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Abstract. Consistency of Bayesian nonparametric procedures has been the focus of a con-

siderable amount of research. Here we deal with strong consistency for Bayesian density

estimation. An awkward consequence of inconsistency is pointed out. We investigate reasons

for inconsistency and precisely identify the notion of “data tracking”. Specific examples in

which this phenomenon can not occur are discussed. When it can happen, we show how and

where things can go wrong, in particular the type of sets where the posterior can put mass.

Key words: Bayesian consistency; Density estimation; Hellinger distance; Weak neighbor-

hood.

1. Introduction.
A first formulation of the issue of consistency of Bayesian inferential procedures is

given in Doob (1949). It states that if there exists a consistent sequence of estimators of
the unknown parameter, then the posterior estimates are consistent in the sense that the
posterior distribution converges to a point mass at the unknown parameter outside a set of
prior mass zero. A drawback of such an approach is that the null sets on which convergence
fails could be relevant. In this case, the problem can be circumvented by resorting to a
“frequentist” notion of consistency which gives rise to the “what if” method adopted by
Diaconis & Freedman (1986). The idea consists in generating independent data from a
“true” fixed distribution f0 and checking whether the posterior accumulates in (suitably
defined) neighborhoods of f0. This corresponds to requiring the data to eventually swamp
the prior.

An early use of the “what if” method can be found in Freedman (1963), where it is
shown that weak consistency does not necessarily hold for priors supported by discrete
distributions on a countable set of states. However, if the number of states is finite,
consistency is achieved and the result extends to the countable case by introducing an
additional entropy condition. A sufficient condition for weak consistency with more general
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priors is suggested in Schwartz (1965). This is solely a support condition. Further examples
of inconsistency, involving mixtures, are illustrated in Diaconis & Freedman (1986).

When considering problems of density estimation, it is natural to ask for the strong
consistency of Bayesian procedures. An early contribution in this area is the 1988 unpub-
lished University of Illinois technical report by A.R. Barron, which is based on the use of
uniformly consistent tests. Later developments, combining well–established techniques in
the theory of empirical processes with ideas from Barron’s report, provide sufficient condi-
tions for strong consistency in terms of metric entropies. For instance, Barron, Schervish
& Wasserman (1999) specify bracketing entropy conditions for strong consistency to hold
true and apply their results to a number of commonly used priors in Bayesian nonpara-
metric inference. Following the same lines, Ghosal, Ghosh & Ramamoorthi (1999) provide
slightly weaker sufficient conditions for strong consistency in terms of the L1–metric en-
tropy and deal with mixtures of a Dirichlet process. This approach has also been employed
for verifying strong consistency of specific priors in Bayesian Nonparametrics. See, for ex-
ample, Petrone & Wasserman (2002). New ideas for solving consistency issues are given
in Walker (2003; 2004), where a simple sufficient condition for strong consistency is rep-
resented by the finiteness of a suitable sum of square roots of prior probabilities.

The present paper aims at providing an understanding of the main issues that arise
when dealing with consistency of Bayesian procedures. An argument which motivates
the interest in consistency can be based on a notion of merging which differs from the
classical one introduced by Blackwell & Dubins (1962). Indeed, we consider the case
of two Bayesians sharing the same prior but collecting two independent data sets from
the same density f0. It turns out that if the prior is inconsistent at f0 then the two
Bayesians disagree even if more and more data are collected. This is quite an unpleasant
feature. Given this, it is even more important to determine possible sources of (strong)
inconsistency. In order to develop such an analysis, we still preserve the support condition
introduced by Schwartz (1965). We illustrate how consistency at some density f0 depends
on the prior mass assigned to the “pathological” set of those densities that are close to
f0, in a weak sense, and far apart from f0, in the L1–metric. If the prior does not put
mass on such sets, then (strong) consistency is achieved at f0. Many priors of common
use meet such a requirement. We do provide some related illustration. If the prior mass
on such sets is positive, one has to take care about densities that track the data, a notion
to be made precise later on. In order to get rid of the data tracking phenomenon, one
has to look for sufficient conditions which avoid it. Regarding this aspect, we reconsider
and slightly generalize a result of Walker (2004), which is given in terms of a summability
condition of prior probabilities. We provide an interpretation and show that this sufficient
condition is not necessary. Finally a new sufficient condition is provided. When applied
to the prior of the counter–example in Barron et al. (1999) it nicely shows the reason of
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its inconsistency.

According to these guidelines, the structure of the paper is as follows. In Section 2 we
introduce some notation and preliminary definitions. Section 3 starts with a description of
our variation of the merging problem and investigates reasons for (strong) inconsistency.
In subsection 3.1 we consider the case in which the above mentioned “pathological” set
of densities has zero prior probability and show that some of the commonly used priors
do not allow for inconsistency. Afterwards, in subsection 3.2 we look at a more general
setting with a more detailed description of the data tracking behaviour. Then we con-
sider and slightly generalize the simple sufficient condition given in Walker (2004) and
provide an alternative condition which guarantees strong consistency of the prior. Section
4 connects ideas and provides further understanding concerning the sets of densities where
inconsistency can occur.

2. Notation and some basic facts.

We consider a sequence of observations (Xn)n≥1 each taking values in some metric,
complete and separable space X endowed with a σ-algebra which we agree to denote by
X . If F indicates the space of probability density functions with respect to some measure
λ on X, the

dH(f, g) =
{∫

X

(√
f(x)−

√
g(x)

)2
λ(dx)

}1/2

for any f and g in F, and set F to be the Borel σ-algebra of F. Suppose Π stands for a
prior distribution on (F,F ). In this case, we assume that, given a density f drawn from
Π, the observations are i.i.d. with common density f , that is

pr{(X1, . . . , Xn) ∈ A} =
∫

A

∫
F

{
n∏

i=1

f(xi)

}
Π(df) λ(dx1) · · ·λ(dxn)

for each n ≥ 1 and A in X n. The posterior distribution on (F,F ), given the observations
(X1, . . . , Xn), coincides with

Πn(B) =

∫
B

∏n
i=1 f(Xi) Π(df)∫

F
∏n

i=1 f(Xi) Π(df)

for all B in F . The frequentist approach to Bayesian consistency is based on the idea of
fixing a density f0 as the “true” density from which the data are independently sampled
and check whether the posterior accumulates in any Hellinger neighborhood of f0. Hence
Π is strongly consistent or, equivalently, Hellinger–consistent at f0 if, for any ε > 0,

Πn(Aε) → 1 a.s. [P∞
0 ]
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as n → +∞, where Aε = {f ∈ F : dH(f, f0) < ε}, P0 is the probability distribution whose
density coincides with f0 and P∞

0 is the infinite product measure on X∞. An alternative
less stringent notion of consistency can be given by referring to the space P of probability
distributions on (X,X ), equipped with the weak topology. A weak neighborhood of any
probability distribution P ∗ in P is the set

Wε =
{

P ∈ P :
∣∣∣∣∫ φi dP −

∫
φi dP ∗

∣∣∣∣ < ε i = 1, . . . , k

}
for a k-tuple of continuous and bounded real-valued functions φi defined on X. In this
case, we say that a prior Π is weakly consistent at f0 if, for any ε > 0,

Πn(Wε) → 1 a.s. [P∞
0 ],

as n → +∞, where Wε stands for a weak neighborhood of P0. Recall that the weak
topology is coarser than the one induced by dH , the latter being equivalent to the total
variation topology on P.

Another notion we need to consider is that of support of a prior. We say that P0 is
in the support of Π if any neighborhood of P0 has positive Π–probability. According to
the topology defined on P, we distinguish weak and Hellinger support of Π which will be
denoted by SW (Π) and SH(Π), respectively. One can reasonably think that P0 being in
SW (Π) would imply weak consistency of Π at P0. Such a guess is wrong as shown, for
example, by the counter–example in Diaconis & Freedman (1986) for mixtures of Dirichlet
processes. Hence, one needs to impose a stronger support condition in order to achieve
weak consistency at P0. To this end, consider two probability distributions P and Q

such that P is absolutely continuous with respect to Q and define the Kullback-Leibler
divergence between P and Q as

DK(P,Q) =
∫

log (dP/dQ) dP. (1)

If P∗ is a subset of P formed by all probability distributions dominated by a common
σ–finite measure λ, (1) reduces to

dK(fP , fQ) =
∫

fP log(fP /fQ),

where fP = dP/dλ and fQ = dQ/dλ are the densities of P and Q, respectively, with
respect to λ for any P,Q ∈ P∗. Hence, dK can be seen as a measure of divergence on the
corresponding space of densities F. If Kε = {P ∈ P∗ : dK(fP0 , fP ) < ε} is a neighborhood
of P0 with respect to dK , the probability distribution P0 is in the Kullback-Leibler support
of Π, SK(Π), if Π(Kε) > 0 for any ε > 0. One may notice that SW (Π) ⊃ SH(Π) ⊃ SK(Π).
A fundamental sufficient condition for obtaining weak consistency is due to Schwartz
(1965): if P0 is in SK(Π), then Π is weakly consistent at P0.
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When dealing with density estimation, it is more natural to ask for strong consistency
and one might hope that a Kullback-Leibler support condition still suffices. However, as
it has been shown in Barron et al. (1999), this does not happen without any further
condition. All the contributions in this area aim at giving simple sufficient conditions for
strong consistency and preserve the Kullback-Leibler support condition. In the following
sections we attempt at understanding the deep reasons of possible strong inconsistencies
in cases in which weak consistency holds true.

3. Inconsistency and possible solutions.

It is commonly agreed that consistency is an important property of statistical proce-
dures. This is true in a Bayesian setting as well. Indeed, lack of consistency might yield
unpleasant consequences of the type we are going to describe. Before proceeding with the
illustration, it is worth recalling that a lot of attention in the literature has focused on the
so–called merging of opinions. It essentially consists of a situation in which two Bayesians
assess different priors and one is interested in checking whether their posterior inferences
tend to coincide as long as more data are collected. Original work on this issue can be
found in Blackwell & Dubins (1962) where it is proved that, under a condition of absolute
continuity of one prior with respect to the other, merging of opinion occurs in the sense
that the L1–distance between predictive distributions becomes negligible as the sample
size increases. Later discussions are provided, among others, in Diaconis & Freedman
(1986) and in Ghosal et al. (1999). Essentially, the merging of opinion, or agreement,
for large samples boils down to consistency. That is, posterior distributions accumulate
around the same, and correct, density function. See, for example, Barron et al. (1999).

Here we consider a different setup which, to our knowledge, has not been investigated
before. Suppose that two Bayesians are conducting the same experiment which naturally
leads to deal with two independent samples. This involves the idea of replication of ex-
periments, which is crucial for scientific advancement. Hence, independent and identically
distributed samples are drawn from the same probability distribution, P0, which has den-
sity with respect to the Lebesgue measure given by f0. Both Bayesians agree on using
the same prior distribution Π on the space of density functions. Naturally, they collect
independent data sets from P0, say X

(1)
1 , X

(1)
2 , . . . for the first Bayesian and X

(2)
1 , X

(2)
2 , . . .

for the second Bayesian. In such a case, one would reasonably expect that for large sam-
ples the two Bayesians will agree with each other. However, we show that it is possible to
construct priors, even ones which have f0 in the Kullback-Leibler support of Π, for which
agreement is not achieved. Let us first introduce some notation. Define g : Xn × Xn → R
as a measurable function of the n–dimensional independent samples X

(j)
1 , . . . , X

(j)
n , for

j = 1, 2. Moreover, denote with E
(j)
0 (g) the expectation of g with respect to the j–th

sample X
(j)
1 , . . . , X

(j)
n keeping fixed X

(l)
1 , . . . , X

(l)
n , where l 6= j.
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Theorem 1 Assume f0 is in SK(Π). Then, if Π is not Hellinger–consistent at f0,

E
(j)
0

{
DK(Π(1)

n ,Π(2)
n )
}

> nδ a.s.[P∞
0 ]

infinitely often, for some δ > 0, having denoted with Π(j)
n the posterior distribution based

on data set X
(j)
1 , . . . , X

(j)
n , with j = 1, 2.

For the proof, the reader can refer to the Appendix.
Such an outcome is certainly startling for two Bayesians using the same prior and

sampling from the same density. In particular, there is no merging of information (see for
example Barron’s technical report of 1988). Hence, identification of consistent priors and
investigation of possible sources of inconsistency are important issues.

We first consider the latter issue and try to understand why the Kullback–Leibler
support condition is sufficient for weak, but not for strong consistency. It is clear, indeed,
that inconsistency at f0 may be caused by sequences of densities that convergence weakly,
but not in L1, to f0. An example of such a behavior is associated with the sequence of
densities fn(x) = 1+sin(2πnx) for x in [0, 1]. The corresponding sequence of distributions
converges weakly to the uniform on [0, 1], whereas fn oscillates ever more wildly and
does not converge to anything. The oscillating behavior, together with high peaks at the
maxima of the fn’s, causes the undesirable phenomenon of “tracking the data”. In other
terms, data corresponding to these peaks remarkably increase the likelihood and thus may
lead the posterior not swamping mass from the rough densities. Hence, one has to focus
attention on the set

Vδ,ε = Wδ ∩Ac
ε

where Wδ and Aε denote weak and Hellinger neighborhoods, respectively, of f0.
Since by weak consistency the posterior Πn will accumulate in Wδ, for any δ > 0, and

Vδ,ε shrinks as δ goes to 0, the first issue to face is whether for all small enough δ the prior
is prevented to put mass on Vδ,ε. Intuitively, one can figure this constraint as being allowed
to track the data up to a finite number of observations. In the following subsections we
first deal with the case in which Π(Vδ,ε) = 0, for any δ less than some fixed δ∗ > 0 and we
then consider cases in which such a condition is not met.

3.1. Consistency with Π(Vδ,ε) = 0. Having identified in Vδ,ε the set that might
give rise to inconsistency, the first issue to face is to look for priors that satisfy Π(Vδ,ε) = 0.
Consistency is automatically achieved in this case. Indeed, it turns out that some of the
commonly used priors satisfy this condition. Here we provide an illustration by considering
some noteworthy examples.

1. Monotone decreasing densities. Here we consider the case in which the prior is
concentrated on monotone decreasing densities on R+. Bayesian nonparametric inference
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with such priors is considered in Hansen & Lauritzen (2002). Besides dealing with theo-
retical and computational issues associated with Bayesian estimation in this setting, they
point out consistency as an interesting aspect to investigate. To this end, let us first
recall that, if F is a probability distribution function corresponding to some monotone
decreasing density f , then the following representation holds true

F (x) =
∫

R+

F (x; θ) dG(θ)

where G is a distribution function, F (x; θ) = θ−1 min{x, θ} if θ > 0 and F (x; 0) is
degenerate at 0. Moreover G is uniquely determined by

G(θ) = F (θ)− θ f(θ).

We now verify that Hellinger consistency holds true for any f0(x) =
∫ +∞
x

1
θ dG0(θ). Let

Wδ be a δ–weak neighborhood of G0. Then G ∈ Wδ implies the f is in an ε–Hellinger
neighborhood, Aε, of f0. Assume G converges weakly to G0, so that, for any x > 0,∫ +∞

x

1
θ
dG(θ) →

∫ +∞

x

1
θ

dG0(θ).

Consequently, by Scheffe’s theorem, one has that
∫
|f(x) − f0(x)|dx → 0, equivalently

that f → f0 in Hellinger distance. To show the converse, we prove that G ∈ W c
δ implies

f ∈ Ac
ε. Define a weak neighbourhood of G0 as

Wδ =
{

G :
∣∣∣∣∫ +∞

0

(θ − y)I(y,+∞)(θ)
θ

dG(θ)−
∫ +∞

0

(θ − y)I(y,+∞)(θ)
θ

dG0(θ)
∣∣∣∣ < δ

}
.

for a fixed y > 0. As usual, IA is the indicator function of set A. If G 6∈ Wδ, then
|F (y) − F0(y)| > δ, which yields f ∈ Ac

ε for ε < δ. Thus, one has that Π(Vδ,ε) = 0 and
Hellinger consistency holds without any further assumption.

2. Mixture models. Consider the mixture model

f(x) =
∫

φh(x− θ) dQ(θ),

where φh(x−θ) is the normal density function with mean θ and variance h2. Moreover, Q

has a nonparametric prior and µ is the prior distribution for h. This model is considered
by Ghosal et al. (1999). It is assumed that

f0(x) =
∫

φh0(x− θ) dQ0(θ)

is the true density function. Note that h can cause trouble by getting arbitrarily close to
0.
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Let, first, h0 > τ > 0 and define neighbourhoods of (h0, Q0) as the set

Wδ,τ = {(h, Q) : |h− h0| < τ, Q ∈ Wδ} .

If (h, Q) → (h0, Q0), then from∣∣∫ φh(x− θ) dQ(θ)−
∫

φh0(x− θ) dQ0(θ)
∣∣ ≤

∫
|φh(x− θ)− φh0(x− θ)|dQ0(θ)

+
∣∣∫ φh(x− θ)d (Q(θ)−Q0(θ))

∣∣ .
one has f(x) → f0(x) pointwise for all x and Scheffe’s theorem implies f → f0 in the
Hellinger distance. This means that (h, Q) ∈ Wδ,τ implies f ∈ Aε.

Now consider

|P (B)− P0(B)| =
∣∣∣∣∫ (Φh(B; θ)− Φh0(B; θ)) dQ0(θ) +

∫
Φh(B; θ)d (Q(θ)−Q0(θ))

∣∣∣∣ ,
where Φh(B; θ) =

∫
B φh(x− θ)dx. Again, for h bounded away from 0, and excluding the

case when (h, Q) = (h0, Q0), we can always find a set B to make this positive. Now,
consider the case in which h gets arbitrarily close to 0. It is easy to see that |P (B) −
P0(B)| → |Q(B)− P0(B)|. Hence, consistency can fail when the prior puts positive mass
on h in a neighbourhood of 0 and positive mass on Q in Hellinger neighbourhoods of P0.
This problem can be circumvented by requiring Q and P to have different supports. For
example, take P and Q with supports coinciding with the real line and with [−a, a] for
some finite and positive a, respectively. This ensures that the prior for Q puts zero mass
in Hellinger neighbourhoods of P0. Note that Ghosal et al. (1999) prove an analogous
result by different arguments.

3. Finite-dimensional parametric family. Here we consider sampling models {f(x; θ) :
θ ∈ Θ}, where Θ is a finite–dimensional parameter space. Such families, provided the
support condition is met by the prior, lead to consistency. The point is that Π(Vδ,ε) = 0
for some δ > 0 and for all ε > 0. For f ∈ Vδ,ε for all δ > 0 it is required that the density
f be oscillating, the number of oscillations increasing to ∞ as δ ↓ 0. This just can not
happen if f is based on a finite dimensional parameter.

To formalise this, we have the following simple conditions which should be easily
verifiable for any particular f(·; θ). If f(·; θk) → f(·; θ0) weakly, that is∫

g(x) f(x; θk) dx →
∫

g(x) f(x; θ0) dx

for all bounded and continuous g, implies |θk − θ0| → 0. If θ 7→ f(x; θ) is continuous
almost everywhere with respect to the Lebesgue measure, this in turn implies

f(x; θk) → f(x; θ0)
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pointwise almost everywhere. Then weak neighbourhoods of f0(·) ≡ f(·; θ0) are equivalent
to Hellinger neighbourhoods and so for every ε > 0 there exists a δ > 0 such that Π(Vδ,ε) =
0.

4. Discrete model. Here we consider the case when observations take values in a
countable set, e.g. X = {1, 2, 3, . . .}. Denote by f (k) the random mass assigned to the
integer k by f . Suppose Π is concentrated on all discrete probability distributions on
X. Let f0 be any distribution in the support of Π and indicate with f

(k)
0 the true mass

assigned to k. Then Pfn converges weakly to Pf0 if and only if f
(k)
n → f

(k)
0 for all k, which

also implies that fn converges in L1 to f0.

3.2. Consistency with Π(Vδ,ε) > 0. The general case we consider in the present
subsection is the one which involves more technical issues to deal with. As mentioned in the
introduction, it has been the focus of many papers in the literature, wherein conditions on
the prior are specified in terms of metric entropy and do not admit an easy interpretation.
The first result we provide allows for a natural identification of the data tracking behavior.
Indeed it shows that the posterior mass concentrated on densities that are away from f0

in a Hellinger sense and do not track the data vanishes as the sample size increases with
[P∞

0 ] probability 1.

Define the data tracking set as a random set of the type Bc
n,γ := {f : Rn(f) ≥ enγ},

for any γ > 0. Recall that Ac
ε = {f : dH(f0, f) > ε} and Rn(f) =

∏n
i=1 f(Xi)/f0(Xi).

Theorem 2 Let f0 be in the Kullback–Leibler support of Π. Then we have

Πn(Ac
ε ∩Bn,γ) → 0 a.s.[P∞

0 ]

for any γ < −2 log(1− ε).

Proof. Note that for any f in Bn,γ one has Rn(f) e−nγ < 1 which yields

e−nγ

∫
Bn,γ∩Ac

ε

Rn(f) Π(df) < e−
nγ
2

∫
Bn,γ∩Ac

ε

[Rn(f)]
1
2 Π(df). (2)

If we observe that

E0

{∫
Bn,γ∩Ac

ε

[Rn(f)]1/2 Π(df)

}
< (1− ε)n Π(Ac

ε),

where E0 denotes the expected value with respect to P∞
0 , and apply the Markov inequality,

then

P∞
0

{∫
Bn,γ∩Ac

ε

[Rn(f)]1/2 Π(df) > e−nδ

}
≤ Π(Ac

ε) e−n(log(1−ε)−δ).

9



where δ > 0 is chosen in such a way that γ/2 < δ < − log(1−ε). Hence, the Borel–Cantelli
lemma leads to

P∞
0

⋃
N≥1

⋂
n≥N

{∫
Bn,γ∩Ac

ε

[Rn(f)]1/2 Π(df) ≤ e−nδ

} = 1

which, combined with (2), implies that for all but a finite number of n’s∫
Bn,γ∩Ac

ε

Rn(f) Π(df) < exp
{
−n
(
δ − γ

2

)}
a.s.[P∞

0 ]

Since f0 ∈ SK(Π), one has that, for any β > 0 and for all but a finite number of n’s,

In =
∫

F
Rn(f) Π(df) > e−nβ a.s.[P∞

0 ]

If we fix β < δ − γ/2, then Πn(Bn,γ ∩Ac
ε) → 0. 2

By Theorem 2 problems might arise because of the sets Ac
ε ∩ Bc

n,γ and we are, then,
interested in finding sufficient conditions for which

Πn(Ac
ε ∩Bc

n,γ) → 0 a.s.[P∞
0 ]. (3)

Let us first focus on a prior Π concentrating masses Π1,Π2, . . . on at most a countable
number of densities such that

∑
Πk = 1. Note that (3) is equivalent to

Jn =
∑

{k:fk∈Ac
ε∩Bc

n,γ}

Rnk Πk < exp(−nδ) a.s.[P∞
0 ]

for all large n for some δ > 0, having denoted by Rnk = Rn(fk). Since

In ≥ Jn > Π(Ac
ε ∩Bc

n,γ) exp(nγ)

where In :=
∑

k Rnk Πk < exp(nβ) (almost surely) for all large n for any β > 0, we have
that

Π(Ac
ε ∩Bc

n,γ) < exp(−nη) a.s.[P∞
0 ]

for all large n for any η < γ−β, where we can fix β < γ. Consequently, the Cauchy-Schwarz
inequality yields

Jn =
∑

{k:fk∈Ac
ε}

IBc
n,γ

(fk) Rnk Πk ≤
∑

{k:fk∈Ac
ε}

{
R2

nk Πk

}1/2 {Π(Ac
ε ∩Bc

n,γ)
}1/2

.

Since ∑
{k:fk∈Ac

ε}

R2
nk Πk <

(∑
k

Rnk Π1/2
k

)2
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a sufficient condition for (3) to hold true is∑
{k:fk∈Ac

ε}

Rnk Π1/2
k < exp(nη′) a.s.[P∞

0 ]

for all large n. Recall that Rnk < exp(nη′) almost surely, with respect to P∞
0 , for all large

n and for all η′ > 0. Thus we can conclude that
∑

k Π1/2
k < ∞ is sufficient for consistency.

See Walker (2004) for different derivations of this result. As a matter of fact, in Walker
(2004) it has been shown that a similar condition is sufficient in a more general setting as
well.

Let us now consider a general prior Π, not necessarily discrete. Let f0 be fixed and
take Ac

ε to be the complement of an ε–Hellinger neighborhood of f0. By separability of
F, such a set can be covered by a countable union of disjoint sets Bj , where Bj ⊆ B∗

j :=
{f : dH(f, fj) < η}, fj are densities in Ac

ε and η is any number in (0, ε). If f0 is in the
Kullback-Leibler support of the prior Π and∑

j≥1

√
Π(Bj) < +∞

then Π is Hellinger–consistent at f0. By virtue of the arguments illustrated at the begin-
ning of the present section, this result can be refined by confining oneself to the determi-
nation of a covering of Vδ,ε ⊆ Ac

ε. Moreover, by mimicking the proof in Walker (2004), one
can state that Hellinger–consistency holds true at f0 ∈ SK(Π) if, for some α ∈ (0, 1),∑

j≥1

Πα(Vj) < +∞ (4)

where the sets Vj have diameter η < ε and form a (countable) partition of Vδ,ε.
At this stage, one might wonder whether (4) is also necessary for consistency to hold

true. The answer to such a question is, in general, negative and can be motivated by an
argument which shows that violation of (4) does not imply inconsistency. Assume that
Π is not consistent at f0 ∈ SK(Π) and that, for some ε > 0, Aε ⊂ SH(Π). Hence, there
exists α in (0, 1) such that ∑

j≥1

Πα(Vj) = +∞

for any covering of Vδ,ε. Now take f̃ in Aε/2 and denote by Ṽj the disjoint sets of diameter
η < ε/2 by means of which Ṽδ,ε/2 can be covered where Ṽδ,ε/2 = W̃δ ∩ Ãε/2, W̃δ and Ãε/2

being, respectively, a weak and Hellinger neighbourhood of f̃ . Note that Ṽδ,ε/2 ⊇ Vδ,ε and
that any covering of Vδ,ε can be extended to a covering of Ṽδ,ε/2. Thus∑

j≥1

Πα(Ṽj) = +∞
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must hold. Since f̃ is arbitrary, consistency would fail at each density in Aε/2 thus con-
tradicting Doob’s theorem. See Lijoi et al. (2004). Hence, Π cannot be inconsistent at all
densities in Aε/2, even if for each such densities the series of the Πα–probabilities diverges,
for some α in (0, 1).

One can alternatively face the issue of establishing the validity of (3), and thus of
consistency relying upon the construction of a suitable covering of the random set Bc

n,γ .
In the following, (ck)k≥1 is an increasing sequence of positive numbers such that 0 <

supk(ck+1 − ck) = c∗ < +∞ and, given η > 0, we set δ ≥ c∗ + η. Moreover, let

Cn,k := {f : enck ≤ Rn(f) < enck+1}.

Theorem 3 Let f0 be in the Kullback–Leibler support of Π. Assume that for all k ≥ 1
there exists a positive integer n0 = n0(k) and ξk > 0, with

∑
ξk < +∞, such that for all

n ≥ n0,
P∞

0 {Π(Cn,k) < ξk exp{−n(δ + ck)}} = 1,

for some sequence (ck)k≥1 of the type defined above and δ ≥ c∗ + η. Then Π is Hellinger–
consistent at f0.

Proof. Let∫
Ac

ε
Rn(f) Π(df)∫

F Rn(f) Π(df)
= Πn(Ac

ε) = Πn(Ac
ε ∩Bn,γ) + Πn(Ac

ε ∩Bc
n,γ).

By Theorem 2, the first summand tend to 0, almost surely with respect to P∞
0 . Thus, we

focus attention on Πn(Ac
ε ∩Bc

n,γ). If (ck)k≥1 is the sequence described above, with c1 = γ,
then

Πn(Ac
ε ∩Bc

n,γ) =
Jn

In
=

∑
k

∫
Cn,k∩Ac

ε
Rn(f) Π(df)∫

F Rn(f) Π(df)

and
In > Jn >

∑
k

enck Π(Cn,k).

According to Lemma 1 in Barron et al. (1999), the fact that f0 is in SK(Π) implies that,
for each n, In 6∈ {0,∞} almost surely. By virtue of the hypothesis on Π, one has

Jn <
∑

k

enck+1 Π(Cn,k) <
∑

k

ξk e−n(δ−ck+1+ck) < e−nη
∑

k

ξk a.s.[P∞
0 ].

Hence, since In < exp(nβ) for any β > 0, choosing β < η leads to Πn(Ac
ε ∩ Bc

n,γ) → 0,
a.s.[P∞

0 ]. 2

Special attention is required for Π, based on knowledge of f0, in order to contradict
the assumption of the theorem; bearing in mind that

Π(Cn,k) < exp(−nck)

12



a.s. and ∑
k

exp(−nck) Π(Cn,k) → 0

for all choices of {ck}.
It is therefore interesting to investigate why the prior suggested in the counter–example

of Barron et al. (1999) does not meet the condition given in the above Theorem 3.
Their prior assigns positive masses to single densities for which Rn(f) = 2n, with f0

being the uniform density on [0, 1], thus explaining the phenomenon of tracking the
data. More precisely, for any sample X1, . . . , Xn and γ < log 2, one has that Π(Bc

n,γ) ≥
exp(−2)2−n/(2c0n) where c0 is some positive constant. Let, for any sequence (ck)k≥1 de-
fined as above, k∗ = k∗(n) be such that 2n ∈ Cn,k∗ . This means that Π(Cn,k∗) = Π(Bc

n,γ)
and exp(−nck∗+1) > 2−n. Hence, for any δ ≥ c∗ + η

exp(−nδ − nck∗) < exp(−nη) 2−n

and, since η > 0, the following inequality must hold true for all n large enough

Π(Cn,k∗) ≥
exp(−2)2−n

2c0n
> exp(−nη) 2−n > ξk∗ exp{−n(δ + ck∗)}

for any sample X1, . . . , Xn.

4. Connecting ideas.

The purpose of this section is to bring together the various pieces in the case when
Π(Vδ,ε) > 0 and to further understand (4), assuming without loss of generality, α = 1/2.
It provides an understanding of the sets Vδ,ε.

For (4) to be satisfied with α = 1/2 we can, when the prior Π does not put mass on
single densities, achieve Hellinger neighbourhoods of size no greater than ε > 0 from a
dense set {fk}, say Bk = Nek

(fk), such that ek ≤ ε for all k and Π(Nek
(fk)) ≤ M/k2+r for

some finite M and r > 0. We can pick the {ek} to make this hold; if Π(Nε(fk)) < M/k2+r

then we take ek = ε else we take ek < ε such that Π(Nek
(fk)) = M/k2+r.

Hence, with this we have ∑
k

√
Π(Bk) < +∞

ensuring that

Πn

(⋃
k

Bk,M \Nε(f0)

)
→ 0 a.s.

We may not have however that
⋃

k Bk covers the space of densities F. To investigate what
may be left out, consider F∗ =

⋃
k Bk and let S = F \ F∗. We can state immediately

that if it turns out to be that ek > e > 0 for all large k then we have that S = ∅ and

13



consistency holds. If this is not the case, then we must have that S is closed since F∗

is open. Consequently, S is nowhere dense, since F \ S is dense in F. So S is where the
posterior could put mass; a nowhere dense, closed (and so has empty interior) subset of
F. For inconsistency to occur it must be that S

⋂
Vδ,ε 6= ∅ for all δ > 0 and ε > 0; that is

S must contain a sequence of densities which converge weakly to f0 but not in a strong
sense.

Let us now use subscript M to denote the dependence on M , which can be arbitrarily
large. We will establish that Π(SM ) → 0 as M → ∞. Now, for any δ > 0 and any ε > 0
there exists an L < +∞ such that

Π

(
L⋃

k=1

Nε(fk)

)
> 1− δ.

If we choose M big enough so that ek > ε for all k = 1, . . . , L, then clearly

Π

(⋃
k

Nek
(fk)

)
> 1− δ

as well. We can do this by taking M such that

M/L2+r > max
k∈1...L

Π (Nε(fk))

and note that
Π (Nek

(fk)) ≥ M/L2+r

for all k = 1, . . . L. Therefore, Π(F∗M ) → 1 as M → ∞. In fact, SM ↓ S′ for some set S′

with Π(S′) = 0 and
S′ =

⋂
M

SM .

So we have that, for inconsistency, Πn must put mass into ∆M = SM \ S′, for each M ,
and ∆M ↓ ∅.

Summarising, we know that for inconsistency the posterior must put mass into a subset
of Vδ,ε. Now we know what this subset is like; it is closed, nowhere dense and, based on
the arbitrariness of M , it can be made arbitrarily close to the empty set.

5. Summary.
In most cases, such as parametric models and many nonparametric ones, it is that

Π(Vδ,ε) = 0 for small enough δ and ε. If not, for inconsistency a number of “unnatural”
connections between f0 and Π need to exist, the most startling of which is that∑

j

Πα(Ṽj) = +∞

14



for all α < 1. When inconsistency does occur, we have identified precisely where the
posterior is putting mass, namely a nowhere dense, closed subset of Vδ,ε for all δ > 0 and
ε > 0.
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Appendix

In order to prove Theorem 1 we need to introduce

dK,n(f0, f) =
1
n

n∑
i=1

log {f0(Xi)/f(Xi)}

to be the sample Kullback-Leibler divergence between f0 and f .

Proof of Theorem 1
We let I

(j)
n =

∫
R

(j)
n (f) Π(df), where

R(j)
n (f) =

n∏
i=1

f(X(j)
i )

f0(X
(j)
i )

j = 1, 2.

Since f0 is in the Kullback-Leibler support of the prior, from Schwartz (1965) one has

1
n

log In → 0 a.s.[P∞
0 ];

and, from Barron (1988), E0(n−1 log In) → 0 a.s.[P∞
0 ]. Moreover, the following identity

− 1
n

log In =
1
n

DK(µ,Π)− 1
n

DK(µ,Πn) +
∫

dK,n(f0, f) µ(df) (5)

holds true for any measure µ which is absolutely continuous with respect to Π. Indeed,
we have

− log In =
∫

log
{

Rn(f) Π(df)
In Π(df)

}
µ(df)−

∫
log Rn(f) µ(df)

=
∫

log (dΠn/dΠ) dµ + n

∫
dK,n(f0, f) µ(df).

If in (5) we set Πn = Π(1)
n and µ = Π(2)

n , we have

− 1
n

log I(1)
n =

1
n

DK(Π(2)
n ,Π)− 1

n
DK(Π(2)

n ,Π(1)
n ) +

∫
d

(1)
K,n(f0, f) Π(2)

n (df),
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where d
(1)
K,n(f0, f) := (1/n)

∑n
i=1 log(f0(X

(1)
i )/f(X(1)

i )). Let us now take expectations

with respect to X
(1)
1 , . . . , X

(1)
n and keep X

(2)
1 , . . . , X

(2)
n fixed. Then, using the fact that

E
(1)
0 (n−1 log I

(1)
n ) → 0, we have

E
(1)
0

{
1
n

DK(Π(2)
n ,Π(1)

n )
}
∼ 1

n
DK(Π(2)

n ,Π) +
∫

dK(f0, f) Π(2)
n (df).

Finally, the inconsistency of Π, applied to Π(2)
n yields

lim sup
n

∫
dK(f0, f) Π(2)

n (df) > 0 a.s.[P∞
0 ]

and so
lim sup

n
E

(1)
0

{
1
n

DK(Π(2)
n ,Π(1)

n )
}

> 0 a.s.[P∞
0 ]

and the result follows. 2
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