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Abstract

We design the revenue-maximizing auction for two goods when each buyer
has bi-dimensional private information and a superadditive utility function
(i.e., a synergy is generated if a buyer wins both goods). In this setting the
seller is likely to allocate the goods inefficiently with respect to an environ-
ment with no synergies [see Armstrong, RES (2000)]. In particular, if the
synergy is large then it may occur that a buyer’s valuations for the goods
weakly dominate the valuations of another buyer and the latter one receives
the bundle. We link this fact, which contrasts with the results for a setting
without synergies, to ”non-regular” one-good models.
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1 Introduction

This paper deals with the design of the revenue-maximizing auction when an
agent has two goods to sell and each buyer has a specific valuation for each
object and a superadditive value for the bundle. We show that several results
holding under additively separable utility are not robust to the introduction
of synergies. In particular, even though we consider a discrete (binary)
setting with ex ante symmetric buyers, the seller is more likely to inefficiently
allocate the goods with respect to an environment with no synergies.

The literature about optimal auctions started with Myerson (1981), who
provided the solution to the revenue maximization problem for the single
object case. Following the US spectrum auction, in recent years several pa-
pers focussed on optimal multi-object selling mechanisms when each buyer’s
private information is multidimensional;1 among them, Armstrong (1996),
Rochet and Choné (1998) and Armstrong (2000). All these papers assume
that each buyer’s gross payoff from consuming more than one good is equal
to the sum of her single valuations for those goods [actually, Armstrong
(1996) assumes additive separability only in the examples he works out].
The analysts of the FCC auction, however, emphasized that synergies as-
sociated with winning more than one licence played an important role in
determining the bidders’ gross payoffs and prices: see, e.g., McAfee and
McMillan (1996) and the econometric analysis of Ausubel et al. (1997).
Therefore, in some settings the existence of synergies should be taken into
account by a revenue-maximizing (or welfare-maximizing) seller.2

We consider a model with n buyers, two goods on sale and each buyer
privately observes two signals determining the value to her of each item;
each signal may be high or low. Synergies appear in the following form: if
the same buyer receives both goods, then her gross surplus is the sum of her
valuations for each single good increased by α > 0 that represents a synergic
effect.3 This paper gives a first cut in detecting the revenue-maximizing
auction in the above setting and emphasizes several consequences of allowing
positive synergies with respect to a model with α = 0.

In order to better understand our results it is useful to briefly recall
1See Maskin and Riley (1989) and Branco (1996) about optimal multiunit auctions

when each buyer observes a one-dimensional signal. There also exists a literature about
efficient multi-object auctions when valuations are interdependent (it is not very related to
our paper since we assume private values): see for example Jehiel and Moldovanu (2001),
Perry and Reny (1999) and the references therein.

2While the FCC auction is an obvious example, it is not the only setting in which
superadditive values arise. For instance, if two paintings by the same author are on sale
then bidders may like to keep the collection intact. Levin (1997) suggests other examples.
See also Gale (1990) (in his environment the goods are licences or ’capacity’ that will be
used in a production game).

3Krishna and Rosenthal (1996) and Branco (1997) use the same additive specification
for synergies but they do not address the problem of finding the optimal auction and they
avoid multidimensional issues.
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the main results which are obtained by Armstrong (2000) (henceforth Ar)
in a setting with no synergies. In the optimal auction when α = 0 each
good m (m = 1, 2) is sold to a buyer with a high valuation for it, provided
there is at least one such buyer.4 In the terminology of Ar, the optimal
auction is ”weakly efficient”; the qualifier ”weakly” is added because for
some parameter values the seller withholds one or both objects when all the
buyers’ valuations for this (these) object(s) are low (yet, strictly positive)
even though each good is worthless to him.

Another result when α = 0 is that independent auctions are sometimes
optimal. In such a case good m is allocated only as a function of the buyers’
valuations for it, thus neglecting the values for good 3 − m. In any case,
”independence at the top” is optimal: If nm ≥ 1 buyers value highly good
m, then this is (randomly and fairly) allocated among them regardless of
their values for item 3−m.

Both the above results do not hold when α > 0. We find that indepen-
dence at the top is always suboptimal when α > 0 (hence separate auctions
should never be used), since the seller tends to allocate the goods to a same
buyer in order to generate and extract the synergic surplus. For instance,
if there are just two buyers and their types are HH (a buyer with a high
value for each of the two goods) and HL (a buyer with a high valuation for
item 1 and a low value for good 2), then independence at the top implies
that good 1 is randomly allocated among the two buyers. This is inferior,
for any α > 0, with respect to selling both goods to type HH: in the latter
way the seller extracts the synergy with probability 1 rather than 1

2 (and
without tightening any binding constraint). Actually, positive synergies im-
ply that in any optimal auction, given the probability for each type of buyer
to win good m, it is impossible to increase the probability that the goods
are bundled. In other words, in any optimal mechanism the probability that
the synergy is generated is maximized given the probability distributions
according to which item 1 and item 2 are allocated among the buyers.

In general a mechanism is said to be weakly efficient if whenever the
objects are sold they are allocated in a way that maximizes social sur-
plus - which is equal to the sum of the buyers’ gross surpluses. Revenue-
maximizing mechanisms may violate weak efficiency in several ways when
α > 0. In some cases the synergy is not generated because the goods are not
allocated to a same buyer, even though α is relatively high. In other cases,

4This is a well known feature of the one-good model when the buyers’ values are i.i.d.
over a binary support. Adapting the analysis of Myerson (1981) to a setting with i.i.d.
discrete values reveals that if the cardinality of the support is larger than two, then a
buyer with a given valuation always beats a buyer with a lower value if and only if the
so-called ”virtual valuation function” is monotone increasing (but with discrete values
this condition may fail even though the probability distribution for each buyer’s valuation
yields a monotone hazard rate). If that is not so, then the seller treats in the same way
(”bunches”) buyers with different values. See subsections 3.4 and 3.5 for more on this.
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with α quite large, the goods are always bundled but it may occur that the
valuations of buyer i for the goods weakly dominate the values of buyer i′

and the latter buyer wins the bundle. It is clear that when the realized types
are HL and LH there is a tension between bundling the goods in order to
extract the synergy and selling object 1 to a type HL and good 2 to a type
LH. It is not surprising, given incomplete information, that the seller does
not always solve this dilemma efficiently. On the other hand, no similar
tension is apparent when the types are HL and LL (or LH and LL); yet,
when α is large, in some cases the bundle is sold to a type LL.

Subsection 3.4 provides an explanation of the latter result, but also the
following is a possible - and shorter - interpretation. The seller faces a one-
good (the bundle) selling problem when α is so large that the goods are
always sold as a single item. Each buyer’s value for the bundle is equal
to α plus the sum of her valuations for the two single objects. Hence, the
probability distribution for such a valuation is obtained by convolution from
the original (bivariate) probability distribution and it turns out that it may
induce non-monotone virtual valuations (mentioned in footnote 4). In that
case the seller bunches buyers with different values for the bundle, like types
HL and LL. We prove that - to some extent - such a result is robust to
relaxing some of our assumptions, like the one of type-independent synergies.

Levin (1997) is another paper interested in maximizing expected revenue
when two goods on sale are complements. By assuming that the buyers pref-
erences are parametrized by a one-dimensional signal, he allows for a contin-
uum of types and finds the optimal auction by using the techniques which
were introduced by Myerson (1981). He proves that if the buyers are ex ante
symmetric (as it is assumed in our paper), then it is optimal to bundle the
items and run a ’standard’ auction with a reserve price. Levin’s assumption
that each buyer observes a one-dimensional signal implies that her valuations
for the goods are perfectly correlated. We relax this assumption and allow
for arbitrary correlation, but a binary specification for the values is used in
order to preserve tractability. Allowing for more general (discrete) distribu-
tions and/or for more than two objects is conceivable, although this would
significantly increase the number of different cases to consider. It would be
interesting to solve the problem for continuously distributed values; unfor-
tunately this appears hard even when there are no synergies. Ar finds the
optimal auction for a specific case in which the valuations are continuously
distributed over two rays in the positive orthant of R2 (and α = 0) but he
conjectures that, about more general settings, ”numerical simulations will
provide the most tractable method of generating insights into this problem”.

The plan of this paper is as follows. Next section formally introduces
the model; section 3 solves the revenue maximization problem and provides
some comments and robustness results. Section 4 is the conclusion; proofs
are left to the appendix.
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2 The model

2.1 Preferences and information

An agent (the seller) owns two indivisible objects which are worthless to him
and faces n ≥ 2 agents (the buyers) who are interested in these objects; the
seller wishes to maximize his expected revenue from the sale of the goods.
Letting vi and wi denote buyer i’s valuation (i = 1, . . . , n) for good 1 and
good 2 respectively, we assume there exists a positive number α such that
buyer i’s expected payoff from participating in any selling mechanism is

vi {prob to win good 1}+wi {prob to win good 2}+α {prob to win both goods}−ti

where ti is her expected payment to the seller. In words, buyer i’s gross
surplus from consuming both goods is not simply vi+wi but rather vi+wi+α
with α > 0 due to a synergic effect; α is common knowledge, it is the same
for each buyer and is independent of a buyer’s values for the objects (in
subsection 3.5 we allow for type-dependent synergies).

The valuations vi and wi are privately observed by buyer i = 1, . . . , n and
take on values in {vL, vH} and {wL, wH} respectively, with vH > vL > 0 and
wH > wL > 0; moreover, ex ante (vi, wi) and (vi′ , wi′) are i.i.d. bivariate
random variables for any i 6= i′. Maskin and Riley (1984) show that when
the buyers are ex ante symmetric the seller does not lose revenue in letting a
buyer’s probability to win good m (m = 1, 2) and her payment be a function
of her type only and not of her identity. Thus, henceforth we drop the
reference to a buyer’s identity and refer to a generic buyer with valuations
(v, w) ∈ {vL, vH} × {wL, wH}. A buyer’s type is jk if her valuation for
good 1 is vj and her value for object 2 is wk, j, k = L,H. Let njk denote
the number of buyers with type jk who participate in the auction; clearly
nHH + nHL + nLH + nLL = n.

In order to reduce the number of different cases which can arise, we
suppose that the values are symmetrically distributed in the sense that vL =
wL = s > 0, vH = wH = s + ∆ > s,5 and Pr {(v, w) = (s + ∆, s)} =
Pr {(v, w) = (s, s + ∆)}; in such a case there is no loss of generality in letting
∆ = 1, thus vH = wH = s + 1. The following is the probability distribution
for (v, w) (h > 0, q > 0, l > 0 and h + 2q + l = 1):

w = s w = s + 1
v = s l q

v = s + 1 q h

We also let s ≥ h+q
l because under this assumption both goods are

sold for any realized profile of valuations. In other words, if s ≥ h+q
l then

5These assumptions simplify exposition. Actually, only vH − vL = wH − wL is really
needed for our results to hold.
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no optimal mechanism is inefficient because the seller withholds a good
(or both) when all the buyers have low valuation(s). We will find optimal
mechanisms which are inefficient because of different reasons.

Ar analyzes the above environment without restricting to symmetrically
distributed values but he assumes α = 0. While allowing for a positive α
makes the model more cumbersome, symmetric distributions narrow down
the class of mechanisms which can be optimal: see subsection 3.2 below.

2.2 Mechanisms

By the virtue of the Revelation Principle we maximize the expected revenue
within the class of direct mechanisms. Therefore the seller commits to a rule
which, for any possible n−tuple of buyers’ reports of types, determines which
good(s) he sells, to whom, and the payment he requires from each type.
Such a rule needs to satisfy the incentive compatibility and participation
constraints.

Let xjk denote the probability that a buyer reporting type jk obtains only
good 1, j, k = L,H, under truthtelling of the other buyers. The quantity
xjk is a ”reduced form” probability in the sense that it depends on the
buyer’s report jk and not on her opponents’ reports; it is obtained from
”non-reduced form” probabilities by averaging out the (truthful) reports
of the other buyers.6 Similarly, yjk (zjk) is the probability that a buyer
announcing jk receives only good 2 (both goods) when the others report
truthfully; tjk is the expected payment the seller requires from such buyer,
j, k = L,H. Type jk’s expected payoff under truthful reporting is therefore

vjxjk + wkyjk + (vj + wk + α)zjk − tjk

The incentive constraints are summarized by (1) below; for the sake
of clarity we write down the specific incentive constraints which will be
important in the following and the participation constraint for type LL:

vj(xjk − xj′k′) + wk(yjk − yj′k′) + (vj + wk + α)(zjk − zj′k′) ≥ tjk − tj′k′ (1)
jk, j′k′ = HH, HL,LH,LL

vHxHH+wHyHH+(vH+wH+α)zHH−tHH ≥ vHxHL+wHyHL+(vH+wH+α)zHL−tHL

(2)
vHxHH+wHyHH+(vH+wH+α)zHH−tHH ≥ vHxLH+wHyLH+(vH+wH+α)zLH−tLH

(3)
vHxHH+wHyHH+(vH+wH+α)zHH−tHH ≥ vHxLL+wHyLL+(vH+wH+α)zLL−tLL

(4)
6For example, if n = 2 then we could let xjkj′k′ denote the probability for a buyer

reporting jk to receive only good 1 when the other buyer announces j′k′; then xjk =
hxjkHH + qxjkHL + qxjkLH + lxjkLL.
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vHxHL+wLyHL+(vH+wL+α)zHL−tHL ≥ vHxLL+wLyLL+(vH+wL+α)zLL−tLL

(5)
vLxLH+wHyLH+(vL+wH+α)zLH−tLH ≥ vLxLL+wHyLL+(vL+wH+α)zLL−tLL

(6)
vLxLL + wLyLL + (vL + wL + α)zLL − tLL ≥ 0 (7)

The seller’s revenue is the sum of the transfers he obtains from the
buyers. As the latter are ex ante symmetric, the expected revenue R is
equal to n times the expected revenue from any given buyer:

R

n
= htHH + qtHL + qtLH + ltLL

When maximizing R
n with respect to {xjk, yjk, zjk}j,k=L,H under incen-

tive and participation constraints it should be taken into account that the
above variables need to satisfy some feasibility conditions arising from the
fact that there is only one unit of each good to sell; such conditions are anal-
ogous to the resource constraints which appear in subsection 3.1 in Ar. In
our setting the fact that good 1 (2) is sold to a type jk is represented through
the variable xjk (yjk) or zjk, depending on whether it is sold alone or to-
gether with good 2 (1). This makes harder to write the resource constraints
with respect to the constraints which are imposed in Ar. Nevertheless, we
can avoid considering them explicitly by arguing as follows. First, we de-
scribe a mechanism by specifying how it allocates the goods for any possible
n−tuple of reports (some binding incentive and participation constrains pin
down the transfers). Then, when proving the optimality of a mechanism
with respect to a particular modification of the sale policy, we specify the
profiles of buyers’ reports for which the mechanism is modified and inves-
tigate the associated effect on the seller’s revenue. This cannot undermine
feasibility and does not require to consider resource constraints. In other
words, we describe each auction ”explicitly” in terms of non-reduced form
probabilities and then examine how varying the latter probabilities affects
reduced form probabilities and in turn the seller’s revenue.

To see an example of how this approach works, suppose that for a given
profile of reports with nHH ≥ 1 and nLH ≥ 1 each type HH receives good 1
with probability 1

nHH
and each type LH wins good 2 with probability β

nLH

(0 < β ≤ 1); that generates a contribution to yLH equal to

(n− 1)!hnHH qnHLqnLH−1lnLL

nHH !nHL!(nLH − 1)!nLL!
β

nLH

This is the probability for a type LH that the given profile of reports occurs
under truthtelling (the multinomial distribution is used) times the probabil-
ity to win object 2 in such a case. For the given profile we are examining,
consider reducing β by ∆β > 0 while increasing by ∆β the probability that
the same buyer of type HH winning good 1 obtains also good 2. Then yLH
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decreases; more precisely, ∆yLH = − (n−1)!hnHH qnHLqnLH−1lnLL

nHH !nHL!(nLH−1)!nLL!
∆β
nLH

. Like-
wise, xHH (the probability that a type HH gets only good 1) decreases and
the probability zHH that a type HH wins both goods increases:

∆zHH =
(n− 1)!hnHH−1qnHLqnLH lnLL

(nHH − 1)!nHL!nLH !nLL!
∆β

nHH
= −∆xHH

The middle term is the probability for a type HH that the given profile of
reports occurs (under truthtelling) times the increase in the probability to
win the bundle under such profile. Thus, ∆zHH = −∆xHH = − q

h∆yLH >
0. This makes easy to evaluate the profitability of reducing β since the
seller’s revenue and the constraints he faces are linear in {xjk, yjk, zjk}j,k=L,H

(after substituting for tHL, tLH and tLL by using some binding incentive and
participation constraints).

In the proofs a similar argument is - not explicitly - used several times,
although we report only the ratios among the variations in the reduced form
probabilities which are considered.

3 The optimal auction

3.1 Results for the setting with no synergies

In this subsection we briefly review the known results when there are no
synergies in order to highlight, later on, the effects of α > 0. Ar proves
that, under the assumptions we made on the parameters, depending on the
correlation degree between v and w the seller should use one of the two
following mechanisms. In the first one - mechanism I - the goods are sold
through two independent one-good auctions. For good m this implies that
(i) if nm ≥ 1 buyers have (report) a high value (type H) for good m, then
each of them obtains it with probability 1

nm
; (ii) if all the buyers have type

L for object m, then each buyer receives it with probability 1
n .

The second mechanism - mechanism B - displays some bundling. For
any good m, nothing changes with respect to separate auctions when there
is at least one type H for item m (nm ≥ 1). If instead nm = 0, then two
cases may occur: when all the types are LL then each buyer wins good m
with probability 1

n ; when n3−m ≥ 1 buyers have type H for item 3 − m
then object m is allocated among such buyers: each of them receives it with
probability 1

n3−m
. Therefore the probability to win good m for a buyer with

type L for that good is increasing in her value of good 3−m.

Proposition 1 (Armstrong (2000)) Let s ≥ h+q
l and α = 0. Mechanism

I is optimal if h
2 ≥ q h+q

l+q (that is, if correlation between each vi and wi is

positive and strong); if instead h
2 < q h+q

l+q , then mechanism B is optimal.
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As we mentioned in the introduction, a mechanism is weakly efficient
if whenever the objects are sold their allocation maximizes social surplus.
When α = 0 the efficiency of a mechanism is judged object-by-object, as
each buyer’s gross payoff is the sum (over m) of her value for good m times
the probability to obtain it. Hence, by proposition 1 the optimal auction is
weakly efficient when α = 0: in both mechanisms I and B good m is sold to
a buyer with type H for it if nm ≥ 1.

When α > 0, conversely, weak efficiency cannot be judged object-by-
object because the synergy is generated if and only if a buyer obtains both
goods. If all buyers have a same type, then social surplus is maximized
by selling the goods to a same buyer (in order to generate the synergy); if
instead types are different, then weak efficiency requires what follows:

(i) if nHH ≥ 1 (at least one type HH participates in the auction), then
the objects are sold to a same type HH;

(ii) if nHH = 0, nHL ≥ 1 and nLH ≥ 1 (there is no type HH and at
least one type is jk, jk = HL, LH), then the goods are allocated to a same
buyer with type HL or LH if α > 1;7 if instead α ≤ 1, then good 1 is sold
to a type HL and good 2 is sold to a type LH (recall that ∆ = 1);

(iii) if nHL ≥ 1, nLL ≥ 1 and nHH = nLH = 0, then the goods are sold
to a same buyer with type HL;

(iv) if nLH ≥ 1, nLL ≥ 1 and nHH = nHL = 0, then both goods are
allocated to a same type LH.

3.2 The subconstrained problem

Weierstrass’ theorem implies that for all parameter values there exists a
global maximum point in the seller’s maximization problem.8 To find it, we
start by observing that (7), the participation constraint of type LL, binds
at the optimum (this can be proved as in a scalar model); then the incentive
constraint which prevents type jk from reporting LL guarantees that type
jk’s participation constraint is met, jk = HH, HL,LH.

Dealing with incentive constraints in multidimensional environments is
often more complicated than in one-dimensional settings. Rochet and Stole
(2001) show that the binding incentive constraints generally depend on the
allocation which the seller wishes to implement. Therefore, generally it
is impossible to anticipate a priori which incentive constraints will bind.9

7Here weak efficiency does not discriminate between types HL and types LH since
vH − vL = wH − wL.

8Setting tjk < 0 for some jk is suboptimal because then each participation constraint
would be slack and revenue could be increased by slightly (and uniformly) increasing
each tjk. Hence, we can safely assume that tjk is bounded below (by 0) and above (by
vj + wk + α), as xjk, yjk and zjk are, j, k = L, H.

9Conversely, we know that in a scalar problem with discrete values and in which the
single-crossing condition holds (i) local downward constraints bind and (ii) all the other
incentive constraints are automatically satisfied if for each buyer the probability to win
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However, it turns out that in our setting the assumption of symmetrically
distributed values implies that only downward incentive constraints may
bind at the optimum. Formally, we follow Ar in considering a subcon-
strained maximization problem in which non-downward truthtelling con-
straints are absent: we neglect all the incentive constraints but (2) to (6)
[these constraints prevent buyers with high valuation(s) from reporting low
valuation(s)] and maximize the expected revenue under just (2) to (6) and
(7). The resulting subconstrained problem is called problem HH because
it includes three constraints for type HH and one constraint each for type
HL and type LH. Given our assumption of symmetric distributions, the
neglected constraints are satisfied at the solution of problem HH (this is
checked ex post); hence solving problem HH provides the solution to the
original maximization problem as in the one-good two-type model neglecting
the truthtelling constraint of the low type yields the solution to the complete
problem.

Inequalities (5) and (6) bind in the optimum to problem HH (again, by
Weierstrass’ theorem there exists a solution to problem HH) since otherwise
the seller could profitably increase tHL and/or tLH . From (5)-(7) written as
equalities we find tLL = sxLL+syLL+(2s+α)zLL, tHL = (s+1)xHL+syHL+
(2s+1+α)zHL−xLL−zLL and tLH = sxLH +(s+1)yLH +(2s+1+α)zLH−
yLL− zLL which we substitute into the (per buyer) expected revenue R

n and
into (2)-(4) to get, letting p = (tHH , xHH , yHH , zHH , . . . , xLL, yLL, zLL) [D
is the set of feasible values for (tHH , xHH , yHH , zHH , . . . , xLL, yLL, zLL)]

max
p∈D

htHH + q[(s + 1)xHL + syHL + (2s + 1 + α)zHL − xLL − zLL] +

q[sxLH + (s + 1)yLH + (2s + 1 + α)zLH − yLL − zLL] +
l[s(xLL + yLL) + (2s + α)zLL]

subject to

(s+1)xHH+(s+1)yHH+(2s+2+α)zHH−yHL−zHL−xLL−zLL ≥ tHH (8)

(s+1)xHH+(s+1)yHH+(2s+2+α)zHH−xLH−zLH−yLL−zLL ≥ tHH (9)

(s+1)xHH +(s+1)yHH +(2s+2+α)zHH −xLL−yLL−2zLL ≥ tHH (10)

¿From the formulas for tHL, tLH and tLL follows that the seller always
extracts the synergic surplus when it arises for type HL or LH or LL; that
also occurs for type HH, since necessarily at least one among (8)-(10) binds
at the optimum. Therefore, no type of buyer ever earns any rent out of the
synergy; that is not surprising as its value α is common knowledge and it
is common knowledge whether it is generated or not. This gives the seller
some incentive to allocate the goods to a same buyer in order to gain the
synergy and that incentive is stronger the larger is α. This paper basically

the good is higher the higher is her valuation.
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investigates how that incentive affects the optimal auction with respect to
the case of α = 0.

Letting λ1 (λ2 and λ3, respectively) denote the multiplier for constraint
(8) [(9) and (10), respectively] and λ = (λ1, λ2, λ3), the lagrangian function
for problem HH is

L(p, λ) = htHH + (λ1 + λ2 + λ3)[(s + 1)(xHH + yHH) + (2s + 2 + α)zHH − tHH ] +
q(s + 1)xHL + (qs− λ1)yHL + [q(2s + 1 + α)− λ1]zHL + (qs− λ2)xLH +
q(s + 1)yLH + [q(2s + 1 + α)− λ2]zLH + (ls− q − λ1 − λ3)xLL +
(ls− q − λ2 − λ3)yLL + [l(2s + α)− 2q − λ1 − λ2 − 2λ3]zLL

Since this maximization problem is a linear programming problem, the
well known saddle-point theorem [theorem 1.D.5 in Takayama (1985)] ap-
plies. We rely on it in order to find the solution to problem HH.

3.3 The solution of the model with positive synergies

In this subsection we find the solution to problem HH and then we show that
it also solves the complete maximization problem. Lemma 1 below proves
that when at least one buyer has type HH then no other type obtains any
good. Specifically, the goods are sold to a same type HH if nHH ≥ 1.

Lemma 1 For any parameter values with α > 0, if at least a type HH
participates in the auction (nHH ≥ 1) then each type HH receives the bundle
with probability 1

nHH
.

By lemma 1 mechanism I or B never solves problem HH when α > 0.
The reason is that both of them display ”independence at the top”, in the
sense that if n1 ≥ 2 buyers have type H for good 1 then each of them receives
it with probability 1

n1
, neglecting their valuations for good 2. However, since

α > 0, if these buyers’ values for object 2 differ then it is better to sell both
goods to a same type HH; in this way no binding constraint is tightened
and the synergy is extracted with probability 1. When α = 0 Ar proves
that the seller never gains - in the subconstrained problem - from letting
the probability to win good 1 (2) for type HH differ with respect to type
HL (LH); when α > 0, instead, lemma 1 reveals a strict incentive to distort
these probabilities in favor of type HH.10

It is useful to observe that the objects are allocated to a same buyer if
all the buyers report a same type jk because the coefficient of zjk in the
lagrangian function is larger than the sum of the coefficients of xjk and
yjk, jk = HL,LH,LL (recall that the goods are always sold since s ≥ h+q

l ).
10Actually, when α = 0 non-distorted probabilities help in making the solution to prob-

lem HH a solution to the complete problem for the largest range of parameter values;
under symmetric distributions there is no such an effect.
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Moreover, lemma 1 describes the optimal sale policy when nHH ≥ 1. Hence,
the residual degrees of freedom in defining a mechanism concern the profiles
of reports such that nHH = 0 and at least two buyers report different types.
In the following a mechanism is described by the allocation of the goods
when the different types showing up in the auction are HL and LH; HL
and LL; LH and LL; HL, LH and LL.

The following two mechanisms are linked to I and B (introduced in sub-
section 3.1), respectively; because of this fact we denote them I1 and B1.

Mechanism I1 If nHL ≥ 1, nLH ≥ 1 and nHH = 0 (both types HL and
LH show up in the auction, possibly together with type LL), then good 1 is
(randomly) allocated among types HL and item 2 is allocated among types
LH: each type HL (LH) obtains good 1 (2) with probability 1

nHL
( 1

nLH
).

If nHL ≥ 1, nLL ≥ 1 and nLH = nHH = 0, then good 2 is allocated
among all the buyers; if it is received by a type HL, then the same buyer
also wins good 1; if instead a type LL wins good 2, then good 1 is allocated
among types HL. Thus, each type LL receives good 2 with probability 1

n ;
each type HL wins the bundle (only good 1) with probability 1

n (nLL
n

1
nHL

).
Likewise, if nLH ≥ 1, nLL ≥ 1 and nHL = nHH = 0 then good 1 is

allocated among all the buyers; if it is obtained by a type LH, then the
same buyer also wins item 2, otherwise good 2 is sold to a type LH. �

Mechanism B1 If nHL ≥ 1, nLH ≥ 1 and nHH = 0, then good 1 (2) is
allocated among types HL (LH), exactly as in I1.

If nHL ≥ 1, nLL ≥ 1 and nLH = nHH = 0, then the goods are sold to a
same type HL. Similarly, when nLH ≥ 1, nLL ≥ 1 and nHL = nHH = 0 the
bundle is allocated to a type LH. �

Notice that I1 is not weakly efficient if α > 0: when only types HL and
LL (LH and LL) are in the auction, with positive probability the bundle is
not sold to a type HL (LH). Mechanism B1, on the other hand, is weakly
efficient if and only if α ≤ 1.

Mechanisms I1 and B1 are somewhat related to I and B, respectively,
because - when nHH = 0 - for any given type jk = HL, LH,LL participating
in the auction the probability to win good m (either alone or with object
3 − m) given her opponents’ types is the same in I as in I1 and in B as
in B1. The difference is that given these probabilities, in I1 and B1 it is
maximized the probability that a same buyer wins both goods; clearly, the
synergic effect is the root of this result. The same principle applies to the
mechanisms which are introduced below: given the probability that type jk
(j, k = L,H) obtains object m = 1, 2, it is maximized the probability that
a buyer receives the bundle.

It is worthwhile to observe, however, that if α = 0 then I1 (B1) is optimal
when I (B) is optimal. To prove this claim it is sufficient to verify that (i)
in I1 and B1 (as in I and B) good m is allocated to a buyer with type H
for it if at least one such buyer is in the auction; (ii) the probability to win
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good 1 for a type LH or LL is the same in I1 (B1) as in I (B); (iii) a similar
result holds for good 2 and types HL and LL.11

As it is intuitive, for large values of α it is often convenient to allocate
the goods to a same buyer in order to extract the synergy. Indeed, I1 or B1
never solves problem HH when α is large and the following mechanisms are
needed. In the last two of them the goods are always sold as a single unit.

Mechanism WI1 If nHL ≥ 1, nLH ≥ 1 and nHH = 0 then the goods
are allocated as in I1.

If nHL ≥ 1, nLL ≥ 1 and nLH = nHH = 0, then the goods are bundled.
With probability θ (1− θ) the group of types HL (LL) is selected;12 within
the selected group the buyer receiving the bundle is randomly chosen. Thus,
each type HL (LL) wins both goods with probability θ

nHL
( 1−θ

nLL
).

When nLH ≥ 1, nLL ≥ 1 and nHL = nHH = 0 a similar rule is followed:
each type LH (LL) wins the bundle with probability θ

nLH
( 1−θ

nLL
). �

Mechanism B2 If nHL ≥ 1, nLH ≥ 1 and nHH = 0, then any buyer
with type HL or LH wins both goods with probability 1

nHL+nLH
. If instead

only types HL and LL (LH and LL) are in the auction, then any type HL
(LH) receives the bundle with probability 1

nHL
( 1

nLH
). �

Mechanism WI2 When nHH = 0 the goods are sold to a same buyer
who is randomly selected among all the buyers. In other words, if nHH = 0
then each buyer wins the bundle with probability 1

n independently of her
own type. �

In B2 the bundle is always allocated to a buyer with the highest valuation
for it. Because of this reason, Ar calls this mechanism ”the pure bundling
auction” and proves that it is never optimal in his setting. The reason is
that, when α = 0, the optimal auction is weakly efficient while B2 is not
so: if nHL ≥ 1, nLH ≥ 1 and nHH = 0, then B2 generates a surplus equal
to max {vL + wH , vH + wL} < vH + wH , the surplus arising if good 1 (2) is
sold to a type HL (LH). However, when α > 0 is large B2 has chances to
be optimal because it always generates and extracts the synergy.

Mechanism B2 is weakly efficient when α > 1, whereas WI1 and WI2
are never so. Indeed, they allocate with positive probability the bundle to
a type LL even though her opponents’ types are HL or LH.

We can now describe the solution to problem HH.

11More briefly, by using the notation in Ar it is sufficient to verify that the following
equalities are satisfied both for I, I1 and B, B1 (reduced form probabilities for I1 and B1
are found in the appendix): h(xHH + zHH) + q(xHL + zHL) = h(yHH + zHH) + q(yLH +

zLH) = 1−(l+q)n

n
[condition (i)]; xLH + zLH = ρA

LH , xLL + zLL = ρA
LL [condition (ii)];

yHL + zHL = ρB
HL, yLL + zLL = ρB

LL [condition (iii)].
12The value of θ is such that all the three constraints (8)-(10) bind. Details are found

in the proof to lemma 3(iii) in the appendix.
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Lemma 2 Let s ≥ h+q
l and α ≥ 0. (i) Mechanism I1 solves problem HH

if α ≤ min
{

(h+q)l−q
2ql , 1

1−h

}
[notice that (h+q)l−q

2ql ≤ 1
1−h is equivalent to

hl ≤ 2q].
(ii) Let hl ≤ 2q; then mechanism B1 is optimal in problem HH if

(h+q)l−q
2ql < α ≤ 1 + h

2q and B2 solves problem HH if α > 1 + h
2q .

(iii) Let hl > 2q; then mechanism WI1 solves problem HH if 1
1−h < α ≤

2
1−h and WI2 is optimal in problem HH if α > 2

1−h .

The solution to problem HH also solves the complete (not subcon-
strained) maximization problem since all the above mechanisms satisfy the
incentive constraints which are neglected in problem HH. The consequence
is the following

Proposition 2 For any parameter values such that s ≥ h+q
l and α ≥ 0 the

optimal auction is given by the solution to problem HH.

3.4 Comments

A first remark about the above results is that B1 or B2 is optimal under
negative or zero correlation, depending on the value of α. This claim is
proved by observing that hl ≤ q2 implies min

{
(h+q)l−q

2ql , 1
1−h

}
< 0 and

hl < 2q; hence I1, WI1 and WI2 cannot be optimal.
As we remarked in subsection 3.1, when α = 0 the choice between mecha-

nisms I and B only depends on the correlation degree and not on s.13 On the
other hand, under positive synergies the buyers’ preferences, as represented
by α, affect the format of the optimal auction. Such a format is independent
of the number of buyers, but it seems reasonable to conjecture that - as in
Ar - n would matter if the goods were very asymmetrically distributed.

Lemma 2(ii)-(iii) establishes that if α is sufficiently large and the buyers’
types are LH and HL, then selling good 1 to a type HL and good 2 to a
type LH is not a good idea as the synergic surplus is not generated and
the seller cannot extract it; allocating the objects to a same buyer is more
profitable. Since increasing zHL and zLH tightens constraints (8) and (9),
when nHL ≥ 1, nLH ≥ 1 and nHH = 0 the goods are not bundled if just
α > 1 as weak efficiency requires, but only if α > min

{
2

1−h , 1 + h
2q

}
.

The results in lemma 2(iii) are maybe more surprising: If α > 1
1−h and

correlation is positive and sufficiently strong (hl > 2q), then a type LL
receives both goods with positive probability when the other buyers’ types
are HL or LH (mechanisms WI1 and WI2). This is inefficient and may also
look strange, since the surplus produced from selling the bundle to a type

13Armstrong and Rochet (1999) obtain a similar result in a bi-dimensional screening
model in which the planner faces a unique agent.
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LL is ”obviously” smaller with respect to allocating it to a type HL or LH.
Ar considers a setting in which the values are continuously distributed over
two rays in the positive orthant of R2 and there are no synergies; he proves
that good m is inefficiently allocated if the buyers’ values for good 3−m are
sufficiently different. In WI1 and WI2, instead, good 1 (2) is inefficiently
allocated when nHL ≥ 1, nLL ≥ 1 and nHH = nLH = 0 (nLH ≥ 1, nLL ≥ 1
and nHH = nHL = 0), which means that all the buyers’ values for good 2
(1) are low; recall that here each valuation has a binary support.

To get a simple intuition for why this selling policy may maximize rev-
enue assume hl > 2q and α > 1 + h

2q , hence α > 2
1−h . We now show that

WI2 is superior to B2 when hl > 2q (as lemma 2 states) without using
saddle-point arguments. In B2, (8) and (9) bind while (10) is slack: type
HH strictly prefers to reveal her own type rather than reporting LL but
she is indifferent between a truthful report and announcing HL or LH.
When nHL ≥ 1, nLL ≥ 1 and nHH = nLH = 0 (nLH ≥ 1, nLL ≥ 1
and nHH = nHL = 0) B2 allocates both goods to a same type HL (LH).
Now consider moving away from B2 by selling the objects with positive
probability to a same type LL rather than to a type HL (LH). This
induces a decrease in zHL (zLH) and an increase in zLL; more precisely,
∆zHL = ∆zLH = −ε and ∆zLL = 2q

l ε for some ε > 0 (we are exploit-
ing the argument introduced at the end of subsection 2.2). It follows that
the left hand side of both (8) and (9) is increased and tHH increases as
(10) was initially slack: ∆tHH = (1 − 2 q

l )ε > 0 (as hl > 2q). Moreover,
from (5)-(7) written as equalities follows that tHL and tLH (tLL) decrease
(increases) because types HL and LH (LL) receive less (more) goods in
expected value. More precisely, ∆tHL = ∆tLH = −(2s + α + 1)ε− 2q

l ε < 0
and ∆tLL = (2s+α)2q

l ε > 0. The change in the expected revenue per buyer
is ∆(R

n ) = h∆tHH +q(∆tHL +∆tLH)+ l∆tLL = ε
l (hl−2q); thus R

n increases
if we move away from B2 towards WI2 by slightly increasing ε above 0 since
we assumed hl > 2q. The same argument applies when comparing WI1 to
B1. Clearly, hl > 2q if and only if q is small with respect to h and l, which
means that in expected value the increases in tHH and tLL outweigh the
reductions in tHL and tLH .

Basically, therefore, the problem of minimizing the cost of the incentive
constraints (8)-(10) induces an inefficient allocation of the bundle when hl >
2q. However, hl > 2q does not imply that the bundle is sold with probability
1 to a type LL when nHL ≥ 1, nLL ≥ 1 and nHH = nLH = 0 and when
nLH ≥ 1, nLL ≥ 1 and nHH = nHL = 0. Indeed, in such a case zLL would
be larger than zHL and zLH , hence (10) would bind while (8) and (9) would
not. Then we could increase tHH , tHL and tLH by slightly reducing zLL and
increasing zHL and zLH ; R

n would be higher because the associated decrease
in tLL would not outweigh these increases.

Since the condition hl > 2q does not depend on α, we should explain
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why the weakly inefficient mechanisms WI1 and WI2 are never optimal when
α = 0. The reason is that the seller has no incentive to allocate both goods
with positive probability to a type LL when α = 0: no synergic surplus is
lost by reducing zHL and zLH and simultaneously increasing xHL, yLL, yLH

and xLL. When hl > 2q the seller is better off by following this strategy and
converging to mechanism I (hl > 2q implies h

2 > q h+q
l+q , see proposition 1).

An alternative way of explaining why WI2 is better than B2 when hl > 2q
exploits a simple remark: When the goods are always sold as a single item
(because α is large), an only object - the bundle - is on sale and each buyer
i’s private information is summarized by a one-dimensional variable: her
valuation bi for the bundle. Then bi ∈ {bL, bM , bH} with bL = 2s + α,
bM = 2s + 1 + α and bH = 2s + 2 + α with the following probability mass
function: p(bL) = l, p(bM ) = 2q and p(bH) = h. Let zu denote the (reduced
form) probability for a buyer reporting bu to win the bundle, u = L,M,H.
As it is well known, incentive compatibility requires zH ≥ zM ≥ zL. The
techniques developed in Myerson (1981) can be adapted to this setting to
establish the following claim. If the virtual valuations J(bH) = 2s + 2 + α,
J(bM ) = 2s + 1 + α− h

2q and J(bL) = 2s + α− 1−l
l are monotone increasing

- i.e., J(bH) ≥ J(bM ) ≥ J(bL) - then the buyer with the highest valuation
receives the bundle whenever it is sold. In such a case the inequalities zH ≥
zM ≥ zL are (strictly) met. If instead the function J is not monotone, then
the model is said to be ”non-regular” and the seller bunches different types:
each type in the bunching region has the same probability to receive the
bundle; hence, with positive probability the bundle is inefficiently allocated.

Surely J(bH) > J(bM ); moreover, it turns out that J(bM ) ≥ J(bL) is
equivalent to 2q ≥ hl. Indeed, lemma 2(ii) establishes that when 2q ≥ hl
(and α is large) the pure bundling auction B2 is used; hence the bundle
is sold to a buyer with the highest value for it, which means that it is
efficiently allocated. If instead hl > 2q, then J(bM ) < J(bL); indeed, by
lemma 2(iii) (when α is large) WI2 is optimal, in which types bM (types HL
and LH in the two-good model) are bunched with types bL (types LL in
the two-good model): here the bundle is not efficiently allocated. Observe,
however, that the goods are inefficiently allocated when nHL ≥ 1, nLL ≥ 1
and nHH = nLH = 0 or nLH ≥ 1, nLL ≥ 1 and nHH = nHL = 0 also when α
is not so large that they are always bundled (provided hl > 2q), as it occurs
when WI1 is optimal.

A similar result about inefficient allocation of the bundle may arise in
the perfect correlation setting which is analyzed by Levin (1997). He shows
that if the buyers are ex ante symmetric, then the goods are always bundled.
While he assumes that the virtual valuation function is monotone, inefficient
bunching arises if that assumption is violated.
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3.5 Robustness

In this subsection we investigate the robustness of the result about inefficient
allocation of the bundle. Such a result turns out to extend beyond our
original assumptions; actually, it is more likely to arise if the valuations
have asymmetric distributions.

Before going to the details we observe the following, still relying on
Myerson (1981). In a one-good discrete setting in which the support for the
valuations is {b1, . . . , bA} (ba < ba+1) the virtual valuation function is14

J(ba) ≡ ba − (ba+1 − ba)
1− P (ba)

p(ba)
(11)

If J is monotone increasing, then the highest valuation buyer receives the
good; otherwise revenue maximization requires inefficient bunching. We also
remark that, since generally ba+1−ba varies with a, a monotone hazard rate
does not always imply that J is monotone.

3.5.1 Multiplicative synergies

One may wonder whether the result about inefficient allocation for the bun-
dle under large synergies depends on the additive specification for the syn-
ergy which is used above. Here we show that no difference arises if the gross
surplus of buyer i from receiving the bundle is β(vi + wi) with β > 1 [this
multiplicative specification is adopted in Rosenthal and Wang (1996)].

Proposition 3 Mechanism WI2 is optimal if hl > 2q and β ≥ (1−h)(s+1)
s(1−h)−h ;

B2 is optimal if hl ≤ 2q and β ≥ 4q(s+1)
2q(2s+1)−h .

A simple, although partial and ’intuitive’, proof of this proposition goes
along the following lines. It is ’intuitively’ optimal that goods are always
bundled if β is sufficiently large. The possible valuations for the bundle in
this one-good setting are b1 = β2s, b2 = β(2s + 1) and b3 = β(2s + 2).
Then, after substituting into (11) we see that the monotonicity (or non-
monotonicity) of J is unaltered with respect to the case of additive synergies:
J(b2) ≥ J(b1) if and only if 2q ≥ hl, as in the environment with additive
synergies. The same result would arise if buyer i’s gross surplus from the
bundle were β(vi + wi) + α with β > 1 and α > 0.

3.5.2 Type-dependent synergy

The assumption that the value of the synergy is type-independent may be
viewed as restrictive. Here we let αjk denote the (additive) synergy for
type jk and suppose that αHH > αHL = αLH > αLL; buyers with higher

14Let p be the probability mass function and P the cumulative distribution function.
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valuations for the goods enjoy a larger synergic surplus. Intuitively, since
αHL > αLL we may expect that the weakly inefficient mechanism WI2 is
less likely to be optimal: Now types HL and LH generate a higher synergy
than type LL, hence it seems suboptimal to bunch these three types. We
show that such an intuition is only partially correct.

In this setting the value of the synergy is private information, hence the
seller does not necessarily extract it when it is generated. Because of this
fact, for some profiles of types it may be profitable for him to avoid bundling
the goods even though αLL is large (hence αHL and αHH are large as well).
Indeed, for jk = HL, LH,LL the coefficient of zjk in the lagrangian function
(in the appendix) is larger than the sum of the coefficients of xjk and yjk

only if αHL and αLL are sufficiently large with respect to ∆HH ≡ αHH−αHL

and ∆HL ≡ αHL − αHL. If that is not the case, then the objects are not
allocated to a same buyer when njk = n, jk = HL, LH, LL.

The intuition for such result is the following. If ∆HH is large, then
bundling the goods when nHL = n (nLH = n) makes quite appealing for
a type HH to report HL (LH) because with some probability she obtains
the own synergic surplus αHH and pays only αHL to the seller; hence tHH

decreases by an amount which is proportional to ∆HH . Conversely, tHL

(tLH) increases by a magnitude which is proportional to αHL because a
higher transfer can be required from type HL (LH). The net effect on
the expected revenue is positive if and only if αHL is large with respect
to ∆HH .15 In the appendix we prove that under condition (12) below one
mechanism between B2 and WI2 is optimal, in which the goods are bundled
for all profiles of types.

q(αHL − 1) ≥ h

2
(1 + ∆HH) & lαLL ≥ (1− l)∆HL + h∆HH (12)

Next proposition establishes that assuming αHL > αLL is not sufficient
to make B2 more often optimal than in case of type-independent synergies.
Actually, if ∆HH > ∆HL then it is more likely that WI2 is better than B2.

Proposition 4 Let (12) be satisfied. Then B2 is optimal if

2q(1 + ∆HL) ≥ hl(1 + ∆HH) (13)

otherwise WI2 is optimal.

If the goods are always bundled, then proposition 4 can be explained by
referring to a one-good problem with b1 = 2s + αLL, b2 = 2s + 1 + αHL

and b3 = 2s + 2 + αHH . Virtual valuations are monotone if and only if
J(b2) ≥ J(b1), which reduces to (13). Such inequality shows that if ∆HL >

15A similar argument applies to the profitability of bundling the goods when nLL = n;
here the comparison involves ∆HL (and possibly ∆HH) against αLL.
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∆HH , then J is more likely to be monotone with respect to the case of type-
independent synergies. However, notice that such a result does not arise if
we just assume ∆HL > 0. The intuition for why ∆HL > ∆HH is needed is
basically the following (and it is linked to the one which was provided above
about the profitability of bundling when njk = n, jk 6= HH). If the seller
allocates the bundle to a type HL or LH rather than to a type LL, then
he extracts a higher synergic surplus: αHL instead of αLL. However, that
also forces him to lower the transfer from type HH because of the incentive
constraints which prevent HH from reporting HL or LH.

3.5.3 Asymmetric distributions for the valuations

Up to now we assumed that values are symmetrically distributed, i.e., ∆v =
∆w and Pr {(v, w) = (vH , wL)} = Pr {(v, w) = (vL, wH)}. We now relax this
assumption by letting q1 = Pr {(v, w) = (vH , wL)}, q2 = Pr {(v, w) = (vL, wH)}
and, without loss of generality, ∆v > ∆w. Again, we restrict to the case of
a large α, under which the two goods are always sold as a unique item. We
show that, under asymmetric distributions for the valuations, strong and
positive correlation in the distribution of (v, w) is not necessary in order for
the optimal auction to be weakly inefficient.

Proposition 5 Let α ≥ (h+q1)(q2+q1)
q1q2

∆v; then the goods are always bundled.
The bundle is efficiently allocated if and only if

l(h + q1)(∆v −∆w) ≤ q2∆w ≤ q1(1− l)
h

(∆v −∆w) (14)

As usual, when the goods are bundled we have a one-good problem; the
set of possible valuations is {b1, b2, b3, b4} with b1 = vL + wL + α, b2 =
vL + wH + α, b3 = vH + wL + α and b4 = vH + wH + α. Monotonicity of
the virtual valuation function occurs when J(b3) ≥ J(b2) ≥ J(b1), which
reduces to (14). Now consider the distribution h = q1 = q2 = l = 1

4 , under
which v and w are uncorrelated. Then (14) is written as

1
3
≤ ∆w

∆v
≤ 3

4

In this example the hazard rate p(b)
1−P (b) is monotone strictly increasing be-

cause the probability distribution over {b1, b2, b3, b4} is uniform. Yet, J is
not monotone increasing if the ratio ∆w

∆v is smaller than 1
3 or larger than

3
4 . If ∆w

∆v < 1
3 , for example, then types HL and LH are bunched. More

generally, for any given probability distribution the first inequality in (14) is
not satisfied if ∆v−∆w is sufficiently large and the second inequality fails if
∆v−∆w is close to 0. Hence, asymmetric distributions for the values make
more likely that the optimal auction is weakly inefficient when the goods
are bundled.
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4 Conclusions

This paper analyzed optimal two-object auctions when each buyer’s utility
is superadditive. A first result is that many degrees of freedom existing in
the setting with no synergies disappear as superadditive values provide an
incentive for the seller to allocate the objects to a same buyer. Formally,
in any optimal mechanism, if good 1 (2) is allocated within a given set S1

(S2) of buyers according to a given probability distribution p1 (p2), then it
is maximized the probability that the goods are sold to a same buyer given
S1, S2, p1 and p2. Furthermore, for any α > 0 the goods are always sold
as a single item to a type HH when such a type is in the auction. For
these reasons no auction which is put forward in Ar when α = 0 is optimal
if α > 0: in those mechanisms the probability of generating the synergy is
suboptimally low. However, the optimal auction when α is positive but close
to 0 is optimal also if α = 0: by the maximum theorem, the solution to the
revenue maximization problem is upper-hemi-continuous with respect to α.

The optimal auction is often not weakly efficient. Specifically, I1 is opti-
mal when α > 0 is small (under strong and positive correlation) even though
it generates too rarely the synergy. When α is large, WI2 or WI1 is optimal
(still under strong and positive correlation) even though a type LL may win
both goods when facing types HL or LH. Thus, while Ar shows that weak
efficiency is consistent with revenue maximization in a two-object auction
if the valuations have binary supports and buyers are ex ante symmetric,
we find that such a result is not robust to the introduction of synergies.16

The weak inefficiency of WI2 and WI1 can be viewed as due to the interplay
among the incentive constraints for type HH. However, as we stressed in
subsection 3.4, synergies make the model closer to a single-object setting,
for which we know that inefficiency arises when virtual valuations are not
monotone. We proved in subsection 3.5 that such a result is robust with re-
spect to relaxing some of our initial assumptions. Actually, it is more likely
to arise under asymmetric distributions for the values.

5 Appendix

Proof of lemma 1 We prove that if a mechanism is such that for some
profile of buyers’ reports with nHH ≥ 1 no type HH obtains both goods
then the value of the lagrangian function L can be increased; therefore the
mechanism does not solve problem HH. Observe that the saddle-point
theorem implies ∂L

∂tHH
= 0 since tHH lives in <; thus λ1 + λ2 + λ3 = h.

Suppose first that for some profile of reports with nHH ≥ 1 no type HH
receives any good. That may occur because (i) no good is sold at all; (ii)

16Ar himself and Jehiel and Moldovanu (2001) show that the revenue maximizing auction
is not weakly efficient in some particular cases with a continuum of valuations.
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only one good, say good 1, is sold, say to a type HL; (iii) the goods are sold
to different types of buyer, say good 1 to a type HL and good 2 to a type
LH; (iv) both goods are sold to a same buyer, say to a type HL.

In any of the above cases the value of L is increased by selling both goods
to a same type HH. In case (i) this is obvious, since zHH is increased and

∂L
∂zHH

> 0. In case (ii), allocating the goods to a same type HH rather than
good 1 to a type HL increases zHH by some ε > 0 and decreases xHL by
h
q ε: ∆L = εh(2s + 2 + α) − h

q εq(s + 1) = εh(s + 1 + α) > 0. In case (iii),
∆zHH = ε > 0 and ∆xHL = ∆yLH = −h

q ε; hence ∆L = εh(2s + 2 + α) −
2h

q εq(s + 1) = εhα > 0. Last, in case (iv) we have ∆zHH = ε > 0 and
∆zHL = −h

q ε, thus ∆L = εh(1 + λ1
q ) > 0.

Now assume that for some profile of reports with nHH ≥ 1 some type
HH receives an only good, say good 1; again, we show that the value of L
can be increased by allocating both goods to a same type HH. There are
three possible cases: (i) good 2 is not sold at all; (ii) good 2 is sold to a type
HH who is not the same buyer receiving good 1; (iii) good 2 is allocated
to a buyer with a different type, say a type LH. Now we argue (about) as
above: in case (i) zHH is increased by some ε > 0 and xHH is decreased by ε:
∆L = hε(s+1+α) > 0. In case (ii) we set ∆zHH = ε > 0, ∆xHH = −ε and
∆yHH = −ε; hence ∆L = hεα > 0. Finally, in case (iii) it is ∆zHH = ε > 0,
∆xHH = −ε and ∆yLH = −h

q ε (this is the example which was examined at
the end of subsection 2.2); thus ∆L = hεα > 0.

Next lemma helps in proving lemma 2 by providing the conditions under
which different allocations are optimal in problem HH when two or three
different types of buyer show up in the auction.

Lemma 3 (i) If nHL ≥ 1, nLH ≥ 1 and nHH = nLL = 0 then

• (a) sell good 1 among buyers of type HL and good 2 among types LH
if min {λ1, λ2} ≥ q(α− 1)

• (b) sell both goods to a same buyer of type HL (LH) if λ1 ≤ min {λ2, q(α− 1)}
(λ2 ≤ min {λ1, q(α− 1)})

• (c) sell both goods to a same type HL or LH if λ1 = λ2 ≤ q(α− 1).

(ii) If nHL ≥ 1, nLL ≥ 1 and nHH = nLH = 0 then

• (a) sell both goods to a same type HL if (l+ q)λ1 + qλ2 ≤ q(1+h) and
(l + q)λ1 ≤ q(αl + h + q)

• (b) allocate both goods to a same buyer which is selected with probability
θ ∈ (0, 1) among types HL and with probability 1− θ among types LL
if (l + q)λ1 + qλ2 = q(1 + h) and (l + q)λ1 ≤ q(αl + h + q)
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• (c) if (l + q)λ1 = q(αl + h + q) and (l + q)λ1 + qλ2 ≤ q(1 + h) then
allocate good 2 randomly among all the buyers; if it is received by a
type HL then the same buyer also wins good 1; if instead a type LL
obtains good 2 then good 1 is allocated among types HL.

(iii) If nLH ≥ 1, nLL ≥ 1 and nHH = nHL = 0 then

• (a) sell both goods to a same type LH if (l+ q)λ2 + qλ1 ≤ q(1+h) and
(l + q)λ2 ≤ q(αl + h + q)

• (b) allocate both goods to a same buyer which is selected with probability
θ ∈ (0, 1) among types LH and with probability 1− θ among types LL
if (l + q)λ2 + qλ1 = q(1 + h) and (l + q)λ2 ≤ q(αl + h + q)

• (c) if (l + q)λ2 = q(αl + h + q) and (l + q)λ2 + qλ1 ≤ q(1 + h) then
allocate good 1 randomly among all the buyers; if it is received by a
type LH then the same buyer also wins good 2; if instead a type LL
obtains good 1 then good 2 is allocated among types LH.

(iv) If nHL ≥ 1, nLH ≥ 1, nLL ≥ 1 and nHH = 0 then

• (a) allocate good 1 among types HL and good 2 among types LH if
min {λ1, λ2} ≥ q(α− 1) and λ1 + λ2 ≤ 1 + l + h− αl

• (b) sell both goods to a same type HL or LH if λ1 = λ2 ≤ q(α − 1)
and (l + q)λ1 + qλ2 ≤ q(1 + h)

• (c) allocate both goods to a same type HL or LH or LL if λ1 = λ2 ≤
q(α− 1) and (l + q)λ1 + qλ2 = q(1 + h).

Proof. (ia) Suppose good 1 (2) is sold among types HL (LH); this is
the best way of allocating the objects to buyers with different types when
nHL ≥ 1, nLH ≥ 1 and nHH = nLL = 0. Increasing the probability to sell
both goods to a type HL requires to decrease both xHL and yLH by ε > 0
and to increase zHL by ε. Since ∆L = [q(α− 1)−λ1]ε, this is not profitable
if λ1 ≥ q(α−1). Similarly, if λ2 ≥ q(α−1) then the seller should not reduce
the probability that types HL obtain object 1 to increase the probability
that a same type LH receives both goods.

(ib,ic) Reasoning as in part (ia), if zHL > 0 (zLH > 0) then reducing
zHL (zLH) and increasing xHL and yLH is not profitable if λ1 ≤ q(α − 1)
[λ2 ≤ q(α − 1)]; reducing zHL (zLH) to increase zLH (zHL) decreases L if
λ1 ≤ λ2 (λ2 ≤ λ1).

(iia) We consider three alternatives to the policy of selling both objects
to a same type HL: (i) selling both goods to a same type LL with positive
probability; (ii) selling only item 2 among types LL (therefore allocating only
good 1 among types HL) with positive probability; (iii) selling only good 1
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to a type LL and only object 2 to a type HL with positive probability. The
first alternative is implemented by reducing zHL by ε > 0 and increasing
zLL by q

l ε; this implies ∆L = −ε[q(2s+1+α)−λ1]+ q
l ε[l(2s+α)−1+ l−λ3]

which has the same sign as (l + q)λ1 + qλ2 − q(1 + h). Hence, the seller is
indifferent between allocating the goods to a same buyer among types HL
or among types LL if and only if (l + q)λ1 + qλ2 = q(1 + h). The second
alternative implies reducing zHL by ε and increasing xHL by ε and yLL by
q
l ε; then ∆L = −ε[q(2s+1+α)−λ1−q(s+1)]+ q

l ε(ls−q−λ2−λ3) which has
the same sign as (l + q)λ1− q(αl +h+ q). Therefore, the seller is indifferent
between selling both objects to a type HL and allocating good 1 to a type
HL and good 2 among types LL if and only if (l + q)λ1 = q(αl + h + q).
Finally, in the third alternative ∆zHL = −ε < 0, ∆yHL = ε and ∆xLL = q

l ε;
hence ∆L = ε[qs− λ1 − q(2s + 1 + α) + λ1] + q

l ε(ls− q − λ1 − λ3) < 0.
(iib) From the proof of part (iia) we know that the seller is indifferent

between selling the bundle to a type LL or to a type HL if (l+q)λ1 +qλ2 =
q(1 + h). Furthermore, allocating with positive probability only object 2
among types LL and only item 1 among types HL by not always selling the
two goods to a same type HL or LL is unprofitable if (l+q)λ1 ≤ q(αl+h+q).

(iic) We know that if good 1 is allocated among types HL, then varying
the probability that good 2 is allocated among types LL rather than to the
same type HL who wins good 1 has no effect on L if (l+q)λ1 = q(αl+h+q).
Moreover, reducing the probability that object 1 is sold to a type HL in favor
of types LL is equivalent to reduce xHL by ε while increasing zLL by q

l ε and
reducing yLL by q

l ε; then ∆L = εq
l (αl + λ2 + q− 1). Exploiting the equality

αl = (l+q)λ1

q −h−q we find that ∆L ≤ 0 if and only if (l+q)λ1+qλ2 ≤ q(1+h).
(iii) The proof to this part is just a relabeling of the proof to part (ii).
(iva) From part (ia) we know that no modification (of the proposed sell-

ing policy) involving only types HL and LH is profitable if min {λ1, λ2} ≥
q(α− 1). Selling only good 1 (say) to a type LL decreases L (∆xHL = −ε,
∆xLL = q

l ε). Selling both objects to a same type LL entails reducing both
xHL and yLH by ε while increasing zLL by q

l ε; then ∆L = −ε2q(s + 1) +
q
l ε[l(2s+α)−1+ l−λ3], which has the same sign as λ1 +λ2−1−h− l+αl.

(ivb) In view of part (ic), no modification involving only types HL and
LH increases L if λ1 = λ2 ≤ q(α − 1). One can verify that this condition
also implies that selling only one good to a type LL is not profitable. If
both items are allocated with positive probability to a same type LL then
∆zHL = −ε < 0 (or ∆zLH = −ε) and ∆zLL = q

l ε > 0, hence ∆L =
ε
l [(q + l)λ1 + qλ2 − q(1 + h)].

(ivc) The proof to part (ivb) shows that the seller is indifferent between
allocating the bundle to a type HL or to a type LH or to a type LL if and
only if (q + l)λ1 + qλ2 = q(1 + h) and λ1 = λ2. The best way of selling
the objects separately is to allocate item 1 among types HL and good 2
among types LH. Then ∆zHL = −ε (or ∆zLH = −ε, or ∆zLL = − q

l ε),
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∆xHL = ∆yLH = ε and ∆L ≤ 0 if and only if λ1 ≤ q(α− 1) (as λ1 = λ2).

Here we report the reduced form probabilities for the mechanism we are
considering. Lemma 1 in Ar and our lemma 1 imply xHH = 0, yHH = 0 and
zHH = 1−(1−h)n

nh in any such mechanism, hence we only report the values of
{xjk, yjk, zjk}jk=HL,LH,LL.

Mechanism I1
xHL = (1−h)n−(1−h)(l+q)n−1

nq yHL = 0 zHL = (l+q)n−1

n

xLH = 0 yLH = (1−h)n−(1−h)(l+q)n−1

nq zLH = (l+q)n−1

n

xLL = (l+q)n−1−ln−1

n yLL = (l+q)n−1−ln−1

n zLL = ln−1

n

Mechanism B1
xHL = (1−h)n−2(l+q)n+ln

nq yHL = 0 zHL = (l+q)n−ln

nq

xLH = 0 yLH = (1−h)n−2(l+q)n+ln

nq zLH = (l+q)n−ln

nq

xLL = 0 yLL = 0 zLL = ln−1

n

Mechanism B2
xHL = 0 yHL = 0 zHL = (1−h)n−ln

2qn

xLH = 0 yLH = 0 zLH = (1−h)n−ln

2qn

xLL = 0 yLL = 0 zLL = ln−1

n

Mechanism WI1
xHL = (1−h)n−2(l+q)n+ln

nq yHL = 0 zHL = 2(q+l)n−ln

n(1−h)

xLH = 0 yLH = (1−h)n−2(l+q)n+ln

nq zLH = 2(q+l)n−ln

n(1−h)

xLL = 0 yLL = 0 zLL = 2(q+l)n−ln

n(1−h)

Mechanism WI2
xHL = 0 yHL = 0 zHL = (1−h)n−1

n

xLH = 0 yLH = 0 zLH = (1−h)n−1

n

xLL = 0 yLL = 0 zLL = (1−h)n−1

n

Proof of lemma 2 Lemma 3 takes for granted that both goods are
always sold. That is actually optimal if, when xjk > 0 (yjk > 0 or zjk > 0)
then ∂L

∂xjk
≥ 0 ( ∂L

∂yjk
≥ 0 or ∂L

∂zjk
≥ 0), j, k = L,H. This is the case for any

mechanism which is mentioned in the present lemma, given the values of the
multipliers which are provided below and given that s ≥ h+q

l .
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(i) We prove that mechanism I1 solves problem HH if α ≤ min
{

(h+q)l−q
2ql , 1

1−h

}
.

To this purpose set λ1 = λ2 = q αl+q+h
l+q and λ3 = h − 2λ1; λ3 ≥ 0 as

α ≤ (h+q)l−q
2ql . Having λ1 > 0, λ2 > 0 and λ3 ≥ 0 is consistent with the saddle

point theorem as (8)-(10) bind in I1. Indeed, from the heuristic description
of I1 follows that any type HL (LH) has the same probability to win good
2 (1) as any type LL: yHL + zHL = yLL + zLL and xLH + zLH = xLL + zLL;
hence (8)-(10) bind.
Given the above values for λ1, λ2 and λ3, by using lemma 3 we verify that
if nHH = 0 and at least two different types of buyer show up in the auction
then the allocation prescribed by I1 maximizes L. By lemma 3(ia), 3(iic),
3(iiic) and 3(iva) we need to check the inequalities q αl+q+h

l+q ≥ q(α − 1),

(l + 2q)q αl+q+h
l+q ≤ q(1 + h) and 2q αl+q+h

l+q ≤ 1 + l + h−α; these are satisfied
since α ≤ 1

1−h .

(ii) Assume hl ≤ 2q and (h+q)l−q
2ql < α ≤ 1 + h

2q ; set λ1 = λ2 = h
2

and λ3 = 0. In B1 constraints (8) and (9) bind while (10) is slack as
yHL + zHL + xLL + zLL = xLH + zLH + yLL + zLL > xLL + yLL + 2zLL:
the probability to win good 2 (good 1) for a type HL (LH) is higher than
for a type LL; indeed, a type LL never receives any object unless nLL = n.
From lemma 3(ia), 3(iia), 3(iiia) and 3(iva) follows that B1 is optimal if
h
2 ≥ q(α− 1), (l + 2q)h

2 ≤ q(1 + h), (l + q)h
2 ≤ q(αl + h + q) and αl ≤ 1 + l.

These inequalities hold because hl ≤ 2q and (h+q)l−q
2ql < α ≤ 1 + h

2q .
If instead α > 1 + h

2q but still hl ≤ 2q, then we prove that B2 solves
problem HH by setting again λ1 = λ2 = h

2 and λ3 = 0. As in B1, (8) and
(9) bind while (10) does not in B2 (actually, both yHL +zHL and xLH +zLH

increase in B2 with respect to B1); hence the values of the multipliers are
consistent with the saddle point theorem. In view of lemma 3(ic), 3(iia),
3(iiia) and 3(ivb) we have to check that h

2 ≤ q(α− 1), (l + 2q)h
2 ≤ q(1 + h),

(l + q)h
2 ≤ q(αl + h + q) and (l + 2q)h

2 ≤ q(1 + h); these inequalities follow
from 1 + h

2q < α and hl ≤ 2q.
(iii) Assume hl > 2q and 1

1−h < α ≤ 2
1−h ; then WI1 is optimal in

problem HH. In order to prove this claim set λ1 = λ2 = q 1+h
1−h and λ3 =

h − 2λ1; λ3 > 0 since hl > 2q. The value of θ in WI1 is such that (8)-
(10) bind. This is equivalent to zLH = zHL = zLL (as xLH = xLL =
yHL = yLL = 0) and, since zLH = zHL, we just take care of the equality
zHL = zLL. Using lemma 1 in Ar we find zHL = qn−1

n + θ[
(
n−1

1

) qn−2l
n−1 +(

n−1
2

) qn−3l2

n−2 + · · ·+
(
n−1
n−1

)
ln−1] = θ (l+q)n−ln

nq + (1− θ) qn−1

n and zLL = ln−1

n +

2(1−θ)
[(

n−1
1

) ln−2q
n−1 +

(
n−1

2

) ln−3q2

n−2 + · · ·+
(
n−1
n−1

)
qn−1

]
= (2θ−1) ln−1

n +2(1−

θ) (l+q)n−qn

nl . There exists a unique value of θ such that zHL = zLL; that
value lies in (0, 1). To be exact, θ = 2q(l+q)n−(1−h)qn−qln

(1−h)[(l+q)n−ln−qn] and zHL = zLL =
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2(l+q)n−ln

n(1−h) . By lemma 3(ia), 3(iib), 3(iiib) and 3(iva) the conditions q 1+h
1−h ≥

q(α− 1), (l + 2q)q 1+h
1−h = q(1 + h), (l + q)q 1+h

1−h ≤ q(αl + h + q) and 2q 1+h
1−h ≤

1 + l +h−αl are necessary and sufficient in order for WI1 to be optimal. It
turns out that the first one and the fourth one are equivalent to α ≤ 2

1−h ;
the third one is implied by α > 1

1−h .
Now assume still hl > 2q but 2

1−h < α and set again λ1 = λ2 = q 1+h
1−h

and λ3 = h − 2λ1. In WI2, (8)-(10) bind as each type HL, LH and LL is
treated in the same way; hence any type HL (LH) has the same probability
to win good 2 (good 1) as any type LL.
The main difference between WI1 and WI2 concerns the allocation of the
goods when nHL ≥ 1, nLH ≥ 1 and nHH = 0. In that case WI2 allocates
the bundle to a buyer who is randomly chosen among all the buyers in the
auction; lemma 3(ic) and 3(ivc) require q 1+h

1−h ≤ q(α− 1) and (l +2q)q 1+h
1−h =

q(1 + h) which hold since α ≥ 2
1−h . The two mechanisms allocate the goods

differently when nHL ≥ 1, nLL ≥ 1 and nLH = nHH = 0 and when nLH ≥ 1,
nLL ≥ 1 and nHL = nHH = 0: in WI1 the value of θ is determined as we
have seen above, while in WI2 it is equal to nHL

n or nLH
n , respectively. The

conditions for optimality, however, are the same [described by lemma 3(iib)
and 3(iiib)] and they are satisfied for WI2 as they hold for WI1 with the
same multipliers and a smaller α.

Proof of proposition 2 In problem HH some incentive constraints are
neglected. We now verify that they are satisfied in any mechanism which is
mentioned in lemma 2. In the proof to that lemma we have seen that (8)
and (9) bind in any mechanism; the same occurs for (5) and (6). For any
other incentive constraint we write down the condition under which it holds

jk j′k′ inequality (1) given jk and j′k′

HH LL yHL + zHL ≥ yLL + zLL

HL HH yHH + zHH ≥ yHL + zHL

HL LH yLH + xLL ≥ xLH + yLL

LH HH xHH + zHH ≥ xLH + zLH

LH HL xHL + yLL ≥ yHL + xLL

LL HH xHH + yHH + 2zHH ≥ yHL + zHL + xLL + zLL

LL HL xHL + zHL ≥ xLL + zLL

LL LH yLH + zLH ≥ yLL + zLL

For any of mechanisms I1, B1, WI1, B2 and WI2 the values of {xjk, yjk, zjk}j,k=L,H
which are reported at page 5 satisfy all of the above inequalities.

Proof of proposition 3 Problem HH (with the same constraints which
were considered above) has the following lagrangian function

L(p, λ) = htHH + (λ1 + λ2 + λ3)[(s + 1)(xHH + yHH) + β(2s + 2)zHH − tHH ] +
q(s + 1)xHL + (qs− λ1)yHL + β[q(2s + 1)− λ1]zHL + (qs− λ2)xLH +

26



q(s + 1)yLH + β[q(2s + 1)− λ2]zLH + (ls− q − λ1 − λ3)xLL +
(ls− q − λ2 − λ3)yLL + β[2ls− 2q − λ1 − λ2 − 2λ3]zLL

By arguing as in lemmas 2 and 3 we can prove that WI2 is optimal in
problem HH if there exist (λ1, λ2, λ3) ≥ 0 such that λ1 + λ2 + λ3 = h,
λ1 = λ2, β[q(2s + 1) − λ1] ≥ 2q(s + 1) and (1 − h)λ1 = q(1 + h). These
conditions are satisfied with λ1 = λ2 = q 1+h

1−h and λ3 = h − 2λ1 > 0 if

β ≥ (1−h)(s+1)
s(1−h)−h and hl > 2q. Conversely, B2 solves problem HH when the

inequalities β[q(2s+1)−λ1] ≥ 2q(s+1) and (1−h)λ1 ≤ q(1+h) hold with
λ1 = λ2 = h

2 and λ3 = 0; they are satisfied if β ≥ 4q(s+1)
2q(2s+1)−h and hl ≤ 2q.

In both cases the neglected incentive constraints hold.

Proof of proposition 4 Here problem HH - with the usual constraints
- has the following lagrangian function

L(p, λ) = htHH + (λ1 + λ2 + λ3)[(s + 1)(xHH + yHH) + (2s + 2 + αHH)zHH − tHH ] +
q(s + 1)xHL + (qs− λ1)yHL + [q(2s + 1 + αHL)− λ1(1 + ∆HH)]zHL +
(qs− λ2)xLH + q(s + 1)yLH + [q(2s + 1 + αHL)− λ2(1 + ∆HH)]zLH +
(ls− q − λ1 − λ3)xLL + (ls− q − λ2 − λ3)yLL +
[l(2s + αLL)− (2q + λ1 + λ2 + λ3)(1 + ∆HL)− λ3(1 + ∆HH)]zLL

Condition (12) implies that for any jk the coefficient of zjk is larger than the
sum of the coefficients of xjk and yjk. Then the conditions for the optimality
of WI2 are λ1 = λ2, q(αHL − 1) ≥ λ1(1 + ∆HH) and q(1 + ∆HL) + (1 +
∆HH)(qλ3 − lλ1) = 0. They hold with λ1 = λ2 = q (1+∆HL)+h(1+∆HH)

(1−h)(1+∆HH) and
λ3 = h− 2λ1 > 0 if (13) fails. Conversely, B2 is optimal when q(αHL− 1) ≥
λ1(1+∆HH) and q(1+∆HL)+ (1+∆HH)(qλ3− lλ1) ≥ 0 with λ1 = λ2 = h

2
and λ3 = 0. Using (12), these conditions hold if (13) is satisfied.

Proof of proposition 5 We consider the subconstrained problem in
which the only incentive constraints are ICHH HL (the constraint which
prevents type HH from reporting HL), ICHH LH , ICHL LH , ICHL LL and
ICLH LL. The latter constraint surely binds; λ1 (λ2, λ3 and λ4, respectively)
denotes the multiplier of the first (second, third and fourth, respectively) of
the above constraints. The lagrangian function is then

L(p, λ) = (λ1 + λ2)[vHxHH + wHyHH + (vH + wH + α)zHH ] + (h− λ1 − λ2)tHH +
(q1 + λ1 − λ3 − λ4)tHL + (λ3 + λ4 − λ1)vHxHL + [(λ3 + λ4)wL − λ1wH ]yHL +
[(λ3 + λ4)(vH + wL + α)− λ1(vH + wH + α)]zHL + [q2vL − (λ2 + λ3)∆v]xLH +
(q2wH + λ3∆w)yLH + [q2(vL + wH + α)− λ2∆v − λ3(∆v −∆w)]zLH +
(lvL − λ4∆v)xLL + [lwL − (q2 + λ2 + λ3)∆w]yLL +
[l(vL + wL + α)− (q2 + λ2 + λ3)∆w − λ4∆v]zLL

We know that λi ≥ 0 (i = 1, 2, 3, 4), λ1 + λ2 = h and λ3 + λ4 − λ1 = q1

(because ∂L
∂tHH

= ∂L
∂tHL

= 0). These facts imply that the goods are always
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bundled if α > (h+q1)(q2+q1)
q1q2

∆v. If the bundle is efficiently allocated, then
ICHH HL and ICHL LH bind whereas ICHH LH and ICHL LL are slack. In
such a case λ2 = λ4 = 0, λ1 = h and λ3 = q1 + h. Under the inequalities
in (14) the efficient allocation is actually optimal since, in the lagrangian
function, the coefficient of zHL is larger than q1

q2
times the coefficient of zLH

which in turn is larger than q2

l times the coefficient of zLL.
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