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Abstract

We establish a calculus characterization of the core of supermodu-
lar games, which reduces the description of the core to the computa-
tion of suitable Gateaux derivatives of the Choquet integrals associ-
ated with the game. Our result generalizes to infinite games a classic
result of Shapley (1971). As a secondary contribution, we provide a
fairly complete analysis of the Gateaux and Frechet differentiability
of the Choquet integrals of supermodular measure games.

MSC (2000): Primary 91A12, 91B06; Secondary: 49J50

1 Introduction

Even though the core of a transferable utility (TU) game is a fundamen-
tal solution concept, widely used in mathematical economics, fairly little is
known about its structure in infinite games. In order to shed light on this
issue, Epstein and Marinacci (2001) and Marinacci and Montrucchio (2001)

∗E-mails: massimo@econ.unito.it and luigi.montrucchio@econ.unito.it; URL:
http://web.econ.unito.it/gma/indexi.htm. We wish to thank for helpful conversa-
tions Paolo Ghirardato, Fabio Maccheroni, Marco Scarsini, and, especially, Rose-Anne
Dana.
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have introduced a calculus and a subcalculus for set functions and used them
to establish several characterizations of cores of infinite TU games. Besides
providing a useful conceptual framework, this approach turned out to be es-
pecially fruitful in the study of infinite games having finite dimensional cores,
as discussed at length in Marinacci and Montrucchio (2001).

In this paper we follow a different route and show that cores of infinite
games can be also characterized by using the Gateaux derivatives of the
associated Choquet integrals. Specifically, let ν : Σ → R be a bounded
supermodular game defined on a σ-algebra Σ and let B (Σ) be the set of all
bounded Σ-measurable real valued functions. If we denote by ν (X) =

∫
Xdν

the Choquet integral of X ∈ B (Σ) with respect to ν, we can view ν as a
functional on B (Σ). This makes it possible to talk of its Gateaux derivative
Dν (X) at X, which is a finitely additive measure on Σ, whose associated
linear functional 〈Dν (X) , Y 〉 is the Gateaux differential at the direction
Y ∈ B (Σ). Given a supermodular game ν : Σ → R, our main result,
Theorem 7, shows that under some standard topological conditions, we have

core (ν) = cow∗
({Dν (X) : X injective and in B (Σ)}) , (1)

namely, the core of ν is the weak∗-closed convex hull of the Gateaux deriva-
tives of ν computed at all injective functions belonging to B (Σ).

This result provides a calculus characterization of the core and reduces its
description to the computation of suitable Gateaux derivatives. Moreover,
it generalizes the classic result of Shapley (1971) about the set of extreme
points of a finite supermodular game. As a matter of fact, in the Conclud-
ing Remarks we show that Shapley’s result implicitly rests on the Gateaux
derivatives of injective functions, and that our characterization reduces to
his result in the finite case.

To illustrate the usefulness of our calculus representation, in Section 4
we consider measure games, a widely used class of games of the form f ◦ P ,
where P = (P1, ..., Pn) : Σ → Rn is a non-atomic vector probability measure
and f : R (P ) → R is real-valued function defined on the range R (P ) =
{P (E) : E ∈ Σ} ⊆ Rn of P . For this class of games, Theorem 16 shows that
the general representation given by Eq. (1) takes the following stark closed
form:

core (ν) = cow∗

{
n∑

i=1

∫
E

∂f

∂xi

(GX ◦X) dPi : X injective and in B (Σ)

}
,

(2)
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where GX : R → Rn is the vector distribution function defined by GX (q) =
(P1 (X ≥ q) , ..., Pn (X ≥ q)) for q ∈ R. Several different representations of
the core will be also proved.

A secondary contribution of this paper is a fairly detailed study of the
Gateaux differentiability of Choquet integrals, which is a key issue for our
representation. In particular, given a function X ∈ B (Σ) with a continu-
ous vector distribution functionGX , Theorem 11 shows that for a suitably
differentiable function f the Gateaux derivative of the Choquet functional
ν : B (Σ) → R associated with a supermodular measure game ν = f ◦ P
exists and it has the following neat closed form:

〈Dν (X) , Y 〉 =
n∑

i=1

∫
∂f

∂xi

(GX ◦X)Y dPi.

Actually, more is true: the Choquet functional is Frechet differentiable pro-
vided f is continuously differentiable.

To the best of our knowledge, the recent paper by Carlier and Dana
(2001) is the only other work that has investigated similar issues. They
consider the special case of positive scalar measure games and use different
“rearrangements” techniques, which do not seem to be easy to extend beyond
the scalar case. Nevertheless, their paper contains several insightful results on
both the structure of core (f ◦ P ) and the Gateaux differentiability properties
of the Choquet functional ν = f ◦ P , which we discuss in some detail in the
Concluding Remarks.

The paper is organized as follows. After some preliminaries in Section
2, we prove in Section 3 our representation for general supermodular games,
while Section 4 contains its version for measure games. In the Concluding
Remarks we discuss in detail the relations of our paper with Shapley (1971)
and Carlier and Dana (2001). The Appendix contains the proofs. Of spe-
cial importance are the proofs of Theorem 5 and Lemmas 24 and 25, which
provide our main technical tools. Theorem 5, which shows that Choquet
functionals are Gateaux differentiable at injective functions, is based on a
result of Mackey (1957), which says that in standard Borel spaces a count-
able and separating collection of sets generates the Borel σ-algebra. This
important property of standard Borel spaces is key for our results. Lemma
24 provides the representation of the Gateaux derivative Dν (X) when X is
injective and ν is a supermodular measure game; in particular, Eq. (2) is a
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simple specification of this lemma. Finally, Lemma 25 provides the key result
needed to establish the Frechet differentiability of the Choquet functional.
This lemma shows that, given any function X, it is possible to construct a
function Y comonotonic with X and having a continuous distribution.

2 Preliminaries

Throughout the paper, Σ is a σ-algebra of sets of a space Ω. Subsets of Ω
are understood to be in Σ even where not stated explicitly.

2.1 Set Functions

A set function ν : Σ → R is a game if ν (∅) = 0. A game ν is

positive if ν (A) ≥ 0 for all A,

bounded if supA∈Σ |ν (A)| <∞.

monotone (or a capacity) if ν (A) ≤ ν (B) whenever A ⊆ B,

continuous if limn→∞ ν (An) = ν (Ω) whenever An ↑ Ω and limn→∞ ν (An) =
0 whenever An ↓ ∅.

supermodular (or convex) if ν (A ∪B) + ν (A ∩B) ≥ ν (A) + ν (B) for all
sets A and B,

additive (or a charge) if ν (A ∪B) = ν (A) + ν (B) for all pairwise disjoint
sets A and B,

countably additive (or a measure) if ν (
⋃∞

i=1Ai) =
∑∞

i=1 ν (Ai) for all count-
able collections of pairwise disjoint sets {Ai}∞i=1.

The set of all charges (measures, resp.) that are bounded with respect to
the variation norm ‖·‖ is denoted by ba (Σ) (ca (Σ), resp.). Generic elements
of ba (Σ) are denoted by m.

The set of all games that can be expressed as differences of two capacities
is denoted by bv (Σ). Aumann and Shapley (1974) show that a game ν
belongs to bv (Σ) if and only if the norm ‖ν‖ ≡ sup

∑n
i=1 |ν (Ei)− ν (Ei−1)|,

where the sup is taken over all finite chains {Ei}n
i=0, is finite. Moreover,
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they prove that (bv (Σ) , ‖·‖) is a Banach space and that ‖·‖ reduces to the
variation norm on games belonging to ba (Σ). Finally, Maccheroni and Ruckle
(2001) have shown that (bv (Σ) , ‖·‖) can be viewed as a dual space.

Let B (Σ) be the set of all bounded Σ-measurable functions defined on Ω.
The standard duality between (ba (Σ) , ‖·‖) and (B (Σ) , ‖·‖) will be denoted
by 〈X,µ〉 =

∫
Xdµ, with X ∈ B (Σ) and µ ∈ ba (Σ).

2.2 Cores and a Theorem of Shapley

The core of a game ν is the set of all charges in ba (Σ) that setwise dominate
ν, that is,

core (ν) = {m ∈ ba (Σ) : m (A) ≥ ν (A) for all A ∈ Σ and m (Ω) = ν (Ω)} .

The core is a (possibly empty) convex set and it is weak∗-compact. The
following result, which plays an important role in this paper, is a simple
generalization to real-valued supermodular games of well-known properties
of positive supermodular games, essentially due to Choquet (1953).

Lemma 1 Let ν : Σ → R be a bounded and supermodular game. Then
core (ν) 6= ∅ and

(i) Given any chain {Ei}i∈I in Σ, there is m ∈ core (ν) such that m (Ei) =
ν (Ei) for all i ∈ I.

(ii) ν is continuous if and only if core (ν) ⊆ ca (Σ).

(iii) ν belongs to bv (Σ).

In a classic result, Shapley (1971) has characterized the extreme points
of core (ν) when Ω is finite and Σ is its power set. Recall that a maximal
chain C of a finite set Ω = {ω1, ..., ωN} is a collection of sets{

ωσ(1)

}
,
{
ωσ(1), ωσ(2)

}
, ...,

{
ωσ(1), ..., ωσ(N)

}
,

where σ is a permutation over {1, ..., N}.

Theorem 2 (Shapley). Let ν be a supermodular game defined on the power
set of a finite set Ω. Then, a charge m is an extreme point of core (ν) if and
only if there is a maximal chain C such that ν (A) = m (A) for all A ∈ C.
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2.3 Choquet Integrals and Derivatives

Given a game ν and a function X ∈ B (Σ), the Choquet integral ν : B (Σ) →
R is defined as follows:

ν (X) =

∫ ∞

0

ν (X ≥ t) dt+

∫ 0

−∞
[ν (X ≥ t)− ν (Ω)] dt, (3)

where in the r.h.s. we have two Riemann integrals. The Choquet integral
exists for all X ∈ B (Σ) whenever ν ∈ bv (Σ). For, in this case ν (X ≥ t) is of
bounded variation in t and the Riemann integrals in Eq. (3) are well-defined.

The Choquet integral is positive homogeneous and Lipschitz continuous
(see Lemma 22 in the Appendix). It is also monotone when ν is a capacity,
while it is superadditive (and so concave) when ν is supermodular. Finally, it
is additive on any pair of comonotonic functions, that is, on any pair X, Y ∈
B (Σ) such that [X (ω)−X (ω′)] [Y (ω)− Y (ω′)] ≥ 0 for any ω, ω′ ∈ Σ (see
Schmeidler, 1986).

Another remarkable property of the Choquet integral is that, by point (i)
of Lemma 1, for each X ∈ B (Σ) it holds

ν (X) = min
m∈core(ν)

〈X,m〉

whenever ν is supermodular. Consequently, in the supermodular case the
Choquet integral can be viewed as a support function (though the converse
is clearly false, as in general support functions are not comonotonic additive).

Given ν : B (Σ) → R and X ∈ B (Σ), if there exists an element Dν (X) ∈
ba (Σ) such that

〈Y,Dν (X)〉 = lim
t↓0

ν (X + tY )− ν (X)

t
(4)

for all Y ∈ B (Σ), then we say that ν is Gateaux differentiable at X, and
Dν (X) is the Gateaux derivative of ν at X.

If ν is Gateaux differentiable at X ∈ B (Σ) and the limit (4) is uniform
over Y ∈ B (Σ) with ‖Y ‖ = 1, then ν is said to be Frechet differentiable at
X, and Dν (X) is the Frechet derivative of ν at X.

Finally, when ν is concave we denote by ∂ν (X) the standard superdiffer-
ential

∂ν (X) = {m ∈ ba (Σ) : 〈Y −X,m〉 ≥ ν (Y )− ν (X) for all Y ∈ B (Σ)} .
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3 General Results

We begin with a lemma that establishes some properties of ∂ν (X) in the
supermodular case.

Lemma 3 Let ν : Σ → R be a bounded and supermodular game. Then, for
all X ∈ B (Σ), ∂ν (X) is non-empty and

∂ν (X) = {m ∈ core (ν) : 〈X,m〉 = ν (X)} . (5)

Moreover, given any X1, X2 ∈ B (Σ), the three following conditions are equiv-
alent:

(i) ∂ν (X1) ∩ ∂ν (X2) 6= ∅,

(ii) ν (X1 +X2) = ν (X1) + ν (X2) ,

(iii) ∂ν (X1) ∩ ∂ν (X2) = ∂ν (X1 +X2) .

If ν is supermodular, by a classic result in Convex Analysis the set ∂ν (X)
is a singleton if and only if the Choquet integral ν : B (Σ) → R, which is
Lipschitz continuous, is Gateaux differentiable at X (see, e.g., Phelps (1993)
p. 5). The following result is thus an immediate but interesting consequence
of the second part of Lemma 3. It says that the derivative is invariant under
comonotonicity.

Corollary 4 Let ν : Σ → R be a bounded and supermodular game. If the
Choquet integral ν : B (Σ) → R is Gateaux differentiable at X1 and at X2,
then Dν (X2) = Dν (X1) whenever X1 and X2 are comonotonic.

Having established Lemma 3, we can now turn to our first result, in which
we prove that the Choquet functional is Gateaux differentiable at all injective
functions in B (Σ). This is a significant class of functions in B (Σ), as proved
by Lemma 23 in the Appendix, which shows that the class of all injective
functions is dense in B (Σ).

To prove this result we need some more structure. In particular, we have
to assume that ν is continuous and that (Ω,Σ) is a (standard) Borel space,
that is, (Ω,Σ) is isomorphic to a pair (Ω′,Σ′), where Ω′ is a Borel subset of
some Polish space and Σ′ is its Borel σ-algebra (see, e.g., Srivastava, 1998).
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Theorem 5 Let (Ω,Σ) be a standard Borel space and let ν : Σ → R be a
bounded, continuous and supermodular game. If X ∈ B (Σ) is injective, then
∂ν (X) is a singleton consisting of the Gateaux derivative Dν (X).

The next example shows that continuity is needed in Theorem 5.

Example. Set Ω = N and Σ = 2N. Consider the filter game ν : Σ → {0, 1}
defined as follows: ν (A) = 1 if and only if A ⊆ N is cofinite (see Marinacci,
1996). This two-valued game ν is supermodular and discontinuous at Ω. It
is easy to verify that

∫
Xdν = lim infn→∞X (n) for each X ∈ B (Σ). This

functional is nowhere Gateaux differentiable (see, e.g., Phelps (1993) example
1.21).

It is easy to see that the Gateaux derivatives Dν (X) of Theorem 5 are ex-
treme points of core (ν). This suggests the possibility of representing core (ν)
as a weak∗ closed convex hull of these derivatives. Theorem 7, our second
main result, will establish such a representation. In order to state it, we need
a final lemma, which refines the representation of ∂ν (X) given by Eq. (5).
It is based on Lemma 23, Theorem 5, and on a “D-representation” result of
Jofre and Thibault (1990). We denote by BI (Σ) the class of all injective
functions belonging to B (Σ).

Lemma 6 Let (Ω,Σ) be a standard Borel space and ν : Σ → R be a bounded,
continuous and supermodular game. Then

∂ν (X) = cow∗ {w∗ − limDν (Xn) : ‖Xn −X‖ → 0, Xn ∈ BI (Σ)} (6)

for all X ∈ B (Σ).

We can now state our main result, which generalizes to infinite con-
vex games the classic result of Shapley (1971) reported in Theorem 2 and,
more importantly, provides a calculus characterization of the core. Let ∼ be
the comonotonic relation on B (Σ), that is, X1 ∼ X2 if X1 and X2 are
comonotonic. It is easy to check that ∼ is an equivalence relation when re-
stricted to the collection BI (Σ). As usual, BI (Σ) / ∼ denotes the set of
equivalence classes determined by ∼, while, with a slight abuse of notation,
X ∈ BI (Σ) / ∼ means that X is a representative of one of the equivalence
classes determined by ∼.
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Theorem 7 Let (Ω,Σ) be a standard Borel space and ν : Σ → R be a
bounded, continuous and supermodular game. Then

core (ν) = cow∗ {Dν (X) : X ∈ BI (Σ) / ∼} (7)

and, for all Y ∈ B (Σ),

ν (Y ) = inf {〈Dν (X) , Y 〉 : X ∈ BI (Σ) / ∼} , (8)

where the inf is a min if and only if there is an injective X ∈ B (Σ) such
that ν (X + Y ) = ν (X) + ν (Y ).

Theorem 7 is the announced calculus characterization of the core. In the
Concluding Remarks we will discuss its relations with Shapley’s Theorem 2,
while in the next subsection we provide an illustration of the usefulness of
this calculus characterization of the core by studying the important class of
measure games.

4 Application: Measure Games

A game ν : Σ → R is a (non-atomic) measure game if there exists a vector
measure P = (P1, ..., PN) : Σ → RN

+ , where each Pi is a non-atomic proba-
bility measure on Σ, and a function f : R (P ) → R defined over the range
R (P ) of P and with f (0) = 0, such that

ν (E) = f (P (E)) for all E ∈ Σ.

When n = 1, ν = f ◦ P is called a scalar measure game. Notice that, by the
Lyapunov Theorem, R (P ) is a compact and convex subset of Rn.

Measure games play in important role in mathematical economics, where
they are widely used and studied. One of the reasons of the importance
of measure games lies in their remarkable analytical tractability, due to the
added structure guaranteed by the special form f ◦P . Despite their superior
tractability, even for measure games little is known about the structures of
their cores, except in the special case when its elements are linear combi-
nations of the underlying vector measure P , that is, when core (f ◦ P ) ⊆
span {P1, ..., Pn}. As far as we know, outside this special “linear” case –
treated at length in Marinacci and Montrucchio (2001) and in the references
therein contained – the only serious attempt to characterize the core of a
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measure game can be found in the recent work of Carlier and Dana (2001),
who consider scalar measure games.

The purpose of this section is to show that, because of their special form,
for supermodular measure games it is possible to establish an especially neat
version of Theorem 7, which provides a sharp description of the structure
of the cores of these games. This is achieved through a careful study of the
differentiability properties of the associated Choquet integrals

∫
Xd (f ◦ P ),

which is a key step in order to obtain the calculus characterization of The-
orem 7. As a result, a secondary contribution of this subsection is a fairly
complete analysis of the differentiability properties of the Choquet integrals∫
Xd (f ◦ P ).
For the scalar case, our results sharpen the ones that Carlier and Dana

(2001) have obtained in the scalar case with their different techniques, as we
discuss below.

4.1 Functions Monotone of Order 2

In view of the importance in what follows of supermodular measure games,
it is important to provide a characterization of this class of measure games
in terms of the underlying function f : R (P ) → R. Consider the following
class of functions:

Definition 8 A function f : A ⊆ Rn → R defined on a convex set A is
monotone of order 2 if

f (x+ h)− f (x) ≤ f (y + h)− f (y)

for all x, y ∈ A with x ≤ y and for all h ≥ 0 such that x+h and y+h belong
to A.

In other words, a function is monotone of order 2 if its second difference

f (x+ h+ k)− f (x+ h)− f (x+ k) + f (x)

is non-negative for h, k ≥ 0. Choquet (1953) defines on p. 172 a similar
class of functions, even though he requires also the first difference to be
non-negative, and so the function itself to be non-decreasing.

The next result, whose main part is due to Choquet (1953) pp. 193-194,
shows the importance for our purposes of functions monotone of order 2.
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Proposition 9 A measure game f ◦ P : Σ → R is supermodular whenever
f : R (P ) → R is monotone of order 2. The converse holds when R (P ) =
[0, 1]n.

Functions monotone of order 2 have several interesting characterizations,
at least under mild assumptions of regularity (see, e.g., Marinacci, Montruc-
chio, and Scarsini (2002) and the references therein contained). The simplest
one is the following: If f : A ⊆ Rn → R is differentiable on A, then f is
monotone of order 2 if and only if ∇f (x) ≤ ∇f (y) whenever x ≤ y. In turn,
this implies that when f is twice differentiable, then f is monotone of order
2 if and only if ∂2f/∂xi∂xj ≥ 0 for all i, j.

When n = 1, monotonicity of order 2 is equivalent to convexity, provided
f is continuous. Without continuity, this equivalence fails. For example,
any solution f of the Cauchy functional equation ψ (x+ y) = ψ (x) + ψ (y)
is clearly monotone of order 2, but it might well be non convex if it is not
assumed to be continuous. Notice that this example also shows that Proposi-
tion 9 extends to non continuous functions f the well-known fact that, when
f is continuous, a scalar measure game f ◦ P is supermodular if and only if
f is convex. As a matter of fact, without continuity, convexity and mono-
tonicity of order 2 are no longer equivalent, and so the standard result fails,
while Proposition 9 still holds.

Interestingly, when n > 1 monotonicity of order 2 and convexity are quite
independent notions. There are convex functions that are not monotone of
order 2 (e.g., F (x) = ‖x‖) and, vice versa, functions monotone of order 2
that are not convex (e.g., F (x) =

∏n
i=1 xi).

We close with some further interesting properties of regularity of mono-
tone functions of order 2, proved in Marinacci, Montrucchio, and Scarsini
(2002). Recall that a function f : A ⊆ RN → R is calm from below at
x0 ∈ A if there is a neighborhood B (x0, ε) and a constant γ > 0 such that,
for all x ∈ B (x0, ε) ∩ A,

f (x) ≥ f (x0)− γ ‖x− x0‖ .

For example, if f is differentiable at x0 or it is locally Lipschitz at x0, then
it is calm from below at x0 (see, e.g., Rockafellar and Wets (1998) p. 320).

Proposition 10 Let f : [0, 1]n → R be a function monotone of order 2. If
f is lower semicontinuous at 0 and 1, then:
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(i) f is continuous and of bounded variation on [0, 1]n.

(ii) given a continuous and non-decreasing curve γ : [0, 1] → [0, 1]n, it holds∫
(f ◦ γ) dµ ≥ f

(∫
γdµ

)
(9)

for any Borel probability measure µ on [0, 1]. Moreover, the function
f ◦ γ : [0, 1] → R is absolutely continuous provided γ is Lipschitz.

(iii) there is a set D whose complement has Lebesgue measure zero, on which
f is differentiable and the gradient mapping ∇f is continuous.

If, in addition, f is calm from below at 0 and 1, then f is Lipschitz on
[0, 1]n.

The first part of point (ii) is due to Brunk (1964), which also proves
other versions of Eq. (9). An important special case of point (ii) is when
the measure µ has finite support. In this case, point (ii) says that for each
sequence {xi}n

i=1 ⊆ [0, 1]n with x1 ≤ x2 ≤ · · · ≤ xn, it holds
∑n

i=1 tif (xi) ≥
f (
∑n

i=1 tixi) whenever {ti}n
i=1 is a sequence of positive numbers such that∑n

i=1 ti = 1. In particular, this means that all continuous functions monotone
of order 2 are separately convex in each component and, more generally, are
convex the restrictions over the straight-lines with non-negative slope.

4.2 Gateaux Differentiability

In view of Theorem 7, to characterize core (f ◦ P ) we have to study the
Gateaux differentiability of the Choquet functional

∫
Xd (f ◦ P ). This issue

has been studied by Carlier and Dana (2001) in the case of scalar mono-
tone games. Here we provide general results for measure games, which also
sharpen their results in the scalar case (cf. Remark (i) below).

Some notation is in order. For a given X ∈ B (Σ), Gi
X (q) denotes the

distribution function Gi
X (q) = Pi (X ≥ q) for i = 1, 2, ..., n, while GX : R →

R (P ) is the mapping defined by

GX (q) =
(
G1

X (q) , ..., Gn
X (q)

)
.

The symbol P denotes the measure P = P1 + ... + Pn. Finally, for a vector
x ∈ Rn, |x|1 =

∑n
i=1 |xi| is the l1-norm of Rn.
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Theorem 5 in Section 3 showed that under very general conditions the
Choquet functional is Gateaux differentiable at all injective functions in
B (Σ). We now show that a stronger result can be proved for measure games,
thanks to their special structure. In particular, the next result, Theorem 11,
improves Theorem 5 in several ways. First, the derivative takes the stark
closed form given by Eq. (10). Second, Theorem 11 shows that the Choquet
functional

∫
Xd (f ◦ P ) is Gateaux differentiable at all functions X ∈ B (Σ)

that have a continuous distribution function GX (q); this a broad class of
functions – a dense Gδ subset of B (Σ), as shown in the remark (ii) below –
which clearly includes all injective functions. Finally, Theorem 11 provides
a simple condition under which the Choquet functional is actually Frechet
differentiable.

We can state the result. As usual, a function f : R (P ) → R is differen-
tiable on R (P ) whenever it can be extended to a differentiable function on
some open set containing R (P ).

Theorem 11 Let ν = f ◦P be a measure game over a standard Borel space
(Ω,Σ), with f monotone of order 2. Given X ∈ B (Σ), suppose one of the
following holds:

(i) X is injective and f is differentiable and Lipschitz;

(ii) X has a continuous distribution function GX and f is continuously
differentiable.

Then, the game ν is Gateaux differentiable at X and its differential is

〈Dν (X) , Y 〉 =
n∑

i=1

∫
∂f

∂xi

(GX ◦X)Y dPi. (10)

Finally, if f is continuously differentiable, then ν is actually Frechet differ-
entiable at X.

There is a “trade-off” between conditions (i) and (ii): condition (i) re-
quires more on X (injectivity rather than just a continuous distribution func-
tion), while condition (ii) requires more on f (continuous differentiability
rather than “plain” differentiability).

In the special case R (P ) = [0, 1]n, Theorem 11 takes a simpler form
as it becomes superfluous to require in point (i) that f be Lipschitz. In
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fact, differentiability implies calmness, and so by Proposition 10 a function
f monotone of order 2 is Lipschitz whenever it is differentiable.

More is true when n = 1: in this case, the differentiability assumptions
as well can be weakened. For convenience, we consider this case separately.

Proposition 12 Let ν = f ◦ P be a scalar measure game over a standard
Borel space (Ω,Σ), with f convex and continuous. Given X ∈ B (Σ), suppose
one of the following holds:

(i) X is injective;

(ii) X has a continuous distribution function GX and f is Lipschitz.

Then, the game ν is Gateaux differentiable at X and its differential is

〈Dν (X) , Y 〉 =

∫
f ′+ (GX ◦X)Y dP.

Finally, if f is differentiable, then ν is actually Frechet differentiable at X.

Condition (i) in the two previous results is all we need to establish the
calculus characterization of core (f ◦ P ) we are looking for. Condition (ii),
however, provides an interesting sufficient condition for the Gateaux differen-
tiability of

∫
Xd (f ◦ P ). The next result completes our analysis by showing

that this condition is “almost” necessary, provided f is continuously differ-
entiable. To state the result we need the following definition.

Definition 13 A differentiable and monotone of order 2 function f : A ⊆
Rn → R is strictly monotone of order 2 if, for all x ≥ y,

∂f

∂xi

(x) >
∂f

∂xi

(y)

whenever xi > yi.

For example, in the scalar case a continuous function is strictly monotone
of order 2 if and only if it is strictly convex. We can now state the announced
result.

Theorem 14 Let ν = f ◦P be a measure game over a standard Borel space
(Ω,Σ), and suppose f is strictly monotone of order 2 and continuously dif-
ferentiable on R (P ). Then, ν is not Gateaux differentiable at any X ∈ B (Σ)
such that the distribution function GX is not continuous.
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Remark. Again, in the case n = 1 a weaker differentiability assumption is
needed: it is enough to define strict monotonicity using the right derivative
f ′+ and to assume in Theorem 14 that f ′+ is bounded.

Summing up, we can conclude that the continuity of the distribution
function GX is tightly connected with the Gateaux differentiability of the
Choquet functional

∫
Xd (f ◦ P ). As a matter of fact, by Theorem 11 it is a

sufficient condition, while by Theorem 14 it is “almost” necessary as well.

We close the subsection with few remarks:
(i) Carlier and Dana (2001) have proved the Gateaux part of Proposition

12 and Theorem 14 in the scalar case n = 1 and with f strictly increasing
and differentiable (cf. the Concluding Remarks).

(ii) By Lemma 23, BI (Σ) is dense in B (Σ). This immediately implies
that the set of all functions X ∈ B (Σ) whose GX is continuous is dense in
B (Σ). Interestingly, more is true: such a set is a Gδ subset of B (Σ). For, let
αn ↓ 0 and set Vn =

{
X ∈ B (Σ) : P (X = q) < αn for all q ∈ R

}
. It is easy

to see that each set Vn is open, and so the set
⋂

n Vn is the desired Gδ dense
subset. Since B (Σ) is not a weak Asplund space, the fact that the domain
of Gateaux differentiability of a concave Choquet integral contains a dense
Gδ subset of B (Σ) is noteworthy.

(iii) Unless R (P ) = [0, 1]n, there might be measure games f ◦ P that are
supermodular even though f is not monotone of order 2 (cf. Proposition 9).
On the other hand, it can be shown that Theorems 11 and 14 hold if we just
assume that the game f ◦ P is supermodular rather than the function f be
monotone of order 2, provided we assume that f is continuously differentiable
on R (P ).

4.3 Core Representation

We are now ready to state the version of Theorem 7 for measure games. One
of the features of this version is the use of densities, made possible by the
existence of an underlying vector probability P . As a matter of fact, we have
the following simple result (cf. Marinacci and Montrucchio, 2001).

Lemma 15 Let ν = f ◦P be a measure game, not necessarily supermodular,
and suppose f is lower semicontinuous at 0 and at 1. Then, core (ν) ⊆ ca (Σ)
and each m ∈ core (ν) is absolutely continuous with respect to P .
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In view of Lemma 15 we can consider core (ν) ⊆ L1

(
Ω,Σ, P

)
, by identi-

fying m ∈ core (ν) with its density dm/dP ∈ L1

(
Ω,Σ, P

)
. In particular, it

is easy to check that core (ν) can be viewed as a σ (L1, L∞)-compact subset
of L1

(
Ω,Σ, P

)
.

We can now state our calculus characterization of core (f ◦ P ). Two
pieces of notation:

(i) co denotes the closed convex hull in the norm topology of L1

(
Ω,Σ, P

)
;

(ii)
∫

E
(∂f/∂xi) (GX ◦X) dPi denotes the measure naturally associated

with the linear functional Y →
∫

(∂f/∂xi) (GX ◦X)Y dPi.

Theorem 16 Let ν = f ◦P be a measure game over a standard Borel space
(Ω,Σ), and suppose f is differentiable and monotone of order 2. Then,

core (ν) = co

{
n∑

i=1

∂f

∂xi

(GX ◦X)
dPi

dP
: X ∈ BI (Σ) / ∼

}
(11)

= cow∗

{
n∑

i=1

∫
E

∂f

∂xi

(GX ◦X) dPi : X ∈ BI (Σ) / ∼

}
,

where dPi/dP is the Radon-Nikodym derivative of Pi with respect to P .

Remark. For brevity we have omitted in the statement the counterpart of
Eq. (8).

The representation of core (ν) given in Theorem 16 can be further sharp-
ened thanks to the σ (L1, L∞)-compactness of core (ν), which makes it possi-
ble to apply the classic Vitali Convergence Theorem (see, e.g., Dunford and
Schwartz (1957) p. 325). We thus get the following “concrete” non topo-
logical representation, based on almost sure convergence. In the statement,
P − lim fn denotes a P -a.e. limit of the sequence {fn}n.

Corollary 17 Let ν = f ◦P be a measure game and suppose the hypotheses
of Theorem 16 hold. If we set

D ≡

{
n∑

i=1

∂f

∂xi

(GX ◦X)
dPi

dP
: X ∈ BI (Σ) / ∼

}
,

then,

core (ν) =
{
P − lim fn : fn ∈ co (D)

}
.
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The scalar case n = 1 deserves to be treated separately because in this
case the differentiability of f becomes superfluous. We have the following
result, which combines Theorem 16 and Corollary 17 in the scalar case (we
omit the simple proof).

Proposition 18 Let ν = f ◦ P be a scalar measure game over a standard
Borel space (Ω,Σ), and suppose f is continuous and convex. If we set

D ≡
{
f ′+ (GX ◦X) : X ∈ BI (Σ) / ∼

}
then,

core (ν) = co {D} = {P − lim fn : fn ∈ co (D)}

= cow∗
{∫

E

f ′+ (GX ◦X) dP : X ∈ BI (Σ) / ∼
}
.

By Theorem 11, the measure game ν = f ◦ P is Frechet differentiable
at all X ∈ BI (Σ) whenever f is continuously differentiable and monotone
of order 2. By elaborating on Proposition 5.11 of Phelps (1993), it is easy
to check that this implies that Dν (X) is a weak∗ strongly exposed point of
core (ν). Hence, while under Gateaux differentiability the measure Dν (X)
is an extreme point of core (ν), under Frechet differentiability it becomes a
weak∗ strongly exposed point. As a result, we have the following corollary of
Theorem 16, which is worth noting since B (Σ) is not an Asplund space (cf.
Proposition 5.12 of Phelps, 1993).

Corollary 19 Let ν = f ◦P be a measure game over a standard Borel space
(Ω,Σ), and suppose f is continuously differentiable and monotone of order
2. Then, core (ν) is the weak∗ closed convex hull of its weak∗ strongly exposed
points.

5 Concluding Remarks

We close the paper with some concluding remarks, the first two discuss some
related papers, while the last one provides some issues for future research.

1. Theorem 7 extends to infinite supermodular games Theorem 2, due to
Shapley (1971). In Shapley’s result the maximal chains of the finite set Ω
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play a key role. On the other hand, when Ω is finite each maximal chain can
be viewed as the collection of the upper sets of a suitable injective function
on Ω. In particular, up to comonotonicity, such injective function is unique.
In fact, it is easy to see that two injective functions X1 and X2 share the
same collection of upper sets if and only if they are comonotonic. There-
fore, modulo comonotonicity, there is a one-to-one natural correspondence
between injective functions and maximal chains.

This is the first key observation that leads from Shapley’s result to The-
orem 7. The second important observation comes from Theorem 3. As
we already observed, ∂ν (X) is a singleton if and only if the Choquet in-
tegral ν : B (Σ) → R is Gateaux differentiable at X. By Theorem 3,
∂ν (X) =

{
m ∈ core (ν) :

∫
Xdm =

∫
Xdν

}
. Now, let XC be the injective

function associated to a given a maximal chain C by the natural correspon-
dence discussed before. Since Ω is finite, it is very easy to check that the
set
{
m ∈ core (ν) : 〈X,m〉 =

∫
Xdν

}
is a singleton consisting of the unique

measure m such that m|C = ν |C. We conclude that ∂ν (X) is a singleton
consisting of the Gateaux derivative Dν (XC). Finally, by Corollary 4 the
Gateaux derivative is invariant under comonotonicity and, therefore, for the
above argument it is immaterial which injective functionXC we choose among
the ones whose collection of upper sets is the maximal chain C.

Summing up these observations, we have the following equivalent form of
Shapley’s Theorem:

Proposition 20 Let ν be a supermodular game defined on the power set of
a finite set Ω. Then, a charge m is an extreme point of core (ν) if and only
if it belongs to the set

{Dν (X) : X is an injective function on Ω} . (12)

Since Eq. (7) reduces to Eq. (12) when Ω is finite, this completes our
discussion.

El Kaabouchi (1994) provides a related generalization of Shapley’s result
for supermodular Choquet capacities defined on a compact metric space.
In his richer setting, he shows that the core of a supermodular Choquet
capacity ν is the weak∗-closed convex hull of all the measures m ∈ core (ν)
such that

∫
Xdm =

∫
Xdν for some injective Borel function. Relative to his

article, a key advance of our work is the observation that such a set is, for
a general function X ∈ B (Σ), the superdifferential of the Choquet integral
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at X. By elaborating on this observation, we can obtain our differential
characterization of cores of general supermodular games and the applications
to measure games.

2. Carlier and Dana (2001) investigate the core of a distortion ν = f ◦
P , where the function f : [0, 1] → [0, 1] is assumed to be strictly convex,
increasing and differentiable. A function s : Ω → [0, 1] is measure preserving
(m.p) with respect to P if λ (B) = P (s−1 (B)) for all Borel sets B ⊆ [0, 1].
Using “rearrangements” techniques (see, e.g., Ryff 1970), Carlier and Dana
(2001) prove that

core (f ◦ P ) = cos {f ′ (s) : s is a m.p. function} .

Unlike the representation in Proposition 18, this representation does not
have a closed form. However, we can prove the next result, which is key to
understand the relations between their result and ours.

Proposition 21 Let P be a nonatomic probability measure defined on a σ-
algebra Σ of subsets of a space Ω. Then, a function s : Ω → [0, 1] is measure
preserving if and only if there exists X ∈ B (Σ) with a continuous distribution
function and such that GX ◦X = s.

Hence, in our standard Borel space setting Proposition 18 improves their
result since, under weaker hypotheses, it establishes a more economical repre-
sentation of the core of a supermodular scalar measure game, which only uses
the collection of injective functions rather than the collection of all functions
having continuous distribution functions. To see that the latter collection
is substantially larger than the former, consider Ω = [0, 1] equipped with
the Lebesgue measure λ, and the tent map T : [0, 1] → [0, 1] defined by
T (x) = 1−|2x− 1| for all x ∈ [0, 1]. The tent map and all its iterates T n are
m.p. functions with respect to λ, and so by Proposition 21 they have a con-
tinuous distribution function GT n . But, they are not injective, and so while
they are included in the Carlier and Dana representation, they are absent in
ours.

In sum, Proposition 18 improves in two ways their result: (i) it provides a
sharper and closed form characterization; (ii) it shows that the characteriza-
tion of core (f ◦ P ) is a special case of the general calculus characterization
provided by Theorems 7 and 16, which apply to any supermodular game and
any supermodular measure game, respectively.
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The cost of this improvement is that, unlike Carlier and Dana (2001), we
have to assume that the space (Ω,Σ) is a standard Borel space. As a matter
of fact, while their investigation is based on properties of rearrangements,
we use a very different approach based on some nice properties of standard
Borel spaces, a class of spaces widely used in Probability Theory.

3. This work has provided a fairly complete analysis of the calculus repre-
sentation of cores of supermodular games and of the Gateaux and Frechet
differentiability of the associated Choquet functionals. The next natural step
is to extend the analysis to games that are not necessarily supermodular, a
step which is also motivated by recent applications of Choquet functionals
in Decision Theory.

A first class of games to consider are those that can be represented as
differences of supermodular games. This is a fairly large class of games; for
example, it can be shown that it includes all measure games f ◦ P with f
belonging to C1,1, the class of differentiable functions that have a Lipschitz
continuous gradient. Naturally, all our differentiability results immediately
extend to this class of games. In contrast, the calculus representation of the
core of these games turned out to be more complicated, and it is the subject
of our current investigation, along with extensions to more general games.

6 Proofs

6.1 Proof of Lemma 1

Point (i) is proved in Marinacci and Montrucchio (2001). As to (ii), in
view of (i), the “if” part is trivial. Actually, if En ↑ Ω, there exists some
m ∈ core (ν), such that m (En) = ν (En). Consequently, ν (En) → ν (Ω),
analogously for En ↓ ∅. As to the “only if” part, let En ↑ Ω and assume that
ν is continuous. Let m ∈ core (ν). Then lim infnm (En) ≥ limn ν (En) =
m (Ω) and lim infnm (Ec

n) ≥ limn ν (Ec
n) = 0. In turn, the latter inequality

implies that lim supnm (En) = m (Ω) − lim infnm (Ec
n) ≤ m (Ω), so that

lim infnm (En) ≥ m (Ω) ≥ lim supnm (En). We conclude that m ∈ ca (Σ) .
We conclude with (iii). Since core (ν) is weak∗-compact, it is norm

bounded and so there is M > 0 such that ‖m‖ ≤ M for all m ∈ core (ν).
Hence, for each finite chain {Ei}n

i=0, we have
∑n

i=1 |ν (Ei)− ν (Ei−1)| ≤∑n
i=1 |m (Ei)−m (Ei−1)| ≤M . This implies that ‖ν‖ < +∞.
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6.2 Proof of Lemma 3

A routine separation argument proves the first part. In particular, as to the
non-emptiness of ∂ν (X), by Lemma 1 there exists m ∈ core (ν) such that
m (X ≥ t) = ν (X ≥ t) for all t ∈ R.

Let us prove the equivalence among the three statements.
(i) =⇒ (ii). Let m ∈ ∂ν (X1) ∩ ∂ν (X2). Hence, ν (X1) = 〈X1,m〉 and
ν (X2) = 〈X2,m〉, and so

ν (X1) + ν (X2) = 〈X1 +X2,m〉 ≥ ν (X1 +X2) .

As ν is superadditive, we conclude that ν (X1) + ν (X2) = ν (X1 +X2) .
(ii) =⇒ (iii). We first prove that ∂ν (X1)∩∂ν (X2) ⊆ ∂ν (X1 +X2). Suppose
that ∂ν (X1)∩ ∂ν (X2) 6= ∅, the inclusion being trivially true otherwise. Let
m ∈ ∂ν (X1) ∩ ∂ν (X2), so that

ν (X1) = 〈X1,m〉 and ν (X2) = 〈X2,m〉 .

Hence, ν (X1 +X2) = ν (X1) + ν (X2) = 〈X1 +X2,m〉, which implies m ∈
∂ν (X1 +X2). Conversely, let us prove that ∂ν (X1 +X2) ⊆ ∂ν (X1) ∩
∂ν (X2). Pick any m ∈ ∂ν (X1 +X2) and suppose, per contra, that m /∈
∂ν (X1) ∩ ∂ν (X2), say m /∈ ∂ν (X1). We have

ν (X1 +X2) = 〈X1 +X2,m〉 = 〈X1,m〉+ 〈X2,m〉 > ν (X1) + ν (X2) ,

a contradiction.
(iii) =⇒ (i). Since ∂ν (X1 +X2) 6= ∅, we have ∂ν (X1) ∩ ∂ν (X2) 6= ∅.

6.3 Proof of Theorem 5

It suffices to prove that ∂ν (X) is a singleton. Note that the continuity of ν
at Ω implies that core (ν) ⊆ ca (Σ) and, consequently, ∂ν (X) ⊆ ca (Σ) (see
Lemma 1). Take any element m ∈ ∂ν (X) and, w.l.o.g., assume that X ≥ 0.
It satisfies ∫ ∞

0

ν (X ≥ t) dt =

∫ ∞

0

m (X ≥ t) dt. (13)

The function m (X ≥ t) − ν (X ≥ t) is of bounded variation and so it is
continuous for all t ∈ R \ C, where C contains at most countably many
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elements. As m (X ≥ t) − ν (X ≥ t) ≥ 0, in view of Eq. 13 we infer that
m (X ≥ t) = ν (X ≥ t) for all t ∈ R\C. Therefore, given two supergradients
m1,m2 ∈ ∂ν (X), we have

m1 (X ≥ t) = m2 (X ≥ t) for all t ∈ [a, b] \ C

where a < infω∈ΩX (ω) and b > supω∈ΩX (ω) and C is as above. Let us
consider the chain

C = {X ≥ t}t∈[a,b]\C

Our objective is that of choosing a countable subchain of C. As λ {[a, b] \ C} =
b− a, the set [a, b] \ C is dense in [a, b]. Therefore, it is not difficult to con-
struct a sequence qn ∈ [a, b] \ C which is dense in [a, b] \ C. Consider now
the family

C∗ = {qm > X ≥ qn}n,m

with qm > qn. Clearly, m1 and m2 agree over the sets {qm > X ≥ qn}.
Since C∗ is a π system, m1 and m2 agree over σ (C∗) as well. On the other
hand, it is obvious that C∗ is a separating system, provided X is injective.
Actually, for any pair ω, ω′ ∈ Ω, with ω 6= ω′, there exists some qn such
that X (ω) < qn < X (ω′). Therefore, ω ∈ {qn > X ≥ qs} for some qs, while
ω′ /∈ {qn > X ≥ qs}. If X (ω) > X (ω′) the argument is analogous. Hence, by
the Mackey Theorem, σ (C∗) is the Borel σ-algebra Σ. We deduce m1 = m2

and this ends the proof.

6.4 Proof of Theorem 7

Lemma 22 Let ν : Σ → R be a game in bv (Σ). The Choquet integral ν :
B (Σ) → R is Lipschitz continuous, with

|ν (X)− ν (Y )| ≤ ‖ν‖ ‖X − Y ‖ (14)

for all X, Y ∈ B (Σ).

Proof. Let us first prove the result when ν itself is a capacity. Suppose
ν (X) ≥ ν (Y ). As X ≤ Y + ‖X − Y ‖, by monotonicity ν (X) ≤ ν (Y ) +
‖X − Y ‖ ν (Ω), which implies

|ν (X)− ν (Y )| ≤ ν (Ω) ‖X − Y ‖ (15)
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when ν is monotonic. Pick now any ν ∈ bv (Σ). We know that ν is rep-
resentable as ν = ν+ − ν− where ν+ and ν− are the positive and nega-
tive semivariations of ν respectively. ν+ and ν− are monotonic and ‖ν‖ =
ν+ (Ω) + ν− (Ω). Thanks to (15), it follows straightforwardly

|ν (X)− ν (Y )| ≤
[
ν+ (Ω) + ν− (Ω)

]
‖X − Y ‖

which is (14).

Lemma 23 The set BI (Σ) is dense in B (Σ) whenever it is non-empty (e.g.,
when Ω is a standard Borel space).

Proof. Since the simple functions are dense in B (Σ), it will suffice to prove
that, given any simple function X, there are injective functions ε close to
X, for all ε > 0. W.l.o.g., set ‖X0‖ = 1, where X0 is the existing injective
function. Let us prove that, for λ > 0 small enough, the elements X + λX0

are injective. Let R (X) be the (finite) range of X. Define

σ = min {|xi − xj| : xi, xj ∈ R (X) , xi 6= xj} .

The function Y = X+λX0 is injective when 0 < λ < σ/2. For, take any two
elements ω1 6= ω2. If X (ω1) = X (ω2), then Y (ω1) 6= Y (ω2) for all λ > 0.
Suppose, in contrast, that X (ω1) 6= X (ω2), say X (ω1) > X (ω2). Then,

Y (ω1)− Y (ω2) = [X (ω1)−X (ω2)] + λ [X0 (ω1)−X0 (ω2)]

≥ σ − 2λ > 0,

as desired.

Proof of Theorem 7. By Eq. 5 of Lemma 3, core (ν) = ∂ν (0) and, for all
α > 0 and β ∈ R, it holds

∂ν (αX + β) = ∂ν (X)

whenever X ∈ B (Σ). Hence, since αX
‖·‖−→ 0 as α ↓ 0, by Eq. (6) we have

{Dν (X) : X ∈ BI (Σ)} ⊆ ∂ν (0), and so cow∗
({Dν (X) : X ∈ BI (Σ)}) ⊆

∂ν (0). Again by Eq. (6), also the converse inclusion holds, and we conclude
that core (ν) = cow∗

({Dν (X) : X ∈ BI (Σ)}). The restriction to BI (Σ) / ∼
follows from Corollary 4.
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The last part of the theorem is a direct consequence of Lemma 3. For,
suppose there exists some X ∈ BI (Σ) such that ν (Y +X) = ν (Y )+ ν (X).
By Lemma 3, ∂ν (Y ) ∩ ∂ν (X) 6= ∅, i.e., Dν (X) ∈ ∂ν (Y ). Hence, ν (Y ) =
〈Y,Dν (X)〉 and the infimum is thus attained. Conversely, suppose the in-
fimum is a minimum, i.e., ν (Y ) = 〈Y,Dν (X)〉 for some X ∈ BI (Σ). This
implies Dν (X) ∈ ∂ν (Y ) and, in turn, ∂ν (Y ) ∩ ∂ν (X) 6= ∅. By Lemma 3
we conclude that ν (Y +X) = ν (Y ) + ν (X).

6.5 Proof of Proposition 9

We only prove the converse, as the other direction is due to Choquet (1953).
Since R (P ) = [0, 1]n, there is a collection {Ei}n

i=1 such that, for each i,

Pi (Ei) = 1 and Pi (Ej) = 0 for all i 6= j. For each i, set E∗
i = Ei∩

(⋃
j 6=iEj

)c

.

The collection {E∗
i }

n
i=1 is pairwise disjoint and is such that Pi (E

∗
i ) = 1

and Pi

(
E∗

j

)
= 0 for all i 6= j. Given y ∈ R (P ), since each component yi

belongs to [0, 1], by non-atomicity for each i there exists Ey
i ⊆ E∗

i such that
Pi (E

y
i ) = yi. Set Ey =

⋃n
i=1E

y
i . The sets {Ey

i }
n
i=1 are pairwise disjoint, and

so Pi (E
y) =

∑n
j=1 Pi

(
Ey

j

)
= yi. Hence, P (Ey) = y.

Now, let R (P ) 3 x ≤ y. Since each xi belongs to [0, yi], again by non-
atomicity for each i there exists Ex

i ⊆ Ey
i such that Pi (E

x
i ) = xi. If we set

Ex =
⋃n

i=1E
x
i , by proceeding as before it is easy to see that P (Ex) = x. Let

h ≥ 0 be such that y + h ∈ R (P ). Again, by proceeding as before, there
exists Ey+h ⊇ Ey such that P

(
Ey+h

)
= y + h.

Set A = Ey and B = Ex ∪
(
Ey+h\Ey

)
. Then, A ∪ B = Ey+h and

A ∩B = Ex. By the supermodularity of f ◦ P ,

f (y) + f (x+ h) = f (P (Ey)) + f
(
P
(
Ex ∪

(
Ey+h − Ey

)))
= f (P (A)) + f (P (B)) ≤ f (P (A ∪B)) + f (P (A ∩B))

= f
(
P
(
Ey+h

))
+ f (P (Ex)) = f (y + h) + f (x) ,

which shows that f is monotone of order 2.

6.6 Proof of Theorem 11

We begin with couple of lemmas of independent interest. The first one pro-
vides a simple condition, Eq. (16), under which the Choquet functional∫
Xd (f ◦ P ) is Gateaux differentiable at an injective function X ∈ B (Σ).
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Notice that the mapping GX can be viewed as a curve in R (P ) with end-
points 0 and 1. We denote by CX its range, that is,

CX = {x ∈ Rn : x = GX (q) for some q ∈ R} .

Clearly, CX ⊆ R (P ).

Lemma 24 Let ν = f ◦ P be a supermodular measure game, with f lower
semicontinuous at 0 and P (Ω). If X ∈ B (Σ) is injective and if there exists
a locally integrable function ρX (t) : R+ → R such that

f (y) =

∫ |y|1

0

ρX (t) dt (16)

for all y ∈ CX , then the Gateaux derivative is given by

〈Dν (X) , Y 〉 =

∫
Ω

ρX (|GX |1 ◦X)Y dP , (17)

where |GX |1 =
∑n

i=1G
i
X .

Remark. It is important to note that, by point (ii) of Proposition 10, when
R (P ) = [0, 1]n we can set ρX (t) = (f ◦ γ)′ (t) whenever f is monotone of
order 2. For, in this case the function f ◦ γ is absolutely continuous.

Proof. The curve q → GX (q) is continuous since X is injective and each Pi

is non-atomic. Consider the arc-length parametrization γ : [0, n] → CX , with
|γ (t)|1 = t for each t ∈ [0, n]; that is, γ is the inverse of the map x → |x|1
restricted to CX .

We begin by proving the map s = γ−1 ◦ GX ◦X : Ω → [0, n] is measure
preserving, namely,

λ (A) = P
(
s−1 (A)

)
(18)

for all Borel set A ⊆ [0, n], where λ is the Lebesgue measure on R. For, take
an interval [t1, t2] ⊆ [0, n], with t1 ≤ t2. Let x1, x2 ∈ CX the unique points
on the curve such that γ (t1) = x1 and γ (t2) = x2. Hence, |x1|1 = t1 and
|x2|1 = t2. Since GX is monotone, we have

γ ([t1, t2]) = {x ∈ CX : x1 ≤ x ≤ x2}
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Clearly,

G−1
X (γ ([t1, t2])) = [q1, q2]

where q1 is the minimal element for which GX (q1) = x2 and q2 is the max-
imal element such that GX (q2) = x1 (such elements exists because GX is
continuous). Now

P
(
s−1 ([t1, t2])

)
= P ({q1 ≤ X ≤ q2}) =

n∑
i=1

Pi {q1 ≤ X ≤ q2}

=
n∑

i=1

[
Gi

X (q1)−Gi
X (q2)

]
= |GX (q1)−GX (q2)|1

= |x2 − x1|1 = |t2 − t1| = λ ([t1, t2]) ,

which proves that s is measure preserving.
Since the linear functional Y →

∫
Ω
ρ (|GX ◦X|1)Y dP is continuous over

B (Σ), it can be viewed as signed measure m over B (Σ). Thanks to (16),
fixed any scalar q∗ ∈ R, we have

f (GX (q∗)) =

∫ |GX(q∗)|1

0

ρ (t) dt

In view of (18), we can change variable by means of t = γ ◦ GX ◦ X =
|GX ◦X|1. This implies:

f (GX (q∗)) =

∫
X≥q′

ρ (|GX ◦X|1) dP ,

where q′ is the minimal q ∈ R such thatGX (q′) = GX (q∗). As P {q′ ≤ X < q∗} =
0, we have

f (GX (q∗)) =

∫
X≥q∗

ρ (|GX ◦X|1) dP = m {X ≥ q∗}

Consequently, as q∗ was arbitrary, we conclude that for each q ∈ R it holds:

m {X ≥ q} = f (GX (q)) = f (P (X ≥ q)) = ν (X ≥ q) . (19)

By Theorem 5, the Gateaux derivative Dν (X) exists at X. On the other
hand, the same uniqueness argument used to prove Theorem 5 shows that
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the equality m {X ≥ q} = ν (X ≥ q) of Eq. (19) implies m = Dν (X), as
desired.

To state and prove the second lemma (which will be used in Step 3), we
need some notation. Given an element X ∈ B (Σ), FX (q) = P {X ≤ q}
denotes the distribution function. In the sequel, Z denotes a fixed function
in B (Σ) which is injective and satisfies ‖Z‖ ≤ 1. Moreover, for any scalar q,
define the function Yq : Ω → R by

Yq = I{X>q} − I{X<q} +
Z

2
I{X=q} (20)

Lemma 25 Let ν = f◦ P be supermodular. For any X ∈ B (Σ), ν is
differentiable at

Y (ω) = X (ω) +

∫
R
Yq (ω) dFX (q) (21)

and Dν (Y ) ∈ ∂ν (X), provided that:

(i)
∣∣f ′+∣∣ ≤M , if n = 1,

(ii) f is C1, if n > 1.

Proof. It is easy to check that each Yq is comonotonic with X. In turn,
this implies that Y is comonotonic to X. Actually, the following stronger
property holds

[Y (ω)− Y (ω′)] [X (ω)−X (ω′)] ≥ [X (ω)−X (ω′)]
2

(22)

Partition the space Ω in the following two sets:

D =
{
ω : P (X = X (ω)) > 0

}
,

Dc =
{
ω : P (X = X (ω)) = 0

}
.

Clearly, each Gi
X is continuous at the points q = X (ω) with ω ∈ Dc; in

contrast, if ω ∈ D, then some Gi
X is not continuous at q = X (ω). Next we

list some important properties.

(i) X (ω) 6= X (ω′) if and only if Y (ω) 6= Y (ω′) over Dc;
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(ii) Y is injective over D;

(iii) if Y (ω) = Y (ω′), then ω, ω′ ∈ Dc.

Let us prove (i). Suppose X (ω) = X (ω′) with ω, ω′ ∈ D. It is easy to
see that (21) can be written down explicitly as

Y (ω) = X (ω) + n− 2 |GX |1 (X (ω)) +

(
1 +

Z (ω)

2

)
P (X = X (ω)) (23)

Therefore, Y (ω) = Y (ω′). On the other hand, if Y (ω) = Y (ω′) the (22)
implies X (ω) = X (ω′).

As to (ii), let ω 6= ω′. If X (ω) = X (ω′), then Eq. (23) entails X (ω) 6=
X (ω′) as Z is injective. If X (ω) 6= X (ω′), say X (ω) < X (ω′), then Y (ω) <
Y (ω′) because of Eq. (22).

Finally, let us prove (iii). If Y (ω) = Y (ω′), Eq. (22) implies X (ω) =
X (ω′). Since we just proved in (ii) that Y is injective on D, it then follows
that ω, ω′ ∈ Dc.

Using (i)-(iii), it is easy to see that, for all q ∈ R

P {Y = q} = 0,

namely, Pi (Y = q) = 0 for all i and all q. Hence, the Gi
Y are all continuous

and therefore ν is differentiable at Y , as proved below in Step 2. Moreover,
as Y is comonotone to X, by Lemma 3 we have Dν (Y ) ∈ ∂ν (X).

We can now prove Theorem 11. We divide the argument in several steps.

Step 1. Under the hypotheses of Theorem 11, Eq. (10) holds when X ∈
B (Σ) is injective.

Proof. Suppose first that n = 1. In this case CX = [0, 1]. Since f is convex
and continuous, we can write

f (y) =

∫ y

0

ρ (t) dt

with ρ = f ′+, which is (16). Next, suppose n > 1. Since f is Lipschitz and γ
is an isometry, the function f ◦γ is Lipschitz over [0, n]. Consequently, f ◦γ is
absolutely continuous, and so, γ being differentiable a.e., we have f (γ (t)) =
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∫ t

0
d/du [f (γ (u))] du for all t ∈ [0, n]. Hence, if we set ρ (t) = d/dt [f (γ (t))],

we have f (x) =
∫ |x|1

0
ρ (u) du for all x ∈ CX . On the other hand, if ∇f (x)

denotes the gradient of f , by the chain rule we have:

d/dt [f (γ (t))] = 〈∇f (γ (t)) , γ′ (t)〉 .

Hence, ρ (t) = 〈∇f (γ (t)) , γ′ (t)〉. Plugging it into Eq. (17), we get that the
Gateaux derivative is

〈Dν (X) , Y 〉 =

∫
〈∇f (GX ◦X) , γ′ (|GX |1 ◦X)〉Y dP (24)

Eq. (24) holds for all f which are differentiable and monotone of order 2.
Fix now X and take f (x) = xi, with i = 1, ..., n. The corresponding game is
ν = f ◦ P = Pi. Eq. (24) becomes∫

Y dPi =

∫
γ′i (|GX |1 ◦X)Y dP

where γ′i (t) is the ith component of the vector γ′ (t). If we set Y = 1E, where
E is any element of Σ, we have

Pi (E) =

∫
E

γ′i (|GX |1 ◦X) dP . (25)

Clearly, Pi is absolutely continuous with respect to P and, by Eq. (25),
γ′i (|GX | ◦X) is the Radon-Nikodym derivative dPi/dP . Consequently, get-
ting back to Eq. (24), we can write

〈Dν (X) , Y 〉 =
n∑

i=1

∫
∂f

∂xi

(GX ◦X) γ′i (|GX |1 ◦X)Y dP

=
n∑

i=1

∫
∂f

∂xi

(GX ◦X)
dPi

dP
Y dP =

n∑
i=1

∫
∂f

∂xi

(GX ◦X)Y dPi,

as desired.

Step 2. Under the hypotheses of Theorem 11, Eq. (10) holds when X ∈
B (Σ) is such that GX is continuous.
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Proof. Suppose first that n > 1. It follows from our D-representation of the
superdifferential given in Proposition 6. We know that

∂ν (X) = cow∗ {w∗ − limDν (Xn)}

where Xn are injective and approaching uniformly to X. Let then Xn be any
sequence of injective functions with ‖Xn −X‖ → 0. By Step 1,

〈Dν (Xn) , Y 〉 =
n∑

i=1

∫
∂f

∂xi

(GXn ◦Xn)Y dPi.

If GX is continuous, then GXn → GX uniformly. Consequently, GXn ◦Xn →
GX ◦X, and so ∂f

∂xi
(GXn ◦Xn) → ∂f

∂xi
(GX ◦X). As

∣∣∣ ∂f
∂xi

(GXn ◦Xn)
∣∣∣ ≤ M ,

by the Lebesgue dominated convergence theorem, we have

〈Dν (Xn) , Y 〉 →
n∑

i=1

∫
∂f

∂xi

(GX ◦X)Y dPi.

Therefore, all the w∗-limits are identical and, consequently, ∂ν (X) is a sin-
gleton.

In the last step we consider the Frechet differentiability.

Step 3. Under the hypotheses of Theorem 11, the Choquet integral
∫
Xd (f ◦ P )

is Frechet differentiable at all X ∈ B (Σ) with continuous distribution func-
tion provided f is continuously differentiable on R (P ).

Proof. By Proposition 2.8 in Phelps (1993), it suffices to demonstrate that,
given an X with continuous distribution, there exists a selection from the

superdifferential map ∂ν : B (Σ) → 2L1(Ω,Σ,P), which is norm-to-norm con-
tinuous at X. The selection we use is given in Lemma 25. More precisely,
given a sequence Xn with ‖Xn −X‖ → 0, we take the sequence of supergra-
dients Dν (Yn) ∈ ∂ν (Xn), where

Yn (ω) = Xn (ω) +

∫
R
Y n

q (ω) dFX (q) ,

Y (ω) = X (ω) +

∫
R
Yq (ω) dFX (q) ,
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and the element Z is fixed. By Corollary 4, Dν (Y ) = Dν (X) Hence, it
suffices to prove that Dν (Yn) → Dν (Y ) = Dν (X) in the L1 norm.

For convenience, denote GX = |GX |1 =
∑n

i=1G
i
X . Assume X has a con-

tinuous distribution function. Then GX (q) is uniformly continuous over R,
since it is continuous and constant outside a compact interval. Denote by
δ (ε) > 0 the function such that |q1 − q2| ≤ δ (ε) implies

∣∣GX (q1)−GX (q1)
∣∣ ≤

ε. The function δ (ε) can be chosen strictly decreasing. From the inclusions

{X ≥ q + ‖X −Xn‖} ⊂ {Xn ≥ q} ⊂ {X ≥ q − ‖X −Xn‖} ,

we deduce

GX (q + ‖X −Xn‖) ≤ GXn (q) ≤ GX (q − ‖X −Xn‖) . (26)

By Eq. (23),

|Yn (ω)− Y (ω)| ≤ ‖Xn −X‖+ 2
∣∣GX (X (ω))−GX (Xn (ω))

∣∣+
2
∣∣GX (Xn (ω))−GXn (Xn (ω))

∣∣+ 3

2
P (Xn = Xn (ω)) .

We have
∣∣GX (X (ω))−GX (Xn (ω))

∣∣ < δ−1 (‖X −Xn‖) . Moreover, by Eq.
(26), ∣∣GX (Xn (ω))−GXn (Xn (ω))

∣∣ < δ−1 (‖X −Xn‖) ,

and so

|Yn (ω)− Y (ω)| ≤ ‖Xn −X‖+ 4δ−1 (‖X −Xn‖) +
3

2
P (Xn = Xn (ω)) .

As to the last addendum, we have:

P (Xn = q) ≤ P (|X − q| ≤ ‖X −Xn‖)
= GX (q − ‖X −Xn‖)−GX (q + ‖X −Xn‖) ≤ δ−1 (2 ‖X −Xn‖) .

Summing up, we have

‖Yn − Y ‖ ≤ ‖Xn −X‖+ 4δ−1 (‖X −Xn‖) + (3/2) δ−1 (2 ‖X −Xn‖) ,

and we conclude that ‖Yn − Y ‖ → 0 as ‖Xn −X‖ → 0.

31



We have now to prove that Dν (Yn)
L1→ Dν (Y ) = Dν (X). We first

show that the convergence occurs P -a.e.. Since Gi
Yn
◦ Yn → Gi

Y ◦ Y for all i

uniformly, we have, P -a.e.,

∇f (GYn ◦ Yn) · dP/dP → ∇f (GY ◦ Y ) · dP/dP .

Hence, Dν (Yn)
P -a.e.→ Dν (Y ) = Dν (X). To prove that this sequence con-

verges in L1, it suffices to prove that it is uniformly integrable. But, this is
true because this sequence belongs to core (ν), which is σ (L1, L∞)-compact.
This completes the proof of the theorem.

6.7 Proposition 12

As n = 1, pick f ′+ as f ′. We know that f ′+ is continuous over [0, 1], except at
most a countable set C. As GX is continuous, GX ◦X is measure preserving.
Therefore, the set (GX ◦X)−1 (C) is P -negligible. Hence, f ′ (GXn ◦Xn) →
f ′ (GX ◦X) almost surely. ¿From now on, the proof is similar to that we just
used for the general case n ≥ 1.

6.8 Theorem 14

Consider two functions as in Lemma 25:

Y (ω) = X (ω) +

∫
R
Yq (ω) dFX (q) ,

Ŷ (ω) = X (ω) +

∫
R
Ŷq (ω) dFX (q) .

In the first one, we use a function Z ∈ B (Σ), while in Ŷ we use −Z.

Lemma 25 implies that Dν (Y ) , Dν
(
Ŷ
)
∈ ∂ν (X). It remains to show that

Dν (Y ) 6= Dν
(
Ŷ
)
.

By assumption, there exists some q1 such that P {X = q1} > 0. Let

ω ∈ {X = q1} and compute Y (ω) and Ŷ (ω). In view of (23), we have

Y (ω) = q̂1 + (1/2) z (ω)P {X = q1}
Ŷ (ω) = q̂1 − (1/2) z (ω)P {X = q1}
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where

q̂1 = q1 + n− 2 |GX |1 (q1) + P {X = q1}

We now calculate the distributions Gi
Y (q) and Gi

Ŷ
(q), whenever q = Y (ω)

and q = Ŷ (ω) respectively. Some tedious algebra leads to:

Gi
Y ◦ Y (ω) = Pi {{z ≥ z (ω)} ∩ {X = q1}}+ Pi {X > q1} ,

Gi
Ŷ
◦ Ŷ (ω) = Pi {{z ≤ z (ω)} ∩ {X = q1}}+ Pi {X > q1}

= Pi {X ≥ q1} − Pi {{z ≥ z (ω)} ∩ {X = q1}}

Using the vector notation:

GX (q1) = (Pi {X ≥ q1})n
i=1 ,

GX

(
q+
1

)
= (Pi {X > q1})n

i=1 ,

h (ω) = (Pi {{z ≥ z (ω)} ∩ {X = q1}})n
i=1 ,

we can write

GY ◦ Y (ω) = GX

(
q+
1

)
+ h (ω) ,

GŶ ◦ Ŷ (ω) = GX (q1)− h (ω) ,

where GX

(
q+
1

)
≤ GX (q1) and GX

(
q+
1

)
6= GX (q1). It is easy to see that

GŶ ◦ Ŷ (ω) ≥ GY ◦ Y (ω) over a subset of {X = q1} of positive measure. Let
I ⊆ {1, 2, ..., n} be the non-empty set of i such that Pi {X > q1} > 0. We

have Gi
Ŷ
◦ Ŷ (ω) > Gi

Y ◦ Y (ω) for i ∈ I, and Gi
Ŷ
◦ Ŷ (ω) = Gi

Y ◦ Y (ω) for
i /∈ I. This over a set of positive measure. By strict monotonicity of order
2, we have

∂f

∂xi

(
GŶ ◦ Ŷ (ω)

)
>
∂f

∂xi

(GY ◦ Y (ω))

for i ∈ I. It is easy to see that dPi/dP = 0 over {X = q1} for i /∈ I. Clearly,∑n
i=1 dPi/dP = 1 P -a.e., and so

∇f
(
GŶ ◦ Ŷ (ω)

)
· dP/dP > ∇f (GY ◦ Y (ω)) · dP/dP

for all ω of a set of positive probability. This means that Dν
(
Ŷ
)
6= Dν (Y ),

as desired.
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6.9 Proof of Theorem 16

We know that core (ν) ⊆ L1
(
Σ, P

)
⊆ ca (Σ). It is easy to see that the weak∗

topology of ca (Σ) agrees over L1
(
Σ, P

)
with the weak topology σ (L1, L∞).

Eq. (10) of Theorem 11 can be written as

〈Dν (X) , Y 〉 =
n∑

i=1

∫
∂f

∂xi

(GX ◦X)Y dPi

=

∫ ( n∑
i=1

∂f

∂xi

(GX ◦X)
dPi

dP

)
Y dP .

Hence, by Theorem 7, we have

core (ν) = coσ(L1,L∞)

{
n∑

i=1

∂f

∂xi

(GX ◦X)
dPi

dP
: X ∈ BI (Σ) / ∼

}
On the other hand, it is well known that the closed convex hull in the norm
and in weak topology coincide, and so the first claim follows. The second
formula is just Theorem 7.

6.10 Proof of Corollary 17

Let g ∈ cos {D}. By definition, there exists a sequence {gn}n ⊆ co (D) such
that gn → g in L1. This implies that gn → g in measure, which in turn
implies the existence of a subsequence gnk

such that, P − a.s., limk gnk
= g.

Conversely, let g = P − limn→∞ gn for a sequence {gn}n ⊆ co (D). This
implies that gn → g in measure. Moreover, as {gn}n ⊆ core (ν), by the
σ (L1, L∞)-compactness of core (ν) the sequence {gn}n is uniformly integrable
(see Corollary IV.8.11 of Dunford and Schwartz 1957). Hence, by the Vitali
Converge Theorem (see Theorem IV.10.9 of Dunford and Schwartz 1957), we
have gn → g in L1.

6.11 Proof of Proposition 21

Suppose X ∈ B (Σ) has a continuous distribution function. By what es-
tablished in proving Lemma 24, GX ◦ X is a measure preserving function.
Conversely, let s : Ω → [0, 1] be any measure preserving map. Consider the
map s1 = 1−s, which is m.p. as well. It is easy to check that Gs1 (q) = 1−q,
and so Gs1 ◦ s1 = 1− s1 = s. This proves the proposition.
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