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Abstract

Economists often operate under an implicit assumption that the tastes of a decision
maker are constant, while his beliefs change with the availability of new information. It
is therefore customary to seek representations of preferences which cleanly separate the
taste component, called ‘utility,’ from the beliefs component.

We show that a complete separation of utility from the other components of the rep-
resentation is possible only if the decision maker’s preferences satisfy a mild but not
completely innocuous condition, called ‘certainty independence.’ We prove that the pref-
erences that obtain such separation are a subset of the biseparable preferences.

Introduction

Economists often operate under an implicit assumption that the tastes of a decision maker
are constant, while his beliefs change with the availability of new information. It is therefore
customary to seek representations of preferences which cleanly separate the taste component,
called ‘utility,’ from the beliefs component. In this note, we argue that a complete separation
of utility from the other components of the representation is possible only if the decision
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¶Istituto di Metodi Quantitativi, Università Bocconi (Viale Isonzo 25, 20135 Milano, ITALY) and ICER,

Torino; fabio.maccheroni@uni-bocconi.it.
‖Dipartimento di Statistica e Matematica Applicata, Università di Torino (Piazza Arbarello 8, 10122 Torino,
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maker’s preferences satisfy a mild but not completely innocuous condition, called ‘certainty
independence.’

This result completes the work of Ghirardato and Marinacci [4, henceforth GM], who
as we shall argue achieve the desired separation only in a limited sense. Clearly, a full
understanding of the conditions under which beliefs can be modelled independently of utility
is material to any analysis of ‘belief’ formation and revision.

To illustrate the issues and difficulties connected with a complete separation of utility
from the other components of the preference representation, we begin with a simple result,
stated below as Lemma 1: Let < be a monotonic preference over a set of acts (maps from a
state space S to a consequence set X) which has certainty equivalents, and let u be a utility
function on X.1 Then, there exists a monotonic and normalized functional Iu such that f < g

if and only if
Iu(u ◦ f) ≥ Iu(u ◦ g).

That is, it is as if the decision maker used the following procedure to construct his
preferences over F : Using a specific utility function u, he first transforms every act f into
a utility profile u ◦ f , and then uses the functional Iu to find f ’s place in the ranking. This
procedure is implicitly followed by many well-known decision rules. For instance, suppose
that < is the subjective expected utility (SEU) preference described by

∫
u ◦ f dP , for given

u and P . Then, it is the case that Iu(·) =
∫

(·) dP . That is, it is as if an act’s evaluation was
found by calculating its utility profile and plugging it into the expectation with respect to P .

Clearly, u is a representation of the decision maker’s tastes. It is tempting to intepret
Iu as representing his ‘beliefs.’ However, as it is well-known, the function u is not unique.
Consider for instance a positive affine transformation v = au+ b. By the result above, there
is a corresponding functional Iv. The question is whether Iv = Iu. Interpreting Iu as ‘beliefs’
intuitively requires that such equality holds. ‘Beliefs’ should not depend on mathematical
aspects of the representation of tastes devoid of behavioral content. The following example
shows that, unfortunately, such dependence may well occur.

Example 1 Let S = {s1, s2, s3}, X = [0, 1], u : [0, 1] → [0, 1] be the identity function, and
P the uniform probability P (si) = 1/3 for all i = 1, 2, 3. Denote by B3 the subset of R3

consisting of vectors taking only two values, and define J, Iu : R3 → R as follows

J(ϕ) ≡ max
{∫

S
ψ dP : ψ ∈ B3, ψ ≤ ϕ

}
,

1See Section 1 for a definition of these standard properties, as well as those of monotonic and normalized

functionals. Notice that monotonicity implies state independence of tastes. State dependence is not considered

in this note.
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Iu(ϕ) ≡ eϕ(s1)

1 + eϕ(s1)

∫
ϕdP +

1
1 + eϕ(s1)

J(ϕ).

It can be seen that both J and Iu are monotonic and normalized functionals. Therefore, the
preference < induced on the set F of all the acts by

f < g ⇔ Iu(u ◦ f) ≥ Iu(u ◦ g)

is monotonic and has certainty equivalents. Let f = [21/100, 21/100, 21/100] and g =
[0, 1/4, 1/2]. It can be calculated that Iu(u ◦ f) > Iu(u ◦ g), implying f � g. It can also
be calculated that Iu(u ◦ f + 1/2) < Iu(u ◦ g + 1/2).

On the other hand, consider the alternative utility function v = u+1/2. Since v represents
< on X, there exists a monotonic and normalized Iv such that Iv(v ◦ ·) also represents <. It
follows that Iv(v ◦ f) > Iv(v ◦ g), or Iv(u ◦ f + 1/2) > Iv(u ◦ g + 1/2). This proves that it
cannot be that case that Iv = Iu.

It should be noticed that the example shows a preference with a representation for which
Iu(u ◦ f) > Iu(u ◦ g), but

Iu(a u ◦ f + b) < Iu(a u ◦ g + b)

for some a > 0 and b. For future use, we also remark that the preference described in the
example is a ‘biseparable preference’ in the sense of GM (see Definition 1 below). In fact, it
is easy to see that on binary acts < is represented by

∫
u ◦ f dP .

The obvious solution of the problem illustrated by the example is to impose constraints on
the preference relation beyond monotonicity and the existence of certainty equivalents, which
deliver the independence of Iu from u — to the extent that the latter is possible. For instance,
it is clear that such independence obtains when < is a SEU preference (e.g., Anscombe and
Aumann [1]), or more generally when it satisfies the Choquet expected utility (CEU) and
maxmin expected utility (MEU) models of Schmeidler [6] and Gilboa and Schmeidler [5]
respectively.

This note shows that independence of u and Iu, and with it a complete separation of
‘utility’ and ‘beliefs,’ obtains under more general circumstances than those described by
these preference models. In particular, we show that the property that needs to be added to
obtain separation is the ‘certainty independence’ axiom (Gilboa and Schmeidler [5]), which
requires that independence holds when mixing with constant acts.
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1 Preliminaries

Consider a set S of states of the world, an algebra Σ of subsets of S called events, and
a set X of consequences. We denote by F the set of all the simple acts: finite-valued
functions f : S → X which are measurable with respect to Σ. For x ∈ X we define x ∈ F
to be the constant act such that x(s) = x for all s ∈ S. So, with the usual slight abuse of
notation, we identify X with the subset of the constant acts in F . Whenever X has a mixture
set structure (e.g., in the ‘Anscombe-Aumann’ setting [1] where consequences are lotteries
on a randomizing device), for every f, g ∈ F and λ ∈ [0, 1] we denote by λf + (1 − λ)g the
act in F which yields λf(s) + (1− λ)g(s) ∈ X for every s ∈ S.

We model the DM’s preferences on F by a binary relation <, and as customary we
denote by ∼ and � its symmetric and asymmetric components, respectively. Given f ∈ F , a
certainty equivalent of f is an element cf ∈ X such that f ∼ cf . A functional U : F → R
represents < if U(f) ≥ U(g) if and only if f < g. Clearly, a necessary condition for < to
have a representation is that it be a weak order; i.e., a complete and transitive relation. A
binary relation < is nontrivial if f 6< g for some f, g ∈ F ; it is monotonic if f(s) < g(s)
for every s ∈ S implies f < g. Whenever U represents <, both these properties translate
into obvious properties of U .

Given a set K of real numbers, we denote by B0(Σ,K) the set of all Σ-measurable simple
functions taking values in K. When K = R, we just write B0(Σ). Given a functional
I : B0(Σ,K) → R, we say that I is monotonic if ϕ ≥ ψ implies I(ϕ) ≥ I(ψ) for all
ϕ,ψ ∈ B0(Σ,K), while it is normalized if I(k) = k for all k ∈ K. When K is a nontrivial
interval, I is constant affine if I(αϕ+ (1− α)k) = αI(ϕ) + (1− α)k for all ϕ ∈ B0(Σ,K),
all α ∈ [0, 1] and all k ∈ K. It is easy to see that a constant affine functional I : B0(Σ) → R
is constant linear; that is, I(aϕ + b) = aI(ϕ) + b for all a, b ∈ R, a ≥ 0. Moreover, any
constant affine functional I : B0(Σ,K) → R admits a unique constant linear extension to
B0(Σ) (see Lemma 4 in the Appendix).

2 Separating Beliefs and Utility

The following is the formal statement of the result mentioned in the Introduction.

Lemma 1 Let < be a monotonic binary relation on F with certainty equivalents, and suppose
that u : X → R is a representation of < on X. Then there exists a unique monotonic
normalized functional Iu : B0(Σ, u(X)) → R such that

f < g ⇐⇒ Iu(u ◦ f) ≥ Iu(u ◦ g).
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Moreover, if a functional U : F → R represents < and U|X = u, then U(f) = Iu(u ◦ f) for
all f ∈ F .

We remark that, given a preference < satisfying the assumptions of this lemma, any represen-
tation U of < is uniquely determined by its restriction u to X; that is, there is a one-to-one
mapping between U and u.

As we argued in the Introduction, we are interested in a factorization of ‘utility’ from
the preference representation such that everything that is tied to the specific identity of the
payoffs is described by the function u, and the residual aspects of the representation, that
we earlier called ‘beliefs,’ are independent of u, in particular of its possible transformations.
That is, we look for a functional I : B0(Σ) → R such that Iu = I|B0(Σ,u(X)) for all the ‘ad-
missible’ transformations of u. The following remark illustrates that including all increasing
transformations makes for too strong a requisite.

Remark 1 Suppose that < is a monotonic preference with certainty equivalents, and assume
that < has at least one essential event A ∈ Σ. We recall from GM that an event A ∈ Σ is
essential for < if x � xAy � y for some x � y (this clearly implies that < is nontrivial).2

We show that there is no functional I such that Iu = I|B0(Σ,u(X)) for all the utilities u that
represent < on X.

Per absurdum, suppose that such I existed, and consider a utility u such that (with the
x and y just mentioned) u(x) = 1 and u(y) = 0. The utility profile that corresponds to the
act xAy is then 1A, the characteristic function of A. As A is essential,

1 = I(u(x)) > I(1A) > I(u(y)) = 0. (1)

Next, consider the alternative utility v = u3. We have that v(x) = 1 and v(y) = 0, so that
v ◦ (xAy) = 1A. Since < has certainty equivalents, for every act f ∈ F we must have that

I[(u ◦ f)3] = I(v ◦ f) = v(cf ) = [u(cf )]3 = [I(u ◦ f)]3.

In particular, I(1A) = I[(1A)3] = [I(1A)]3. Yet, the only numbers that satisfy this equality
are 0 and ±1, and Eq. (1) rules that out. This provides the sought contradiction. �

The remark shows that a preference can have ‘beliefs’ which are independent of any
monotonic transformation of the utility function only if it has no essential events. Such
preferences are very special and of limited interest in a context of uncertainty, as they basically
treat every act as a constant (see Remark 8 in GM).

2x A y denotes the act which yields x for every s ∈ A and y otherwise.
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In addition, it should be observed that in many models X has a mixture set structure
with respect to which u is affine. Clearly, arbitrary monotonic transformations of u are less
interesting, as they do not satisfy this property.

In view of these considerations, we say that there is ‘complete’ separation of utility from
‘beliefs’ when there exists a utility function u : X → R that represents < on X and a
functional I : B0(Σ) → R such that Iv = I|B0(Σ,v(X)) for every positive affine transformation v
of u. The next result provides necessary and sufficient conditions for such complete separation
for a large subclass of the preferences used in Lemma 1.

Theorem 2 Let < be a nontrivial monotonic binary relation on F with certainty equivalents,
and let u : X → R be a function representing < on X such that u(X) is an interval. The
following statements are equivalent:

(i) There exists I : B0(Σ) → R such that Iv = I|B0(Σ,v(X)) for all positive affine transfor-
mations v of u.

(ii) There exists a positive affine transformation v of u such that Iv is constant affine.

Whenever it exists, I is unique, monotonic and constant linear. If in addition there is a
mixture set structure X with respect to which u is affine, then (i) and (ii) are equivalent to

(iii) (Certainty Independence) If f, g ∈ F , x ∈ X, and λ ∈ (0, 1), then

f < g ⇐⇒ λf + (1− λ)x < λg + (1− λ)x.

It should be remarked that, under the conditions of the theorem, the requirement that
there is a mixture set structure on X (with respect to which the utility is affine) is less
demanding than it appears to be. For, given a utility u whose range u(X) is an interval, it is
always possible to derive such mixture set structure. Given consequences x and y and weight
λ, it suffices to pick a consequence z satisfying

u(z) = λu(x) + (1− λ)u(y),

using that as λx + (1 − λ) y. The problem is that such construction in general requires
knowledge of the function u. (For a fully behavioral approach that does not, see Ghirardato,
Maccheroni, Marinacci and Siniscalchi [3].)

Theorem 2 can thus be restated as follows: complete separation of utility and ‘beliefs’ is
possible if and only if the preference satisfies certainty independence. The theorem does not
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provide a full axiomatic characterization of such preferences, as it assumes the existence of a
convex-ranged utility function representing < on X. In the next section, we briefly describe
two possible axiomatizations, after observing that the preferences of interest are a subset of
GM’s ‘biseparable’ preferences.

3 Invariant Biseparable Preferences

As we mentioned in the Introduction, the separation of utility and beliefs is also an objective
of the work in GM. They study a class of preferences which also achieve a form of separation,
in the following sense:

Definition 1 A binary relation < on F is a biseparable preference if there is a repre-
sentation U : F → R of < which is nontrivial, monotonic and convex-ranged on X, and for
which there exists ρ : Σ → [0, 1] such that for all consequences x < y and all A ∈ Σ, if we let
u ≡ U|X ,

U(xAy) = u(x) ρ(A) + u(y) (1− ρ(A)). (2)

Eq. (2), which motivates the term ‘biseparable’ (short for binary separable), describes a
separation between the utility function u and ‘beliefs’ as represented by the set-function ρ.
However, such separation only holds in the evaluation of binary acts. And indeed, Example 1
illustrates that it is possible for a preference to satisfy Eq. (2) and yet not to achieve complete
separation in the sense of Theorem 2.

While biseparability is not sufficient for complete separation, the next result shows that
it is necessary:

Proposition 3 Let < be a binary relation on F satisfying the assumptions of Theorem 2,
as well as its condition (i). Then < is a biseparable preference, with

ρ(A) = I(1A) for all A ∈ Σ.

This result shows that the preferences which satisfy the assumptions of Theorem 2 and achieve
complete separation of utility and ‘beliefs’ are a subset of the biseparable preferences. For
this reason, we call them invariant biseparable preferences (invariant refers to the fact
that the functional I is invariant under transformations of u).

Since a biseparable preference < satisfies by definition all the assumptions of Theorem 2,
it follows from that result and Proposition 3 that a biseparable preference is invariant bisep-
arable if and only if it satisfies certainty independence (with mixtures defined as explained
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after Theorem 2). This brings us back to the question of the axiomatization, which can now
be simply addressed.

If, for instance, X is a connected separable topological space, it is straightforward to
axiomatize invariant biseparable preferences by building on GM’s characterization of bisepa-
rable preferences, using the ‘subjective’ mixtures of Ghirardato, Maccheroni, Marinacci and
Siniscalchi [3] in the certainty independence axiom. If, on the other hand, X has an ‘ob-
jective’ mixture set structure (as in the Anscombe-Aumann setting), then the well-known
axioms of Gilboa and Schmeidler [5] minus their ‘uncertainty aversion’ axiom yield invariant
biseparable preferences (cf. Ghirardato, Maccheroni and Marinacci [2], which heavily builds
on the separation of utility and beliefs in this model to analyse the presence of ambiguity in
the decision problem).

Appendix

A Proof of Lemma 1

We report it just for the sake of completeness. Notice that f ∈ F iff there exist x1, . . . , xN ∈ X
and a partition {A1, A2, . . . , AN} of S in Σ such that f(s) = xi if s ∈ Ai, i = 1, . . . , N .
Analogously, ϕ ∈ B0(Σ, u(X)) iff there exist u(y1), . . . , u(yM ) ∈ u(X) and a partition
{B1, B2, . . . , BM} of S in Σ such that ϕ(s) = u(yi) for all s ∈ Bi, i = 1, . . . ,M . We
conclude that B(Σ, u(X)) = {u ◦ f : f ∈ F}.

Since < is monotonic, if ϕ = u◦f = u◦g for f, g ∈ F , then u(f(s)) = u(g(s)) for all s ∈ S
and f(s) ∼ g(s) for all s ∈ S, whence f ∼ g and cf ∼ cg. For all ϕ ∈ B(Σ, u(X)), set Iu(ϕ) =
u(cf ) if ϕ = u ◦ f for some f ∈ F . Iu is well defined, normalized (for all k = u(x) ∈ u(X),
Iu(k) = Iu(u◦x) = u(x) = k), and f < g iff u(cf ) ≥ u(cg) iff Iu(u◦ f) ≥ Iu(u◦ g). Therefore,
Iu(u ◦ ·) represents <, and Iu is thus monotonic. Suppose that Ju is a normalized monotonic
functional on B0(Σ, u(X)) such that Ju(u◦·) represents <. Given ϕ ∈ B0(Σ, u(X)), let f ∈ F
be such that ϕ = u ◦ f , and let cf be a certainty equivalent of f . It follows that

Ju(ϕ) = Ju(u ◦ f) = Ju(u ◦ cf ) = u(cf ) = Iu(ϕ).

Finally, if U represents < and U|X = u, then

U(f) = U(cf ) = u(cf ) = Iu(u ◦ f).
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B Proof of Theorem 2

Lemma 4 Let K be a nontrivial interval. Any constant affine functional I on B0(Σ,K)
admits a unique constant linear extension to B0(Σ). Moreover, I is monotonic iff its extension
is monotonic.

Proof: Let J : B0(Σ) → R be a constant linear extension of I and k ∈ intK. For all
ϕ ∈ B0(Σ), there exists α ∈ (0, 1] such that αϕ+ (1− α)k ∈ B0(Σ,K). It follows that

αJ(ϕ) + (1− α) k = J(αϕ+ (1− α) k) = I(αϕ+ (1− α) k).

That is,

J(ϕ) =
I(αϕ+ (1− α) k)− (1− α) k

α
. (3)

Therefore if a constant linear extension exists, it is unique and it is given by Eq. (3).
We next show that there is a constant linear extension of I. Assume first that 0 ∈ intK.

Taking k = 0 in the definition of constant affinity we obtain I(αϕ) = αI(ϕ) for all ϕ ∈
B0(Σ,K) and all α ∈ [0, 1]. That is, I is positively homogeneous. As suggested by Eq. (3),
for all ϕ ∈ B0(Σ) we take

J(ϕ) =
I(αϕ)
α

if α ∈ (0, 1] and αϕ ∈ B0(Σ,K). If α, β ∈ (0, 1] and αϕ, βϕ ∈ B0(Σ,K), w.l.o.g. we can
assume β ≥ α > 0, so that

I(αϕ) = I

(
α

β
βϕ

)
=
α

β
I(βϕ).

Therefore, I(αϕ)/α = I(βϕ)/β, whence J is well defined and it obviously extends I. In
particular, J(0ϕ) = 0 for all ϕ ∈ B0(Σ). Given ϕ ∈ B0(Σ), let β ∈ (0, 1] be such that
βϕ ∈ B0(Σ,K). Then, for any α ∈ (0, 1), βαϕ ∈ B0(Σ,K) and

J(αϕ) =
I(βαϕ)
β

= α
I(βϕ)
β

= αJ(ϕ).

That is, J is positively homogeneous.3

3For α > 1 and ϕ ∈ B0(Σ),

J(ϕ) = J

„
1

α
αϕ

«
=

1

α
J(αϕ).
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Let ϕ ∈ B0(Σ), a > 0, and b ∈ R. Choose α ∈ (0, 1] such that αϕ, α(b/a) ∈ B0(Σ,K).
Then (1/2)αϕ, (1/2)α(b/a) ∈ B0(Σ,K) and

J(aϕ+ b) = aJ

(
ϕ+

b

a

)
=

2a
α
I

(
1
2
αϕ+

1
2
α
b

a

)
=

2a
α

(
1
2
I (αϕ) +

1
2
α
b

a

)
= aJ(ϕ) + b.

Finally, given b ∈ R choose α ∈ (0, 1] such that αb ∈ K. Then,

J(b) =
1
α
I(αb) =

1
α
I ((1− α) 0 + αb) = b.

We conclude that J is constant linear.
Next, suppose that 0 /∈ intK. Take k0 ∈ intK and notice that 0 ∈ int(K − k0). For all

ψ ∈ B0(Σ,K − k0), set
G(ψ) = I(ψ + k0)− k0.

Given any ψ ∈ B0(Σ,K − k0), c ∈ K − k0 and α ∈ [0, 1],

G(αψ + (1− α)c) = I(αψ + (1− α)c+ k0)− k0

= I(α(ψ + k0) + (1− α)(c+ k0))− k0

= αI(ψ + k0) + (1− α)(c+ k0)− k0

= α(I(ψ + k0)− k0) + (1− α)c

= αG(ψ) + (1− α)c.

That is, G is constant affine on B0(Σ,K − k0). Let J be its constant linear extension to
B0(Σ), whose existence we proved above. If ϕ ∈ B0(Σ,K), ϕ− k0 ∈ B0(Σ,K − k0) and

J(ϕ) = J(ϕ− k0) + k0 = G(ϕ− k0) + k0 = I(ϕ− k0 + k0)− k0 + k0 = I(ϕ).

The monotonicity statement is trivial. Q.E.D.

Assume that there exists a positive affine transformation v of u such that Iv is constant
affine. Let I be the unique constant linear extension of Iv to B0(Σ) given by Lemma 4. Since
Iv is monotonic, I is monotonic as well. If w is another positive affine transformation of u,
then there exist a > 0 and b ∈ R such that w = av + b and

Iw(w ◦ f) = w(cf ) = av(cf ) + b = aIv(v ◦ f) + b

= aI(v ◦ f) + b = I(av ◦ f + b) = I(w ◦ f).

10



Conversely, assume there exists I : B0(Σ) → R such that Iv = I|B0(Σ,v(X)) for all positive
affine transformations v of u. For all ϕ ∈ B0(Σ), there exists a positive affine trasformation
v of u such that ϕ = v ◦ f ∈ B0(Σ, v(X)), and consider any a > 0 and b ∈ R

I(aϕ+ b) = I(av ◦ f + b)) = Iav+b(av ◦ f + b) = av(cf ) + b

= aIv(v ◦ f) + b = aI(ϕ) + b;

If a = 0 and b ∈ R there exists a positive affine trasformation v such that b = v(x), then

I(b) = I(v ◦ x) = Iv(v ◦ x) = v(x) = b.

We conclude that I is constant linear. A fortiori, for all positive affine transformations v of
u, Iv = I|B0(Σ,v(X)) is constant affine. This proves the equivalence of (i) and (ii) (notice that
the last equality also guarantees uniqueness of I).

When X has a mixture set structure and u is affine w.r.t. such structure, the equivalence
of (ii) and (iii) is proved mimicking the arguments of Gilboa and Schmeidler [5].

C Proof of Proposition 3

Let I denote the functional described in statement (i) of Theorem 2 and u the convex-ranged
function representing <. Let U(f) ≡ I(u ◦ f). We now show that U satisfies the conditions
in the definition of biseparable preference.

Clearly U is a representation of < and it is nontrivial, monotonic and convex-ranged on
X. Set ρ(A) = I(1A) for all A ∈ Σ. Consider x < y, A ∈ Σ. Recalling that I is constant
linear, we have

U(xAy) = I[u ◦ (xAy)]

= I[(u(x)− u(y))1A + u(y)]

= (u(x)− u(y)) I(1A) + u(y)

= u(x)ρ(A) + u(y)(1− ρ(A)).

This concludes the proof.
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