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Abstract: We provide a new approach to the sampling of the

well known mixture of Dirichlet process model. Recent attention

has focused on retention of the random distribution function in

the model, but sampling algorithms have then suffered from the

countably infinite representation these distributions have. The

key to the algorithm detailed in this paper, which also keeps

the random distribution functions, is the introduction of a latent

variable which allows a finite number, which is known, of objects

to be sampled within each iteration of a Gibbs sampler.
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1. Introduction. The aim of this paper is to introduce a new method for

sampling the well known and widely used mixture of Dirichlet process (MDP)

model. There have been a number of recent contributions to the literature on

this problem, notably Ishwaran & Zarepour (2000) and Papaspiliopoulos &

Roberts (2005). These papers have been concerned with sampling the MDP

model while retaining the random distribution functions.

The issue and the causes of the complexities is the countably infiniteness

of the discrete masses from the random distribution functions chosen from the

Dirichlet process prior. Ishwaran & Zarepour (2000) circumvent this with an

approximate method based on a truncation of the distributions. Motivated

by the work of Ishwaran & Zarepour (2000), Papaspiliopoulos & Roberts

(2005) proposed an exact algorithm based on the notion of retrospective

sampling. However, the algorithm itself becomes non-trivial when applied

to the MDP mocdel, and involves setting up a detailed balance criterion

with connecting proposal moves (Green, 1995). On the other hand, we find a

simple trick, based on the slice sampling schemes (Damien et al., 1999), which

deals with the infiniteness. The introduction of latent variables makes finite

the part of the random distribution function required to iterate through a

Gibbs sampler. Moreover, all the conditional distributions are easy to sample

and no accept/reject methods are needed.

The first sampler for the MDP model, based on a Gibbs sampler, was

given in the PhD Thesis of Escobar (1988, 1994). Alternative approaches

have been proposed by MacEachern (1994) and co-authors; for example,

MacEachern & Müller (1998). A recent survey is given in MacEachern (1998),

and other papers in the book of Dey et al. (1998), and by Müller & Qun-

intana (2004). Richardson & Green (1997) provide a comparison with more

traditional mixture models and Neal (2000) also discusses ideas for sampling

2



the MDP model.

Recently, Ishwaran & James (2001) developed a Gibbs sampling scheme

involving more general stick-breaking priors, which is a direct extension of

the Escobar (1998) approach. Escobar’s Gibbs sampler makes use of the

Pólya-urn sampling scheme (Blackwell & MacQueen, 1973) and the idea of

using the Pólya-urn scheme is connected with the procedure of integrating

out of the model the random distribution function from the Dirichlet process.

Recent attempts have avoided this step and retained the random distribu-

tion functions in the algorithms, notably Ishwaran & Zarepour (2001) and

Papaspiliopoulos & Roberts (2005).

In Section 2 we describe the Dirichlet process mixture model and describe

the latent variables of use to the sampling strategy. In Section 3 we will write

down the algorithm for the Gibbs sampler and Section 4 contains a couple

of illustrative examples. Finally, Section 5 concludes with a brief discussion.

2. The Dirichlet Process Model. Let D(c, P0) denote a Dirichlet process

prior (Ferguson, 1973) with scale parameter c > 0 and prior probability

measure P0. So, for example, E(P ) = P0 and

Var(P (A)) =
P0(A){1− P0(A)}

c + 1

for all appropriate sets A. The posterior distribution of P given n indepen-

dent and identically distributed samples from P is also a Dirichlet process

with new parameters c + n and

cP0 + nPn

c + n
,

where Pn is the empirical distribution function. However, we will not be

needing this particular result.

It is well known that a random probability measure P can be chosen from

D(c, P0) via the following sampling scheme, attributable to Sethuraman &
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Tiwari (1982), see also Sethuraman (1994), and involving the so-called stick-

breaking prior (see, for example, Freedman, 1963; Connor & Mosimann,

1969). Take v1, v2, . . . to be independent and identically distributed beta(1, c)

variables and take θ1, θ2, . . . to be independent and identically distributed

from P0, which we will assume has density g0 with respect to the Lebesgue

measure. Then define

P =
∞∑

j=1

wj δθj
,

where w1 = v1 and for j > 1,

wj = vj

∏

l<j

(1− vl).

Here δθ denotes the measure with a point mass of 1 at θ. The weights are

obtained via what is known as a stick-breaking procedure. Ishwaran & James

(2001) consider a more general model with the vj ∼ beta(aj, bj) and show

that the sum of weights is 1 almost surely when

∞∑

j=1

log(1 + aj/bj) = +∞.

While we work with the v’s which lead to the Dirichlet process, our algorithm

for sampling the MDP model can be extended to cover other stick-breaking

prior distributions in a simple way. This will be elaborated on later in the

paper.

The MDP model is based on the idea of constructing absolutely contin-

uous random distribution functions and was first considered in Lo (1984).

The random distribution function chosen from a Dirichlet process is almost

surely discrete (Blackwell, 1973). Consequently, consider the random density

function

fP (y) =
∫

N(y|θ) dP (θ).
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Here N(y|θ) denotes a conditional density function, which will typically be a

normal distribution and the parameters of which are represented by θ. So in

the normal case θ = (µ, σ2). Given the form for P , we can write

fw,θ(y) =
∑

j

wj N(y|θj).

The prior distributions for the w and θ have been given earlier.

Our attempt to estimate the model, via Gibbs sampling ideas, is to in-

troduce a latent variable u such that the joint density with of (y, u) given

(w, θ) is given by

fw,θ(y, u) =
∑

j

1(u < wj) N(y|θj).

Clearly integrating over u with respect to the Lebesgue measure returns us

the desired density fw,θ(y). Hence, the joint density exists and so there will

also exist a marginal density for u. Alternatively we can write

fw,θ(y, u) =
∞∑

j=1

wj U(u|0, wj) N(y|θj)

and so with probability wj, y and u are independent and are, respectively,

normal and uniform distributed. Hence, the marginal density for u is given

by

fw(u) =
∞∑

j=1

wj U(u|0, wj) =
∞∑

j=1

1(u < wj).

If we let

Aw(u) = {j : wj > u}

then we can equally write

fw,θ(y, u) =
∑

j∈Aw(u)

N(y|θj).
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Note, it is quite clear that Aw(u) is a finite set for all u > 0. The conditional

density of y given u is given by

fw,θ(y|u) =
1

fw(u)

∑

j∈Aw(u)

N(y|θj),

where fw(u) =
∑

j 1(u < wj) is the marginal density for u, being defined on

(0, w∗) where w∗ is the largest wj.

The usefulness of the latent variable u will become clear later on. A brief

comment here is that the move from an infinite sum to a finite sum, given u,

is going to make a lot of difference when sampling is involved.

So, given u, we have a finite mixture model with equal weights, all equal

to 1/fw(u). We can now introduce a further indicator latent variable which

will identify the component of the mixture from which y is to be taken.

Therefore, consider the joint density

fw,θ(y, δ = k, u) = N(y|θk)1(k ∈ A(u)).

The complete data likelihood based on a sample of size n is easily seen to be

lw,θ ({yi, ui, δi = ki}n
i=1) =

n∏

i=1

N(yi|θki
)1(ui < wki

).

As has been mentioned, we already know the prior distributions for the w

and θ. Though as it happens, we will use the v’s rather than the w’s when

it comes to sampling.

3. The Sampling Algorithm. In order to implement a Gibbs sampler we

require the set of full conditional density functions. For the infinite collection

of variables v and θ, it would seem that we would need to sample the entire

set. But this is not required. We only need to sample a finite set of them at

each stage in order to progress to the next iteration. All un-sampled vj’s and

θj’s will be independent samples from the priors; that is beta(1, c) and g0,
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respectively. Let us proceed to consider the full conditional densities; listed

A to E.

A. We will start with the ui’s. These are easy to find and are the uniform

distributions on the interval

(0, wki
).

B. Next we have θj, and this is easily seen to be the density function given

up to a constant of proportionality by

f(θj| · · ·) ∝ g0(θj)
∏

ki=j

N(yi|θj).

If there are no ki equal to j then f(θj| · · ·) = g0(θj).

C. Slightly harder, but quite do-able, is the sampling of the vj’s. For the

joint full conditional density we have

f(v| · · ·) ∝ π(v)
n∏

i=1

1(wki
> ui),

where π(v) denotes the collection of independent beta variables, and we have

already given the relation between the wj’s and the vj’s. Hence,

f(v| · · ·) ∝ π(v)
n∏

i=1

1


vki

∏

l<ki

(1− vl) > ui


 .

It is quite evident from this that only the vj’s for j ≤ k∗, where k∗ is the

maximum of {k1, . . . , kn}, will be affected; that is, for j > k∗, we have

f(vj| · · ·) = beta(1, c). For j ≤ k∗ we have

f(vj|v−j, · · ·) ∝ beta(vj|1, c)1 (αj < vj < βj) ,

where

αj = max
ki=j

{
ui∏

l<j(1− vl)

}
.
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and

βj = 1−max
ki>j

{
ui

vki

∏
l<ki,l 6=j(1− vl)

}
.

Then the distribution function, on αj < vj < βj, is given by

F (vj) =
(1− αj)

c − (1− vj)
c

(1− αj)c − (1− βj)c

and so a sample can be taken via the inverse cdf technique. Clearly, it is

now evident that this approach covers more general stick-breaking models;

it is no more difficult to sample a truncated beta variable when we have

vj ∼ beta(aj, bj) as the priors.

D. We now discuss the sampling of the indicator variables. We clearly have

pr(δi = k| · · ·) ∝ 1(k ∈ Aw(ui)) N(yi|θk).

Clearly Aw(ui) is not empty; at least ki ∈ Aw(ui).

Before providing details on how to sample this, we mention that without

the latent variables ui, the possible choices of δi would be infinite and prob-

lems then arise with the normalising constant. Papaspiliopoulos & Roberts

(2005) attempted to circumvent the problem via retrospective sampling and

the use of a detailed-balance criterion, which is non-trivial. Our approach

is quite easy to implement. The choice of δi is from a finite set, which is

{k : wk > ui}. So we sample as many of the wk’s until we are sure that we

have all the wk > ui. How do we know this? We are sure there can be no

further k > ki for which wk > ui when we have ki such that

ki∑

j=1

wj > 1− ui.

So, to cover all the i’s, we find the smallest k∗ such that

k∗∑

j=1

wj > 1− u∗,
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where u∗ = min{u1, . . . , un}. Hence, we now know how many of the wk’s we

need to sample in order for the chain to proceed; it is {w1, . . . , wk∗}. It is that

k∗ will be necessary to find to implement the algorithm. One needs to know

how many of the wj are larger than u and it is only at k∗ that one knows for

sure that all have been found. Hence, k∗ is not a loose approximation; it is

an exact piece of information.

For the prior model it is that,

k∗ ∼ 1 + Poisson(−c log u∗).

See Muliere & Tardella (1998).

E. We can incorporate a prior on c, say π(c). We will sample f(c, w, θ|y, u, δ)

as a block, and will sample this in two stages; first by sampling from f(c|y, u, δ)

and then f(w, θ|c, y, u, δ). We have already described how to sample from

the latter of these. For the former, it is equivalent to the full conditional

density that would arise from the marginal model, that is the one in which

the random distribution functions are removed from the model. Therefore,

as is well known, it is only the δ and the sample size that provides informa-

tion about c. To elaborate on this, the conditional distribution of c depends

only on the number of clusters; that is, the number of distinct ki’s, call this

d, and that

f(c|d, n) ∝ cdΓ(c) π(c)/Γ(c + n),

where Γ(·) denotes the usual gamma function. A nice way to sample from

this is given in Escobar & West (1995) when π(c) is a gamma distribution.

Hence, all the conditional densities are easy to sample and the Markov chain

we have constructed is automatic. It requires no tuning nor retrospective

steps.
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For density estimation we would like to sample from the predictive dis-

tribution of

f(yn+1|y1, . . . , yn).

At each iteration we have (wj, θj) and we sample a θj using the weights. The

idea is to sample a uniform random variable r from the unit interval and

to take that θj for which wj−1 < r < wj, with w0 = 0. If more weights

are required than currently exist then it is straightforward to sample more

as we know the additional vj’s for j > k∗ are independent and identically

distributed from beta(1, c) and the additional θj’s are independent and iden-

tically distributed from g0. Having taken θj, we draw yn+1 from N(·|θj).

4. Illustration. Here we present a normal example in which θ = (µ, σ2) and

we will take λ = σ−2. The prior for the µj’s will be independent N(0, 1/s) and

the prior for the λj’s will be independent Ga(ε, ε). To complement Section 3

we now provide the conditional distributions for µj and λj. We have

f(µj| · · ·) = N

(
ξjλj

mjλj + s
,

1

mjλj + s

)
,

where

ξj =
∑

ki=j

yi

and

mj =
∑

ki=j

1.

We also have

f(λj| · · ·) = Ga(ε + mj/2, ε + dj/2),

where

dj =
∑

ki=j

(yi − θj)
2.
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In the simulated data set example that follows, the code was written using

scilab, which is freely downloadable from the internet.

We sampled 50 random variables independently from the mixture of nor-

mal distributions given by

f(y) =
1

3
N(y| − 4, 1) +

1

3
N(y|0, 1) +

1

3
N(y|8, 1).

Choosing non-informative specifications, we took ε = 0.5, s = 0.1 and the

gamma prior for c to be Ga(0.1, 0.1), the Gibbs sampler was run for 20,000

iterations and at each iteration from 10,000 onwards a predictive sample yn+1

was taken. A histogram of the 50 data points with the density estimator

based on the 10,000 samples of yn+1 is provided in Figure 1. The density

estimator was obtained using the R density routine with bandwidth set to

0.3.

Figure 2 presents the running average for the number of clusters sampled

at each iteration. So it is clear that 10,000 samples is good enough for the

chain to reach stationarity and hence the samples from 10,000 onwards can

be taken as coming from the predictive distribution.

5. Discussion. We have provided a simple and fast way to sample the MDP

model. The key is the introduction of the latent variables which truncate the

weights of the random Dirichlet distributions. It is a highly simple piece of

code to write and is direct in the sense that no accept/reject sampling nor

retrospective sampling is required. It is also remarkably quick to run. It

improves on current approaches in the following way: we know exactly how

many of the wj’s and θj’s we need to sample at each iteration - it is k∗. This

fundamental result eludes the alternative approaches.

Retaining the random distribution function is useful as it removes the

dependence between the θki
’s which exist in the Pólya-urn model. However,
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retaining the random distributions leads to problems with the countably

infinite representation. In this paper we deal with it by introducing a latent

variable which makes the representation finite for the purposes of proceeding

with the sampling and allowing sampling from the predictive distribution.

The sampling of the latent variable given the other variables is a uniform

distribution.

In the non-conjugate case, that is when N(y|θ) and g0(θ) form a non-

conjugate pair and perhaps difficult to sample, then a possible useful solution

is again provided by the latent variable ideas presented in Damien et al.

(1999, Sections 4 & 5).
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urn schemes. Annals of Statistics 1, 353–355.

Connor, R.J. & Mosimann, J.E. (1969). Concepts of independence for pro-

portions with a generalization of the Dirichlet distribution. Journal of

the American Statistical Association 64, 194–206.

Damien, P., Wakefield, J.C. & Walker, S.G. (1999). Gibbs sampling for

Bayesian non-conjugate and hierarchical models by using auxiliary vari-

ables. Journal of the Royal Statistical Society, Series B 61, 331–344.

Dey, D., Sinha, D. & Müller, P. (1998). Practical Nonparametric and Semi-

parametric Bayesian Statistics. Lecture Notes in Statistics. Springer,

New York.

12



Escobar, M.D. (1988). Estimating the means of several normal populations

by nonparametric estimation of the distribution of the means. Unpub-

lished Ph.D. dissertation, Department of Statistics, Yale University.

Escobar, M.D. (1994). Estimating normal means with a Dirichlet process

prior. Journal of the American Statistical Association 89, 268–277.

Escobar, M.D. & West, M. (1995). Bayesian density estimation and infer-

ence using mixtures. Journal of the American Statistical Association

90, 577–588.

Ferguson, T.S. (1973). A Bayesian analysis of some nonparametric prob-

lems. Annals of Statistics 1, 209–230.

Freedman, D.A. (1963). On the asymptotic behaviour of Bayes estimates in

the discrete case I. Annals of Mathematical Statistics 34, 1386–1403.

Green, P.J. (1995). Reversible jump Markov chain Monte Carlo computa-

tion and Bayesian model determination. Biometrika 82, 711–732.

Ishwaran, H. & Zarepour, M. (2000). Markov chain Monte Carlo in approx-

imate Dirichlet and beta two parameter process hierarchical models.

Biometrika 87, 371–390.

Ishwaran, H. & James, L. (2001). Gibbs sampling methods for stick-breaking

priors. Journal of the American Statistical Association 96, 161–173.

Lo, A.Y. (1984). On a class of Bayesian nonparametric estimates I. Density

estimates. Annals of Statistics 12, 351–357.

MacEachern, S.N. (1994). Estimating normal means with a conjugate style

Dirichlet process prior. Communications in Statistics: Simulation and

Computation 23, 727–741.

13



MacEachern, S.N. (1998). Computational methods for Mixture of Dirich-

let Process Models. In Practical Nonparametric and Semiparametric

Bayesian Statistics (D.Dey, P.Müller, D.Sinha eds.) 23–43. Springer,

New York.

MacEachern, S.N. and Müller, P. (1998). Estimating mixtures of Dirichlet

process models. Journal of Computational and Graphical Statistics 7,

223–238.

Muliere, P. & Tardella, L. (1998). Approximating distributions of random

functionals of Ferguson-Dirichlet priors. Canadian Journal of Statistics

26, 283–297.

Müller, P. & Quintana, F.A. (2004). Nonparametric Bayesian Data Anal-

ysis.Statistical Science 19, 95–110.

Neal, R.M. (2000). Markov chain sampling methods for Dirichlet process

mixture models. Journal of Computational and Graphical Statistics 9,

249–265.

Richardson, S. & Green, P.J. (1997). On Bayesian analysis of mixtures with

an unknown number of components. Journal of the Royal Statistical

Society, Series B 59, 731–792.

Papaspiliopoulos, O. & Roberts, G.O. (2005). Retrospective Markov chain

Monte Carlo methods for Dirichlet process hierarchical models. Sub-

mitted.

Sethuraman, J. & Tiwari, R. (1982). Convergence of Dirichlet measures

and the interpretation of their parameter. In Proceedings of the third

Purdue symposium on statistical decision theory and related topics.

Gupta, S.S. and Berger, J.O. (Eds.) Academic press, New York.

14



Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statis-

tica Sinica 4, 639–650.

15



data

D
en

si
ty

−10 −5 0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Figure 1: Histogram of data and density estimate of predictive density for

1/3N(-4,1)+1/3N(0,1)+1/3N(8,1)
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Figure 2: Running average for the number of clusters up to iteration 10000
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