)

≤
nX
i=1

f (y1 + h1, ..., xi + hi, yi+1, ..., yn)− f (y1 + h1, ..., yi−1 + hi−1, xi, yi, ..., yn)

≤
nX
i=1

f (y1 + h1, ..., yi + hi, yi+1, ..., yn)− f (y1 + h1, ..., yi−1 + hi−1, yi, ..., yn)

= f (y + h)− f (y) ,

where the Þrst inequality is based on the property on increasing differences,
and the second one holds as the function is separately ultramodular. ¥

Proposition 5. (i) is obvious. (ii) Set ∆hf (x) = f (x+ h) − f (x). We
want to prove that

∆h (fg) (y)−∆h (fg) (x) ≥ 0

if x ≤ y and h ≥ 0. Some tedious algebra yields

∆h (fg) (y)−∆h (fg) (x)
= g (y + h) [∆hf (y)−∆hf (x)] +∆hf (x) [g (y + h)− g (x+ h)]
+ [f (y)− f (x)]∆hg (x) + f (y) [∆hg (y)−∆hg (x)] ,

which is non-negative under our assumptions.
(iii) Let {x, y, z, w} ⊆ A be a test quadruple and let z0 be such that

z0 − g (x) = g (w) − g (y). Since B is ultramodular, z0 ∈ B. Moreover,
g (z) ≤ z0 since g is ultramodular. By the ultramodularity and monotonicity
of h, we then have

h (g (z))− h (g (x)) ≤ h (z0)− h (g (x)) ≤ h (g (w))− h (g (y)) ,

as desired. ¥

24



Lemma 6. Let us prove that the function

R (x) = f (x)−
nX
i=1

fi (xi; x) + (n− 1) f (x)

is increasing in [x,+∞] and decreasing on [−∞, x], where fi (t;x) = f (t, xbi).
Note that, by construction, R (y) = 0 for all points y = (yi, xbi) and for

each index i. Further, R is necessarily supermodular, as the separable func-
tion

Pn
i=1 fi (xi; x) does not affect the supermodularity of f . Consequently,

R has the increasing increment property. Fix two points x ≤ x ≤ y. As
usual we can write

R (y)−R (x)

=
nX
i=1

R (y1, .., yi, xi+1, .., xn)−R (y1, .., yi−1, xi, .., xn)

By repeated applications of the property of increasing increments, we have

R (y)−R (x)

≥
nX
i=1

R (x1, .., yi, xi+1, .., xn)−R (x1, .., xi−1, xi, .., xn) = 0

Likewise, by using the points y ≤ x ≤ x, the same argument leads to R (y) ≥
R (x) and our claim is proved.¥

Proposition 7. (ii) trivially implies (i). To prove that (i) implies (iii),
assume f to be ultramodular and bounded from below in a neighborhood of
a. Thanks to the minorization stated in Lemma 6, we have

f (x) ≥
nX
i=1

fi (xi)− (n− 1) f (a) (20)

where each fi (xi), deÞned on the interval [ai, bi], is ultramodular and locally
bounded at ai. Clearly, each fi (xi) is mid-convex. Thus, by Bernstein and
Doetsch�s theorem (see [18, p. 219]), the scalar functions fi (xi) are convex
and continuous on (ai, bi). In particular, fi (xi) are bounded from below on
[ai, bi], provided bi is Þnite. If we now consider any scalar function ϕ (t) =
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f (m+ tn), with t ∈ R and m ∈ Rn, n ∈ Rn+, it is ultramodular and,
consequently, mid-convex. From (20), we have

ϕ (t) ≥
nX
i=1

fi (mi + tni)− (n− 1) f (a)

Thus ϕ (t) is bounded from below on some interval. The previous theorem
can be again invoked, and thus ϕ (t) is convex.
It remains to prove that (iii) implies (ii). If f is separately convex, fi (xi)

are locally bounded from below at ai. Hence, minorization (20) implies that
f (x) is locally bounded from below at a. A simple application Lemma 23
delivers (ii). ¥

Theorem 10. Assume f is positively homogeneous. The function f is
bounded from below at 0. For, (8) with x = 0 becomes

f (x) ≥
nX
i=1

fi (xi) ,

where all fi are homogeneous, i.e., linear. This implies that f is bounded
from below on [0, 1]n and, in turn, that f is bounded. By Theorem 12, f
is upper semicontinuous on [0, 1]n. On the other hand, f is concave since it
is superadditive and linearly homogeneous. By Lemma 23 and Theorem 25,
it holds f ≤ Bf ≤ f . Therefore, since f is the least upper semicontinuous
concave function greater than f , we have f ≤ Bf ≤ f ≤ f . Then, f = Bf ,
and so, f being positively homogeneous, the polynomial Bf must be linear.
¥

Theorem 11. Assume that f is not linear. We want to show that f (x) +
f (1− x) 6= f (1) for all x ∈ (0, 1)n. Consider the Bernstein polynomial Bmf ,
with m = (m1,m2, ....mn). We have

Bmf (x) =
X
k

f (k)Ak (x) ,

where k = (k1/m1, k2/m2, ...., kn/mn) and

Ak (x) =
nY
i=1

µ
mi

ki

¶
xkii (1− xi)mi−ki .
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Clearly,

Bmf (1− x) =
X
k

f (1− k)Ak (x) ,

and so

Bmf (x) +Bmf (1− x) =
X
k

[f (1− k) + f (k)]Ak (x) . (21)

Using (21), we Þrst show that there exists some k ∈ [0, 1]n with rational
coordinates such that f (k) + f (1− k) < f (1). In fact, suppose per contra
that f (k)+f (1− k) = f (1) for all such k ∈ [0, 1]n. By Eq. (21), Bmf (x)+
Bmf (1− x) = f (1), since PkAk (x) = 1. Since by Proposition 22 B

mf is
ultramodular, it follows that Bmf is linear. Hence, by Proposition 9, both
Bmf and −Bmf are ultramodular. On the other hand, since f is continuous,
again by Proposition 22 we have that both f and −f are ultramodular. In
turn, this implies that f is linear, a contradiction. We conclude that there
exists some k ∈ [0, 1]n with rational coordinates such that f (k)+f (1− k) <
f (1). We denote it by k.
Since f is ultramodular, we have f (1− k)+f (k) ≤ f (1) for all k ∈ [0, 1]n

with rational coordinates. As f
¡
k
¢
+f

¡
1− k¢ < f (1), Eq. (21) then implies

Bmf (x) +Bmf (1− x) < Bmf (1)
for all x ∈ (0, 1)n. Hence, by Eq. (14), we conclude that

f (x) + f (1− x) ≤ Bmf (x) +Bmf (1− x) < Bmf (1) = f (1)
for all x ∈ (0, 1)n, as desired. ¥
Theorem 12. (i) W.l.o.g., consider an order interval [a1, b1] ⊆ int (I).
Hence, there exists some ε > 0 such that a1 ≥ a+ ε1 and b1 ≤ b− ε1. Take
two elements x, y ∈ [a1, b1], with x ≤ y and x 6= y. Consider the scalar
convex function

ϕ (t) = f
£
x+ |y − x|−11 t (y − x)¤

The domain of this function is a real interval J ⊇ [−ε, |y − x|1 + ε]. In fact,
it suffices to observe that

x− ε |y − x|−11 (y − x) = x− εu,
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with u ≥ 0 and |u|1 = 1. Consequently, x − εu ≥ a1 − εu ≥ a. The same
argument applies to the point t = |y − x|1 + ε. To conclude, the convex
function ϕ (t) is Lipschitz on the interval [0, |y − x|1] with Lipschitz constant
K = (M −m) /ε (see, e.g., [18, p. 4]), where M and m are upper and lower
bounds of f on I. Hence,

|f (y)− f (x)| = |ϕ (|y − x|1)− ϕ (0)| ≤ K |y − x|1 .
Now, consider any two points x, y ∈ [a1, b1]. We can write

|f (y)− f (x)| = |f (x ∨ y)− f (x) + f (y)− f (x ∨ y)|
≤ |f (x ∨ y)− f (x)|+ |f (y)− f (x ∨ y)|
≤ K [|x ∨ y − x|1 + |x ∨ y − y|1] = K |y − x|1 ,

as desired.
(ii) It is an immediate consequence of (i).
(iii) Take a point x0 ∈ I and set I− = [a, x0] and I+ = [x0, b]. In view of

Proposition 27, there exists m ∈ Rn such that
f (x)− f (x0) ≤ m · (x− x0)

for all x ∈ I−. This implies in turn that
f (x)− f (x0) ≤ K |x− x0|1 (22)

holds for all x ∈ I− and for some positive scalar K. The same argument can
be used for the interval I+. Summarizing, Eq. (22) holds for all x ∈ I− ∪ I+
and for some positive constant K. Now, pick any x ∈ I; we have

f (x ∨ x0)− f (x0) ≤ K |x ∨ x0 − x0|1 ,
f (x ∧ x0)− f (x0) ≤ K |x ∧ x0 − x0|1 .

Summing up and recalling that f (x) + f (x0) ≤ f (x ∨ x0) + f (x ∧ x0), we
then obtain

f (x)− f (x0) ≤ K [|x ∨ x0 − x0|1 + |x ∧ x0 − x0|1] = K |x− x0|1 ,
which is the desired result. ¥

Theorem 13. We begin by proving point (i). According to point (iv) of
Theorem 12, it suffices to show that f is lower semicontinuous on I, as long
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as f is lower semicontinuous at a and b. Fix a point x ∈ I. Given a sequence
yn → x, with yn ≤ x, by ultramodularity,

f (b+ yn − x)− f (b) ≤ f (yn)− f (x)
Thus lim infn f (yn) ≥ f (x). Suppose now xn → x. Consider the sequence
x−n = xn ∧ x. Clearly, by ultramodularity

f (xn)− f
¡
x−n
¢ ≥ f

¡
a+ xn − x−n

¢− f (a)
f (xn) ≥ f

¡
x−n
¢
+ f

¡
a+ xn − x−n

¢− f (a)
Taking the liminf, we have easily lim infn f (xn) ≥ f (x), given that x−n → x.
This proves point (i). As to (ii), suppose

f (x) ≥ f (a)− γ1 |x− a|1 (23)

for x close to a, and

f (x) ≥ f (b)− γ2 |x− b|1 (24)

for x close to b. As a Þrst step, we want to prove that

−γ1 |x− y|1 ≤ f (y)− f (x) ≤ γ2 |x− y|1 (25)

holds for all x, y ∈ I, with x ≤ y. If we consider the �partial� functions
fi (xi; a) that appear in (8) of Lemma 6, Eq. (23) implies that fi (xi; a) ≥
f (a)−γ1 (xi − ai) near ai. As fi (xi; a) is convex, the previous one must hold
for all ai ≤ xi ≤ bi. By (8), in turn this implies that (23) holds for all x ∈ I.
A similar argument shows that (24) holds for all x ∈ I. Consider the two
functions ρ1 = f (x)+γ1 |x− a|1−f (a) and ρ2 = f (x)+γ2 |x− b|1−f (b). We
have ρ1 (a) = 0 and ρ2 (b) = 0; moreover, both functions are ultramodular.
Hence, ρ1 is increasing and ρ2 is decreasing on I. This leads to (25). To
conclude, let x, y ∈ I and set h = x− y. We have

f (y)− f (x) = f (x+ h)− f (x) = f ¡x+ h+ − h−¢− f ¡x+ h+¢
+f

¡
x+ h+

¢− f (x) ≤ γ1
¯̄
h−
¯̄
1
+ γ2

¯̄
h+
¯̄
1
≤ γ |h|1 ,

with γ = max {γ1, γ2}. ¥
Lemma 14. Fix a point x ∈ (a, b). Each scalar convex function fi (xi, x)
is deÞned on a complete neighborhood of xi. Its subdifferential is thus non-
empty and is given by

∂fi (xi, x) = ∂if (x) =
£
f−i (x) , f

+
i (x)

¤
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for all i. This implies that

nY
i=1

£
f−i (x) , f

+
i (x)

¤ ⊆ ∂ϕ (x) ,
where ϕ is the convex function

Pn
i=1 fi (xi; x). By Lemma 6, we have

nY
i=1

£
f−i (x) , f

+
i (x)

¤ ⊆ ∂±f (x) . (26)

Conversely, if m ∈ ∂±f (x), then mi ∈ ∂fi (xi, x) =
£
f−i (x) , f

+
i (x)

¤
. There-

fore, the inclusion in (26) is an equality. The relation (11) will be a conse-
quence of the next Lemma. ¥

Lemma 15. The proof requires several steps.

Step 1 . We Þrst check that f 0 (x; .) is ultramodular over the positive cone
Rn+. Take h, k, h1 ∈ Rn+, with h1 ≥ h. From

f (x+ t (h+ k))− f (x+ th) ≤ f (x+ t (h1 + k))− f (x+ th1) ,

we have

[f (x+ t (h+ k))− f (x)]− [f (x+ th)− f (x)]
≤ [f (x+ t (h1 + k))− f (x)]− [f (x+ th1)− f (x)] .

Dividing by t and letting t ↓ 0, we have

f 0 (x;h+ k)− f 0 (x;h) ≤ f 0 (x;h1 + k)− f 0 (x;h1) ,

which shows that f 0 (x; .) is ultramodular. As f 0 (x; .) is homogeneous, by
Theorem 10 we have that f 0 (x; .) is linear. To prove the same result on
the negative cone, it suffices to consider the ultramodular function ϕ (x) =
f (b− x). Clearly, ϕ0 (b− x;h) = f 0 (x;−h) if h is positive.

Step 2 . Now we prove that f 0 (x; .) agrees with f 0 (x; .) both on Rn+ and Rn−.
By the convexity of f along positive directions, we have

f (x+ th)− f (x)
t

≤ f (x+ h)− f (x)
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for all x, all h ≥ 0 and 0 < t < 1. Taking the limsup as x→ x and t ↓ 0,

f 0 (x;h) ≤ lim
x→x

[f (x+ h)− f (x)] = f (x+ h)− f (x) .

By homogeneity,

tf0 (x;h) = f0 (x; th) ≤ f (x+ th)− f (x) .

Dividing by t and taking the limit, we get f 0 (x;h) ≤ f 0 (x;h), which implies
f 0 (x;h) = f 0 (x;h). The proof for h ≤ 0 is similar.

Step 3 . Steps 1 and 2 imply

f 0 (x;h) =

½ Pn
i=1 f

+
i (x) hi = ∇+f (x) · h if h ≥ 0Pn

i=1 f
−
i (x) hi = ∇−f (x) · h if h ≤ 0 .

Let m ∈ ∂0f (x). This means m · h ≤ f0 (x;h) for all h ∈ Rn. Setting
h = ±ei, we have f−i (x) ≤ mi ≤ f+i (x) for all i. Hence ∂0f (x) ⊆ ∂±f (x).
By the well known duality relation, we have

f 0 (x;h) = max
m∈∂0f(x)

m · h.

Set h =
Pn

i=1 ei. Then,

nX
i=1

f+i (x) = max
m∈∂0f(x)

nX
i=1

mi.

As mi ≤ f+i (x), the previous relation implies that O+f (x) ∈ ∂0f (x). Like-
wise, by using h = −Pn

i=1 ei, we obtain that O−f (x) ∈ ∂0f (x). ¥

Theorem 16. (i) Assume that at the point x all the partial derivatives
exist. This implies that ∂±f (x) = {∇f (x)}. Hence, ∂f (x) = {∇f (x)}.
Therefore, f is Frechet differentiable at x and the derivative is strict. The
converse is trivial.
(ii) As f is Lipschitz, by the Rademacher Theorem, it is differentiable

almost everywhere. Thus the desired property follows.
(iii) It is enough to consider int (I). By Theorem 12, f is locally Lipschitz

and, by Lemma 14, ∂f (x) is a singleton for each x ∈ int (I). Hence, by [5,
p. 33] f is continuously differentiable on int (I). ¥
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Theorem 17. Given x ∈ (a, b), set fi(t) = f (x−i, t) for each t ∈ (ai, bi). As

f+i (t) = lim
h↓0
f (x−i, t+ h)− f (x−i, t)

h
= f 0 ((x−i, t) ; ei) ,

each f+i is increasing. By hypothesis, each fi is also continuous, and so it is
convex. Therefore,

fi (xi + h)− fi (xi) = h
Z 1

0

f+i (xi + th) dt.

By using the decomposition of the proof of Proposition 3, with x ≤ y and
h ≥ 0, we get:

f (x+ h)− f (x)

=
nX
i=1

f (x1 + h1, ..., xi + hi, xi+1, ..., xn)− f (x1 + h1, ..., xi−1 + hi−1, xi, ..., xn)

=
nX
i=1

hi

Z 1

0

f+i (x1 + h1, ..., xi + thi, xi+1, ..., xn) dt

≤
nX
i=1

hi

Z 1

0

f+i (y1 + h1, ..., yi + thi, yi+1, ..., yn) dt

=
nX
i=1

f (y1 + h1, ..., yi + hi, yi+1, ..., yn)− f (y1 + h1, ..., yi−1 + hi−1, yi, ..., yn)

= f (y + h)− f (y) ,

as desired. ¥

Proposition 19. Assume Þrst that µ has Þnite support. In this case, Eq.
(12) holds provided

Pn
i=1 tif (xi) ≥ f (

Pn
i=1 tixi) for each sequence {xi}ni=1 ⊆

[0, 1]n with x1 ≤ x2 ≤ · ·· ≤ xn, and whenever {ti}ni=1 is a sequence of positive
numbers such that

Pn
i=1 ti = 1. This is easily proved by induction (for n = 2

it is obviously true). We conclude that Eq. (12) holds when µ has Þnite
support. On the other hand, this class of probability measures form a dense
subset of the set of all Borel probability measures on [0, 1] w.r.t. the standard
vague topology. By Proposition 13, f is continuous. Hence, both f ◦ γ and
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γ are continuous functions, and so it is easy to see that Eq. (12) holds for
any Borel probability measures on [0, 1]. ¥

Theorem 20. The mapGX can be viewed as a curve inR (P ) with endpoints
0 and 1. We denote by CX ⊆ R (P ) its range. The following Claim is proved
in [12].

Claim 1. Let ν = f ◦ P be a measure game with f ultramodular and lower
semicontinuous at 0 and P (Ω). If X ∈ BI (Σ) and there exists a locally
integrable function ρX : R+ → R such that

f (y) =

Z |y|1

0

ρX (t) dt (27)

for all y ∈ CX , then the Gateaux derivative is given by

hDν (X) , Y i =
Z
Ω

ρX (|GX |1 ◦X)Y dP , (28)

where |GX |1 =
Pn

i=1G
i
X .

The curve q → GX (q) is continuous since X is injective and each Pi
is non-atomic. Consider the arc-length parametrization γ : [0, n] → CX ,
with |γ (t)|1 = t for each t ∈ [0, n]; that is, γ is the inverse of the map
x → |x|1 restricted to CX . The arc-length parametrization γ : [0, n] → CX
is an isometry. Since f is Lipschitz, the function f ◦ γ is Lipschitz over
[0, n]. To deal with f ◦ γ we need the following Claim, which exploits the
differentiability properties of ultramodular functions.

Claim 2. Let γ : [0, 1] → [0, 1]n, with γ (0) = 0 and γ (1) = 1, be an
increasing Lipschitz curve. If f : [0, 1]n → R is continuous ultramodular,
then f ◦ γ : [0, 1]→ R is absolutely continuous. Moreover,

f (γ (t)) =

Z t

0

p (s) · γ0 (s) ds (29)

where p (s) ∈ ∂±f (γ (s)). For instance, we can set p (s) = ∇+f (γ (s)).

Proof of the Claim. Let us prove the Þrst statement. It is trivial if
γ (t) ∈ (0, 1)n for all t. Actually, f is locally Lipschitz on (0, 1)n. Therefore,
f (γ (t)) is Lipschitz and, hence, absolutely continuous.
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Suppose now that γ (t) fails to lie in the interior of [0, 1]n. The crucial
assumption is that γ (t) must be non-decreasing. Consider the two functions
Z,U : [0, 1]n → {0, 1, ..., n} deÞned as Z (x) = number of zeros of x, U (x) =
number of ones of x. The function Z ◦ γ decreases, while the function U ◦ γ
increases. Consequently, there is a Þnite sequence 0 = t0 < t1 < .... < tk−1 <
tk = 1, such that on each open interval (tr, tr+1), r = 0, ..., k − 1, the two
functions Z ◦ γ and U ◦ γ are constant. That means that γ (t) lies on a
face of [0, 1]n when t ∈ (tr, tr+1). Clearly, f is locally Lipschitz over any
open face. To conclude, f (γ (t)) is locally Lipschitz on [0, 1] \ {t0, t1, ..., tk}
and continuous over [0, 1]. This is enough to infer that f (γ (t)) is absolutely
continuous over [0, 1].
We now prove the last statement. Assume that γ (t) is differentiable at a

point t in [0, 1]. We have

lim sup
h↓0

f
¡
γ
¡
t+ h

¢¢− f ¡γ ¡t¢¢
h

= lim sup
h↓0

f
¡
γ
¡
t
¢
+ hγ0

¡
t
¢
+ ho (1)

¢− f ¡γ ¡t¢¢
h

≤ f0
¡
γ
¡
t
¢
; γ0
¡
t
¢¢
= ∇+f

¡
γ
¡
t
¢¢ · γ0 ¡t¢ .

On the other hand,

f
¡
γ
¡
t+ h

¢¢− f ¡γ ¡t¢¢
h

≥ ∇+f
¡
γ
¡
t
¢¢ ·Ãγ ¡t+ h¢− γ ¡t¢

h

!

for h ≥ 0. Hence,

lim inf
h↓0
f
¡
γ
¡
t+ h

¢¢− f ¡γ ¡t¢¢
h

≥ ∇+f
¡
γ
¡
t
¢¢ · γ0 ¡t¢ .

We infer that the right derivative of f (γ (t)) equals ∇+f (γ (t)) · γ0 (t), pro-
vided γ is differentiable at t. Now, as f (γ (t)) is absolutely continuous and
γ is Lipschitz, there is a full measure subset Ω of [0, 1] such that

d

dt
f (γ (t)) = ∇+f (γ (t)) · γ0 (t) .

The same argument, obtained by calculating the left derivative, leads to the
formula

d

dt
f (γ (t)) = ∇−f (γ (t)) · γ0 (t)
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which is true over a set of full measure. We conclude that ∇−f
¡
γ
¡
t
¢¢
=

∇+f
¡
γ
¡
t
¢¢
almost everywhere and, in turn, Eq. (29). This proves the

Claim.

By Claim 2, f ◦γ is absolutely continuous and f (γ (t)) = R t
0
∇+f (γ (s)) ·

γ0 (s) ds for all t ∈ [0, n].3 If we set ρ (t) = ∇+f (γ (t)) · γ0 (t), we have
f (x) =

R |x|1
0

ρ (u) du for all x ∈ CX . Plugging it into (28), we get that the
derivative is

hDν (X) , Y i =
Z ∇+f (GX ◦X) , γ0 (|GX |1 ◦X)

®
Y dP . (30)

Eq. (30) holds for all continuous and ultramodular f . Fix now X and set
fi (x) = xi, with i = 1, ..., n. The corresponding game is ν = fi ◦P = Pi. Eq.
(30) becomes Z

Y dPi =

Z
γ0i (|GX |1 ◦X)Y dP

where γ0i (t) is the i
th component of the vector γ0 (t). If we set Y = 1E, where

E is any element of Σ, we have

Pi (E) =

Z
E

γ0i (|GX |1 ◦X) dP . (31)

As Pi is absolutely continuous with respect to P , by (31), γ0i (|GX | ◦X) is
the Radon-Nikodym derivative dPi/dP . Consequently, getting back to (30),
we can write

hDν (X) , Y i =
nX
i=1

f+i (GX ◦X) γ0i (|GX |1 ◦X)Y dP

=
nX
i=1

Z
f+i (GX ◦X)

dPi

dP
Y dP =

nX
i=1

Z
f+i (GX ◦X)Y dPi,

which is the desired result. ¥

Lemma 23. We start with a convex function ϕ (t) of a single variable in
[0, 1]. We claim that

ϕ ≤ Bnϕ ≤ B1ϕ
3Though we picked ∇+f (γ (s)), the same is true for ∇−f (γ (s)).
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on [0, 1]. Actually, all functions Bnϕ are convex and agree with ϕ at 0 and
1. By convexity, the cord B1ϕ lies above all Bnϕ. It remains to check that
Bnϕ ≥ ϕ. This is a more or less known property of univariate Bernstein
polynomials. [1] provided the following representation of the remainders of
Bernstein approximation

ϕ (t) = (Bnϕ) (t)− t (1− t)
n

[ϕ; t1, t2, t3]

where [ϕ; t1, t2, t3] represents the divided difference of ϕ evaluated at some
points ti ∈ [0, 1], i = 1, 2, 3. Consequently, Bnϕ ≥ ϕ as the divided difference
are non-negative, provided ϕ is convex.
To consider the multidimensional case, we need a piece of notation. Let

L be a linear map L : F [0, 1] → C [0, 1], where F [0, 1] is the space of all
functions deÞned on [0, 1] and C [0, 1] is the linear subspace of the continuous
ones. Given i ∈ {1, 2, ..., n}, by Li : F [0, 1]n → C [0, 1]n we mean L applied
to f viewed as a function of the i-th variable xi, with the other variables xj,
j 6= i, held Þxed. It is easy to check (see [19]) that

B(m1,m2,...,mn) = Bmn
n .....Bm2

2 Bm1
1 , (32)

where Bmi are the univariate Bernstein operators.
Let f : [0, 1]n → R be ultramodular and bounded from below near 0. By

Proposition 7, f is separately convex. We then have

f ≤ Bmi
i f ≤ B1i f

for each i = 1, ..., n and all integers mi. By the monotonicity property
of Bernstein operators, f ≤ Bm1

1 f implies f ≤ Bm2
2 f ≤ Bm2

2 B
m1
1 f . By

proceeding iteratively, we have at last

f ≤ Bmn
n .....Bm2

2 B
m1
1 f = B

(m1,m2,...,mn)f.

In particular, f ≤ B(1,1,...,1)f. On the other hand, all Bernstein polynomials
B(m1,m2,...,mn)f agree with f at the extremal points of [0, 1]n. Hence, we have
B(m1,m2,...,mn)f ≤ B(1,1,...,1)f and this concludes the Þrst part of our claim.
The rest follows from Theorem 25. ¥

Lemma 24. (i) If f is supermodular, then, for all x, y ∈ [0, 1]n,
f (x ∨ y) + f (x ∧ y) ≥ f (x) + f (y) .
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Let A,B ⊆ {1, ...n} and let δ : 2{1,...,n} → Rn be the vector Dirac measure.
Then, δ (A) and δ (B) can be viewed as extreme points of [0, 1]n. Hence,

νf (A ∪B) + νf (A ∩B) = f (δ (A) ∨ δ (B)) + f (δ (A) ∧ δ (B))
≥ f (δ (A)) + f (δ (B)) = νf (A) + νf (B) ,

as desired.
(ii) It is immediate to see that Lcore (f) ⊆ core (νf). To prove the

converse inclusion, let m ∈ core (νf ). The element m can be identiÞed as
a vector m ∈ Rn. In this way, the function f (x) − m · x is non-positive
at the extreme points of [0, 1]n and f (1) = m · 1. We want to prove that
m ∈ core (f), namely f (x)−m ·x ≤ 0 for all x in [0, 1]n. Suppose per contra
that this not true, that is, suppose there exists x ∈ [0, 1]n, not extremal, such
that f (x)−m·x > 0. The point x = (x1, x2, ..., xn) is such that xi /∈ {0, 1} for
some i. Consider the scalar function t→ g (x1, x2, ..., xi−1, t, xi+1, ..., xn) over
[0, 1]. By hypothesis, g is convex on [0, 1], and so its maximum is attained
at the boundary. Therefore, g is strictly positive at (x1, x2, ., δi, .., xn) for
δi equal to either 0 or 1. By iterating this argument, we eventually get
an extreme point (δ1, δ2, ..., δn) where g is strictly positive, a contradiction.
Therefore, m ∈ core (f), as desired. ¥

Theorem 25. By point (i) of Lemma 24, νf is convex. Hence, core (νf ) 6= ∅.
Since f is ultramodular and bounded from below at 0, it is separately convex
(see Proposition 7). Hence, by point (ii) of Lemma 24, core (νf) ∼= Lcore (f),
and so we infer that Lcore (f) 6= ∅. To conclude the proof of the Theorem, we
formulate a general statement for a game ν : Σ→ R where Σ is a σ-algebra
of a set Ω.
Let B1 (Σ) be the set of the Σ-measurable functions X : Ω→ R such that

0 ≤ X ≤ 1Ω. Given ν, we deÞne the upper envelope of ν, to be the function
ν : B1 (Σ)→ R given by

ν (X) = inf {h (X) : h (A) ≥ ν (A) for all A ∈ Σ}

where h is an affine function, i.e., h (X) = hm,Xi + k, with m ∈ bv (Σ) and
k ∈ R.
In reading the following Claim, notice that a convex and bounded game

is of bounded variation, as proved in [11].
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Claim. Suppose ν is of bounded variation and with nonempty core. Then,Z
Xdν ≤ ν (X) ≤ min

m∈core(ν)
hm,Xi (33)

for all X ∈ B1 (Σ). If, in addition, ν is convex and bounded, thenZ
Xdν = ν (X) = min

m∈core(ν)
hm,Xi (34)

Proof of the Claim. The Choquet integral is well deÞned whenever ν
is of bounded variation (see [12]). Let h be any affine function such that
h (E) ≥ ν (E) for all E ∈ Σ. Then

ν (X ≥ t) ≤ h (X ≥ t) = m (X ≥ t) + k
with X ∈ B1 (Σ) and t ∈ [0, 1] . By integrating we get,Z 1

0

ν (X ≥ t) dt ≤
Z 1

0

m (X ≥ t) dt+ kZ
Xdν ≤ hm,Xi+ k = h (X)

Taking the inf, we get the Þrst inequality in Eq. (33). On the other hand, if
m ∈ core (ν), m (E) ≥ ν (E) for all E ∈ Σ. Thus any element of the core is
an affine function greater than ν. It follows

ν (X) ≤ min
m∈core(ν)

hm,Xi

and the second inequality holds as well.
To conclude, suppose ν is convex and bounded. Then it is of bounded

variation and
R
Xdν = minm∈core(ν) hm,Xi. Consequently, Eq. (34) holds

and this completes the proof of the Claim.

Having established the Claim, we now conclude the proof of Theorem 25.
In view of the previous claim, it suffices to prove that ν (x) = f (x). DeÞne
the two functions

f ∗1 (m) = inf
x∈[0,1]n

{m · x− f (x)}
f ∗2 (m) = min

x∈ext[0,1]n
{m · x− f (x)}
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for all x ∈ Rn. It is easy to see that the two upper envelope can written in
the �Fenchel form�

f (x) = inf
m
{hm,xi− f ∗1 (m)}

ν (x) = inf
m
{hm,xi− f ∗2 (m)}

On the other hand, the two functions f ∗1 (m) and f
∗
2 (m) are identical. Ac-

tually, it will be seen that an ultramodular function is upper semicontin-
uous. Thus the inf in f∗1 (m) is attained. By the usual arguments, as
f (x) is separately convex, the maximum is attained at an extremal point.
Hence, f ∗1 = f∗2 and f = ν. Moreover, as f (x) =

R
xdνf , we have that

νf = νf . Finally, as a consequence of the Choquet representation of f , we
have Lcore ¡f¢ = ∂f (0) ∩ ∂f (1) = core (νf) = core (f) and this ends the
proof. ¥

Corollary 26. If Bf is linear, the extremal game νf is additive. Hence
core (νf) = Lcore (f) is a singleton. Conversely, suppose Lcore (f) is a
singleton. Then core (νf) is a singleton as well. But convex games with
singleton cores are necessarily additive. Hence Bf is linear. ¥
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