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Abstract

Stochastic mortality, i.e. modelling death arrival via a jump process
with stochastic intensity, is gaining increasing reputation as a way to rep-
resent mortality risk. This paper represents a first attempt to model the
mortality risk of couples of individuals, according to the stochastic inten-
sity approach.

On the theoretical side, we extend to couples the Cox processes set up,
i.e. the idea that mortality is driven by a jump process whose intensity is
itself a stochastic process, proper of a particular generation within each
gender. Dependence between the survival times of the members of a cou-
ple is captured by an Archimedean copula.

On the calibration side, we fit the joint survival function by calibrating
separately the (analytical) copula and the (analytical) margins. First, we
select the best fit copula according to the methodology of Wang and Wells
(2000) for censored data. Then, we provide a sample-based calibration for
the intensity, using a time-homogeneous, non mean-reverting, affine pro-
cess: this gives the analytical marginal survival functions. Coupling the
best fit copula with the calibrated margins we obtain, on a sample gener-
ation, a joint survival function which incorporates the stochastic nature
of mortality improvements and is far from representing independency. On
the contrary, since the best fit copula turns out to be a Nelsen one, de-
pendency is increasing with age and long-term dependence exists.

Acknowledgement 1 The authors wish to acknowledge the Society of
Actuaries, through the courtesy of Edward (Jed) Frees and Emiliano Valdez,
for providing the data used in this paper.



1 Introduction

Longevity risk, that is the tendency of individuals to live longer and longer,
has been increasingly attracting the attention of the actuarial literature. More
generally, mortality risk, that is the occurrence of unexpected changes in sur-
vivorship, is a well accepted phenomenon.

One way to incorporate improvements in survivorship, especially at old ages,
is to introduce the so called stochastic mortality. Formally, this boils down to
describing death arrival as a doubly stochastic or Cox process. Intuitively,
it consists in interpreting death arrival as the first jump time of a Poisson-
like process, whose intensity, contrary to the one of the standard Poisson, is a
stochastic process. A priori then two sources of uncertainty impinge on each
individual: a common one, represented by the intensity, and an idiosyncratic
one, represented by the actual jump time, for a given intensity. Mortality risk
is captured by the behavior of the common risk factor, the intensity. The term
“common” extends here to a whole generation within a gender.

The stochastic mortality approach has been proposed by Milevsky and Promis-
low (2001) and developed by Dahl (2004), Cairns et al. (2005), Biffis (2005),
Schrager (2005), Luciano and Vigna (2005). The probabilistic setting however
can be traced back to Brémaud (1981), and has been quite extensively applied
in the financial literature on default arrival (see for instance the seminal works
of Artzner and Delbaen (1992), Duffie and Singleton (1999) and Lando (1998)).
Provided that univariate affine processes are used for the intensity, the approach
leads to analytical representations of survival probabilities.

Up to now, no attempt has been made to model stochastically, in the sense
just specified, the survivorship of couples of individuals. This paper attempts
to fill up this gap, making use of the copula approach. Therefore, we model and
calibrate separately the marginal survival functions and the copula, which, as
is well known, permits to obtain the joint survival function from the marginal
ones.

We work with analytical marginal survival functions as well as analytic cop-
ulas, so that we end up with a fully parametric specification of the joint survival
function of the population, which can be extended to durations longer than the
observation period.

We apply our modelling and calibration procedure to a huge sample of joint
survival data, belonging to a Canadian insurer, which has been used in order to
discuss (non stochastic) joint mortality in Frees et al. (1996), Carriere (2000),
Shemyakin and Youn (2001) and Youn and Shemyakin (1999, 2001).

The outline of the paper is as follows: in Section 2 we recall the copula ap-
proach to joint survivorship and justify the copula class we are going to adopt,
the Archimedean one. In Section 3 we review the stochastic mortality approach
at the univariate level, and the particular marginal model we are going to adopt.
We explain both the model and its calibration issues with uncensored and cen-
sored data. In Section 4 we describe a copula calibration methodology, consis-
tent with the copula class suggested above, and originally proposed by Wang
and Wells (2000). Wang and Wells’ methodology, which in turn extends to the



case with censoring the approach of Genest and Rivest (1993), has the advan-
tage of allowing not only the calibration of the parameters for each Archimedean
copula, but also of suggesting which is ”the best fit” Archimedean copula in the
calibrated group.

From Section 5 onwards we apply the theoretical framework and the calibra-
tion method to the data sample: we present the data set, we find the empirical
margins with the Kaplan-Meier methodology, we apply the Wang and Wells’
copula calibration procedure, and compare its results with the ones of the om-
nibus procedure. We then derive the marginal survival functions, adapting the
procedure in Luciano and Vigna (2005). In Section 6 the specific "best fit”
copula obtained, together with the analytical margins, permits us to present
an estimate of the joint survival function and to discuss the measures of time-
dependent association, following the results in Spreeuw (2006). Section 7 con-
cludes.

2 Modelling bivariate survival functions with cop-
ulas

Suppose that the heads (x) and (y), belonging respectively tom the gender
m (males) and f (females), have remaining lifetimes 77 and TJ , respectively,
both with continuous distributions. We denote the marginal survival functions
by Si* and SJ, respectively, so that, for all ¢ > 0, Si* (t) = Pr[I}" > t] and
Syf (t) =Pr [TJ > t]. By Sklar’s theorem, there exists a unique copula, denoted
by C, such that for all (s,t) € R? the joint survival function, denoted by S, can
be represented as:

S(s,t) = C(Sy"(s), 85 (1))

The copula approach has become a popular method of modelling the (non
stochastic) bivariate survival function of the two lives of one couple. Both
Frees et al. (1996) and Carriere (2000) present fully parametric models, using
maximum likelihood, where the marginal distribution functions (Frees et al.)
or survival functions (Carriere) are assumed to be of Gompertz type. Frees
et al. (1996) use Frank’s copula, with a single parameter of dependence, and
couple the two lives from the time of birth. Carriere (2000) on the other hand,
discusses several copulas with more than one parameter (Frank, Clayton, Nor-
mal, Linear Mixing, Correlated Frailty), and couples the lives at the start of
the observation period. Using the same data set, in an attempt to address the
issue of different types of dependence, Youn and Shemyakin (1999, 2001) refine
Frees et al.’s method by classifying individuals according to the age difference
between the female and the male member of each couple. Shemyakin and Youn
(2001) adopt a Bayesian methodology as an alternative. All three papers use
the Gumbel-Hougaard copula.

Fully parametric estimation methods (where all functions have been specified
parametrically and all parameters - margins and copula - are estimated at the
same time) bear the drawback that different parametric specifications of the



margins lead to different estimates of copula parameters, and may even lead
to different choices of the type of copula itself. Since different copulas entail
different characteristics regarding the type of dependence and aging properties,
as shown in Spreeuw (2006), the choice of the right copula is essential.

Ideally, the process of choosing a copula should be completely independent
of the specification of the margins. Genest and Rivest (1993) have shown that
this is feasible for Archimedean copulas, as long as data are complete, i.e. un-
censored. Denuit et al. (2001) managed to get hold of complete data by visiting
cemeteries. Applying the method developed by Genest and Rivest (1993), they
established a weak correlation of lifetimes between males and females, and iden-
tified several plausible candidates for the copula.

Genest and Rivest’s method cannot be used if data are censored. This is the
case for the data set from the large Canadian insurer as described in Section 5.
The period of observation is slightly longer than five years, and most lives were
still alive at the end of the period of observation.

Wang and Wells (2000) have extended Genest and Rivest’s method to bivari-
ate right-censored data. Their methodology has been applied to Loss-ALAE
data by Denuit et al. (2004). The procedure requires a nonparametric estimator
of the joint bivariate survival function. A popular candidate of such an estima-
tor is Dabrowska (1988), which needs estimates of the margins in accordance
with Kaplan-Meier.

Following Denuit et al. (2004), we are going to apply the Wang and Wells’
method for the data set. This is a methodology which allows at the same time
the calibration of the copula parameters - for any given copula family in the
Archimedean class — and the choice of the best fit copula among the calibrated
ones.

This paper differs from the aforementioned papers on bivariate survival
models (Frees et al., 1996, Carriere, 2000, Shemyakin and Youn, 2001, Youn
and Shemyakin, 1999, 2001, Denuit et al., 2001) not only because we include
stochastic mortality improvements at the marginal level, but also because, in-
stead of assuming a specific copula, we select a best fitting one by following
the Genest and Rivest/Wang and Wells procedure for censored data. Using
Wang and Wells means that we maintain the Archimedean assumption for the
copula. Archimedean copulas have been widely used, due to their mathematical
tractability. The Archimedean class is rich, so allowing for Archimedean copulas
only does not seem to be very restrictive. We refer the reader to the book by
Nelsen (1999) for a review of Archimedean copulas’ definition and properties,
and to Cherubini et al. (2004) for their applications.

In the Archimedean class in particular we will take into consideration the
copulas in Table 1.

We have selected these families following the results in Spreeuw (2006), who
studied the type of time-dependent association implied by many Archimedean
copulas.

Three measures of time-dependent association have been introduced in An-
derson et al. (1992). We will deal with all of them in Section 6, though in a
different order.



No. | Name Generator | C (u,v) Kendall’s 7
6(1) 1
1 Clayton =9 —1 (u_9 +o? — 1)_5 %
2 Gumbel- | (—Int)’ exp {— ((— Inu)’ + (—11111)0) 9} 1-%
Hougaard
=0t _ e fu_1)(e V-1 0
o L | wee | g[Sy (2, k1)
1
4 Nelsen exp [t_e] —e [ln (eXp (u_e) + exp (v_e) — e)} 0 1—% (9+2
- ftlzo 9% exp [1— t"g])
5 Special % —t° 274 (=W + V4 +W2); Complicated form
W=2¢(u)+¢(u)

Table 1: Archimedean copula families

First of all, we have the rescaled conditional probability, denoted by v, (s, t):

(1)

CPr[T > s|T) >8] S(s,t) Pr[T] > t|T7 > s]
— =
Y

¥y (s,t) = Pr[Tm > s N Sm(s) Sy (1) Pr {Tyf > t}

for fixed ¢t and s. This measure has an interpretation in terms of conditional
probabilities. If 7)™ and Tyf are independent, then ¢, (s,t) =1 for all s > 0 and

t>0. If T and Tyf are positively associated, then ¢, (s,t) > 1 for all s > 0
and ¢ > 0, with 1); monotone nondecreasing in each argument.

Secondly Anderson et al. (1992) discuss the conditional expected residual
lifetimes of (z) and (y) which we will specify as 9,, (s,t) and 95, (s,t), respec-
tively
E[Tr —s|Tr > s, T > t]

ETm —s|Tm > s
E[Tf —t|T > s, T > t]
E[TJ—t’TJ>t]

¢2x (87 t) =

by (5,1) (2)

The measure vy, (s,t) (¥, (s,t)) describes how the knowledge that TJ >t
(T > s) affects the expected lifetime of 77" (T;f). Independence of T;" and
Tyf implies 9o, (s,t) = ¥, (s,t) = 1, while if T, and TJ are positively as-
sociated, then 1y, (s,t) > 1 and 9y, (s,t) > 1 for all s > 0 and ¢ > 0, with
Yoy (8,1) (g, (s,t)) monotone nondecreasing in ¢ (s). We will concentrate on
the behaviour of the functions 15, (0,t) and vy, (s,0).




The third measure is the cross-ratio function CR (S (t,t2)), defined in Clay-
ton (1978) and Oakes (1989) as

_ S(st) £35S (s)
CR(S (s,1) = g (s,:) %5 (s,8)

Spreeuw (2006) has shown that for Archimedean copulas and u = s = ¢, this
definition reduces to an expression in terms of the inverse of the generator as

"

Cueyw)
(™) @)

v=0¢(S(u,u))
Oakes (1994) derived a similar expression for frailty models (being a subclass of
Archimedean copula models).

The cross-ratio function specifies the relative increase of the force of mor-
tality of the survivor, immediately upon death of the partner. If CR (S (u,u))
increases (decreases) as a function of u, this means that members of a cou-
ple become more (less) dependent on each other as they age. Manatunga and
Oakes (1996) have demonstrated that a plot of CR (v) versus 1 —v, for v € [0, 1]
can be used as a diagnostic technique for assessing goodness of fit. (Note that
5(0,0) =1 and limy o0 S (u,u) = 0.)

The first copula in Table 1, Clayton, will be studied because it is well known
and bears the special property of the association remaining constant over time.
Copulas 2 (Gumbel-Hougaard) and 3 (Frank) share the characteristics of being
well known as well. Moreover, unlike Clayton, the association is decreasing
over time. Copula families 4 and 5 are due to Nelsen (1999). Family 4 can be
identified as “Family 4.2.20” in Chapter 4 of Nelsen (1999) and will henceforth
be referred to as the “Nelsen copula”. It is studied, since, unlike the first three
copulas, the association is increasing over time. And finally copula 5, which is
also due to Chapter 4 of Nelsen (1999), will be labelled as the “Special copula”.
It differs from the other four, in the sense that the dependence between the two
risks is not necessarily of a long-term type. Like the Nelsen copula, association
is increasing in time.

CR(S (u,u)) =

3 Marginal stochastic mortality

It has been widely accepted that mortality has improved over time, and dif-
ferent generations have different mortality patterns: according to the standard
terminology, we will call this phenomenon mortality risk. Evidence of this phe-
nomenon is provided by Cairns et al. (2005), who present also a very detailed
discussion of the different existing approaches for modelling it. Essentially, most
of these approaches rely on a continuous time stochastic process for the instan-
taneous mortality intensity, which can be interpreted as a stochastic force of
mortality. In order to define it appropriately, in what follows we briefly describe



the doubly stochastic approach to mortality modelling. Then we summarize
some previous findings, which justify the modelling choice for the intensity made
in this paper.

3.1 Theoretical framework
3.1.1 Cox processes

Following Lando (1998, 2004), let us assume a complete probability space (2, F,P),
a process X; of R? -valued state variables (¢ < T') and the filtration {G; : t > 0}
of sub-c-algebras of F generated by X, i.e. G; = 0{X;;0 < s < t}, satisfying
the usual conditions.

Let A be a nonnegative measurable function s.t. fot A(X,)ds < oo almost
surely and define the first jump time of a nonexplosive adapted counting process
N; as follows:

7 = inf {t : /OtA(Xs)dS > El} (4)

where E7 is an exponential random variable with unit parameter. In addition,
let us consider the enlarged filtration F;, generated by both the state variable
and the jump processes:

Fe = GtV Hy,

H: = o{Ns;0<s<t}

and assume that the Hj filtration is trivial, in that no jump occurs at time 0.
Under this construction, the process V; is said to admit the intensity A(X), if

the compensator of N; admits the representation fg A(X5)ds, ie. if
¢
M; = Ny — / A(X;)ds
0

is a local martingale. If the stronger condition E (fot A(Xs)ds) < oo is satisfied,
M; = N; — fot A(X)ds is a martingale.
Intuitively, this implies that, given the history of the state variables up to time

t, the counting process is ”locally” an inhomogeneous Poisson process, which
jumps according to the intensity A(X;):

E(Nt+At — Nt|gt) = A(Xt)At + O(At)

Formally, the construction (4) easily implies that the survival function of the
first jump time 7, evaluated at time 0, and conditional on knowledge of the state
process up to time ¢, is

Pr(r > t|G) = exp (— /0 t A(Xs)ds>



where Pr(.) is the probability associated to the measure P. It can also be shown,
by simple conditioning, that the time 0 unconditional survival probability, which
we will denote as S(t), is

S(t) = Pr(r > t) = E {exp ( /0 t A(Xs)ds)} . (5)

The unconditional probability at any date ¢ greater than 0 can be shown to be

t

Pr(r >t | Fp) = Lo B {exp </
¢

’

Ax)is) | Gl

where I, -y is the indicator function of the event 7 > ¢'.

A nonexplosive counting process N; constructed as above is said to be a Cox
or doubly stochastic process driven by {G; : t > 0}. The corresponding first jump
time is doubly stochastic with intensity A(Xj).

As a particular case, any Poisson process is a doubly stochastic process driven
by the filtration G; = (0,Q) = Gy for any ¢ > 0, in that the intensity is deter-
ministic.

These results can be naturally applied in the actuarial domain: if 7 is the
future lifetime of a head aged x, T, his/her survival function, S, (t), is

Sy(t) = Pr(T, > t) = B [exp (- /0 t A(Xs)dsﬂ (6)

3.1.2 Affine processes

In general, the expectations (5) and (6) are not known in closed form: however,
a remarkable exception is the case in which the dynamics of X is given by the
SDE:

dX(t) = f(X(t))dt + g(X (1) dW (t) +dJ (¢),

where W is an n-dimensional Brownian motion, J is a pure jump process, and,
above, all the drift f(X (¢)), the covariance matrix g(X (t))g(X (¢))" and the jump
measure associated with J have affine dependence on X (¢). Such a process is
named an affine process, and a thorough treatment of these processes is in Duffie
et al. (2003).

The convenience of adopting affine processes in modelling the intensity lies in
the fact that, under technical conditions, it yields:

Sy(t) = E [efé —A(X@))ds} = (DHBIHAX(0)), (7)

where the coefficients «(-) and §(-) satisfy generalized Riccati ODEs (see for
instance Duffie et al., 2000). The latter can be solved at least numerically
and in some cases analytically. Therefore, the problem of finding the survival
function becomes tractable, whenever affine processes for X (s) are employed.



3.2 Selection of the intensity

In the existing actuarial literature, different classes of affine processes have been
chosen for the intensity of mortality. For example, Milevsky and Promislow
(2001) investigate a so-called mean reverting Brownian Gompertz specification,
with intensity h; given by

h
gt+o fOt e—b(t—wyaw}

ht = hOet )

with g, o, b constant and the Brownian motion W uni-dimensional.
Dahl (2004) selects an extended Cox-Ingersoll-Ross (CIR) process, i.e. a
time-inhomogeneous process p, reverting to a deterministic function of time

Ay gy = (B (t, ) —y*(t, x)um”)dt + p*(t, x)\/ﬂdeWt,

where z is the initial age.

Biffis (2005) chooses two different specifications for the intensity process. In
the first one, the intensity pu, is given by a deterministic function m(¢) of time
plus a mean reverting jump diffusion process Y; with dynamics given by

ay, = v(y(t) — Yy)dt + odWy — dJ;.

In the second one, which is a two factor model, the intensity u, is a CIR-
like process, mean reverting to another process fi,. The dynamics of the two
processes are given by

dpy = (i — pp)dt + o1/ dW;
i, = ya(m(t) — ,)dt + o9\ [, — m*()dW;.

Schrager (2005) proposes an M-factor affine mortality model, whose general

form is given by
M

po(t) = go(@) + > Yi(t)gi(x),
i=1
where the factors Y; are mean reverting.

Luciano and Vigna (2005) explore the following models: an Ornstein Uhlen-
beck, a mean reverting with jumps and a CIR process as concerns the mean-
reverting group, a Gaussian and a Feller type process, with and without jumps,
as concerns the non-mean reverting set.

Among the one-factor models, Biffis (2005) fits his mean reverting time inho-
mogeneous intensity to some Italian mortality tables, while Luciano and Vigna
(2005) calibrate their time-homogeneous, simpler versions to the Human Mor-
tality database for the UK population. In doing the calibration, they assume
negative jumps, so as to incorporate sudden improvements in non-diversifiable
mortality. As a whole, they show that, among time-homogeneous diffusion and
jump diffusion processes, the ones with constant drift ”beat” the ones with mean
reversion, as descriptors of population mortality. Both the fit and the predictive



power of the non mean reverting processes - when they are used for mortality
forecasting within a given cohort- are very satisfactory, in spite of the analytical
simplicity and limitations. Among them, no one seems to outperform the oth-
ers. Moreover, for different generations, different estimates of parameters are
obtained: this confirms that generation effects cannot be ignored.

The results obtained in Luciano and Vigna (2005) justify the choice, made
in the present paper, of an affine, time-homogeneous intensity process, without
mean reversion. In particular, we will use the Feller model, whose intensity, for
the generation born x years ago and for fixed generation, follows the equation

dpy(s) = azpry(s)ds + 0w/ pp () AW,

where a, > 0 and o, > 0, since in this case the intensity is never negative. The
corresponding survival probability! is given by (7), with A(X) = p,, i.e.

Sa(t) = B [efd Thes] = o 048, (01 0), ®)

where, omitting the dependence on the cohort or generation x for simplicity

a(t)=0
B(t) = L=,

The parameters a and ¢ can be obtained either from mortality tables, or,
as we will do below, on sample, censored data. In both cases they can be
calibrated by minimizing the mean squared error between the theoretical and
actual probabilities: in the mortality table case the actual probabilities are the
table ones, while in the sample case they are the empirical ones, as obtained,
for instance, by the classical Kaplan-Meier procedure for censored data.

4 Copula estimate and best fit choice

In this section, we describe the procedure of estimating an Archimedean copula
under censoring. In some respects, the approach in this paper is common to
Denuit et al. (2004), who apply it to loss-ALAE data in non-life insurance.

IThese probabilities are decreasing in age t if and only if
et (62 + 2d%) > 0% — 2de

A sufficient condition for this is that 02 — 2dc < 0.

10



4.1 The distribution function of the Archimedean copula

Let Z = S (T7",T]). Define K as the distribution function of Z. Note that
we have that Z = C' (U, V) where (U, V) is a random couple with unit uniform
margins, and C the copula.

Genest and Rivest (1993) have shown that, for Archimedean copulas, with
generator ¢, this distribution function K is given by K (z) = z — A (z), where

)
M) = ¢ (&)

The function K is to be estimated from the data. We will make a distinction
between complete data, such as in Denuit et al. (2001), and censored data, such
as the application shown in this paper.

0<¢&<l (9)

4.1.1 General principle without censoring

Genest and Rivest (1993) have shown that, for complete data of size n, K can
be estimated by K, defined as

. 1 1
Ko (2) = —##{ilz < 2} where 2 = ——#{(2(), v5)) |2) < ) 965) <ve }»

where the symbol # indicates the cardinality of a set and { (x(i), y(i)) =1, ..., n}
are the observed data.

4.1.2 Wang-Wells empirical version of the generator in the presence
of censored data

Wang and Wells (2000) have proposed a modified estimator of K for censored
data. Since K can be written as

K (v) =Pr[S(I}"T)) <v] =E {H{S(T;ﬂ,Tzf)Sv} ’

the estimator is given by

K, (v) = /OOO /OOO I{5(e<}d5 (5,), (10)

where S stands for a nonparametric_estimator of the joint survival function,
taking censoring into account. For S we will use the estimator introduced in
Dabrowska (1988).

4.1.3 Dabrowska’s estimator

Denote by S™ and S/ the Kaplan-Meier estimates of the univariate survival
functions of 7" and Tyf, and, for ¢ € {1,..,n}, let d1; and d9; be the indicators

11



of the event that observations z(;) and y;), respectively, will be uncensored.
Furthermore, define

H(s,t) = %#{i|x(i) > 8,y > 1)

Ki(s,t) = %# {i|z) > s,y@) > t,01 = 1,09, = 1};
Ra(s,t) = —#{iloe > s,y > 601 =1};
Ro(s.t) = —#{ilae > sy > 1,02 =1},

and
Aip (s,t) = / K, (du, dv) /H (uﬂv‘) :

=0 Jv=0
Ao (s,t) = — K, (du,t) /PAI (u,t);
u=0

Aot (s, ) = —/vt_of(;; (s,dv) /}AI (s,07) .

Dabrowska’s estimator is:
S(s.t)y=5"()8" @) [[ 1-L(Au, v, (11)

0<u<s
o<v<t

with R R R
Ao (Au, ’U_) Aot (u_, Av) — A (AU, AU)

(1 — Avo (Aum*)) (1 — Ao1 (u, Av))

with Au = v —u~, and Av = v —v~. Then /A\H (Au, Av) is defined as the
estimated hazard function of double failures (i.e. deaths) at point (u,v), while
Ao (Au,v™) and Aoy (u™, Av) are the estimated hazard functions of failures of
(z) at w and (y) at v, respectively, given the exposed to risk defined at (u,v).
The principle of equation (12) can be derived from the numerator. We match
the expected number of joint failures in case of independence, with the actual

number of joint failures. A negative difference implies positive association. We
define

L (Au, Av) = , (12)

F (Svt) = H (1 - L (Aua AU))& (13)
0<u<s
o<v<t

as the multiplier by which the joint survival function differs from the one under
independence (see equation (11)). It follows that positive association is implied
if F(s,t) > 1.

12



4.2 Estimating Kendall’s tau under censoring

Let Kendall’s tau be denoted by 7. Since for Archimedean copulas

1
7:4/0 A& dE+1, (14)

we have that 7 can be expressed in terms of K in the following way:

1
7:3—4/ K (¢)de. (15)
0
The estimated 7 from (15) is suitable for censored data as well.

4.3 Estimation of generator

We can estimate A by means of K. Let Xn be the empirical estimate of \. Then,
for v € (0,1), A\, (v) = v — K, (v). For each generator listed in Table 1, we
estimate the parameter § through equations (9) and (14), with 7 derived from

(15). This leads to functions Ay, . We define Ky, (v) = v — Ay, (v), and choose

the generator whose Ko, has a minimum distance to IA(n In this paper, the
distance is defined in a quadratic sense as a mean squared error, denoted by
MSE.

MSE (¢;) = /0 1 (K% (v) — K (v))2 dv. (16)

4.4 Omnibus procedure

The procedure described above leads to the choice of the “most appropriate”
Archimedean copula, with parameter corresponding to Kendall’s tau. To check
the correctness of the procedure, for the same copulas the parameter is estimated
through the pseudo-maximum likelihood or omnibus procedure. This method
has been described in broad terms by Oakes (1994). Its statistical properties
are analyzed in Genest et al. (1995).

The procedure treats marginal distributions as nuisance parameters of in-
finite dimension. The margins are estimated nonparametrically by rescaled
versions of the Kaplan-Meier estimators, with the rescaling factor (multiplier)
equal to n/(n+1). The loglikelihood function to be maximized, denoted by
L (), has the following shape:

n 517; 527; 111 [C@ (ui, Ul)] + (1 — 511) (527; lIl [%}

L@)=) ’

i=1 +51@ (]. - (521) In {W] + (]. - (511) (]. - 521) In [Cg (Ui, 'UZ)]

)

where (u;, v;) = (?m (2;), 87 (yL)>7 Cy (ui,v;) is the copula under consideration,

and cg (u;,v;) its density (i.e. the derivative with respect to both arguments).
Note that this procedure could also be applied to non Archimedean copulas.
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5 Application to the Canadian data set

5.1 Description of the data set

We have used the same data set as Frees et al. (1996), Carriere (2000) and
Youn and Shemyakin (1999, 2001). The original data set concerns 14,947 con-
tracts in force with a large Canadian insurer. The period of observation runs
from December 29, 1988, until December 31, 1993. Like the aforementioned
papers, we have eliminated same-sex contracts (58 in total). Besides, like Youn
and Shemyakin (1999, 2001), for couples with more than one policy, we have
eliminated all but one of those (3,435 contracts). This has left us with a set of
11,454 married couples.

Since, as explained in Section 3, the methodology for the marginal survival
functions applies to single generations, we have focused on a limited range of
birth dates, both for males and females. In doing this, we have also taken into
consideration the fact that the average age difference between married man and
women in the sample obtained after eliminating same sex and double contracts,
is three years. In focusing on a generation and allowing for the three-year age
difference, we have considered only one illustrative example; however, the pro-
cedure can evidently be repeated for any other couple of generations. We have
selected the generation of males born between January 1st, 1907 and December
31, 1920 and those of females born between January 1st, 1910 and December 31,
1923. These two subsets, which amount to 5,025 and 5,312 individuals respec-
tively, have been used for the estimate of the marginal survival functions. Then,
in order to estimate joint survival probabilities, we have further concentrated on
the couples whose members belong to the generation 07-20 for males and 10-23
for females. This subset includes a total of 3,931 couples. Both individuals
and couples are observable for nineteen years, because they were born during a
fourteen year period and the observation period is five years.

On this data set, we have adopted the general procedure sketched in Section
3 for the margins and the one in Section 4 for the joint survival function.

We have first obtained the empirical margins, using the Kaplan-Meier method-
ology. These margins feed the Dabrowska estimate for the empirical joint sur-
vival function. Starting from it, the best fit analytical copula has been estimated
using the Wang and Wells (2000) method, as based on the approach by Gen-
est and Rivest. Like Denuit et al. (2004), we have performed a check of the
parameters and of the best fit choice using the omnibus procedure.

The marginal Kaplan-Meier data have been used also as inputs for the cali-
bration of the analytical marginal survival functions, according to the method-
ology in Luciano and Vigna (2005).

The final step of the calibration procedure has consisted in obtaining the
joint analytical survival function from the best fit copula and the calibrated
margins.
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5.2 Kaplan-Meier estimates of marginal survival functions

The Kaplan-Meier maximum likelihood estimates of the marginal survival prob-

abilities are collected in Table 2.
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0.7205523

0.6826285

Table 2

We notice that, differently from both Carriere (2000) and Frees et al. (1996),
we can calculate the empirical survival probabilities p, only until ¢ = 19. This
is due to the limited range of birth dates of our generations, coupled with the
five year length of observation. Based on the explanation above, we take the
initial age = to be 68 for males, 65 for females.

5.3 The bivariate survival function (Dabrowska)

Given the empirical margins in Table 2, provided by the Kaplan-Meier method,
we reconstruct the joint empirical survival function using the Dabrowska esti-
mator. We have simplified the estimator by truncating to integer durations.
This means that e.g. a duration of failure of k (integer) corresponds to death
between k and k 4 1. As data of death between durations 5 and 6 were incom-
plete (due to the maximal period of observation of 5.0075 years), we did not
consider any deaths more than five years after the start of the observation.

In Table 3 we present the multipliers F (s,t), as defined in equation (13).
Due to the time frame of observation of five years, we cannot explicitly compute
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the multipliers for durations greater than five.

for the maximal duration.

As usual with censoring, for
durations greater than the observation period, we take the multiplier computed

F(s,t) 0 1 2 3 4 »=5
0 1 1 1 1 1 1

1 1] 1.000637] 1.000892] 1.001329] 1.001972] 1.002155

2 1] 1.001055] 1.004109] 1.005851] 1.006285| 1.007077

3 1] 1.001509] 1.004665] 1.00909] 1.009978| 1.010515

4 1] 1.001524] 1.004547]| 1.008826] 1.011508] 1.012414

>=5 1] 1.001866] 1.00483| 1.009402| 1.012536] 1.0171356

Table 3

We notice that all the multipliers are greater than one. This indicates positive
association and confirms our intuition about the dependency of the lifetimes
of couples. Later on, we will provide an exact measure (Kendall’s tau) of the
amount of association.

Another relevant feature of the data, which can be captured from the table,
is the fact that the multipliers are generally increasing per row and per column:
this means that the amount of association is increasing. Namely, it means
that, for given survival time of one individual in the couple, the conditional
survival probability of the other member is more and more different from the
unconditional one as time goes by. It also means that with a longer period of
observation, we would probably have faced a stronger association between the
two lives.

5.4 The copula choice (Wang & Wells)

The Dabrowska empirical estimate of the joint survival function in turn is used
as an input for K , the empirical version of the K function, according to the
discretized version of formula (10), dividing the unit interval into a hundred
subintervals. Figure 1 presents the empirical estimate for K, K.
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Function K-hat

Figure 1

We observe that K (v) is zero for v < 0.23, because the smallest value of
S(s,t) is 5(19,19) = 0.23 (recalling that the presence of this minimum in turn
is due to censoring and to the restriction to one generation, which reduces the
observation window to 19 years).

The empirical K is used, according to formula (15), in order to calculate
an estimate of the Kendall’s tau. We get 7 = 0.71172, in line with the values
obtained, for the same Canadian set, but without focusing on a generation, by
other authors (Frees et al., 1996, Carriere, 2000, Youn and Shemyakin, 1999,
2001, Shemyakin and Youn, 2001).

The estimated 7 provides us with the parameter values needed for imple-
menting the theoretical copulas: as explained in Section 4.3, for each generator
we obtain its parameter 6.

From each copula we obtain a different theoretical K function, and we are
ready to compare them in order to assess their goodness of fit and to select the
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best copula. The graphical comparison can be done using Figure 2, where we
present the theoretical K’s and the empirical one.

Comparison between empirical and theoretical K

—e—clayton

| —=—frank
gumbel

K hat

Figure 2

We also compute the distance of each theoretical function from the empirical
one, i.e. the mean square error MSFE in (16), both starting from v = 0 and
starting from v = 0.23. By so doing, we obtain the errors in Table 4.

18

Mean square error |C-)Iayt0n Frank Gumbel  |4.2.20 in Nelsen §pecial alfa

starting from v=0 0.9196693] 1.6277131] 1.603946 0.676584105] 0.895387943

starting from v=0.23 0.3709306| 0.4239206] 0.716452 0.253719469] 0.365462788
Table 4

=He=4.2 20 Nelsen
—e— special alpha




Both from the graph and the errors we conclude that the best fit copula is the
4.2.20 Nelsen’s one.

The smallest percentage difference between the errors is a two digit one,
namely 44%. This big difference supports further the best fit of the Nelsen
copula.

5.5 Omnibus procedure

As a further check of our selection, we implement the omnibus or pseudo-
maximum likelihood procedure described in Section 4.4. As inputs for it, we use
again the Kaplan-Meier marginal probabilities in Table 2. Table 5 presents the
estimated parameters for each copula, their standard errors and the maximized
likelihood function.

F)opula [Theta via omn. proc. Standard error _ Theta via W& proc. Max-likelihood
Clayton 3.2167 0.4640 4.9376 ~425.075
Frank 45299 0.5236 6.5184 -425.333
Gumbel 1.1606 0.0233 3.4688 -438.284
4.2.20 Nelsen 1.5482 0.2069 1.4347 -424.944
Special 7.0445 0.5889 5.5041 -427 137

Table 5

The maximum likelihood is maximized in correspondence to the Nelsen cop-
ula: this procedure then confirms the results of the Wang and Wells one. How-
ever, contrary to the mean square error above, the difference between maximized
likelihoods is very weak: it ranges from 0.03% to 3%.

Also, the omnibus approach confirms the validity of the Kendall’s tau esti-
mates obtained with the Wang and Wells’ approach: using the above standard
errors, for each copula parameter - and consequently for the Kendall’s tau -
we computed a 95% confidence interval around the maximum likelihood one.
The Kendall’s tau of the Wang and Wells” method falls only in the confidence
interval of the Nelsen copula.

5.6 The analytical marginal survival functions

The couples of the data set have dates of birth between 1884 and 1993: even
though in the papers which have dealt with the same data set the same law of
mortality is assumed to apply for any life of the same gender, irrespective of
the date of birth, we distinguish different generation survival probabilities and
different intensity processes.

Contrary to Luciano and Vigna (2005), however, we take as a generation not
a single age of birth, but thirteen consecutive of them, as specified above: this
assumption is based on the one side on the possibilities of reliable calibration
(number of data) offered by the present data set; on the other side, by the
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fact that there is not a unique definition of generation, and, generally speaking,
persons with ages of birth close to each other are considered to belong to the
same generation.

We have chosen the generation 1907-20 for males, initial age 68, and 1910-
23 for females, initial age 65. We therefore present only two survival functions,
which will be denoted as Sg§(t), Sé; (t) respectively. Their analytical expression
is given by (8), where the estimated parameters are, respectively for males and
females

ags = 0.0810021, o4 = 0.00005, ags = 0.124979, 05 = 0.00005
while the initial intensity values are
tes(0) = 0.0204276, 1165 (0) = 0.0046943

Regarding the values of pgg(0) and pg5(0), according to Luciano and Vigna
(2005) we should choose — In(pgg) and — In(pgs ) respectively, with pgg being the
survival probability of a Canadian insured male born in 1920 and aged 68 and
with pes being the survival probability of a Canadian insured female born in
1923 and aged 65. However, this data is not available. Therefore, we have used
the Canadian data set outlined above, and estimated with the KM method
pes males and pgs females with all data available from the data set, without
restrictions on the generation. This has been done in order to have an estimate
of those survival probabilities as accurate as possible (also considering the fact
that the observation period is only five years, and therefore the individuals
entering the method for the calculation of the survival probabilities were born
in a six years interval).

The two survival functions are presented in Figure 3.
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Marginal survival functions

t

\ —e—Sm_68(t) —=— Sf 65(t)

Figure 3

6 The analytical joint survival function, its as-
sociation and long term dependency

We couple the fitted marginal survival functions of Section 5.6with the best fit
copula choice of Section 5.4, according to the formula

S(z,y) = C(Si(x), S (y))

with )
Co(u,v) = [In (exp(u“g) + exp(v?) — e)] °
By doing so, we obtain the joint survival function S(z,y) of Figure 4, whose

sections are presented in Figures 5 and 6 respectively
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S(x,y), y fixed
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S(x,y), x fixed
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Figure 6

Looking at Figure 5, we notice that the smaller y, the closer S(z,y) to the
marginal distribution S(x,0) = S(z). On the other hand, if y is high, S(z,y) is
almost flat until a certain age T after which it decreases. This is due to the fact
that the probability for the female of surviving y years, with high y, is very low
and this affects to a great extent the joint probability of surviving z years for
the male and y years for the female (even when the probability S(z,0) is very
high because z is small). After age T the joint probability starts to decrease
because of the joint effect of low probability of surviving y years for the female
and x years for the male.

For Figure 6 the same comments made for Figure 5 apply. Notice that, while
the age Z after which S(x,y), y fixed, starts to decrease is always smaller than
the fixed value of y (e.g. y =35 =7 =31,y =30 = = = 25,y = 25 —
x = 18,), here the age g after which S(z,y), x fixed, starts to decrease is always
higher than the fixed value of z (e.g. © =35 = § = 36,2 = 30 = y =
34,z = 25 = y = 30). This is probably due to the difference in death rates for
a male and a female with the same age. Evidence of this can be also found in
the different level of the sections when we change sex: for instance, S(x,35) lies
at a higher level than S(35,y), S(x, 30) lies at a higher level than S(30,y), etc.
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In Figure 7, we report the ratio between the joint survival function and the
probability which we would obtain under the assumption of independence (the

“classical” one): S‘ZE")”S@&)

SXY(S(X)S(y))

30

25

20

|
—
N8 o 1
™
y

36

Figure 7

In doing this, please notice that we use the short notation Sgg(z) = S(z), 555 (y) =
S(y). Figure 7 reports the time dependent measure of association v, (z,y) as
defined in (1), i.e. the joint survival probability as proportional to the inde-
pendence case. The ratio is monotone in each argument and reaches very large
values for large « and y. Note that for any (z,y), ¥, (z,y) takes values between
1 and m The lower bound is due to the positive association mea-
.Sy
sured above, since 1 corresponds to the independence case. The upper bound
corresponds to the limit reached by the ratio when the joint survival function
reaches the Fréchet upper bound, namely S (x,y) = min (S (z),S (v)) .
The sections are in Figures 8 and 9.
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SX,Y)(S(X)S(Y)), x fixed
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Figure 9

All the curves start at 1 for x = 0 or y = 0 and increase monotonically
until a certain value, defined as z* in Figure 8 and y* in Figure 9, from which
they remain constant. This suggests that the behaviour of the sections is quite
similar to the curves corresponding to the Fréchet upper bound. Comparing
the sections of Figure 8 with Figure 9 for the same fixed value, we observe that
x* < y*. This is probably due to the higher mortality experienced by males,
compared to females.

To conclude, we computed the conditional survival probabilities resulting
from our estimates, S§i(z | y) and Sg5(y | ) respectively. For the sake of
brevity, we denote them as S%(z | y) = S(z | y),S¢(y | ) = S(y | ) and
present them in Figures 10 and 11 respectively
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S(y|x), x fixed
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Figure 11

Considering Figure 10, for small values of y, S(z|y) approaches the marginal
distribution S(z), which is obvious. For high values of y the level of S(xz|y)
increases, and is even equal to 1 for a considerable period of time, if y = 30, 35.
This means that the probability of surviving long for the male is actually one,
given that the female survives even longer. For Figure 11, similar comments
apply. Here, we notice that with high values of z, S(y|z) is 1 for durations longer
than z. The intuition behind could be that the fact that the male survives x
years "guarantees” that the female survives at least x years.
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y ECT_X|T_y=y)E(l ) X ECT_y[T_x=)/E(T_y)
1 1.003 1 ~ 1.008 |
5 1.018 5 1.035

10 1.051 10 1.069

15 1.115 15 1.111
20 1.233 20 1.159
25 1.433 25 1.210
30 1.656 30 1.254

Table 6

Table 6 illustrates the measures 15, (0,y) and ¥, (z,0) as defined in equa-
tion (2). Column 2 displays the relative increase of the conditional expected
remaining lifetime of (z), given that (y) survives to y, which, as explained in
Section 2 increases as a function of y. We have that F [T"] = 16.51. Similarly,
column 4 shows the relative increase of the conditional expected remaining life-
time of (y), given that (z) survives to x, now increasing as a function of . The
unconditional life expectancy E [lec ] is equal to 21.92. We observe that, for
T =y, ¥y, (0,y) < 1by, (z,0) for small values of z or y but this inequality sign
is reversed for large values of this argument.

As for the third measure of time-dependent association in Section 2, the
cross-ratio function for the Nelsen copula, as a function of S (u,w) is

CR(S (u,w)) = 140 (1418 (uw,uw)] ) .

which is increasing as a function of u, as also shown in Spreeuw (2006). Figure
12 gives a plot of CR (v) versus 1 — v.

oy o R e
LIDEE—TEID  HENCTLDN

Figure 12

Note that CR (1) = 2.43472 and that CR (v) takes very large values for v
close to 0. Hence, for the Nelsen copula, members of a couple become more
dependent on each other as they age. This seems to be a reasonable assumption
for married couples.
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7 Conclusions

This paper represents a first attempt to model the mortality risk of couples of
individuals, according to the stochastic intensity approach.

On the theoretical side, we extend to couples the Cox processes setup, i.e.
the idea that mortality is driven by a jump process whose intensity is itself
a stochastic process, proper of a particular generation within a gender. The
dependency between the survival times of members of a couple is captured by
a copula, which we assume to be of the Archimedean class, as in the previous
literature on bivariate mortality.

On the calibration side, we fit the joint survival function by calibrating
separately the (analytical) margins and the (analytical) copula. First, we select
the best fit copula according to the methodology of Genest and Rivest (1993), as
extended by Wang and Wells (2000) to censored data. We obtain the so-called
Nelsen copula and we confirm its appropriateness with the so-called pseudo
maximum likelihood or omnibus procedure.

The best copula is far from representing independence: this confirms both
intuition and the results of all the existing studies on the same data set. In ad-
dition, since the best fit copula turns is the Nelsen one, dependency is increasing
with age.

Then, we provide a calibration of the marginal survival functions of male and
female selecting time-homogeneous, non mean-reverting, affine processes for the
intensity and give them in analytical form. Differently from Luciano and Vigna
(2005), we base the calibration on sample insurance data and not on mortality
tables. Coupling the best fit copula with the calibrated margins we obtain a
joint survival function which is fully analytical and therefore can be extended,
for the chosen generation, to durations longer than the observation period.

The main contribution of the paper is in the calibration of a joint survival
function which incorporates stochastic future mortality for both individuals in
a couple. The approach seems to be manageable and flexible, and lends itself
to extensive applications for pricing and reserving purposes.
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