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1 Introduction

The Fleming-Viot process, introduced by Fleming & Viot (1979), is a measure valued diffusion

process. The stationary distribution of the process is Π, where Π is the distribution of a

random measure µ, on some space S, and µ can be obtained via

µ(·) =
∞∑
i=1

ρi δVi(·), (1)

where ρ1 > ρ2 > · · · have the Poisson-Dirichlet distribution [8] and V1, V2, . . . are independent

and identically distributed from ν0, and independent of the ρi. Such a random measure is also

known as a Dirichlet process [5] and has been of great importance to Bayesian nonparametric

methods. To denote the dependence on (θ, ν0) we will use the notation Π(θ ν0).

Ethier & Griffiths [4] provide the transition function for a particular Fleming-Viot process.

Let dn(t) = P (Dt = n), where Dt is a death process, D0 = ∞ a.s., and with rate λn =
1
2n(n− 1 + θ) for some θ > 0. Tavaré [11], for example, computed that, for n = 1, 2, . . .,

dn(t) =
∞∑

m=n

(−1)m−nC(m,n)(θ + n)(m−1)m!−1γm,t,θ, (2)

where

γm,t,θ = (2m− 1 + θ)e−λmt,

and

d0(t) = 1−
∞∑

m=1

(−1)m−1θ(m−1)m!−1γm,t,θ.

Also,

C(m,n) =
m!

(m− n)!n!

and a(m) = a(a + 1) . . . (a + m − 1) for m = 1, 2, . . . with a(0) = 1. We will also use

a[m] = a(a − 1) . . . (a − m + 1) for m = 1, 2, . . . with a[0] = 1. We will show among other

things that this death process is fundamentally connected with the general Pólya-urn scheme

[3].

The transition function is given by

P (t, µ, dν) =
∞∑

n=0

dn(t)
∫

Π

(
dν|θν0 +

n∑
i=1

δXi

)
µ(dX1) . . . µ(dXn). (3)
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It is the intention of this paper to establish a comprehensible construction of the process and

the transition function using ideas formulated in Bayesian nonparametrics relating to the

Dirichlet process. The key result, which appears new and involves an elegant combinatorial

identity, is for sequences of Pólya-urns. We will also use recent ideas for constructing Markov

processes using latent variables, outlined in [10].

In Section 2 we provide background to the construction of the Fleming-Viot process

via discrete time processes associated with the Dirichlet process. The necessary Chapman-

Kolmogorov condition for existence in continuous time is examined in Section 3. Section 4

contains technical results and Section 5 concludes the paper with some points of discussion.

2 Stationary Markov processes using the Dirichlet process

In [10] the use of the Dirichlet process for deriving the DAR(1) model was described. Consider

the joint distribution on S ×P(S), where P(S) is the space of probability measures on S,

given by

P (dµ,dX) = µ(dX) Π(dµ|θν0).

In words, µ is chosen from Π and, given µ, X is chosen from µ. By making use of both

conditional distributions, the conditional distribution for µ being

P (dµ|X) = Π(dµ|θν0 + δX),

a discrete time Markov process can be constructed on S with transition function

P (Xt,dXt+1) =
∫

µ(dXt+1) Π(dµ|θν0 + δXt).

This is of the form

P (Xt,dXt+1) =
∫

P (dXt+1|µ) P (dµ|Xt).

A result in [2] gives

Π(θν0) =
∫

Π(·|θν0 + δX) ν0(dX) (4)

and it is well known that ∫
µΠ(dµ|θν0) = ν0. (5)

Consequently, it is easy to show that ν0 is the stationary distribution of the process. The

process, using properties of the Gibbs sampler, is easily shown to be reversible.
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In fact, it follows that

Xt+1


∼ ν0 with probability θ/(1 + θ)

= Xt with probability 1/(1 + θ).

This is the DAR(1) model.

Alternatively, we could consider the measure valued process on P(S). This would have

transition function given by

P (µ,dν) =
∫

Π(dν|θν0 + δX) µ(dX).

Using (4) and (5) it is straightforward to show that Π is the stationary distribution of the

process and that it is also reversible.

Instead of having a single observation from µ, we could consider the joint distribution on

Sn ×P(S) given by

P (dX1, . . . ,dXn,dµ) = Π(dµ|θν0)
n∏

i=1

µ(dXi).

It is well known that the “posterior”, or conditional distribution of µ given X1, . . . , Xn has

the form

Π

(
·|θν0 +

n∑
i=1

δXi

)
,

see [5]. Hence, in this case, the transition function for the measure valued process is

P (µ,dν) =
∫

Π

(
dν|θν0 +

n∑
i=1

δXi

)
µ(dX1) . . . µ(dXn). (6)

This is beginning to resemble the transition function for the Fleming-Viot process given in

(3), though obviously for discrete time. To obtain the Fleming-Viot process we need to put

the processes we have constructed into continuous time. To achieve this it is necessary to

make the number of samples n to be random. So, using the notation of Ethier & Griffiths in

[4], we denote by dn(t) the probability that the number of samples being used is n for the

transition with time t.

We are now ready to examine the existence of such a process by looking at the Chapman-

Kolmogorov equations.
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3 Chapman-Kolmogorov conditions

we consider the transition from µ0 to µt and then to µt+s. Thus, we have

P (dµt+s|Y1, . . . , Ym,m) = Π

dµt+s|θν0 +
m∑

j=1

δYj

 ,

where Y1, . . . , Ym are independent and identically distributed from µt and P (m) = dm(s).

Also,

P (dµt|X1, . . . , Xn, n) = Π

(
dµt|θν0 +

n∑
i=1

δXi

)
,

where X1, . . . , Xn are independent and identically distributed from µ0 and P (n) = dn(t).

Now, it is well known that we can integrate out µt and that

P (Y1, . . . , Ym|X1, . . . , Xn, n) = Q

(
θν0 +

n∑
i=1

δXi

)
,

where Q denotes a distribution associated with the general Pólya-urn scheme ([3], [2]). In

terms of sampling, we take the Y1, Y2, . . . by sampling Y1 ∼ νn, where

νn =
θν0 +

∑n
i=1 δXi

θ + n
,

and then subsequently

P (Yj |Y1, . . . , Yj−1) =
(θ + n)νn +

∑j−1
l=1 δYl

θ + n + j − 1
.

Such a sampling scheme, which in the Bayesian nonparametric literature is known as the

Pólya-urn scheme, also appears in mathematical genetics and is connected with the Poisson-

Dirichlet process. See, for example, Tavaré. Since the Xi are independent and identically

distributed from µ0, to achieve the Chapman-Kolmogorov condition we need to understand

how many of the Yj ’s are independent and identically distributed from µ0. For there to be r

of them, we obviously require m ≥ r and n ≥ r. To expand on this, a number of the Yj ’s will

be identical to some of the Xi’s. We are looking for the number of distinct indices associated

with these Xi’s. So, for example, if we collect up {X2, X4, X2, X1, X6, X4} from sampling the

Yj ’s then the appropriate number is r = 4; that is, we have the distinct indices {1, 2, 4, 6}.
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Theorem 3.1 Conditionally on n and m, we have that the probability mass function for r

is given, for r ∈ {0, . . . ,min{n, m}}, by

P (r|m,n) =
n[r](θ + r)(m−r)

(θ + n)(m)
C(m, r),

which can be written in extended form as

P (r|m,n) = r!C(n, r)C(m, r)
θ(n)θ(m)

θ(n+m)θ(r)
.

The proof is provided in Section 4. Hence, the Chapman-Kolmogorov condition becomes

dr(t + s) =
∞∑

n=r

∞∑
m=r

r!C(n, r)C(m, r)
θ(n)θ(m)

θ(n+m)θ(r)
dm(s)dn(t) (7)

for all s, t > 0. There can be many solutions to this, we will look for those within the class

of death processes; that is dn(t) = P (Dt = n). We let the rate be λn and so in particular we

have P (Ds+t = n|Dt = n) = P (Tn > s), where Tn is an exponential r.v. with parameter λn.

We have the death process also satisfying Chapman-Kolmogorov and so

dr(t + s) =
∞∑

n=r

P (Dt+s = r|Dt = n) dn(t).

Comparing this with the Chapman-Kolmogorov condition in (7) for the measure valued pro-

cess we see that we should have

θ(r)P (Dt+s = r|Dt = n)
r!

=
∞∑

m=r

C(m, r)
θ(m)

θ(n+m)
dm(s) θ(n)C(n, r)

and so
∞∑

m=r

C(m, r)
θ(m)

θ(n+m)
dm(s) =

θ(r)(n− r)!
θ(n)n!

P (Dt+s = r|Dt = n). (8)

This needs to be solved.

We will now show that the dn(t) given in (2) is a solution to (8). Ethier & Griffiths [4]

did much the same thing, but from a more complicated starting point. Our demonstration,

which follows, is now straightforward given the result of Theorem 3.1.

Now

P (Dt+h = n|Dt = n) = 1− λnh + o(h) (9)

and

P (Dt+h = n− 1|Dt = n) = λnh + o(h). (10)
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By considering
∞∑

m=n

m[n]

(θ + m)(n)
dm(s)

and
∞∑

m=n−1

m[n−1]

(θ + m)(n)
dm(s)

which are part of (8) with r = n and r = n − 1, respectively; with the help of formulae

appearing in Ethier & Griffiths ([4] page 1585) we can show that the dm(s) given in (2)

satisfies the conditions for the death process. The details are provided in Section 4.

Hence, we see that the complicated nature of the death process probabilities is solely due

to the form of P (r|n, m), which is a property of the Pólya-urn scheme. For other processes,

perhaps with a different choice of Π, which generates discrete random distribution functions

(see Section 5.2), and so yield different P (r|n, m), the fundamental equation to solve for

obtaining a transition function satisfying Chapman-Kolmogorov, is to find dm(s) such that

P (Dt+s = r|Dt = n) =
∞∑

m=r

P (r|n, m) dm(s).

This appears to be the key.

4 Technical results

Result [A]. We first prove that

∞∑
m=n

m[n]

(θ + m)(n)
dm(s) = e−λns.

Now the left-hand-side can be written as

∞∑
m=n

∞∑
k=m

(−1)k−mC(k, m)m[n]k!−1 (θ + m)(k−1)

(θ + m)(n)
γk,s,θ

which is equal to

n[n]γn,s,θ

n!(θ + 2n− 1)
+

∞∑
k=n+1

γk,s,θ

(k − n)!

k∑
m=n

(−1)k−mC(k − n, m− n)(θ + m + n)(k−n−1). (11)
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Lemma 4.1 It is that
k∑

l=0

(−1)k−lC(k, l)(φ + l)(k−1) = 0

for any φ > 0 and k ≥ 1.

Proof 1 We will do this by induction and prove the more general result that

k∑
l=0

(−1)k−lC(k, l)(φ + l)(k−r) = 0

for all r ∈ {1, . . . , k}. Assume the result is true for all k < K and for r ∈ {R, . . . ,K} when

k = K. Now∑K
l=0(−1)K−l C(K, l)(φ + l)(K−R+1)

= φ
∑K

l=0(−1)K−lC(K, l)(1 + φ + l)(K−R)

+K
∑K

l=1(−1)K−lC(K − 1, l − 1)(1 + φ + l)(K−1−R+1)

which by hypothesis is zero. To complete the proof, note that

k∑
l=0

(−1)k−lC(k, l) = 0

for all k = 1, 2, . . . and that the result is true for K = 2.

The result follows from (11) by transforming l = m− n, and then by substituting k − n for

k. Hence dm(·) satisfies (9).

Result [B]. We next show, in the first instance, that

H(s) =
∞∑

m=n−1

m[n−1]

(θ + m)(n)
dm(s) = 1

2

1
λn − λn−1

(
e−λn−1s − e−λns

)
.

Using a result in Ethier & Griffiths ([4] page 1585) we have

dH(s)
ds

= 1
2e−λn−1s − λnH(s)

and so

H(s) = 1
2

1
λn − λn−1

e−λn−1s + Ce−λns.
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Now H(0) = 0 and so

C = −1
2

1
λn − λn−1

leading to the desired result. Now performing some elementary algebra on (8) with r = n−1

we obtain

P (Dt+s = n− 1|Dt = n) = n(n− 1 + θ)H(s)

which leads to the validity of (10).

We could have proven the validity of (9) using this technique as well. If

G(s) =
∞∑

m=n

m[n]

(θ + m)(n)
dm(s)

then
dG(s)

ds
= −λnG(s).

Hence, G(s) = C exp(−λns) and since G(0) = 1, we have the result.

Result [C]. Before proving Theorem 3.1, we need to establish the following result (this is

apparently a new combinatorial result):

Lemma 4.2 Let θ be a positive real. Then for m ≥ r > 0 and defining 0! = 1

m−r∑
k=0

k! C(k + r − 1, k) C(m− r, k) θ(m−r−k) = (θ + r)(m−r).

Proof. Let |s(n, k)| denote the unsigned or absolute Stirling numbers of the first kind.

Expanding the θ terms on both sides of this relation we obtain

∑m−r
k=0 k!C(k + r − 1, k)C(m− r, k)

∑m−r−k
l=0 |s(m− r − k, l)| θl

=
∑m−r

k=0 |s(m− r, k)|
∑k

l=0 C(k, l) θl rk−l.

By changing the order of summation on both sides and collecting up the terms we have

m−r∑
l=0

{
m−r−l∑

k=0

k!C(k + r − 1, k)C(m− r, k)|s(m− r − k, l)|

}
θl

=
m−r∑
l=0

{
m−r∑
k=l

C(k, l)|s(m− r, k)|rk−l

}
θl
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These are two polynomials in θ of degree m − r and for them to be equal ∀ θ it suffices to

establish the equality of the coefficients of the same powers of θ; that is

m−r−l∑
k=0

k!C(k + r − 1, k)C(m− r, k)|s(m− r − k, l)| =
m−r∑
k=l

C(k, l)|s(m− r, k)|rk−l,

for all l = 0, 1, . . . ,m− r.

To show this is true we make use of an identity that appears in [1] page 824, which states

that for positive integers a ≤ b ≤ c

C(b, a) |s(c, b)| =
c−a∑

j=b−a

C(c, j) |s(c− j, a)| |s(j, b− a)|

The right hand side of the equation can be written as∑m−r
k=l C(k, l) |s(m− r, k)| rk−l

=
∑m−r

k=l

∑m−r−l
j=k−l C(m− r, j) |s(m− r − j, l)| |s(j, k − l)| rk−l

=
∑m−r−l

j=0 C(m− r, j) |s(m− r − j, l)|
∑j+l

k=l |s(j, k − l)| rk−l

=
∑m−r−l

j=0 C(m− r, j) |s(m− r − j, l)|
∑j

k=0 |s(j, k)| rk

=
∑m−r−l

j=0 C(m− r, j) |s(m− r − j, l)| r(j)

=
∑m−r−l

j=0 j! C(j + r − 1, j) C(m− r, j) |s(m− r − j, l)|

where we have used the fact that r(j) = j! C(j + r − 1, j). This completes the proof. �

Proof of theorem 3.1. The closed form of the joint probability of

[Y1, . . . , Ym|X1, . . . , Xn]

is given by

dG(Y1, . . . , Ym|X1, . . . , Xn) =
m∏

i=1

{
θν0 +

∑i−1
j=1 δYj (dYi) +

∑n
l=1 δXl

(dYi)
θ + n + i− 1

}
.

Assume without loss of generality that X1, . . . , Xr, the first r observations from X1, . . . , Xn,

are those that are repeated when we obtain a sample Y1, . . . , Ym. Let 0 ≤ si ≤ m − r, i =

1, 2, . . . , r, and fix a number k such that s1 + s2 + · · ·+ sr = k, where 0 ≤ k ≤ m− r.

10



Here the si represent the multiplicity of the Xi, i = 1, 2 . . . r, that appear in the sample

when there are k spaces available for those repetitions. So, conditionally on X1, . . . , Xn, we

are searching for the probability of the simultaneous occurrence of the following events,

Y1 = X1, Y2 = X2, . . . , Yr = Xr,

Yr+j = X1, 1 ≤ j ≤ s1

Yr+s1+j = X2, 1 ≤ j ≤ s2

...

Yr+
Pr−1

i=1 si+j = Xr, 1 ≤ j ≤ sr

Yr+k+1 ∈ X − {X1, . . . , Xn}

Yr+k+j ∈ X − {Yr+k+1, . . . , Yr+k+j−1, X1, . . . , Xn} or

Yr+k+j ∈ {Yr+k+1, . . . , Yr+k+j−1}, 2 ≤ j ≤ m− r − k,

where X is the sample space. This probability is given by

(s1 + 1)! . . . (sr + 1)! θ(m−r−k)

(θ + n)(m)
.

Since these events are exchangeable, by taking into consideration the number of repetitions of

the Xi’s and the specific order of appearance of the new values, which depend on the previous

observations, then, for a given k and for fixed multiplicities s1, . . . , sr, the probability of them

occurring in any order is given by,{
m!

(s1 + 1)! . . . (sr + 1)!(m− r − k)!

}
(s1 + 1)! . . . (sr + 1)!θ(m−r−k)

(θ + n)(m)

=
m! θ(m−r−k)

(m− r − k)!(θ + n)(m)

If we let k and s1, . . . , sr vary then this probability becomes∑m−r
k=0

∑
{s1+···+sr=k}

m! θ(m−r−k)

(m−r−k)!(θ+n)(m)

=
∑m−r

k=0 C(k + r − 1, k) m! θ(m−r−k)

(m−r−k)!(θ+n)(m)

= m!
(m−r)!

∑m−r
k=0 k! C(k + r − 1, k) C(m− r, k) θ(m−r−k)

(θ+n)(m)
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since, as proven in Lemma 4.2,

m−r∑
k=0

k! C(k + r − 1, k) C(m− r, k)θ(m−r−k) = (θ + r)(m−r)

this probability becomes,
m! (θ + r)(m−r)

(m− r)! (θ + n)(m)
.

Finally, for any choice of r X’s from {X1, . . . , Xn} we have that

P (r|m,n) = C(n, r)
m!(θ + r)(m−r)

(m− r)!(θ + n)(m)

which is given by
n[r](θ + r)(m−r)

(θ + n)(m)
C(m, r),

as required. �

5 Discussion

We have shown how to construct a particular Fleming-Viot process, for which the transition

function is known, from basic ideas involving the Dirichlet process and Markov processes,

based on the Gibbs sampler. This approach requires a new combinatorial result involving

Pólya-urn schemes. In particular, the combinatorial complexities which arise with the gener-

ator approach are avoided with the Chapman-Kolmogorov condition, once Theorem 3.1 has

been established. Here we briefly discuss a number of points:

5.1 The case θ = 0

Here we consider the case when θ = 0. It is evident that since Π no longer exists in this case

that there can be no stationary distribution for the process. A stationary distribution, which

is Π(θ ν0) can only exist when θ > 0. When θ = 0, the death process has probabilities

dn(t) =
∞∑

m=n

(−1)m−nC(m,n) n(m−1)m!−1γm,t,

for n ≥ 2, where γm,t = (2m− 1) exp{−m(m− 1)t/2}, with d0(t) = 0 and

d1(t) = 1−
∞∑

m=2

(−1)mγ(m, t).
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Now dn(t) is the probability that there are n equivalence classes at time t in the coalescent

of [9]. When θ = 0 then

P (Y1, . . . , Ym|X1, . . . , Xn, n) = Q

(
n∑

i=1

δXi

)

and

P (r|n, m) =
n[r]r(m−r)

n(m)
C(m, r),

which can be written as

P (r|n, m) = rC(m, r)C(n, r)
(n− 1)!(m− 1)!

(n + m− 1)!
n = 1, 2 . . . ;m = 1, 2 . . .

Hence for n, m > 0 we have P (r = 0|n, m) = 0.

5.2 The next step

We believe the representation given is informative, making a strong connection between

Bayesian nonparametrics and population genetics. It is also based on first principles for

the construction of a Markov process, namely the proposal for a transition function and

the verification of the Chapman-Kolmogorov condition. What are the possible directions

in which this connection can be taken? The clear idea is that we can consider alternative

choices of Π which generates discrete random distribution functions. One class of such a

random distribution function can be generated via

µ(·) =
∞∑
i=1

ρi δVi(·)

where the Vi are independent and identically distributed from some measure ν0 and the ρi

have a stick-breaking structure; that is

ρ1 = w1 and ρi = wi

∏
j<i

(1− wj)

where the wj have independent beta distributions, say beta(αj , βj). Then µ is almost surely

a random probability measure when

∞∑
j=1

log(1 + αj/βj) = ∞,
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see [7]. For example, the Dirichlet process arises when αj = 1 and βj = θ. The two parameter

Poisson-Dirichlet process, which is worth exploring, arises when αj = 1− σ and βj = θ + jσ

for 0 < σ < 1 and θ > −σ. To find the transition function for this process and others, if they

exist, we would need to replicate Theorem 3.1, that is find the appropriate P (r|m,n) from

the predictive distributions, and then solve

P (Dt+s = r|Dt = n) =
∞∑

m=r

P (r|n, m) dm(s)

for an appropriate death process. Hence we have a strategy for finding alternative transition

functions which seems to be highly possible to achieve. Work on this is ongoing.

5.3 An inequality. Here we consider the usefulness of

∞∑
m=n

m[n]

(θ + m)(n)
dm(t) = e−λnt.

For example, by putting n = 1, we have

∞∑
m=1

m

θ + m
dm(t) = e−λ1t.

Hence, it is easy to obtain

e−λ1t < 1− d0(t) < (1 + θ)e−λ1t,

and it is also clear how to obtain improved inequalities from this identity.
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