
INTERNATIONAL CENTRE FOR ECONOMIC RESEARCH

WORKING PAPER SERIES

Paolo Ghirardato and Massimo Marinacci

RISK, AMBIGUITY, AND THE SEPARATION OF
UTILITY  AND BELIEFS

Working Paper no. 21/2001
September 2001

APPLIED MATHEMATICS
WORKING PAPER SERIES

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6929009?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Risk, Ambiguity, and the Separation of Utility and Beliefs†

Paolo Ghirardato‡ Massimo Marinacci§

July 2001

Abstract

We introduce a general model of static choice under uncertainty, arguably the weakest
model achieving a separation of cardinal utility and a unique representation of beliefs.
Most of the non-expected utility models existing in the literature are special cases of it.
Such separation is motivated by the view that tastes are constant, whereas beliefs change
with new information. The model has a simple and natural axiomatization.

Elsewhere (forthcoming) we show that it can be very helpful in the characterization
of a notion of ambiguity aversion, as separating utility and beliefs allows to identify and
remove aspects of risk attitude from the decision maker’s behavior. Here we show that
the model allows to generalize several results on the characterization of risk aversion in
betting behavior. These generalizations are of independent interest, as they show that
some traditional results for subjective expected utility preferences can be formulated only
in terms of binary acts.

MSC: 91B06

Introduction

In this paper, we introduce and characterize axiomatically a general model of static choice
under uncertainty, whose main interest lies in being arguably the most general model that
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achieves a separation between cardinal utility and a unique representation of beliefs. Though
very general, the model has enough structure to prove some interesting results on the formal
representation of economic behavior. We illustrate this by showing three characterizations of
an important aspect of risk aversion. In a companion paper (forthcoming), we show how the
model can also be used to provide a very general characterization of a notion of ambiguity
aversion.

The motivation for looking at models of choice under uncertainty that generalize the
classical subjective expected utility (SEU) model of Savage (1954) is well known. There is
a wealth of evidence as to the descriptive limitations of the SEU model. The two most
popular problems are the Allais and Ellsberg paradoxes, respectively due to Allais (1953) and
Ellsberg (1961). Besides showing that the strong state separability enjoyed by expected utility
is not descriptively accurate, these ‘paradoxes’ raise the issue of whether it is normatively
compelling. A large number of extensions of SEU have been developed that weaken state
separability and rationalize some of these violations. There are models that rationalize the
‘ambiguity averse’ behavior of the Ellsberg paradox, like the Choquet expected utility (CEU)
model of Schmeidler (1989), or the maxmin expected utility (MEU) model of Gilboa and
Schmeidler (1989). There are models that rationalize the choices in the Allais paradox, like
the subjective rank-dependent expected utility (RDEU) model based on Quiggin (1982) and
Yaari (1987), Gul (1991)’s disappointment aversion model, or the more general model of
probabilistically sophisticated (PS) preferences of Machina and Schmeidler (1992). Finally,
there are models that rationalize additional features of observed behavior, like Tversky and
Kahneman (1992)’s cumulative prospect theory (CPT).

Though most of these models share some features, such are the differences between them
that so far there have been few attempts at finding nontrivial results on economic behavior
that hold for most, if not all, of them. Doing so requires finding a ‘common denominator’
model with enough structure to impose meaningful restrictions. For instance, just assuming
that every preference is a weak order does not allow us to make any formal statements about
beliefs or risk attitudes.

The first principal objective of this paper to is introduce a model in this spirit, that we call
the ‘biseparable preferences’ model, in Savage’s fully subjective decision setting. A preference
relation is biseparable (short for ‘binary separable’) if it can be represented by a functional
V on acts that respects state-by-state dominance, takes a ‘generalized expected utility’ form
on binary acts, and is otherwise unconstrained. By generalized expected utility we mean the
following: If u denotes the restriction of V to constants, there is a capacity (i.e., a monotone
set-function) ρ such that

V (f) = u(x) ρ(A) + u(y) (1− ρ(A)), (1)

when f is an act which pays x if event A obtains and y otherwise, with x preferred to y,
that we could call a bet on A. Such V is essentially unique whenever there is at least one
event with nontrivial ρ weight and a standard continuity assumption holds. By ‘essentially
unique’ we mean that V is determined up to a positive affine transformation, or is cardinal.
This implies that u is also cardinal and that ρ is unique.
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Thus, a decision maker (DM) with biseparable preferences evaluates consequences by
a cardinal state-independent utility index and evaluates bets by a unique capacity, that
represents his willingness to bet. When evaluating more complex nonbinary acts, though,
he is only restricted to satisfying monotonicity. We also look at the special setting with
‘horse races and lottery wheels’ of Anscomb and Aumann (1963) and discuss a variant of
the biseparable preference model — called the c-linearly biseparable preference model — in
which the DM’s utility index is linear on lotteries.

The biseparable preferences model, or its c-linear variant, is easily seen to encompass
all the decision models listed above, with the exception of the PS and CPT models (see
the discussion below). In fact, we argue that it is the most general model in which the
DM’s cardinal utility index and his willingness to bet are separated and univocally identified.
Clearly, the interest in such separation is motivated by the view that tastes are constant,
whereas beliefs change with new information.

In order to better understand the type of behavioral restrictions that the model entails,
we present a simple axiomatic characterization for it. We show that the only significant
restriction is a very weak version of the traditional independence axiom (based on the tech-
nique for constructing ‘subjective mixtures’ due to Nakamura (1990) and Gul (1992)), where
independence is only imposed in comparisons among certain pairs of binary acts. Thus, the
biseparable preferences model lends itself to simple experimental verification.

The second principal objective of this paper is to convince the reader that the biseparable
preferences model has enough structure to enable us to prove some interesting results about
economic behavior. A compelling example of the usefulness of the biseparable preferences
model is our study of ambiguity and ambiguity attitudes in (forthcoming). In that paper
we propose an extended notion of ambiguity aversion and related notions of ambiguity for
acts and events. We then provide their characterizations for any biseparable preference. For
instance, we show that if a biseparable preference is ambiguity averse in the sense we propose
there, then its willingness to bet ρ is dominated state-by-state by a probability. We also show
that the set of events which are unambiguous for an ambiguity averse (or loving) biseparable
preference is the collection of all the A’s such that ρ(A)+ρ(Ac) = 1. Biseparable preferences
play a key role in the analysis there because they provide the most general model for which
it is possible to cleanly separate cardinal risk attitude from ambiguity attitude in the broad
sense described there, so as to avoid confusing the two.

Here, we provide another example of the advantages of using a ‘common denominator’
model like biseparable preferences. We show that thanks to the cardinality of utility, it
is possible to extend to biseparable preferences several results on the characterization of
risk aversion for SEU preferences, as long as we limit our attention to betting behavior:
(1) a natural ‘more risk averse than’ relation between preferences is characterized by the
existence of a concave transformation between their utility indices; (2) the classical notion
of risk aversion as preference for the expected value (duly transposed to a purely subjective
framework) is characterized by the concavity of the utility index u; (3) a type of preference
for diversification in betting is also characterized by the concavity of u.

In assessing these results, the reader should be aware that they describe only an aspect
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of the complex phenomenon of risk aversion. First, because we mostly (with the exception
of Subsection 4.3) restrict our attention to a DM’s behavior over bets. Second, because
unlike the traditional definitions of risk aversion, we use a fully subjective setting (i.e., we
do not assume the existence of ‘known’ probabilities) and do not assume that DMs have PS
preferences in the sense of Machina and Schmeidler (1992). Therefore, we cannot capture
the aspects of risk aversion which conceptually hinge on those assumptions. The aspect
modelled here is called cardinal risk aversion (in the sense of ‘aversion to cardinal risk’), and
it is what explains the differences in betting behavior of two biseparable preferences with
the same willingness to bet. The results mentioned above show that cardinal risk aversion
is characterized by the concavity of a biseparable preference’s utility index. Other aspects
of a DM’s risk attitude, that we do not model here, could for instance be reflected in his
willingness to bet — as it is the case for what is usually called the DM’s ‘probabilistic risk
attitude’ (see the discussion in (forthcoming)). On the other hand, these two limitations do
not persist in the case of SEU preferences, where any behavioral trait that we associate with
risk averse behavior is equivalent to the concavity of utility.

Indeed, with SEU preferences our results acquire additional interest, as they show that
some well-known traits can be equivalently formulated in the much simpler world of bets
and certain consequences. For instance, rather than the complex notion of mean-preserving
spread à la Rothschild and Stiglitz (1970), we show that it is enough to look at ‘binary
mean-preserving spreads’ of bets.

A final aspect of interest of a model as general as the present one is that it provides a gen-
eral foundation for many of the models of multiattribute utility theory (see Miyamoto (1988)
for details), which enjoys the advantage of being detached from the many of the descriptive
difficulties that are associated with the DM’s reaction to uncertainty, like ambiguity aversion.
Since we obtain cardinal utility and still allow a variety of departures from EU maximization,
any multiattribute utility model built on biseparable preferences has wide applicability and
it can also be easily tested experimentally.

The Related Literature

The paper which is closest to the present one is Miyamoto (1988), which shares our double
objective of providing a model which encompasses many non-SEU models, and showing its
potential usefulness. His ‘generic utility theory’ uses a von Neumann-Morgenstern setting
with ‘known’ probabilities and — while it obtains cardinal utility — it does not deliver a
representation of the DM’s beliefs over the state space. His axiomatization is also not as
simple as the one we propose.

There are then several axiomatic papers presenting decision models whose relation to
biseparable preferences deserves a brief comment.

Machina and Schmeidler (1992)’s PS preferences model is comparable to ours in general-
ity. While the intersection between the two models is nontrivial, including for instance the
RDEU preferences, they embody different rationality restrictions on preferences and have a
different scope. The PS model provides a little structure on the ‘functional’ representation
of preferences over all acts, whereas we are very precise on the functional representation, but
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only over the binary acts. This is because our objective is obtaining a cardinal utility and a
unique representation of beliefs so that, for instance, cardinal risk and ambiguity attitude can
be clearly separated. We remark that our model could be used to provide a choice-theoretic
derivation of subjective probability different from Machina-Schmeidler’s. In fact, it is easy to
show (see Section 5) that a simple and natural reinforcement of the axioms that characterize
biseparable preferences yields a DM with probabilistic beliefs: His willingness to bet ρ is a
probability measure (i.e., it is additive). Such DM is not necessarily a SEU maximizer, and
may not even be PS in the sense of Machina and Schmeidler.

Another preference model not encompassed by ours is Tversky and Kahneman (1992)’s
CPT, where a DM has a given reference point and his willingness to bet can be different
depending on whether he considers bets with ‘gains’ (consequences preferred to the reference
point), or bets with ‘losses’ (consequences to which the reference point is preferred). Clearly,
all the results proved here hold for CPT when we look at gains or losses only, as then CPT
collapses to CEU. Moreover, it would be straightforward to introduce a reference point in our
analysis to obtain what could be called the ‘cumulative’ biseparable preferences model. Luce
(2000, Chapter 3) has a model in this spirit, which is logically independent of ours, since
he uses a dynamic decision framework that deviates from the traditional Savage setting we
employ. Moreover, the representation he obtains has more structure than that entailed by
biseparable preferences.

The axiomatics in this paper are related to those in some papers on the characterization
of CEU and MEU preferences, in particular to Nakamura (1990), Chew and Karni (1994),
and Casadesus-Masanell, Klibanoff and Ozdenoren (2000). Of course, the main innovation in
our contribution is the realization that the preferences which only satisfy Eq. (1) on binary
acts can be useful and interesting.

Finally, a part of our discussion of cardinal risk aversion is related to Yaari (1969)’s paper
on the characterization of relative risk aversion for a large class of preferences.1 Roughly,
the class of preferences he considers is wider than the class of the biseparable preferences.
However, our results have the advantage of avoiding differentiability assumptions — whose
behavioral characterization is not straightforward.

Organization

The paper is organized as follows. Section 1 introduces some required notation and termi-
nology. Section 2 introduces formally the class of the biseparable and c-linearly biseparable
preferences, it shows some properties that they possess, and provides some examples. Sec-
tion 3 provides the axiomatizations of the two preference models, and shows how to obtain
probabilistic beliefs. Section 4 contains the results on cardinal risk aversion. Section 5 offers
some concluding remarks. The Appendix contains the proofs for all the results in the paper.

1 For brevity, we do not discuss the papers which analyze risk aversion in the context of a specific decision
model.
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1 Set-Up and Preliminaries

The Savage-style setting we use consists of a set S of states of the world, an algebra Σ of
subsets of S called events, and a set X of consequences. We denote by F the set of all
the simple acts: finite-valued functions f : S → X which are measurable with respect to
Σ. For x ∈ X we define x ∈ F to be the constant act such that x(s) = x for all s ∈ S. So,
with the usual slight abuse of notation, we identify X with the subset of the constant acts in
F . Moreover, xAy denotes the bet f such that f(s) = x for s ∈ A, and f(s) = y for s /∈ A,
where A ∈ Σ.

We model the DM’s preferences on F by a binary relation <. A functional V : F → R
represents < if V (f) ≥ V (g) if and only if f < g. Clearly, a necessary condition for < to
have a representation is that it be a weak order — a complete and transitive relation — so
that, as customary, we can denote by ∼ and � its symmetric and asymmetric components,
respectively. A representation V is monotonic if V (f) ≥ V (g) whenever f, g ∈ F are such
that f(s) < g(s) for all s ∈ S; it is nontrivial if V (f) > V (g) for some f, g ∈ F .

Given a weak order <, acts f, g ∈ F are called comonotonic if there are no s, s′ ∈ S
such that f(s) � f(s′) and g(s′) � g(s). Finally, an event A ∈ Σ is null (resp. universal)
for a weak order < if y ∼ xAy (resp. x ∼ xAy) for all x, y ∈ X such that x � y, while A is
essential for < if for some x, y ∈ X we have x � xAy � y. We remark that our notion of
null event is less demanding than that in Savage (Savage 1954).

1.1 Capacities and Choquet Integrals

A set-function ρ on (S,Σ) is called a capacity if it is monotone and normalized, that is: if
for A,B ∈ Σ, A ⊆ B, then ρ(A) ≤ ρ(B); ρ(∅) = 0 and ρ(S) = 1. A capacity is called a
probability measure if it is (finitely) additive: For all A,B ∈ Σ such that A ∩ B = ∅,
ρ(A ∪B) = ρ(A) + ρ(B).

The notion of integral used for capacities is the Choquet integral, due to Choquet
(1953). For a given bounded Σ-measurable function ϕ : S → R, the Choquet integral of ϕ
with respect to a capacity ρ is defined as follows:∫

S
ϕdρ =

∫ +∞

0
ρ({s ∈ S : ϕ(s) ≥ α}) dα+

∫ 0

−∞
[ρ({s ∈ S : ϕ(s) ≥ α})− 1] dα, (2)

where the integrals are taken in the sense of Riemann. When ρ is additive, (2) is equal to a
standard (additive) integral. In general, Choquet integrals are seen to be monotonic, positive
homogeneous and comonotonic additive: If ϕ,ψ are comonotonic functions from S into
R, then

∫
(ϕ+ ψ) dρ =

∫
ϕdρ+

∫
ψ dρ.

2 Biseparable Preferences

The following definition is central to the paper. Given a representable binary relation, it
singles out a subset of its representations. We call these representations ‘canonical’, as they

6



are of special interest due to their separability properties:

Definition 1 Let < be a binary relation. We say that a representation V : F → R of < is
canonical if it is nontrivial and monotonic and there is a set-function ρV : Σ → [0, 1] such
that, if we let u(x) ≡ V (x) for all x ∈ X, for all consequences x < y and all A ∈ Σ we have:

V (xAy) = u(x) ρV (A) + u(y) (1− ρV (A)). (3)

The next result clarifies the roles of the functions u and ρV .

Proposition 2 Let < be a binary relation with a canonical representation. For all its canon-
ical representations V and all x, y ∈ X,

x < y ⇐⇒ u(x) ≥ u(y). (4)

Moreover, for all x � y and all A,B ∈ Σ we have

xAy < xB y ⇐⇒ ρV (A) ≥ ρV (B). (5)

That is, the index u given by the restriction of V to X is a (state-independent) utility
function, so that we call it the canonical utility index of <. The set-function ρV — the
unique set-function that satisfies Eq. (3) for a given V — is a numerical representation of the
DM’s ‘likelihood’ relation, that we call the DM’s willingness to bet. Roughly, ρV (A) is the
number of euros the DM is willing to exchange for a bet which pays 1 euro if A ∈ Σ obtains,
and nothing otherwise. The next simple result presents some properties of the willingness to
bet function ρV . In particular, it is worth noting that ρV is a monotone set-function, i.e., a
capacity.

Proposition 3 Let V be a canonical representation of a binary relation <. The set-function
ρV has the following properties:

(i) An event A ∈ Σ is essential iff ρV (A) ∈ (0, 1).

(ii) An event A ∈ Σ is not essential iff ρV (A) ∈ {0, 1}. In particular, ρV (A) = 0 iff A is
null, and ρV (A) = 1 iff A is universal.

(iii) If A,B ∈ Σ are such that A ⊆ B, then ρV (A) ≤ ρV (B).

Remark 4 The proposition also shows that an event must be either null, universal, or es-
sential. Moreover, it shows that for a binary relation with a canonical representation, A is
essential if and only if x � xAy � y for every x � y.

In light of these results we can say that a DM whose preference < has a canonical rep-
resentation chooses among binary acts as if he was maximizing the (Choquet) ‘expectation’
of the canonical utility u with respect to the willingness to bet ρV . But his preferences over
non-binary acts are not constrained to a specific functional form.
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So far, we have not said anything about the uniqueness properties of canonical represen-
tations V , and hence of the canonical utilities u and willingness to bet functions ρV . That
is, given two canonical representations V and V ′ of the same binary relation <, are they
related by more than just an increasing transformation? Clearly, if V ′ is a positive affine
transformation of V (i.e., there are α > 0 and β ∈ R such that V ′ = αV + β), it is a
canonical representation. So canonical representations can at most be cardinal scales. In
general, though, there is no reason to expect that they be cardinal. First of all, if < has
no essential events, then Definition 1 does not impose any restriction on the structure of V
beyond monotonicity: Any increasing transformation of V is also canonical (cf. Remark 8
below). Second, even if there are essential events it is simple to construct examples with
finite S and X where V and V ′ are canonical representations of < which are not related by
an affine transformation (they might even be expected utility functionals).

On the other hand, one of our main objectives is to achieve a proper separation of utility
from willingness to bet. The examples just mentioned show that such separation could fail
when V is not cardinal. As it turns out, ruling out this possibility suffices to reach our
objective. In fact, we presently show in Proposition 6 that when V is cardinal the willingness
to bet function is univocally determined. In turn, this uniqueness yields the separation of u
and ρ. We thus restrict our attention to the following subclass of preferences:

Definition 5 A binary relation < is called a biseparable preference if it admits a canonical
representation, and moreover such representation is unique up to positive affine transforma-
tions when < has at least one essential event.

We remark that the class of preferences with a canonical representation but not biseparable
does not seem to contain many examples of interest. In fact, we show later (Proposition 10)
that cardinality of the canonical representation is guaranteed for any preference satisfying a
weak continuity condition.

Given a biseparable preference, its u is clearly cardinal. Cardinality is quite helpful, as
it allows us to discuss u’s concavity (but see Theorem 17 below) or any other of its cardinal
properties (cf. Miyamoto (1988)). We now show that its willingness to bet is also unique:

Proposition 6 Let < be a biseparable preference. Then ρ is unique: ρV = ρV ′ for all
canonical representations V and V ′ of <.

Because of this result, we shall henceforth write ρ instead of ρV to denote the willingness to
bet of a biseparable preference.

Before showing that most of the decision models mentioned in the Introduction describe
biseparable preferences, we look at a more special but popular decision setting, and present
a variant of biseparability for that setting.

2.1 Constant Linearity and the Anscombe-Aumann Setting

An important special case of the decision setting we use is the one in which X has a vector
structure; precisely, it is a convex subset of a vector space. For instance, this is the case if X is
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the set of all the lotteries on a set of prizes, as it happens in the classical setting of Anscombe
and Aumann (1963). In this framework, it is natural to consider the preferences satisfying
the following condition — where as usual for every f, g ∈ F and α ∈ [0, 1], αf + (1 − α)g
denotes the act which pays αf(s) + (1− α)g(s) ∈ X for every s ∈ S.

Definition 7 Let X be a convex subset of a vector space. A canonical representation V of a
binary relation < is constant linear (c-linear, for short) if for all binary f ∈ F , x ∈ X,
and α ∈ [0, 1],

V (α f + (1− α)x) = αV (f) + (1− α)V (x).

A relation is called a c-linearly biseparable preference if it admits a c-linear canonical
representation.

It is easy to verify that if a binary relation has a c-linear canonical representation, such
representation is unique up to positive affine transformations. Therefore, for this class of
preferences we do not have to specifically add a uniqueness requirement. It is important to
observe that c-linearly biseparable preferences are not necessarily biseparable in the sense
of Definition 5: They may have two canonical representations which are not related by a
positive affine transformation (of course only one of them can be c-linear). As their name
suggests, they are biseparable in the c-linear class.

2.2 Examples

Here we partially substantiate our earlier claim that many preference models are bisepa-
rable by showing that they all have a canonical representation. When X is a connected
and separable topological space and each u function is continuous this suffices to show that
they are biseparable (see Proposition 10 below). In the Anscombe-Aumann setting, c-linear
biseparability follows immediately if we assume that each u function is affine on X.

(i) A relation < is a CEU ordering if there exist a utility u : X → R and a capacity ν on
(S,Σ) such that < can be represented by the functional V : F → R defined as follows:

V (f) ≡
∫

S
u(f(·)) dν, (6)

where the integral is taken in the sense of Choquet (notice that V (f) is finite because
f ∈ F is finite-valued). A special type of CEU preferences are the RDEU orderings,
for which the capacity ρ is a ‘distortion’ g(P ) of some probability P . A SEU ordering
corresponds to the special case of RDEU in which g is the identity. An axiomatization
of CEU (and SEU) preferences in the Anscombe-Aumann setting is found in Schmeidler
(1989); one in the Savage setting is found, e.g., in Gilboa (1987), Wakker (1989),
Nakamura (1990), and Chew and Karni (1994).
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If < is a CEU ordering with a nonconstant u, it is immediate to check that V is a canon-
ical representation of <, and u is a canonical utility index of <. In fact, monotonicity
is well known, and Eq. (3) holds with ρ(A) = ν(A) for all A ∈ Σ.

(ii) A popular generalization of CEU is the CPT of Tversky and Kahneman (1992). In CPT
some consequence is established to be the DM’s reference point. The consequences which
are better than the reference point are called ‘gains’, and those which are worse are
called ‘losses’. The preferences over F are represented as follows: Given a nonconstant
utility function u, normalized so that the reference point has utility 0, every act f
is split into its ‘gain’ part f+ (of the payoffs with positive utility) and its ‘loss’ part
f− (of the payoffs with negative utility). V (f) is the sum of the Choquet integral of
u(f+) w.r.t. a capacity ν+ and the Choquet integral of u(f−) w.r.t. another capacity
ν−. (CEU corresponds to the special case in which ν− = ν+.) A CPT preference
has a canonical representation only if it is also CEU. However, a CPT preference has a
canonical representation on the sets of acts which only yield gains (or only losses). Also,
it would be easy to generalize the notion of biseparable preference to allow willingness
to bet to be different depending on whether gains or losses are considered.

(iii) Using a von Neumann-Morgenstern setting with ‘known’ probabilities, Gul (1991)
presents a model in which preferences over lotteries are represented by a functional
V obtained roughly as follows: Given a utility index u : X → R and a lottery p, find
its certainty equivalent, and write p as a mixture αq + (1− α)r — where q (resp. r) is
the sublottery obtained by taking the payoffs of p which are better (resp. worse) than
the certainty equivalent of p. Then let V (p) = γ(α)U(q) + (1− γ(α))U(r), where U(q)
denotes the expectation of u w.r.t. q (and analogously for U(r)) and for any α ∈ [0, 1],
there is β ∈ (−1,∞) such that γ(α) = α/(1 + (1 − α)β). In other words, the DM
‘distorts’ the probability α of getting a positive result because of the parameter β, that
Gul calls an index of ‘disappointment aversion’. In the case of binary lotteries, the
functional V can be explicitly written as follows: If we let p = αx + (1 − α) y, with
x < y, then

V (p) =
α

1 + (1− α)β
u(x) +

(1− α)(1 + β)
1 + (1− α)β

u(y).

That is, the ordering over binary lotteries has an RDEU representation (though not
over more general lotteries). Therefore it follows from our discussion of example (i)
above that Gul’s model, once adapted to the Savage setting, also describes preferences
in the biseparable class.

(iv) A relation < is a MEU ordering if there exist a utility index u and a unique non-
empty, (weak∗)-compact and convex set C of probabilities on (S,Σ), such that < can
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be represented by the functional V : F → R defined as follows:

V (f) ≡ min
P∈C

∫
S
u(f(·)) dP. (7)

Again, SEU corresponds to a special case of MEU: That in which C = {P} for some
probability measure P . An axiomatization of MEU preferences in the Anscombe-
Aumann setting is in Gilboa and Schmeidler (1989); one in the Savage setting is in
Casadesus-Masanell, Klibanoff and Ozdenoren (2000).

If < is a MEU ordering with a nonconstant utility u, it is easy to check that V is a
canonical representation of <, and u is a canonical utility index of <. In fact, if we let
ρ(A) = minP∈C P (A) for all A ∈ Σ we see that V (f) =

∫
u(f) dρ for every binary f

(notice that the equality does not hold necessarily for general f), so that Eq. (3) holds.

More generally, consider an ‘α-MEU’ preference < such that there is α ∈ [0, 1] for which
< is represented by the functional

V (f) = αmin
P∈C

∫
S
u(f(s))P (ds) + (1− α) max

P∈C

∫
S
u(f(s))P (ds).

This includes the case of a ‘maximax’ DM, who has α = 0. V is a canonical represen-
tation of <: Eq. (3) holds with ρ defined for every A ∈ Σ by

ρ(A) = αmin
P∈C

P (A) + (1− α) max
P∈C

P (A).

3 Axiomatization

Here we provide the axiomatic characterization of biseparable preferences. We begin with
three necessary axioms, which are also sufficient when there are no essential events. Next, we
look at the characterization of c-linearly biseparable preferences in the Anscombe-Aumann
setting in which X is a convex subset of a vector space. Finally, we provide the characteri-
zation of biseparable preferences in the more general Savage setting.

3.1 Three Necessary Axioms

The following simple behavioral properties are satisfied by any preference with a canonical
representation, a fortiori by a biseparable one. First of all, any such preference is a nontrivial
weak order.

B1 (Preference Relation) (a) For all f, g ∈ F , f < g or g < f . (b) For all f, g, h ∈ F , if
f < g and g < h, then f < h. (c) There are f, g ∈ F such that f � g.

Then, a preference with a canonical representation satisfies two mild monotonicity axioms.
Both axioms are widely used in the literature, and imply a form of state independence. The
first one is the behavioral equivalent of monotonicity:
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B2 (Dominance) For every f, g ∈ F , if f(s) < g(s) for every s ∈ S, then f < g.

The last necessary axiom, which is a weak version of Savage’s P3 (1954), is a converse to
B2 for some binary acts.

B3 (Eventwise Monotonicity) For every non-null A ∈ Σ and every x, y < z ∈ X,

x � y =⇒ xAz � y A z.

For every non-universal A ∈ Σ and every x, y 4 z ∈ X,

x � y =⇒ z Ax � z A y.

Recalling Remark 4, axiom B1 immediately implies that an event can be at most one of null,
essential or universal. Axiom B3 can be used to show directly that if an event A is non-null
and non-universal then x � xAy � y for all x � y, so that A is essential. Therefore, under
axioms B1 and B3, the sets of the null, universal and essential events form a partition of Σ.

Remark 8 It is simple to show that if < is a weak order with no essential events, axioms
B1–B3 are sufficient as well as necessary for < to be a biseparable preference, provided it
admits a representation. More precisely, let < be a binary relation satisfying axioms B1–B3.
If < has no essential events, every functional V : F → R representing < has the following
(Choquet) integral representation: for every f ∈ F ,

V (f) =
∫

S
u(f(s)) ρ(ds), (8)

where ρ is the {0, 1}-valued capacity on Σ defined by ρ(A) = 0 if A is null, ρ(A) = 1 if
A is universal, and u : X → R is defined by u(x) ≡ V (x) for every x ∈ X. Thus, every
representation of < is CEU, so that Definition 5 implies that < is a biseparable preference.

3.2 The Anscombe-Aumann Case

Consider the following axioms, some of which exploit the vector structure of X:

A1 (Certainty Equivalents) For all f ∈ F , there is x ∈ X such that x ∼ f .

A2 (Weak Certainty Independence) For all binary f, g ∈ F and all x ∈ X, if α ∈ (0, 1)
then

f � g ⇐⇒ αf + (1− α)x � αg + (1− α)x.

A3 (Archimedean Axiom) For all x, y, z ∈ X, if x � y � z then there exist α, β ∈ (0, 1)
such that

αx+ (1− α)z � y � βy + (1− β)z.

12



These axioms are mild behavioral assumptions. Axioms A1 and A3 are standard and play
mostly a technical role. Axiom A2 is a very weak and compelling version of the independence
axiom: It only requires that independence holds whenever we are comparing binary acts, and
we are mixing them with a constant act. It is a weakening of the ‘certainty independence’
axiom introduced by Gilboa and Schmeidler (1989) as the cornerstone of their axiomatization
of MEU in the Anscombe-Aumann setting. As it turns out, alongside B1–B2, these three
axioms characterize c-linearly biseparable preferences. (Notice that axiom B3 is not used, as
it is implied by the other axioms in the Anscombe-Aumann setting.)

Theorem 9 Let X be a convex subset of a vector space, and let < be a binary relation on
F . Then the following statements are equivalent:

(i) < satisfies axioms B1–B2 and A1–A3.

(ii) There exist a nontrivial monotonic representation V : F → R of < and a capacity
ρ : Σ → [0, 1] such that:

• for all x < y in X, all A ∈ Σ, letting u(x) ≡ V (x) for all x ∈ X, we have

V (xAy) = u(x) ρ(A) + u(y) (1− ρ(A));

• for all binary f ∈ F and x ∈ X, and all α ∈ [0, 1],

V (α f + (1− α)x) = αV (f) + (1− α)V (x).

Moreover, the representation V is unique up to positive affine transformations and the ca-
pacity ρ : Σ → [0, 1] is unique.

3.3 The Savage Case

We now come to the characterization in the more general Savage setting. Since the case of a
< with no essential events is dealt with in Remark 8, we directly assume that < has at least
one essential event.

Endow X with a topology τ . In turn, τ induces the product topology on the set XS of
all functions from S into X. In this topology, a net {fα}α∈D ⊆ XS converges to f ∈ XS if
and only if fα(s) τ−→ f(s) for all s ∈ S (remember that S is arbitrary). For this reason it
also called the topology of pointwise convergence. We now have:

S1 (Continuity) Let {fα}α∈D ⊆ F be a net that pointwise converges to f ∈ F , and such
that all fα’s and f are measurable with respect to the same finite partition. If fα < g (resp.
g < fα) for all α ∈ D, then f < g (resp. g < f).

S1 is a standard continuity axiom. It is very weak, as the clause that all acts in the net used
in the axiom are measurable w.r.t. the same partition significantly limits its demands. In
particular, it is substantially weaker than requiring continuity w.r.t. to the product topology.
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It is easy to see (Lemma 29 in Appendix B) that any binary relation satisfying B1, B2
and S1 on a connected X has certainty equivalents. That is, it satisfies axiom A1 above.
Granted this, we henceforth denote by cf an arbitrarily chosen certainty equivalent of f ∈ F .

Another consequence of S1 is the following result, that was anticipated in Section 2.

Proposition 10 Let X be a connected and separable topological space, and let < be a binary
relation with a canonical representation. Then < is biseparable if it satisfies S1.

That is, when continuity holds, canonical representations are unique up to positive affine
transformations (in the presence of an essential event). As mentioned at the beginning of
Subsection 2.2, this result can be used to show that the preferences in examples (i)–(iv) are
biseparable.

The characterization of biseparable preferences requires another axiom with more substan-
tial empirical content, a separability property. To introduce it, we begin with the observation
(due to Nakamura (1990) and Gul (1992)) that even if we do not have access to a randomizing
device, we can still construct a ‘subjective mixture’ of two acts f and h as follows: Fix some
event B, and then construct state by state the act which for every state s yields the certainty
equivalent of the bet f(s)B h(s). Formally, the statewise B-mixture of f and h is the
act s(f B h) ∈ F defined as follows: For all s ∈ S,

s(f B h)(s) ≡ c(f(s)Bh(s)).

If h is statewise dominated by f , the constructed act’s payoffs are all indifferent to bets on
the event B, so that it is analogous to a mixture in the Anscombe-Aumann setting. We are
now ready to state the axiom (where {x, y} < z is a short-hand for x < z and y < z):

S2 (Binary Comonotonic Act Independence) For every essential A ∈ Σ, every B ∈ Σ,
and for all f, g, h ∈ F such that f = xAy, g = x′Ay′ and h = x′′Ay′′. If f, g, h are pairwise
comonotonic, and {x, x′} < x′′ and {y, y′} < y′′ (or x′′ < {x, x′} and y′′ < {y, y′}), then

f < g =⇒ s(f B h) < s(g B h).

S2 is a weak version of the well known independence axiom of EU, and of Schmeidler’s
‘comonotonic independence’ (1989) axiom:2 In the spirit of the latter, S2 requires that ‘sub-
jective mixing’ with a comonotonic act h does not affect the ranking of the two acts f and g.
The additional requirement that h be either state by state better, or worse, than the other
two acts guarantees that the ‘mixing’ operation is performed correctly, i.e., without involving
bets on different events (B and Bc). However, S2 generalizes Schmeidler’s axiom by only
applying to bets measurable with respect to the algebra ΣA ≡ {∅, A,Ac, S}.

We can now state the representation result for the essential case. We say that the prefer-
ence functional V : F → R is sub-continuous if limα V (fα) = V (f) whenever {fα}α∈D ⊆ F

2 Precisely, it is an extension of the ‘comonotonic act-independence’ axiom of Chew and Karni (1994), in
turn based on earlier work of Gul (1992) and Nakamura (1990).
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is a net that pointwise converges to f ∈ F , and such that all fα’s and f are measurable with
respect to the same finite partition. Notice that this implies that u is τ -continuous.

Theorem 11 Let X be a connected and separable topological space and let < be a binary
relation on F . Then the following statements are equivalent:

(i) < satisfies B1–B3 and S1–S2 and it has some essential event.

(ii) There exist a sub-continuous nontrivial monotonic representation V : F → R of < and
a capacity ρ : Σ → [0, 1] such that: for all f ∈ F , all x < y in X, all A ∈ Σ, letting
u(x) ≡ V (x) for all x ∈ X,

V (xAy) = u(x) ρ(A) + u(y) (1− ρ(A)).

Moreover, the representation V is unique up to positive affine transformations and the ca-
pacity ρ : Σ → [0, 1] is unique.

Summing up, axioms B1–B3 and S1–S2 are sufficient for showing that a binary relation
is biseparable when the space of consequences has some topological structure (whether or
not there is an essential event). Axioms B1–B3 and S2 are also necessary, while axiom S1 is
necessary if one of the canonical representations is sub-continuous.

4 Risk Aversion and the Canonical Utility Function

In this section, we show that some well-known characterizations of risk aversion — that have
been proved for SEU or some other preference models that belong to the biseparable class —
can be extended to biseparable preferences. Though we do not explicitly repeat it every time,
identical results are obtained with c-linearly biseparable preferences. Moreover, symmetric
results characterize cardinal risk loving.

We present three different approaches. We start with a general comparative approach
that applies to an arbitrary consequence space, explaining how such approach can be used to
formalize the absolute notion of ‘cardinal’ risk aversion that was described in the Introduction.
Then, we look at the case of monetary consequences and show that cardinal risk aversion can
be equivalently stated in terms of preference for diversification when betting, or in terms of
dislike of binary mean-preserving spreads.

4.1 The Comparative Approach

In the comparative approach, we depart from a comparison of the relative risk aversion of
two DMs in the spirit of Yaari (1969):
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Definition 12 Let <1 and <2 be two weak orders. We say that <2 is a more conservative
bettor than <1 if: For all x ∈ X and all binary f ∈ F , both

x <1 f =⇒ x <2 f (9)

and

x �1 f =⇒ x �2 f. (10)

That is, DM 1 uniformly undervalues every bet from DM 2’s perspective.
A feature of this ranking is that it can reflect also possible differences in beliefs of the two

DMs, that we want to remove from the comparison. We thus apply this ranking only to pairs
of preferences with the same willingness to bet. This is analogous to what is usually done
in the SEU case (cf. also Yaari (1969, Remark 1), noticing that his subjective probability
is conceptually identical to our willingness to bet), where a comparative ranking of this sort
is applied only to preferences with identical beliefs, possibly because they reflect a ‘known’
probability.

Definition 13 Let <1 and <2 be two biseparable preferences. We say that <2 is more
cardinal risk averse than <1 whenever both the following conditions hold:

1. <2 is a more conservative bettor than <1;

2. <1 and <2 have a common willingness to bet ρ.

It is important to stress that it is theoretically possible to obtain condition 2 in a purely
behavioral fashion. That is, one can formulate a condition (in the same spirit as ‘cardinal
symmetry’ in (forthcoming)) in terms of the two DMs’ preferences which implies that two
biseparable preferences have the same ρ. We refrain from doing so in the sake of brevity.

We now show that ‘more cardinal risk averse’ in this sense is equivalent to ‘more concave’.
Precisely:

Theorem 14 Let X be a connected topological space, and let <1 and <2 be two biseparable
preferences with continuous canonical utility indices u1 and u2 respectively. Suppose that <1

and <2 have a common willingness to bet ρ. Then, <2 is a more conservative bettor than <1

if and only if u2 is an increasing concave transformation of u1.

In other words, relative cardinal risk aversion is equivalent to relative concavity in biseparable
preferences with the same willingness to bet. When both preferences are SEU, Theorem 14
generalizes the traditional result by showing that it is enough that Eqs. (9) and (10) hold for
every x and binary f for relative concavity to obtain (see also Definition 24 below).

Remark 15 Unlike the mentioned SEU result, we do not assume any order or metric struc-
ture on X, or differentiability of the utility functions. It is well-known (de Finetti (1952),
Arrow (1974), Pratt (1964)) that in the case in which X ⊆ R and the utility functions have
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differentiability properties, the fact that u2 is an increasing concave transformation of u1 is
furthermore equivalent to pointwise dominance of the Arrow-Pratt coefficients of absolute risk
aversion. Yaari (1969) uses differentiability assumptions to obtain a different characterization
of relative cardinal risk aversion (for a different but general class of preferences).

Given the relative notion, it is theoretically possible to provide an absolute notion of
cardinal risk aversion: Establish arbitrarily that certain benchmark preferences are to be
classified as ‘cardinal risk neutral’, and then say that a preference is cardinal risk averse
if it is more cardinal risk averse than some cardinal risk neutral preference. A problem with
this latter step is that in general there may be no obvious choice of such benchmark, so that
we cannot give a general characterization of such notion. However, when consequences are
monetary, there is a natural way to obtain the absolute notion of cardinal risk aversion, so
we now turn our attention to this important special case.

4.2 Monetary Payoffs

Assume that consequences are monetary, i.e., X ⊆ R, and that our DM is greedy. In this
case it is natural to define ‘cardinal risk neutral’ any preference for which u is increasing and
affine (so that on binary acts, it maximizes Choquet expected value). It then follows from
Theorem 14 that a biseparable preference is cardinal risk averse if and only if its canonical
utility index is increasing and concave. We now show that some other natural properties of
a biseparable preference are equivalent to cardinal risk aversion.

4.2.1 Preference for Diversification

The following is a weak version of properties studied by Dekel (1989) and then by Chateauneuf
and Tallon (1998), which enjoys the advantage over the other notions presented in this section
of being easily definable in terms of primitives.

Definition 16 A weak order < exhibits preference for bet diversification if, for every
essential event A ∈ Σ and x, x′, y, y′ ∈ X, with x � y and x′ � y′, we have for every α ∈ [0, 1],

xAy ∼ x′Ay′ =⇒ [αx+ (1− α)x′]A [αy + (1− α)y′] < xAy.

A DM exhibiting preference for bet diversification prefers bets with a smoother payoff
profile, when betting on the same essential event. Intuitively, this is a feature that we would
relate to the DM’s risk aversion. The following result — generalizing a result for CEU
preferences of Chateauneuf and Tallon (1998, Theorem 3.3) — shows that it is equivalent to
the concavity of u:

Theorem 17 Let X be an interval of R, and let < be a binary relation with a canonical
representation whose canonical utility function u is continuous. Then, < exhibits preference
for bet diversification if and only if u is concave.
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4.2.2 ‘Subjective’ Expected Values and Mean Preserving Spreads

The two most popular definitions of risk aversion in the literature hinge crucially on the
existence of an external notion of ‘objective’ probability. The first one is the traditional
‘direct’ definition, that says that a preference is risk averse if it prefers the expected value of
a lottery to the lottery itself. The second definition — which can also be applied to non-EU
preferences — defines risk averse a preference which between any pair of lotteries, such that
one of the two is a mean-preserving spread (MPS) of the other, prefers the less dispersed one.
Clearly, in general the latter definition is more demanding than the former. In the EU case,
they are both characterized by concavity of u.

In the Anscombe-Aumann setting, where we interpret the convexity of X as arising from
the existence of an external randomizing device, similar results hold for c-linearly biseparable
preferences, with identical definitions and characterization. In contrast, formulating such
notions in a purely subjective setting is not as straightforward, since it is not clear how to
obtain expected values and mean-preserving spreads. However, when dealing with biseparable
preferences, we can use the DM’s subjective beliefs to obtain ‘subjective’ expected values
and MPSs for binary acts. (Clearly, we do not have any basis for calculating the subjective
expected value or MPSs of nonbinary acts.)

We thus have the following version of the first definition of risk aversion, where for any
biseparable preference with willingness to bet ρ and act f = xAy with x < y, we let
EV (f) ≡ x ρ(A) + y(1− ρ(A)) ∈ X, the subjective expected value (SEV) of f .

Definition 18 Given a biseparable preference < with willingness to bet ρ, we say that < has
a restricted preference for the SEV if for every f = xAy, we have that

EV (f) < f.

To introduce a version of the MPS definition of risk aversion, we first need to define a
(binary) subjective MPS of a given binary act.

Definition 19 Given a biseparable preference < with willingness to bet ρ, and a bet xAy
with x < y, we say that f ∈ F is a binary subjective mean-preserving spread (SMPS)
of xAy (for <) if there are x′, y′ ∈ X with x′ < x and y < y′, and B ∈ Σ with ρ(A) = ρ(B),
such that f = x′B y′ and

x′ρ(B) + y′(1− ρ(B)) = xρ(A) + y(1− ρ(A)). (11)

Clearly, both the subjective notions of expected value and MPS coincide with their traditional
counterparts when there is an external probability, and ρ coincides with it. We can now
reinforce Definition 18 as follows:

Definition 20 A biseparable preference < is averse to binary SMPSs if it weakly prefers
xAy (with x < y) to every one of its binary SMPSs.
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Once again we remark that, even though we simplify our exposition by explicitly using
the canonical representation in Definitions 18 and 20, both could conceptually be stated in
behavioral terms by only using the DM’s preferences. In fact, it is possible to precisely elicit
the number ρ(A) just by looking at a subset of the preference relation on binary acts.

The following straightforward result shows that under a weak assumption both these
behavioral features are equivalent to the concavity of the canonical utility index:

Proposition 21 Let X be an interval of R, and let < be a biseparable preference. Consider
the following statements:

(i) The canonical utility index u is concave;

(ii) < is averse to binary SMPSs;

(iii) < has a restricted preference for the SEV.

We have (i) ⇒ (ii) ⇒ (iii), while (iii) ⇒ (i) holds whenever ρ(Σ) = [0, 1].

4.3 Extensions to Nonbinary Acts

The results of the previous subsections hold true to our promise of applying to any biseparable
preference. However, their generality comes with a cost: the only predictions that we are
allowed to draw are on betting behavior.

Clearly, more can be said if we impose further structure to the preferences under study.
For instance, it immediately follows from Proposition 21 that a SEU preference is averse
to binary MPSs if and only if it is averse to the standard MPSs of Rothschild and Stiglitz
(1970). Similarly, it follows from Theorem 17 and the results of Chateauneuf and Tallon
(1998) that a CEU preference exhibits a preference for bet diversification if and only if it
exhibits a preference for ‘comonotonic’ diversification, that is, the extension of our property
to pairs of comonotonic nonbinary acts.

We now show that a similar generalization of our comparative result holds for a much
larger class of preferences, which includes both the CEU and MEU models. As this class
is obtained by adding just a little structure to the biseparable preferences, this result is a
further illustration of the potential usefulness of the biseparable preferences model.

To introduce such class, we depart from a simple and general observation. Let B0(Σ) de-
note the set of all real-valued Σ-measurable finite-valued functions, and say that a functional
I : B0(Σ) → R is monotonic if φ ≥ ψ implies I(φ) ≥ I(ψ) for all φ, ψ ∈ B0(Σ). We have:

Lemma 22 Let < be a binary relation represented by a functional V : F → R. Then, V
is monotonic if and only if there exists a monotonic functional IV : B0(Σ) → R such that
V (f) = IV (u(f)), where u(x) ≡ V (x) for all x ∈ X.

In particular, the lemma implies that for any canonical representation V of a biseparable
preference, we can find a functional IV which ‘generates’ V from u. For instance, if < is a CEU
preference with utility u and capacity ν, for the canonical representation V (f) =

∫
u(f) dν
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we have IV (φ) =
∫
φdν. We use the functional IV to identify the subset of the biseparable

preferences that we are interested in:

Definition 23 A biseparable preference < has the Jensen property if for every canonical
representation V of <, the functional IV satisfies

ψ(IV (φ)) ≥ IV (ψ(φ)) (12)

for all φ ∈ B0(Σ) and all increasing concave ψ ∈ B0(Σ).

The Jensen property of Eq. (12) is satisfied by a number of preference functionals of interest,
including the CEU and the MEU preference functionals.

The comparative ranking that we are interested in is the following:

Definition 24 Let <1 and <2 be two weak orders. We say that <2 is more uncertainty
averse than <1 if Eqs. (9) and (10) hold for all x ∈ X and all (possibly nonbinary) f ∈ F .

We show below that the comparative property of Definition 12 is equivalent to the coarser
ranking above on biseparable preferences with the Jensen property. The ‘equality of beliefs’
requirement in this case takes a stronger form than equality of ρ:

Definition 25 Two biseparable preferences <1 and <2 have a common canonical func-
tional if there exist two canonical representations V1 and V2, of <1 and <2 respectively, such
that V1 = I∗(u1) and V2 = I∗(u2) for the same monotone functional I∗ : B0(Σ) → R.

This condition — in principle verifiable using only behavioral data — has two important
roles. First of all, it guarantees that the two biseparable preferences belong to the same
‘class’; e.g., they are both SEU, CEU, or MEU. Second, it implies that the preferences must
agree on anything except the specific profile of utilities that an act delivers. For instance, if
<1 and <2 are both CEU (resp. both MEU), they have a common canonical functional iff
ν1 = ν2 (resp. C1 = C2).

We now state the promised result:

Proposition 26 Let X be a connected topological space and let <1 and <2 be two biseparable
preferences which satisfy the Jensen property and induce continuous canonical utility indices
u1 and u2 respectively. Then, if <1 and <2 have a common canonical functional, <2 is a
more conservative bettor than <1 if and only if <2 is more uncertainty averse than <1.

It follows that if <1 and <2 are both CEU (resp. MEU) and satisfy ν1 = ν2 (resp. C1 = C2),
<2 is more uncertainty averse than <1 if and only if u2 is an increasing concave transformation
of u1.
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5 Concluding Remarks

5. 1 The results in Section 3 can be modified to find conditions that deliver a biseparable
preference with probabilistic beliefs, i.e., one whose willingness to bet ρ is a probability
measure. One straightforward possibility is to obtain finite additivity of ρ by adding a
preference version of the classical necessary and sufficient condition for representability of a
qualitative probability. Another possibility is to strengthen axiom S2 so that it applies to
any triple of binary acts, thus obtaining an axiom of ‘binary act independence’.This delivers
a ρ which is such that for all essential A ∈ Σ, ρ(A) + ρ(Ac) = 1. Such property can be easily
extended to all the events by an axiom that requires that if A is null (resp. universal), then
Ac is non-null (resp. non-universal). It can then be seen that if < is ambiguity averse or
loving in the sense of our (forthcoming), ρ is a probability measure.

A biseparable preference with probabilistic beliefs does not have to be SEU: it is possible
to show by example that it does not even have to be ‘probabilistically sophisticated’ in the
sense of Machina and Schmeidler (1992).3 Conversely, there are PS preferences which are not
even biseparable (see Machina and Schmeidler (1992) for an example). Thus the biseparable
preference model with probabilistic beliefs and the PS model are logically independent. �

5. 2 In the Introduction we claimed that the biseparable preferences model is the most
general model in which the state-independent utility function and the willingness to bet
are separated and univocally identified. Clearly, the separation of utility and ‘beliefs’ in
biseparable preferences is not full if one takes the latter term to mean a stronger concept than
the DM’s willingness to bet. In fact, even if we know ρ (and u) we cannot necessarily predict
how the DM will choose among two non-binary acts. Moreover, ρ is not the unique capacity
representing the DM’s likelihood ordering (any increasing and normalized transformation of ρ
works as well). However, it is easy to convince oneself that if what is sought are unique u and
ρ that satisfy Eq. (1), then any more general model will not achieve the desired separation
and uniqueness properties. For instance, Miyamoto’s generic utility theory (which requires
Eq. (1) to hold for only one event) obtains cardinal u, but not a unique ρ. �

5. 3 In conclusion, in this paper we present a general decision model that only imposes
structure on how DMs evaluate binary acts and constants, and encompasses some of the
most popular non-SEU models. We also provide a simple and intuitive axiomatization for
such model, both for the Savage and Anscombe-Aumann settings. In order to illustrate the
potential interest of this model, we look at three facets of a DM’s risk attitude — that have
been studied in the context of the SEU model or of some non-SEU models narrower than the
one presented here — and we show that they can be simply characterized also for biseparable
preferences, if we restrict our attention to bets.

Other results on biseparable or c-linearly biseparable preferences are already available.
First of all, as mentioned earlier, in the companion paper (forthcoming) we use these models

3 An example proving this claim, as well as details on the claims in the previous paragraph, are available
from the authors upon request.
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to characterize an extended notion of ambiguity attitude, as well as a notion of ambiguity for
acts and events. Applying the latter notions, we show in (2001) that a seemingly harmless
technical condition (range convexity of the willingness to bet) can force ambiguity averse
biseparable preferences to have probabilistic beliefs. Finally, Ozdenoren (2000) presents some
results on auction theory that hold for any biseparable preference. �
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Appendix

A Proofs for Section 2

Proof of Proposition 2: Let V be a canonical representation of <. We have x < y iff xAx <
y Ay iff u(x) ≥ u(y). Moreover, if x � y, we have

xAy < xB y ⇐⇒ V (xAy) ≥ V (xB y)
⇐⇒ u(x) ρV (A) + u(y) (1− ρV (A)) ≥ u(x) ρV (B) + u(y) (1− ρV (B))
⇐⇒ [u(x)− u(y)] ρV (A) ≥ [u(x)− u(y)] ρV (B)
⇐⇒ ρV (A) ≥ ρV (B),

as wanted.

Proof of Proposition 3: Suppose that A ∈ Σ is essential. By definition, there exist x � y
such that x � xAy � y. Hence, u(x) > u(x) ρV (A) + u(y) [1− ρV (A)] > u(y), which implies
u(x) (1−ρV (A)) > u(y) (1−ρV (A)) and u(x) ρV (A) > u(y) ρV (A). Hence, ρV (A) ∈ (0, 1). As
to the converse, ρV (A) ∈ (0, 1) implies, for all x � y,

u(x) > u(x) ρV (A) + u(y) [1− ρV (A)] > u(y),

and so x � xAy � y.
Next, suppose that A is null. By definition, there exist x, y ∈ X such that x � y and

y ∼ xAy. Then, for all canonical representation V of < we have u(y) = u(x) ρV (A) +
u(y) [1 − ρV (A)], and so ρV (A) = 0 since u(x) 6= u(y). The converse holds. In fact, suppose
that ρV (A) = 0. For any x � y and any canonical representation V we have V (xAy) = u(y),
and so xAy ∼ y, which implies that A is null. A similar argument shows that ρV (A) = 1 iff
A is universal.

We conclude that (i) and (ii) hold. As to (iii), given any x � y, A ⊆ B implies (xBy)(s) <
(xAy)(s), and

ρV (A) =
V (xAy)− u(y)
u(x)− u(y)

≤ V (xB y)− u(y)
u(x)− u(y)

= ρV (B),

using the monotonicity of V .

Proof of Proposition 6: If there are no essential events, then the result follows immediately
from part (ii) of Proposition 3. Suppose that there exists some essential event. Then if V and
V ′ are two canonical representations of < there are α > 0 and β ∈ R such that V = αV ′ +β.
Let x � y. By Eq. (3), for every essential A ∈ Σ,

ρV (A) =
V (xAy)− u(y)
u(x)− u(y)

=
(αV (xAy) + β)− (αu(y) + β)

(αu(x) + β)− (αu(y) + β)
= ρV ′(A).
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If A ∈ Σ is not essential, ρV (A) = ρV ′(A) follows again from (ii) of Proposition 3.

B Proofs for Section 3

For expositional reasons that will become clear as we proceed, the proofs for this section
are not presented in the same order as they appear there. Precisely, we prove the main
representation results (Theorems 9 and 11) before Proposition 10.

B.1 Theorem 9

We start by proving two lemmas, in which < is a binary relation satisfying B1–B2, A1–A3.

Lemma 27 There exists V : F → R, unique up to a positive affine transformation, such
that for all f, g ∈ F ,

f < g if and only if V (f) ≥ V (g) (13)

and for all binary f ∈ F , x ∈ X, and α ∈ (0, 1),

V (αf + (1− α)x) = αV (f) + (1− α)V (x). (14)

Proof : By axioms B1 and A2–A3 and the von Neumann-Morgenstern theorem, there exists
u : X → R, unique up to positive affine transformations, such that for every x, y ∈ X, and
every α ∈ [0, 1],

u(αx+ (1− α) y) = αu(x) + (1− α)u(y).

Given an act f ∈ F , let cf ∈ X be one of its certainty equivalents (which exist by axiom
A1). Define V : F → R by V (f) = u(cf ). By A2, f ∼ cf ∈ X implies α f + (1 − α)x ∼
α cf + (1− α)x, for all x ∈ X and all binary f ∈ F . Then, for all binary f ∈ F and x ∈ X,

V (α f + (1− α)x) = V (α cf + (1− α)x)
= αV (f) + (1− α)V (x).

Moreover, let V ′ be another representation satisfying (14). Since u′ is a positive affine trans-
formation of u there exist α > 0 and β ∈ R such that:

V ′(f) = u′(cf ) = αu(cf ) + β

= αV (f) + β,

as wanted.

Lemma 28 Let V be the functional provided by Lemma 27. Then, for every x∗ � x∗ and
essential A ∈ Σ, if we normalize V so that V (x∗) = 1, V (x∗) = 0, we have for all x, y ∈ X
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such that x < y,

V (xAy) = V (y) + (V (x)− V (y))V (x∗Ax∗).

Proof : First notice that B2 implies that for all events A ∈ Σ, and all x, y, z ∈ X,

x ∼ y =⇒ xAz ∼ y A z. (15)

We now consider the case x∗ < x � y < x∗. Let α ∈ (0, 1] and β ∈ [0, 1) be such that

x ∼ αx∗ + (1− α)y and y ∼ βx∗ + (1− β)x∗.

W.l.o.g., set V (x∗) = 0 and V (x∗) = 1. Hence, V (y) = β, while V (x) = α + (1 − α)V (y)
implies that

V (x)− V (y) = α[1− V (y)] = α(1− β).

Therefore, using (13), (14) and (15) we obtain:

V (xAy) = V ((αx∗ + (1− α)y)Ay) = V (α(x∗Ay) + (1− α)y)
= αV (x∗Ay) + (1− α)V (y)
= αV (x∗A (βx∗ + (1− β)x∗)) + (1− α)V (y)
= αV (βx∗ + (1− β)(x∗Ax∗)) + (1− α)V (y)
= α [βV (x∗) + (1− β)V (x∗Ax∗)] + (1− α)V (y)
= αβV (x∗) + α(1− β)V (x∗Ax∗) + (1− α)V (y)
= αV (y) + α(1− β)V (x∗Ax∗) + (1− α)V (y)
= V (y) + α(1− β)V (x∗Ax∗)
= V (y) + (V (x)− V (y))V (x∗Ax∗)

as wanted. To conclude the proof, we have to show the result in the remaining three cases:
(i) x < x∗, y < x∗; (ii) x∗ � x, x∗ � y; (iii) x � x∗, x∗ � y. As the proof for each case is
analogous to the one above, we omit it.

Proof of Theorem 9: The (ii) ⇒ (i) part is immediate. As to the (i) ⇒ (ii) part, let V be
the functional provided by Lemma 27. Fix x∗ � x∗ and, taking if necessary a positive affine
transformation of V , suppose that V (x∗) = 1 and V (x∗) = 0. For all essential A ∈ Σ set
ρ(A) = V (x∗Ax∗), and for all null (resp. universal) A ∈ Σ, set ρ(A) = 0 (resp. ρ(A) = 1).
By Lemma 28 and the definitions of null and universal, we then have V (xAy) = u(x) ρ(A)+
u(y) (1− ρ(A)), so that V and ρ are the required functions.

As for the uniqueness statement, it is clear that any positive affine transformation of
V satisfies the representation with the ρ constructed above. Suppose that V ′ is another
representation and ρ′ is another capacity which represent <. From Lemma 27 it follows
that V ′ must be a positive affine transformation of V . This fact allows us to show that
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ρ(A) = ρ′(A) for all A ∈ Σ along the same lines as the proof of Proposition 6. Thus, ρ is
unique and V is unique up to a positive affine transformation.

B.2 Theorem 11

The proof of Theorem 11 involves several lemmas. We start with a simple solvability result,
whose proof is given for completeness. Given any A ∈ Σ, x ∈ X and g ∈ F , xAg denotes
the act such that (xAg)(s) = x if s ∈ A, and (xAg)(s) = g(s) if s /∈ A.

Lemma 29 Let < be a binary relation satisfying B1, B2 and S1. If X is connected, then

(a) for every f ∈ F there exists x ∈ X such that f ∼ x.

(b) for every x, y ∈ X, A ∈ Σ, and f, g ∈ F , if xAf � g � y A f , there exists x′ ∈ X such
that x′Af ∼ g.

Proof : We want to show that the set {x ∈ X : xAf < g} is τ -closed in X for all f, g ∈ F .
Let {xα}α∈D ⊆ {x ∈ X : xAf < g} be a net such that xα

τ−→ x0. Then xαAf converges
pointwise to x0Af , and all acts are measurable w.r.t. the same partition. By S1, if xαAf < g
for all α ∈ D, then x0Af < g. Hence, x0 ∈ {x ∈ X : xAf < g}, which is therefore a τ -closed
set in X. In particular, if A is universal, this implies that the set {x ∈ X : x < g} is τ -closed
in X. Symmetric arguments show that both sets {x ∈ X : xAf 4 g} and {x ∈ X : x 4 g}
are τ -closed in X. Both (a) and (b) now follow from the connectedness of X.

Presenting the next lemma requires introducing some terminology and notation. Given
m′′ � m′ and an essential event A ∈ Σ, we define an increasing standard sequence
with mesh (m′,m′′) and carrier A a sequence {x0, x1, x2, . . . } ⊆ X such that x0 � m′′

and for every n ≥ 0, xnAm′ ∼ xn+1Am′′ for all n such that xn is not the last element
of the sequence. Symmetrically, we define a decreasing standard sequence with mesh
(m′,m′′) and carrier A a sequence {x0, x1, x2, . . . } ⊆ X such that m′ � x0 and for every
n ≥ 0, m′′Axn+1 ∼ m′Axn for all n such that xn is not the last element of the sequence.
Finally, we say that {x0, x1, x2, . . . } is a standard sequence if there are a mesh and a carrier
which make it into an increasing or decreasing standard sequence with respect to that mesh
and carrier. A standard sequence {x0, x1, x2, . . . } is said to be strictly bounded if there
are x∗, x∗ ∈ X such that x∗ � xn � x∗ for every n ≥ 0.

We can now state and prove:

Lemma 30 Let < be a binary relation satisfying B1–B3, and S1. If X is a connected and
separable topological space, every strictly bounded standard sequence is finite.

Proof : Since X is connected and separable, there exists a continuous representation φ : X →
R of the restriction of < to X. Moreover, B1–B3 imply that for all essential events A ∈ Σ,
and all x, y, z ∈ X such that x, y < z,

x < y ⇐⇒ xAz < y A z. (16)
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Define V : F → R by V (f) ≡ φ(cf ), where cf is the certainty equivalent of f . Clearly,
V (x) = φ(x) for all x ∈ X. Let x, y ∈ X be such that x � y < z, and let α ∈ R be such
that V (xAz) > α > V (y A z). Let c′ ∼ xAz and c′′ ∼ y A z. Then φ(c′) > α > φ(c′′).
Being φ continuous, φ(X) is an interval, and so there is c ∈ X such that φ(c) = α. Hence,
xAz � c � y A z, and so, by Lemma 29, there is x′ ∈ X such that x′Az ∼ c, which implies
V (x′Az) = α.

Next, let {xn}n≥1 be a decreasing sequence with xn < xn+1 < z for all n ≥ 1. If
limn→∞ φ(xn) = φ(x), then limn→∞ V (xnAz) = V (xAz). In fact, suppose per contra that
limn→∞ V (xnAz) = α > V (xAz). By what we proved above, there exists x′ ∈ X such
that V (x′Az) = α, so that V (xnAz) ≥ V (x′Az) > V (xAz) for all n ≥ 1. By (16),
this implies that xn < x′ � x, which contradicts limn→∞ φ(xn) = φ(x). We conclude that
limn→∞ V (xnAz) = V (xAz).

Let {xn}n≥0 be an increasing standard sequence with the essential event A as carrier and
mesh (m′,m′′). By definition, xn � m′′ � m′ for all n ≥ 0. Suppose {xn}n≥0 is strictly
bounded by x∗, x∗ ∈ X, i.e., x∗ � xn � x∗ for all n ≥ 0. For all n ≥ 0, we have

V (xnAm′′) = V (xn+1Am′),
φ(xn) ∈ [φ(x∗), φ(x∗)].

Since [φ(x∗), φ(x∗)] is compact in R, w.l.o.g. (taking subsequences if needed) we can as-
sume that the sequence φ(xn) converges to some α ∈ [φ(x∗), φ(x∗)]. Since φ is continuous
and [φ(x∗), φ(x∗)] ⊆ u(X), there is x′ ∈ X such that φ(x′) = α, and so limn→∞ φ(xn) =
φ(x′). By what we proved above, if we take respectively z = m′ and z = m′′, we get
limn→∞ V (xnAm′) = V (x′Am′) and limn→∞ V (xnAm′′) = V (x′Am′′). Since V (x′Am′) <
V (x′Am′′), this contradicts V (xnAm′′) = V (xn+1Am′) for n large enough. A symmetric
argument holds for decreasing standard sequences.s.

Next, we provide two useful results on the representation of a binary relation satisfying
axioms B1–B3, S1 and S2 when there are essential events. The first result shows that such a
preference has a ‘locally canonical’ representation, holding for every act which is measurable
w.r.t. the algebra generated by an essential event. Henceforth, for any A ∈ Σ we let FA be
the set of (binary) acts which are measurable w.r.t. the algebra ΣA generated by A.

Lemma 31 Let < be a binary relation satisfying axioms B1–B3, S1, S2 with some essential
event. For any essential A ∈ Σ there is a representation VA : F → R of < which satisfies:
There exist a unique capacity ρA : ΣA → [0, 1] and a function uA : X → R, unique up to a
positive affine transformation, such that VA(f) = uA(cf ) for every f ∈ F and for all x < y
and all B ∈ ΣA,

VA(xB y) = uA(x)ρA(B) + uA(y)(1− ρA(B)). (17)

Moreover such VA is sub-continuous (hence uA is τ -continuous).
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Notice that the properties of ρA and uA and (17) imply that VA is unique only up to
positive affine transformations and that ρA(A) ∈ (0, 1).

Proof : We first show that for any essential A, all hypotheses of Theorem 1 of Chew and Karni
(1994, henceforth CK) are satisfied on the restriction < to the acts in FA. CK’s axioms 1’
and 5’ are obviously satisfied. Their axiom 3’ is also satisfied: It is easy to see that an event A
is ‘null’ in the CK-sense if and only if Ac is universal, while A is ‘universal’ in the CK-sense if
and only if Ac is null. Hence, our eventwise monotonicity axiom is equivalent to their axiom
3’. Also, if A is essential, then Ac ∈ ΣA is neither null nor universal in the CK-sense. Axioms
2 and 6 are satisfied by Lemma 29. Axiom 7 by Lemma 30. We can thus conclude that all
of CK’s axioms are satisfied.

By Theorem 1 of CK, there is a unique ρA on ΣA and a function uA : X → R, unique
up to positive affine transformations, such that the functional VA : FA → R defined by (17)
represents < on FA. We extend VA to all of F by letting VA(f) = uA(cf ) for any f ∈ F . It
is immediate to check that, thus defined, VA represents <.

We now show that VA is sub-continuous:4 if {fα}α∈D is a net converging to f such that
each fα and f are measurable w.r.t. the same partition, then VA(fα) → VA(f). Fix ε > 0.
Suppose that, for every α ∈ D, there exists β ≥D α such that VA(fβ) ≥ VA(f) + ε. Fix any
such fβ, and set

z1 = c[cfβ
Acf ] and zn+1 = c[znAcf ],

for every n > 1. Then for every n ≥ 1 we have

uA(zn) = ρA(A)nVA(fβ) + (1− ρA(A)n)VA(f).

By choosing a sufficiently large n, we thus have VA(f) + ε > uA(zn) > VA(f).
Let E = {β ∈ D : VA(fβ) ≥ VA(f) + ε}. It is straightforward to see that {fβ}β∈E is

a subnet of {fα}α∈D with respect to the inclusion mapping. Moreover fβ � zn � f for all
β ∈ E. Since fα → f , fβ → f as well. Invoking the continuity axiom yields a contradiction.

We conclude that there exists γ such that α ≥D γ implies VA(fα) < VA(f) + ε. Similarly,
there exists γ′ such that α ≥D γ′ implies VA(fα) > VA(f)− ε. Consider now a γ′′ ∈ D such
that γ′′ ≥D {γ, γ′}. For all α ≥D γ′′ we have VA(fα) ∈ (VA(f) − ε, VA(f) + ε). Therefore
VA(fα) → VA(f).

To conclude the proof of Theorem 11, we need to show that the representations VA that
we obtained for all the essential events A are essentially identical; i.e., they are all equal
subject to a common normalization. Proving this is easy because we can again exploit a
previous result, this time of Nakamura (1990). First, however, we need to show that our
axiom S2 is equivalent to the restriction of Nakamura’s A6 axiom to binary acts:

4 We are grateful to Fabio Maccheroni and Marciano Siniscalchi for their help in developing this argument.
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Lemma 32 Under axioms B1–B3 and S1, axiom S2 holds if and only if the following property
holds: For every essential A ∈ Σ, every B ∈ Σ, and for all f, g ∈ F such that f = xAy,
g = x′Ay′. If f, g are comonotonic, and x < x′ and y < y′, then

[c(xAy)B c(x′Ay′)] ∼ [c(xBx′)Ac(yBy′)].

Proof : The result is proved immediately using the same argument that CK use in their
Lemma 3 to show that their axiom 5’ is equivalent to axiom A6 in Nakamura (1990). (In our
case things are even simpler because we have to apply CK’s Lemma 2 only once.)

Proof of Theorem 11: The ‘only if’ part is immediate. As to the ‘if’ part, fix an essential
B ∈ Σ, and a representation VB obtained by Lemma 31. We first show that for any other
essential A ∈ Σ, uA = uB under a common normalization. To see this, we invoke Lemma 32
to argue that the restriction to binary acts of Nakamura’s axiom A6 holds. The claim is now
shown by repeating an argument in Nakamura’s proof of his Proposition 1 (1990, pp. 356–
359), that we omit.

Given that uA = uB, we can let V ≡ VB. We then define ρ : Σ → [0, 1] as follows: For
every essential (resp. null, universal) A, we let ρ(A) = ρA(A) (resp. ρ(A) = 0, ρ(A) = 1).5

Thus, for all C ∈ Σ such that C ∈ ΣA for an essential A ∈ Σ and all x < y,

V (xC y) = VA(xC y) = uA(x) ρA(C) + uA(y) (1− ρA(C)) = u(x) ρ(C) + u(y) (1− ρ(C)).

If C does not belong to any such ΣA, it is easy to check that (3) holds by construction. The
cardinality and sub-continuity of V follows immediately from the properties of the represen-
tation VB from Lemma 31. The uniqueness of ρ is then proved as in Theorem 9.

B.3 Proposition 10

Suppose that < is a relation with a canonical representation which satisfies S1. In the case in
which < has no essential event, there is nothing to prove, so assume that there is an essential
event A. It is easy to verify that since it has a canonical representation V , < satisfies axioms
B1–B3 and S2. Given that by assumption < also satisfies S1, we can follow the steps of the
proof of Lemma 31 to show that we can apply Theorem 1 of CK to <A, the restriction of <
to FA. Thus, <A admits a CEU representation VA which is unique only up to positive affine
transformations. Since also the restriction of V to FA is a CEU representation of <A, on FA

the functionals V and VA are positive affine transformations of each other. Given x∗ � x∗,
if we impose the normalization u(x∗) = uA(x∗) = 0 and u(x∗) = uA(x∗) = 1, we thence
have VA(f) = V (f) for all f ∈ FA. In turn, this implies ρ(B) = ρA(B) for all B ∈ ΣA and
u(x) = uA(x) for all x ∈ X. Finally, for every f ∈ F ,

VA(f) = uA(cf ) = u(cf ) = V (f).

5 Notice that if A and Ac are both essential then ρA = ρAc and (with the common normalization) uA = uAc .
This is due to the uniqueness properties of the representation in Lemma 31, and to the fact that it is constructed
for the algebra ΣA, rather than the single events A or Ac.
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This shows that for all essential A ∈ Σ, VA = V after a common normalization. Since this is
true for every canonical representation V , they are all positive affine transformations of each
other. Hence < is biseparable.

C Proofs for Section 4

Proof of Theorem 14: ‘Only if’: We start by showing that <2 is a more conservative bettor
than <1 implies that <1 and <2 are ordinally equivalent, and for any pair x � y, if we
renormalize the utilities u1 and u2 so that they take identical values on x and y, we have for
every z ∈ X such that x < z < y, u2(z) ≥ u1(z). Ordinal equivalence follows immediately.
As for the second part of the statement, let x � y be any two consequences and take the
common normalization u1(x) = u2(x) = 1 and u1(y) = u2(y) = 0. If ρ(A) ∈ {0, 1} for all
A ∈ Σ, it is w.l.o.g. to assume that u1 = u2, so there is nothing to prove. So assume that
there is one A ∈ Σ such that ρ(A) ≡ ρ ∈ (0, 1).

Consider the subset of X thus defined:

I ≡ {z ∈ X : y 41 z 41 x} = {z ∈ X : y 42 z 42 x} ,

where the equality again follows from ordinal equivalence. We now construct a ‘grid’ of points
on I, that we label G. Let G0 ≡ {y, x}. Find the certainty equivalent c1(xAy) of xAy for <1

and let G1 ≡ {y, c1(xAy), x}. Inductively, define Gi ≡ {c1(x′Ax′′) : x′, x′′ ∈ Gi−1} for i = 2, 3, . . . ,
and let G ≡ limi→∞Gi = ∪∞i=0Gi (notice that Gi−1 ⊆ Gi).

We claim that u2(z) ≥ u1(z) for every z ∈ G. To prove this claim, we use induction on i.
Consider G1, and let z = c1(xAy). By (i) we have that

z ∼1 xAy ⇒ z <2 xAy,

which, in terms of the representations, is written u2(z) ≥ ρ = u1(z). Suppose now that the
claim holds for every z ∈ Gj , for j ≤ i − 1. Consider z ∈ Gi. There are x′, x′′ ∈ Gi−1 such
that z = c1(x′Ax′′), and we know that u2(x′) ≥ u1(x′) and u2(x′′) ≥ u1(x′′). Hence,

u2(x′) ρ+ u2(x′′) (1− ρ) ≥ u1(x′) ρ+ u1(x′′) (1− ρ) = u1(z).

Since from (i) we also have z <2 x′Ax′′, we thus find u2(z) ≥ u1(z), as required. This
concludes the induction step, and proves the claim.

Next, consider a z ∈ I. It is immediate to use the fact that ρ ∈ (0, 1) to show that u1(G) is
a dense subset of the interval [u1(y), u1(x)]. Hence, there is a sequence {zn}∞n=1 ⊆ G for which
limn→∞ u1(zn) = u1(z). We use ordinal equivalence to show that limn→∞ u2(zn) = u2(z)
as well. Start by observing that it is w.l.o.g. to assume that either u1(zn) ↑ u1(z) or
u1(zn) ↓ u1(z). By contradiction, suppose that limn→∞ u2(zn) = α 6= u2(z), in particular
that α > u2(z). If u1(zn) ↑ u1(z), we immediately have a contradiction, since eventually
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u2(zn) > u2(z). So, suppose that u1(zn) ↓ u1(z). Since ρ ∈ (0, 1), we can find ε > 0 such that

(α+ ε)ρ+ u2(z)(1− ρ) < α− ε.

Take N large enough so that for every n ≥ N , |α − u2(zn)| < ε, and let f = zN Az. From
our choices of N and ε it follows that for every n ≥ N ,

u2(zn) > α− ε > u2(cf ) > u2(z),

implying zn �2 cf . On the other hand, u1(zN ) > u1(cf ) > u1(z), so that there is N ′ such
that u1(zn) < u1(cf ) for n ≥ N ′. Thus, for n ≥ max[N,N ′] we have zn �2 cf and zn ≺1 cf ,
a contradiction. The case in which α < u2(z) is dealt with symmetrically.

This shows that for all z ∈ I, there is a sequence {zn} ⊆ G such that ui(zn) → ui(z) for
i = 1, 2. Since u2(zn) ≥ u1(zn) for all n ≥ 1, the continuity of the ui’s on X implies that for
every z ∈ I, u2(z) ≥ u1(z).

Next, we show that the fact just proved implies that u2 is an increasing concave trans-
formation of u1. Let x, y ∈ X be as above. By ordinal equivalence, there exists an increasing
function φ : R → R such that u2(z) = φ(u1(z)) for all z ∈ X. We want to show that
φ is concave. For each α ∈ (0, 1) there exists a zα ∈ X with x � z � y and such that
u1(zα) = αu1(x) + (1− α)u1(y). Then

φ(αu1(x) + (1− α)u1(y)) = φ(u1(zα)) = u2(zα)
≥ u1(zα) = αu2(x) + (1− α)u2(y)
= αφ(u1(x)) + (1− α)φ(u1(y))

and so φ is concave.
‘If’: Suppose that u2 = φ(u1) where φ : u1(X) → R is increasing and concave. For x ∈ X

and f = y A z with u1(y) ≥ u1(z), suppose that x <1 f . This implies u1(x) ≥ V1(f) =
u1(z)ρ(A) + u(z)(1 − ρ(A)), and so, being φ increasing, φ(u1(x)) ≥ φ(V1(f)). But, since
Choquet integrals satisfy Jensen’s inequality for increasing concave transformations, we have

u2(x) = φ(u1(x)) ≥ φ(V1(f)) ≥ φ(u1(y))ρ(A) + φ(u1(z))(1− ρ(A)) = V2(f),

and so x <2 f . A similar argument shows that x �1 f =⇒ x �2 f . We can thus conclude
that <2 is a more conservative bettor than <1.

Proof of Theorem 17: Suppose < exhibits preference for bet diversification. For every z, z′ ∈
X and α ∈ [0, 1], let z α z′ ≡ αz + (1− α)z′. We first show that

xAy < x′Ay′ =⇒ [xαx′]A [y α y′] < x ′Ay′, (18)

for all α ∈ [0, 1] and essential A ∈ Σ.6 Per contra, suppose that for some α∗ ∈ [0, 1] we have

6 For u increasing, this is proved in Proposition 3.1 of Chateauneuf and Tallon (1998).
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xAy � x′Ay′ and [xα∗ x′]A [y α∗ y′] ≺ x′Ay′. Let V be the canonical representation of <
whose utility index u is continuous. For all α ∈ [0, 1], set

G(α) ≡ V ([xαx′]A [y α y′]) = u(xαx′) ρV (A) + u(y α y′) (1− ρV (A)).

Since u is continuous and ρV (A) ∈ (0, 1), G(·) is continuous, so that I ≡ {G(α) : α ∈ [α∗, 1]}
is an interval. I contains V (xAy) (for α = 1) and V ([xα∗ x′]A [y α∗ y′]), and also V (x′Ay′)
by the assumption. Thus, there exists α′ ∈ [α∗, 1] such that G(α′) = V (x′Ay′), so that
[xα′ x′]A [y α′ y′] ∼ x′Ay′. Choose β ∈ [0, 1] such that α′β = α∗. Then, by preference for
bet diversification,

β([xα′ x′]A [y α′ y′]) + (1− β)(x′Ay′) < x′Ay′,

which contradicts the assumption and proves (18).
Following (1998), we now apply a result of Debreu (1982). Let Xo = (x∗, x∗) be the

interior of the interval X. For α ∈ Xo, set Xα ≡ {x ∈ Xo : x < α} and Xα ≡ {x ∈ Xo : x >
α}. Define F : Xα×Xα → R by F (x, y) = V (xAy). By (18), F is quasi-concave. Moreover,
F is separable since F (x, y) = u(x) ρV (A) + u(y) (1− ρV (A)). It follows that u is concave on
Xα or Xα. Now, let

X∗ ≡
⋃

{α∈Xo: u is concave on Xα}

Xα and X∗ ≡
⋃

{α∈Xo: u is concave on Xα}

Xα.

Since for each α ∈ Xo, u is either concave on Xα or on Xα, we have Xo ⊆ X∗ ∪ X∗. As
Xo is connected and X∗ and X∗ are open, X∗ ∩ X∗ is non-empty and open, so there are
z, z′ ∈ X∗ ∩X∗ with z < z′. It follows that u is concave on both (x∗, z′) and (z, x∗). Hence,
D+u is non-increasing on both (x∗, z′) and (z, x∗), so that it is non-increasing on Xo. Since u
is continuous on Xo, this implies that u is concave on Xo (see, e.g., Royden (1988, p. 114)).
Being u continuous on X, in turn this implies the concavity of u on X.

As for the converse, suppose that u is concave on X. For essential A ∈ Σ and x, x′, y, y′ ∈
X such that x � y and x′ � y′, suppose that xAy ∼ x′Ay′. Then,

V ([xαx′]A [y α y′]) = u(xαx′)ρV (A) + u(yα y′)(1− ρV (A))
≥ α [u(x) ρV (A) + u(y) (1− ρV (A))]

+(1− α) [u(x′) ρV (A) + u(y′)(1− ρV (A))]
= αV (xA y) + (1− α)V (x′Ay′) = V (x′Ay′),

as wanted.

Proof of Proposition 21: (i) ⇒ (ii): Suppose that u is concave on X, and set ρ(A) = ρ(B) =
p ∈ (0, 1). Since px+ (1− p)y = px′ + (1− p)y′, we have

y′ − y =
p

1− p
(x− x′). (19)
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We have y′ ≤ y ≤ x ≤ x′. Suppose that both x′ 6= x and y 6= y′. By concavity,

u(y′) ≤ u(y) +
u(x′)− u(x)

x′ − x
(y′ − y). (20)

Using (19) and (20), we can write:

pu(x′) + (1− p)u(y′) ≤ pu(x′) + (1− p)
[
u(y) +

u(x′)− u(x)
x′ − x

(y′ − y)
]

= pu(x′) + (1− p)u(y) + (1− p)
u(x′)− u(x)

x′ − x
(

p

1− p
)(x− x′)

= pu(x′) + (1− p)u(y) + p(u(x)− u(x′))
= pu(x) + (1− p)u(y),

so that xAy < x′B y′. If x = x′, then xAy < x′B y′ follows by B2. The same if y = y′.
The (ii) ⇒ (iii) statement is immediate. As for the (iii) ⇒ (i) statement, we prove the

contrapositive. Assume that u is not concave: There are x, y ∈ X and α ∈ (0, 1) such that

u(αx+ (1− α)y) < αu(x) + (1− α)u(y).

W.l.o.g., assume that u(x) > u(y). Since ρ(Σ) = [0, 1], there is A ∈ Σ such that ρ(A) = α.
Consider the act f = xAy and the constant act EV (f) = αx+ (1− α) y. Then

u(EV (f)) = u(αx+ (1− α)y) < αu(x) + (1− α)u(y) = V (f).

This proves that < has a preference for the subjective expected value.

Proof of Lemma 22: The ‘if’ part is obvious. As to the ‘only if’ part, let f, g ∈ F be such
that u(f(s)) = u(g(s)) for all s ∈ S. Then, f(s) ∼ g(s) for all s ∈ S, i.e., for all s ∈ S we
have both f(s) < g(s) and f(s) 4 g(s). By monotonicity, in turn this implies that f < g and
f 4 g, and so f ∼ g. Since V represents <, this implies V (f) = V (g). Hence, there exists
I ′ : u(F) → R such that V (f) = I ′(u(f)) for all f ∈ F , where u(F) = {u(f) : f ∈ F}. We
now show that I ′ is monotone on u(F). Suppose that f, g ∈ F are such that u(f(s)) ≥ u(g(s))
for all s ∈ S. Then, f(s) < g(s) for all s ∈ S, and so, by monotonicity, V (f) ≥ V (g), which
proves that I ′ is monotone on u(F). We now want to extend I ′ from u(F) to B0(Σ).

Suppose that u(X) is bounded below: there exists a positive integer M such that −M <
u(x) for all x ∈ X. Set m = inf{I ′(ψ) : ψ ∈ u(F)}. Since all ψ ∈ u(F) are finite-valued, we
have m ≥ −M . Given φ ∈ B0(Σ), let Lφ = {ψ ∈ u(F) : ψ ≤ φ}. Define I : B0(Σ) → R as
follows:

I(φ) =
{

sup{I ′(ψ) : ψ ∈ Lφ} if Lφ 6= ∅
m if Lφ = ∅.

We show that I(φ) ∈ R for all φ ∈ B0(Σ). Suppose that u(X) is bounded above, so that
there exists a positive constant M ′ such that M ′ > u(x) for all x ∈ X. Since u(F) consists
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of simple functions, for each ψ ∈ u(F) there exists x ∈ X such that u(x) ≥ ψ. Hence,
M ′ > ψ for all ψ ∈ u(F), and so I(φ) ≤ M ′. Suppose that u(X) is not bounded above.
Let φ ∈ B0(Σ). Since φ is finite-valued and u(X) is unbounded, there exists x ∈ X such
that u(x) > φ. Hence, u(F) 3 ψ ≤ φ implies ψ < u(x), and so I(φ) ≤ u(x). In both cases,
I(φ) ∈ R. Let φ, φ′ ∈ B0(Σ) be such that φ ≥ φ′. Clearly, Lφ′ ⊆ Lφ. Suppose that Lφ′ 6= ∅.
Then Lφ 6= ∅, and it is easy to check that I(φ) ≥ I(φ′). Next suppose that Lφ′ = ∅. By
definition, I(φ′) = m. If Lφ = ∅, I(φ) = m as well. If Lφ 6= ∅, then there is some ψ ∈ u(F)
such that I(φ) ≥ I ′(ψ) ≥ m. In both cases, I(φ) ≥ I(φ′), thus showing that I is monotone.

Suppose now that u(X) is not bounded below. Then Lφ 6= ∅ for all φ ∈ B0(Σ). In
fact, since φ is finite-valued, there exists m′′ such that m′′ ≤ φ. But, for each such m′′

there exists x ∈ X with u(x) < m′′, so that u(x) ∈ Lφ. We can define I : B0(Σ) → R by
sup{I ′(ψ) : ψ ∈ Lφ}. Proceeding as above, such I is shown to be a monotone functional
extending I ′. This completes the proof of the ‘only if’ part.

Proof of Proposition 26: The ‘if’ is immediate. As to the ‘only if’, by Theorem 14 it suffices
to show that if u2 = φ(u1) for some increasing concave φ : u1(X) → R, <2 is more uncertainty
averse than <1. For x ∈ X and f ∈ F , suppose that x <1 f . This implies u1(x) ≥ I∗(u1(f)),
and so, being φ increasing, φ(u1(x)) ≥ φ(I∗(u1(f))). But, by the Jensen property, we have

u2(x) = φ(u1(x)) ≥ φ(I∗(u1(f))) ≥ I∗(φ(u1(f))) = I∗(u2(f)),

and so x <2 f . A similar argument shows that x �1 f =⇒ x �2 f . We can thus conclude
that <2 is more uncertainty averse than <1.
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