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Jérôme Renault
CEREMADE
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Abstract
We study a particular case of repeated games with public signals. In the

stage game an odd number of players have to choose simultaneously one of two
rooms. The players who choose the less crowded room receive a reward of one
euro (whence the name “minority game”). Between the stages, only the current
majority room is publicly announced. We show that in the infinitely repeated
game any feasible payoff can be achieved as a uniform equilibrium payoff, and
as an almost sure equilibrium payoff. In particular we construct an inefficient
equilibrium where, with probability one, all players choose the same room at
almost all stages. This equilibrium is sustained by punishment phases which
use, in a unusual way, the pure actions that were played before start of the
punishment.
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1 Introduction

An odd number of players have to choose simultaneously one of two rooms. The
players who choose the less crowded room receive a reward of one euro. The others
receive nothing. The game is repeated over time. A version of this game was in-
troduced by Arthur (1994) under the name El Farol’s Bar problem (see also Arthur
(1999)). In his paper customers have to decide every weekend whether to go to
the bar or stay home. Only customers who make the minority choice are happy.
Arthur’s paper gave rise to a huge literature on so called minority games. The in-
terest in this class of games came especially from theoretical physicists working in
statistical mechanics (see e.g. Challet and Zhang (1997), Savit et al. (1999)). They
focus on the case of many players and see “these problems as novel examples of
frustrated and disordered many-body systems” (Cavagna et al. (1999)). In their
models the many agents have limited memory and act according to some evolution-
ary paradigm without taking into account strategic considerations. The reader is
referred to http://www.unifr.ch/econophysics/minority/ for an extensive list of
references.

In our paper we will consider a repeated minority game and we will look at it
according to the classical rational approach of game theory. Notice that, if after each
stage each player observes the players which are in the room she selected, then, by
the folk theorem, any feasible payoff is an equilibrium payoff of the repeated game.
We study here the following version of a repeated minority game. At each step the
players choose an action (one of two rooms). After their choice only a public signal
(the majority room) is announced to all players. Therefore they do not observe
the actions or the payoffs of the other players. The game is infinitely repeated and
the payoffs are not discounted. We use the standard notion of uniform equilibrium,
which will turn out to be payoff-equivalent here to that of almost sure equilibrium.
We characterize the set of equilibrium payoffs.

Our model is a particular case of repeated games with imperfect observation:
The players repeat a known one-shot game and after each stage each player receives
a signal depending on the actions played. The reader is referred to Sorin (1992)
for a survey of repeated games with complete information. Renault and Tomala
(2000) characterized the set of uniform communication equilibrium payoffs for any
repeated game with imperfect monitoring, but no general characterization exists for
(Nash) equilibrium payoffs. Fudenberg and Maskin (1986) proved a folk theorem for
a certain class of repeated games with discounting. Lehrer (1989, 1992a,b) dealt with
two-person undiscounted repeated games with imperfect observation. More recently
Tomala (1998) studied the case of public signals, where all players get the same signal
after each stage. In this setup he characterized the set of pure uniform equilibrium
payoffs. He also provided a characterization of the set of uniform (possibly mixed)
equilibrium payoffs in a certain class of games, where all payoffs can be deduced from
the public signal (Tomala (1999)).
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Since we are interested not only in pure equilibria but in all (possibly mixed)
uniform equilibria, the solution to our problem cannot be found in the existing liter-
ature. We will prove that a folk theorem holds for our game, i.e. we will show that
any feasible payoff is an equilibrium payoff. In particular, we will construct a uniform
equilibrium where the payoff of each player is simply zero. This equilibrium can be
considered as particularly inefficient, since all feasible payoffs are non negative. It
contains a main path and punishment phases. A punishment phase starts when the
players suspect that a deviation have occurred. The identity of the possible deviator
is not known by the players and it is not possible to punish simultaneously all play-
ers suspected of deviation, as done in several recent papers (Tomala (1999); Renault
and Tomala (2000)). On the other hand it is possible to punish the deviator, if any,
by replicating some actions previously played in the main path before the punishment
phase. To our knowledge, this kind of punishment is new in the literature. The tech-
nical parts of our proofs use statistical techniques due to Lehrer (1990, 1992b), or,
more specifically, the variations used by Renault (2000). In our opinion, the construc-
tion of our inefficient equilibrium gives insights concerning the difficulty of a general
characterization of equilibrium payoffs in repeated games with public signals.

For the sake of simplicity, we first deal with the case of three players. Section 2
contains the model, and the statement of our main result. In Section 3 we define a
particular strategy where all players are, at almost all stages with great probability,
in the same room. In Section 4 we prove that this strategy is a uniform equilibrium
with payoff 0 for each player. In Section 5 we finally extend our result to the case of
any odd number of players.

2 The model

If E is an event, then Ec is its complementary event. The cardinality of a finite set A
will be indicated as |A|. If C is a subset of an Euclidean space, convC is the convex
hull of C.

There are two rooms: L(eft) and R(ight). At each stage, three players have to
choose simultaneously one of the two rooms. The player who finds herself in the less
crowded room (if any) gains a positive payoff of 1, and the most crowded room is
publicly announced before going to the next stage.

2.1 The stage game

The set of players is N = {1, 2, 3}. For all i ∈ N , we call Ai = {L, R} the set of
actions for player i, and we put A = A1 × A2 × A3. For a = (a1, a2, a3) ∈ A define
the payoff function gi : A → R of player i as

gi(a) =

{
0 if there exists j ∈ N \ {i} s.t. aj = ai,

1 otherwise,
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It is easy to compute the equilibria of the one-shot game. These are the action
profiles such that one player plays L with probability 1 and another player plays R
with probability 1, and the action profile where each player plays L and R with equal
probability. Consequently, the set of equilibrium payoffs of the one-shot game is just

E1 = {(1/4, 1/4, 1/4)} ∪ {(x, 1− x, 0) : x ∈ [0, 1]}
∪ {(x, 0, 1− x) : x ∈ [0, 1]} ∪ {(0, x, 1− x) : x ∈ [0, 1]}.

Notice that all payoffs x = (x1, x2, x3) in E1 satisfy x1 + x2 + x3 ≥ 3/4. In a
Nash equilibrium of the one-shot game, the three players are in the same room with
probability at most 1/4.

Since the stage game will be repeated, we also need notations about what the
players observe. We define the set of public signals as U = {L, R}. The signalling
function ` : A → U , giving the most crowded room, is formally defined by

`(R, R,R) = `(R,R,L) = `(R,L, R) = `(L, R, R) = R,

`(L, L, L) = `(L, L, R) = `(L, R, L) = `(R,L, L) = L.

2.2 The repeated game Γ∞

At each stage t ≥ 1, each player i (simultaneously with the other players) selects and
action ai

t ∈ Ai. If at = (a1
t , a

2
t , a

3
t ) ∈ A is chosen, the stage payoff of player i is gi(at),

and the signal ut = `(at) is publicly announced. Then the play proceeds to stage
t + 1. All the players have perfect recall and the whole description of Γ∞ is common
knowledge.

The game Γ∞ is a game with imperfect monitoring, in that the players do not
observe the actions of their opponents, but only a signal (the majority room).

2.3 The equilibria of Γ∞

A behavioral strategy of player i is an element σi = (σi
t)t≥1, where for all t

σi
t : (Ai × U)t−1 → ∆(Ai).

Therefore, for each t ≥ 1, σi
t(a

i
1, u1, a

i
2, u2, . . . , a

i
t−1, ut−1) is the lottery played by

player i at stage t if she played ai
1 at stage 1, . . . , ai

t−1 at stage t− 1, and the signal
was u1 at stage 1, . . . , ut−1 at stage t− 1.

We call Σi the set of behavioral strategies of player i, and Σ = Σ1 × Σ2 × Σ3. A
strategy profile σ = (σ1, σ2, σ3) ∈ Σ induces a probability measure Pσ over the set of
plays Ω = (A × U)∞ = {(a1, u1, a2, u2, . . . ),∀t ≥ 1, at ∈ A, ut ∈ U)}. With an abuse
of notation we will indicate as at the random variable of the joint action profile in A
played at stage t. For all i ∈ N , and for all T ≥ 1,

γi
T (σ) = EPσ

(
1

T

T∑
t=1

gi(at)

)
.
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Definition 1. The profile σ is a uniform equilibrium of Γ∞ if

(a) for all i ∈ N , (γi
T (σ))T converges to some quantity xi as T goes to infinity (the

vector (x1, x2, x3) is called the payoff of σ).

(b) for all ε > 0 there exists T0 such that for all T ≥ T0, σ is an ε-Nash equilibrium
in the finitely repeated game with T stages, i.e. for all i ∈ N , for all τ i ∈ Σi,
γi

T (τ i, σ−i) ≤ γi
T (σ) + ε.

Definition 2. The vector x ∈ R3 is an equilibrium payoff of Γ∞ if there exists a
uniform equilibrium with payoff x.

We denote by E∞ the set of equilibrium payoffs of Γ∞.
Since all payoffs are nonnegative and g1 + g2 + g3 ≤ 1, it is clear that E∞ is a

subset of the simplex S, where

S =

{
(x1, x2, x3) ∈ R3 : for all i ∈ N, xi ≥ 0, and

3∑
i=1

xi ≤ 1

}
= conv{(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)}.

Our main result is the following theorem.

Theorem 3. E∞ = S.

Since repeating at each stage a Nash equilibrium of the one-shot game is a uniform
equilibrium of Γ∞, we know that E1 ⊂ E∞. Moreover E∞ is convex, so the only thing
we have to do is to prove the following theorem.

Theorem 4. (0, 0, 0) ∈ E∞.

In order to prove the above theorem we need to construct a strategy σ ∈ Σ that
satisfies the two properties of Definition 1, namely,

(a) for all i ∈ N , limT→∞ γi
T (σ) = 0,

(b) for all ε > 0, there exists T0 such that for all T ≥ T0, for all i ∈ N ,

γi
T (τ i, σ−i) ≤ ε for all τ i ∈ Σi.

Note that since all payoffs are non negative, (a) is a consequence of (b) here.
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3 Construction of the strategy σ

We first give a heuristic description of the uniform equilibrium, σ = (σ1, σ2, σ3).
To get a payoff of 0, we need all the players to play with high probability the

same action (say L) most of the stages. But if all players play L with probability 1,
the deviation of one player, that consists of playing R, will be profitable (in terms
of payoffs) and will not be detected (the signal will still be L). Hence some of the
players must play R with small but positive probability.

Imagine all players play at each stage R with probability ε, where ε is small but
positive. In order to detect a deviation, we will need a statistical test. If the frequency
of stages where R is the most crowded room is higher than it should be, all players
will consider that a deviation has occurred and a punishment phase will start. We
then need to define an appropriate punishment phase, the difficulty being that the
identity of the deviator (if any) is not known by the players. Our main idea is then
the following. If player i is deviating, then with great probability at most of the stages
where R was the most crowded room, the situation was the following: Player i played
R, and exactly one of the other players played R, too. So if the players different from
i repeat the actions they have played at the stages where R was the most crowded, at
most stages one of them will play L and the other will play R. This punishes player
i by giving him a payoff of zero.

We now formally construct σ. The set of stages {1, 2, ...} is divided into consec-
utive blocks of increasing lengths B1,...,Bm,..., such that for all m ≥ 1, |Bm| = m10.
This is needed because we need the statistical tests to become more and more accu-
rate. The strategy σ consists of a main path and of punishment phases, starting from
the main path.

When the play is in the main path, at some block Bm, all players play at each
stage t of Bm, independently of what happened before, the mixed action(

1− 1

m

)
L⊕ 1

m
R.

At the end of such a block, all players can compute the empirical frequency of “R
being the most crowded room” in this block

αm =
1

|Bm|
|{t ∈ Bm, `(at) = R}|.

Note that if no player deviates at block Bm, by Tchebychev’s inequality αm should
be close to the expectation of “R being the most crowded room”, which is equivalent
to 3/m2. The statistical test will be the following:

• If αm ≤ 1/(m
√

m), the test will be considered as passed. The play stays in the
main path (and block Bm+1 is played).
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• If αm > 1/(m
√

m), the test will be considered as failed, and the players will
assume that a deviation has occurred. The play will immediately go out of the
main path and a punishment phase will start. The punishment phase will last
a large number of blocks, but will not be infinite, because there will always be
a chance for the punishment to fail. More precisely, the punishment phase will
last from the first stage of block Bm+1 to the last stage of block Bm2

. Then,
and whatever happens during the punishment phase, the play will go back to
the main path at block Bm2+1.

To complete the definition of σ, we have to define what is played in the punishment
phases.

Let m be a positive integer, and consider a block Bm where the play is in the
main path, such that αm > 1/(m

√
m), namely, the test fails. Define

D = {t ∈ Bm : `(at) = R}. (1)

On the set D we suspect the deviator, if any, to have played R on purpose. We have
|D| = m10αm. In order to play the punishment phase at blocks Bm+1, . . . , Bm2

, each
player will have to remember D and the action she played at each stage of D. We
order the elements of D so that D = {t1, . . . , t|D|}, with t1 < t2 < · · · < t|D|.

Fix m ∈ {m + 1, . . . ,m2}. We now define what σ recommends to play at such
block Bm during a punishment phase.

Let d ∈ N be such that

d ≤ |Bm|
|D|

< d + 1.

The block Bm is divided into consecutive sub-blocks Bm
1 , . . . , Bm

d , Bm
d+1 such that for

all d′ ∈ {1, . . . , d}, |Bm
d′ | = |D|. The role of Bm

d+1 will be negligible since |Bm
d+1| < |D|.

Indeed we have
|Bm

d+1|
|Bm|

<
|D|
m10 . (2)

With high probability the right hand side of (2) will be small when m is large, even
in case of deviation. Consequently we can define σ arbitrarily on such a block Bm

d+1.
Let d′ ∈ {1, . . . , d}. At Bm

d′ the strategy σ recommends the players to mimic what
happened at stages in D. If Bm

d′ = {t′1, . . . , t′|D|} with t′1 < t′2 < · · · < t′|D|, then σ

recommends each player i at each stage t′n ∈ Bm
d′ (with n ∈ {1, . . . , |D|}) to repeat

the action she played at stage tn, i.e. to play ai
tn .

Notice that σ recommends to play exactly the same sequence of actions at each
sub-block Bm

1 , . . . , Bm
d .

4 σ is a uniform equilibrium with payoff (0, 0, 0)

We first informally discuss the proof.
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1. Suppose that all players follow σ. Then at each stage of some block Bm in the
main path the probability of R being the most crowded room is equivalent (as m
goes to the infinity) to 3/m2. Consequently, by Tchebychev’s inequality, αm will
be close to 3/m2 with high probability. Since 3/m2 < 1/(m

√
m), for m large, the

test of block Bm will pass. It will even be possible, by Borel-Cantelli lemma, to
show that the set of blocks m such that Bm is not in the main path is almost
surely finite. Moreover the (stage) average payoff of some player i at some block
Bm in the main path will be close to the probability that she plays R whereas the
others play L, hence will be close to 1/m. This will ensure that the average payoff
of each player will go to zero as the number of stages goes to infinity.

2. Suppose that some player (e.g. player 1) deviates from σ. In order for player 1
to have a good payoff at some block Bm in the main path, she should play R a
large number of times in this block. We will see that in this case the empirical
frequency of “R being the most crowded room” will be greater than 1/(m

√
m)

with high probability. Hence a punishment phase will start, and the efficiency
of this phase to punish player 1 will only depend on what happened at stages in
D = {t ∈ Bm : `(at) = R}.
The set D consists of two kinds of stages: (i) the stages where player 1 played
R and exactly one of the other players played R, and (ii) the stages where both
players 2 and 3 played R. We will show that, with high probability, the stages of
type (ii) are negligible. Consequently, for most of the stages in D, player 2 and
player 3 do not play the same action. Hence for most of the punishment stages,
player 1’s payoff will be zero.

Summing up, player 1 cannot have a good payoff on some block in the main path
without being severely punished afterwards with high probability. This will ensure
that no deviation is profitable.

To show that σ is a uniform equilibrium, we only need to prove Proposition 6
below. However we will first shortly prove the following Proposition 5 to simplify the
exposition of our proof (and because the analogue of Proposition 5 will be needed in
Section 5).

Proposition 5. For all i ∈ N ,

lim
T→∞

1

T

T∑
t=1

gi(at) = 0 Pσ-a.s., and lim
T→∞

γi
T (σ) = 0.

Proof of Proposition 5. By symmetry, we only consider the case where i = 1. Assume
that all players play σ. All the probabilities and expectations in the sequel of the
proof are computed according to P = Pσ.

7



For each block m, we define the following events:

Bm = {the play is in the main path at block Bm},

Am =

{∑
t∈Bm

g1(at)

|Bm|
>

2

m

}
.

Fix a block number m where Bm holds. At each stage of Bm each player plays
i.i.d. the mixed action (

1− 1

m

)
L⊕ 1

m
R.

So at each stage the probability that R is the most crowded room is

ηm =
1

m3
+ 3

1

m2

(
1− 1

m

)
≤ 3

m2
,

and the probability that player 1 has a payoff of 1 is

1

m

(
1− 1

m

)2

+

(
1− 1

m

)
1

m2
=

1

m

(
1− 1

m

)
.

We have, by Tchebychev’s inequality

P(Am|Bm) ≤ P

(∣∣∣∣∑t∈Bm g1(at)

|Bm|
− 1

m

(
1− 1

m

)∣∣∣∣ > 1

m

∣∣∣∣∣Bm

)
≤ 1

m8
. (3)

Moreover, for m large enough,

P(Bc
m+1|Bm) = P

(
αm >

1

m
√

m

∣∣∣∣∣Bm

)

= P

(
αm − ηm >

1

m
√

m
− ηm

∣∣∣∣∣Bm

)

≤ P

(
|αm − ηm| >

1

2m
√

m

∣∣∣∣∣Bm

)
≤ 4

m7
,

Again the last inequality is just Tchebychev. Since
∑

m≥1 4/m7 < ∞, by Borel-
Cantelli lemma we obtain

P
(
lim sup(Bm ∩ Bc

m+1)
)

= 0. (4)

Since after a punishment phase the play always comes back to the main path, (4)
implies that with probability 1 there exists a block m1 such that for each m ≥ m1,
Bm holds.
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By Borel-Cantelli lemma again and (3), we now have P (lim sup(Am ∩ Bm)) = 0,
hence P(lim supAm) = 0. Hence, with probability 1, there exists a block m2 such
that for all m ≥ m2, ∑

t∈Bm g1(at)

|Bm|
≤ 2

m
.

Since the cardinality of the Bm is polynomial in m, we have

lim
T→∞

1

T

T∑
t=1

g1(at) = 0 Pσ-a.s..

By the bounded convergence theorem we also have that limT→∞ γ1
T (σ) = 0.

Proposition 6. For all ε > 0 there exists T0 such that for all T ≥ T0, for all i ∈ N

γi
T (τ i, σ−i) ≤ ε for all τ i ∈ Σi.

Proof of Proposition 6. Without loss of generality, we consider only deviations by
player 1. Fix τ 1 ∈ Σ1 in all the sequel, and assume that (τ 1, σ2, σ3) is played. All the
probabilities and expectations in the sequel will be with respect to P = Pτ1,σ2,σ3 .

For each block m we define the following random variables:

Xm =
1

|Bm|
∑
t∈Bm

g1(at), Zm =
1

|Bm|
∑
t∈Bm

1{a2
t =R}∪{a3

t =R},

Um =
1

|Bm|
∑
t∈Bm

1{a2
t =R}∩{a3

t =R}, xm =
1

|Bm|
∑
t∈Bm

1{a1
t =R}.

We have Xm ≤ Um + xm. We also define the event

Cm = Bc
m

⋃(
Bm

⋂
Bm+1

⋂{
Xm ≤ 3√

m

})
⋃(

Bm

⋂
Bc

m+1

⋂(
m2⋂

m′=m+1

{
Xm′ ≤ 3√

m

}))
. (5)

Conditionally on Cm, one of the following three possibilities is true: Either the play is
in a punishment phase, or it is in the main path at Bm, player 1’s payoff is low, and
it will still be in the main path at Bm+1, or an efficient punishment starts at block
Bm+1.

Lemma 7. There exists M1, independent from τ 1, such that for all m ≥ M1

P(Cm) ≥ 1− 2

m6
.
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Proof of Lemma 7. Consider a block Bm, with m large enough, where the play is in
the main path. Via Tchebychev’s inequality we obtain

P

(
Zm >

3

m

∣∣∣∣∣Bm

)
≤ 1

m8
,

P

(
Um >

2

m2

∣∣∣∣∣Bm

)
≤ 1

m6
.

Hence with high probability player 2 and 3 will not be simultaneously in room R
at the same stages.

We now want to estimate the number of stages where R is the most crowded room
and exactly two players, including player 1, are in R. Define for all t ∈ Bm

Qt = 1{a1
t =R}, ξt = 1{a2

t =R}∩{a3
t =L} + 1{a2

t =L}∩{a3
t =R}.

The random variables (ξt)t∈Bm are i.i.d. (given Bm) Bernoulli random variables
with expectation

pm = 2
1

m

(
1− 1

m

)
≥ 1

m
,

for m ≥ 2. The variables (Qt)t∈Bm may not be independent and may not be inde-
pendent of (ξt)t∈Bm , since player 1 is using an arbitrary strategy τ 1. Nevertheless,
for each t ∈ Bm, ξt is independent of (ξt′)t′∈Bm,t′<t and (Qt′)t′∈Bm,t′<t. Hence we can
apply a generalization of Tchebychev’s inequality due to Lehrer (see Lehrer (1990),
Lemma 5.6). For all ε′ > 0

P

(∣∣∣∣∣∑
t∈Bm

ξtQt

m10
− pmxm

∣∣∣∣∣ ≥ ε′

∣∣∣∣∣Bm

)
≤ 1

m10ε′2
.

The choice of ε′ = 1/(m
√

m) gives

P

(∣∣∣∣∣∑
t∈Bm

ξtQt

m10
− pmxm

∣∣∣∣∣ ≥ 1

m
√

m

∣∣∣∣∣Bm

)
≤ 1

m7
.

Assume now that there is no punishment phase at block Bm+1, i.e. that Bm+1

holds. This implies

∑
t∈Bm

ξtQt

m10
≤ 1

m
√

m
, and pmxm ≤ 1

m
√

m
+

∣∣∣∣∣pmxm −
∑
t∈Bm

ξtQt

m10

∣∣∣∣∣ .
Assume also that ∣∣∣∣∣pmxm −

∑
t∈Bm

ξtQt

m10

∣∣∣∣∣ ≤ 1

m
√

m
and Um ≤ 2

m2
.
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Then pmxm ≤ 2/(m
√

m), so xm ≤ 2/
√

m. Since Xm ≤ Um +xm, we get Xm ≤ 3/
√

m
for m ≥ 2. We have shown that

Bm

⋂
Bm+1

⋂(
Um ≤ 2

m2

)⋂(∣∣∣∣∣pmxm −
∑
t∈Bm

ξtQt

m10

∣∣∣∣∣ ≤ 1

m
√

m

)
⊂
{

Xm ≤ 3√
m

}
.

Consequently

P

(
Bm+1

⋂(
Um ≤ 2

m2

)⋂{
Xm >

3√
m

} ∣∣∣∣∣Bm

)

≤ P

(∣∣∣∣∣pmxm −
∑
t∈Bm

ξtQt

m10

∣∣∣∣∣ > 1

m
√

m

∣∣∣∣∣Bm

)

≤ 1

m7
.

We obtain as a first result

P
(
Bm

⋂((
Zm >

3

m

)⋃(
Um >

2

m2

)⋃(
Bm+1

⋂{
Xm >

3√
m

})))
≤ P

((
Zm >

3

m

)⋃(
Um >

2

m2

)⋃(
Bm+1

⋂{
Xm >

3√
m

}) ∣∣∣∣∣Bm

)
≤ 1

m8
+

1

m6
+

1

m7

≤ 2

m6
for m ≥ 2.

Therefore if we define the event

Gm = Bc
m

⋃((
Zm ≤ 3

m

)⋂(
Um ≤ 2

m2

)⋂(
Bc

m+1

⋃{
Xm ≤ 3√

m

}))
,

we have

P(Gm) ≥ 1− 2

m6
. (6)

Assume that Gm and Bm hold. Then

• either Bm+1 holds, and this implies that Xm ≤ 3/
√

m,

• or Bc
m+1 holds, and therefore a punishment phase starts at block Bm+1.

Consider D as defined in (1). We have |D| > m8.5. As |D| ≤ m10Zm, the event
(Zm ≤ 3/m), implies |D| ≤ 3m9.

Since (Um ≤ 2/m2), the number of stages in D where player 2 and player 3 play
the same action is at most 2m8.
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Consider a block Bm with m ∈ {m + 1, . . . ,m2}. Let d be the integer such that
d ≤ |Bm|/|D| < d + 1. At each stage where player 2 plays L and player 3 plays R, or
vice versa, players 1’s payoff is 0. So the total payoff of player 1 at block Bm is

m10Xm ≤ d · 2m8 + |D| = d|D|2m
8

|D|
+ |D|.

Hence

Xm ≤ d|D|
|Bm|

2√
m

+
3m9

m10 ≤
2√
m

+
3

m
≤ 3√

m
, for m ≥ 9.

This implies that Gm ⊂ Cm. The desired result now follows from (6).

Lemma 7 is the key to the proof of Proposition 6. The rest is technical, and very
close to the end of the proof in Renault (2000).

Lemma 8. For all ε > 0, there exists M2 independent of τ 1, such that for all m0 ≥
M2

2 ,

E

(∑m2
0

m=m0
m10Xm∑m2

0
m=m0

m10

)
≤ 3ε.

Proof of Lemma 8. Fix ε > 0. Since

∞∑
m=1

1

m6
< +∞,

by Lemma 7 one can find M2, independent of τ 1, such that

P

( ⋃
m≥M2

Cc
m

)
≤ ε.

One may also assume that for all m ≥ M2, we have

3/
√

m ≤ ε, (7)

and
|Bm2|∑m2

m′=m m′10
≤ ε. (8)

Fix now m0 ≥ M2
2 , and put

Y =

m2
0∑

m=m0

m10Xm.

12



Then

E(Y ) = P

( ⋃
m≥M2

Cc
m

)
E

(
Y

∣∣∣∣∣ ⋃
m≥M2

Cc
m

)
+ P

( ⋂
m≥M2

Cm

)
E

(
Y

∣∣∣∣∣ ⋂
m≥M2

Cm

)

≤ ε

m2
0∑

m=m0

m10 + E

(
Y

∣∣∣∣∣ ⋂
m≥M2

Cm

)
.

Assume that for all m ≥ M2, Cm holds. We will show that this implies

Y ≤ 2ε

m2
0∑

m=m0

m10.

By (5) and (7) we have sequences (Xm)m≥M2 and (Bm)m≥M2 such that for all
m ≥ M2 the following events are true

Bc
m

⋃(
Bm

⋂
Bm+1

⋂
{Xm ≤ ε}

)⋃(
Bm

⋂
Bc

m+1

⋂(
m2⋂

m′=m+1

{Xm′ ≤ ε}

))
.

Since m0 ≥ M2
2 , and after a punishment phase the play always comes back to the

main path, there necessarily exists some block number m1 in {M2, . . . ,m0} such that
Bm1 holds.

Two cases are possible:

(I) For all m ≥ m1, Bm holds, and then for all m ≥ m1, Xm ≤ ε and Y ≤
ε
∑m2

0
m=m0

m10.

(II) There exists a first block number m2 ≥ m1 such that Bm2 ∩ Bc
m2+1 holds. We

have Xm ≤ ε whenever m1 ≤ m < m2.

Two sub-cases of (II) are possible

(i) m2 ≥ m0. For all m such that m2 < m ≤ m2
0, we have Xm ≤ ε (the

punishment starting from Bm2+1 will finish after Bm2
0). So, by (8),

Y ≤
∑

m∈{m0,...,m2
0}

m6=m2

m10ε + m10
2 ≤ 2ε

m2
0∑

m=m0

m10.

(ii) m2 < m0. For all m ∈ {m0, . . . ,m
2
2}, Xm ≤ ε, and Bm2

2+1 holds.

We just have to repeat the argument and consider the following sub-sub-
cases.

13



(a) for all m ≥ m2
2 + 1, Bm holds. Then for all m ∈ {m0, . . . ,m

2
0} we

have Xm ≤ ε and Y ≤ ε
∑m2

0
m=m0

m10.

(b) There exists a first block number m3 ≥ m2
2 +1 such that Bm3 ∩Bc

m3+1

holds.
The only possible block m in {m0, . . . ,m

2
0} where we may have Xm >

ε is block m3. So Y ≤ 2ε
∑m2

0
m=m0

m10.

In the end we obtain

E(Y ) ≤ 3ε

m2
0∑

m=m0

m10,

and Lemma 8 is proved.

We can now conclude the proof of Proposition 6.
Fix ε > 0. By Lemma 8, there exists a block number M3, independent of τ 1, such

that for all m0 ≥ M3

E

(∑
t∈Bm0∪···∪Bm2

0
g1(at)∑m2

0
m=m0

m10

)
≤ ε,

m0−1∑
m=1

m10 ≤ ε

m2
0∑

m=1

m10,

(m0+1)2∑
m=m2

0+1

m10 ≤ ε

m2
0∑

m=1

m10.

Define T0 = 1 + max{BM2
3 } and let T ≥ T0. Define m(T ) via T ∈ Bm(T ). Then

m(T ) ≥ M2
3 + 1. Define l ∈ N such that l ≤

√
m(T )− 1 < l + 1. We have l ≥ M3,

l2 < m(T ), and (l + 1)2 ≥ m(T ).

E

(
T∑

t=1

g1(at)

)
=

∑
t<min{Bl}

g1(at) +
∑

t∈Bl∪···∪Bl2

g1(at) +
∑

t>max{Bl}

g1(at)

≤
l−1∑
m=1

m10 +
l2∑

m=l

m10ε +

(l+1)2∑
m=l2+1

m10,

≤ ε + ε + ε = 3ε.

Proposition 6 is proved since T0 does not depend on τ 1.

Remark 9. (Almost sure equilibrium payoffs) As in Lehrer (1992a), we can define
an almost sure equilibrium payoff as a vector x = (x1, x2, x3) in R3 such that there
exists an (almost sure equilibrium) strategy profile σ satisfying

∀i ∈ N, lim
T→∞

1

T

T∑
t=1

gi(at) = xi Pσ-a.s., (9)
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and

∀i ∈ N,∀τ i ∈ Σi, lim sup
T

(
1

T

T∑
t=1

gi(at)

)
≤ xi Pτ i,σ−i-a.s. (10)

Take σ to be our inefficient uniform equilibrium just constructed. We only need to
prove (10) with x = (0, 0, 0) (because (9) is proved in Proposition 5, or because (9)
is a consequence of (10) here).

Fix as before a strategy τ 1 of player 1 and define for each m, Cm as in (5). By
Lemma 7 and Borel-Cantelli lemma, with probability one we can find an integer M4,
that may depend on τ 1, such that for all m ≥ M4, Cm holds. Looking at the proof
of Lemma 8, this implies that for every ε > 0, one can find M4 such that for all
m0 ≥ M2

4 ,
m0

2∑
m=m0

m10Xm ≤ 2ε

m0
2∑

m=m0

m10.

So

lim sup
T

(
1

T

T∑
t=1

g1(at)

)
≤ 2ε Pτ1,σ−1-a.s..

Hence

lim sup
T

(
1

T

T∑
t=1

g1(at)

)
= lim

T→∞

(
1

T

T∑
t=1

g1(at)

)
= 0 Pτ1,σ−1-a.s..

Therefore σ is not only a uniform equilibrium; it is also an almost sure equilibrium,
and (0, 0, 0) is an almost sure equilibrium payoff.

It is then easy to see that for this game, the set of almost sure equilibrium payoffs
coincides with the set of uniform equilibrium payoffs.

5 An odd number of players

We generalize the model of Section 2 as follows. The set of players is now N =
{1, ..., 2n + 1}, where n is a fixed positive integer. At each stage, each player gets
a payoff of 1 if he is in the minority room, and gets a payoff of 0 otherwise. The
signal is again the most crowded room. The previous definitions of equilibrium and
equilibrium payoffs extend unambiguously to this general model.

For each subset S of N such that |S| ≤ n, define eS as the payoff in RN where
each player in S gets 1, and each player not in S gets 0. If S = ∅, then eS is just the
null vector. The set of feasible vectors is now

S = conv{eS, S ⊂ N s.t. |S| ≤ n}.

We show that also in this general case the set of uniform equilibrium payoffs and
the set of feasible payoffs coincide.
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Theorem 10. E∞ = S.

Proof of Theorem 10. The proof is a generalization of the proof for the three-player
case. If S is a subset of N with exactly n elements, eS is a Nash equilibrium of the
one-shot game, hence eS is also a uniform equilibrium payoff. By convexity, to prove
that the set of uniform equilibrium payoffs is S it is sufficient to show that for any S
with |S| < n, we can construct a uniform equilibrium with payoff eS.

Fix a subset S of players such that |S| < n. We need to construct a strategy profile
σ = (σi)i∈N such that σ is a uniform equilibrium with payoff eS. The construction of
Section 3 generalizes as follows.

If i ∈ S, σi is very simple: play R at each stage in {1, 2, ...}, independently of
what happened before.

Divide the set of stages {1, 2, ...} into consecutive blocks B1, ..., Bm,... with |Bm| =
m10 for each m, exactly as in Section 3. The strategy σ consists of a main path and
of punishment phases, starting from the main path. When the play is in the main
path at some block Bm, each player i in N \ S plays i.i.d. at each stage the mixed
action

(1− δm)L⊕ δmR, with δm = m
−2

n+1−|S| .

Notice that

0 <
2

n + 1− |S|
≤ 1,

so δm ≥ 1/m and limm→∞ δm = 0.
At the end of such a block, all players compute as before the empirical frequency

of “R being the most crowded room” in this block

αm =
1

|Bm|
|{t ∈ Bm, `(at) = R}|.

Put

θm = m
−2(n+1/2−|S|)

n+1−|S| =
1

m2
m

1
n+1−|S| ∈

]
1

m2
,

1

m
√

m

]
.

The statistical test is the following:

• If αm ≤ θm, the test is passed. The play stays in the main path (and block
Bm+1 is played).

• If αm > θm, the test fails. Define D = {t ∈ Bm, l(at) = R}. A punishment
phase is played from the first stage of block Bm+1 to the last stage of block
Bm2

. Then the play goes back to the main phase at block Bm2+1. Punishment
are similar to the ones in Section 3. Each block Bm, with m ∈ {m+1, ...,m2} is
divided into sub-blocks Bm

1 ,...,Bm
d ,Bm

d+1, with |Bm
1 | = ... = |Bm

d | = |D|. At each
sub-block Bm

d′ , with d′ ∈ {1, ..., d}, the players play again in the same order the
actions they have played at D.
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Notice that if n = 1 and S = ∅, σ is exactly the strategy constructed in Section 3.
To conclude, we have to prove that σ is a uniform equilibrium with payoff eS. In the
following computations, “if m is large enough” should be understood as “if m is larger
than some constant only depending on n and |S|.” We will use the following binomial
coefficients:

K1 =

(
2n + 1− |S|
n + 1− |S|

)
, K2 =

(
2n− |S|

n + 1− |S|

)
, K3 =

(
2n− |S|
n− |S|

)
A) Assume that all players follow σ. Probabilities are computed according to

P = Pσ.
Fix a block number m where Bm = {the play is in the main path at block Bm}

holds. Consider some stage in this block. For R to be the most crowded room at this
stage we need at least n + 1 − |S| players in N \ S to play R, hence the probability
that R is the most crowded room is

ηm ≤
(

2n + 1− |S|
n + 1− |S|

)
δn+1−|S|
m = K1

1

m2
.

Note that

θm − ηm =
1

m2
(m

1
n+1−|S| −K1) ≥

1

m2
,

if m is large. Hence by Tchebychev’s inequality and if m is large we get

P(Bc
m+1|Bm) = P (αm > θm|Bm)

≤ P

(
|αm − ηm| >

1

m2

∣∣∣∣∣Bm

)
≤ 1

m6
.

By Borel-Cantelli lemma we obtain as in Section 3 that with probability 1 there exists
m1 such that for each m ≥ m1, Bm holds.

Let i be a player in S. At some stage in the main path, the probability that player
i’s payoff is 1 is the probability that L is the most crowded room, hence it is at least
1−K1/m

2. Since |1− 1/m − (1−K1/m
2)| > 1/(2m) for m large, by Tchebychev’s

inequality one can prove that

P

(
1

|Bm|
∑
t∈Bm

gi(at) < 1− 1

m

∣∣∣∣∣Bm

)
≤ 4m2

|Bm|
=

4

m8
.

Again by Borel-Cantelli lemma with probability 1 there will exist a block number m2

such that for each m ≥ m2,

1

|Bm|
∑
t∈Bm

gi(at) ≥ 1− 1

m
.
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From this it follows

lim
T→∞

1

T

T∑
t=1

gi(at) = 1 Pσ-a.s., and lim
T→∞

γi
T (σ) = 1.

Let now i be a player in N \ S. Fix m where Bm holds. At some stage t in Bm, if
player i’s payoff is 1 then either she plays R or R is the most crowded room, hence

P(gi(at) = 1|Bm) ≤ δm +
K1

m2
≤ 2δm (for m large).

Tchebychev’s inequality then shows that

P

(
1

|Bm|
∑
t∈Bm

gi(at) > 3δm

∣∣∣∣∣Bm

)
≤ 1

δ2
m|Bm|

≤ 1

m8
.

And as before, limT→∞ γi
T (σ) = 0.

B) It remains to prove that no player can benefit by deviating from σ. Since 1
is the largest possible payoff in the game, we do not have to care about deviations
by players in S. We thus only consider a deviation of some player i not in S. By
symmetry, we assume that i = 1 /∈ S and fix in all the sequel a deviation τ 1 of player
1. We use the probability P = Pτ1,σ−1 . For each m, denote as before the average
payoff of player 1 at block Bm as

Xm =
1

|Bm|
∑
t∈Bm

g1(at).

The definition of Cm generalizes as follows

Cm = Bc
m

⋃(
Bm

⋂
Bm+1

⋂{
Xm ≤ 3

√
δm

})
⋃(

Bm

⋂
Bc

m+1

⋂(
m2⋂

m′=m+1

{
Xm′ ≤ 3K2

√
δm

}))
. (11)

We are going to prove the following analogue of Lemma 7.

Lemma 11. There exists M1, independent from τ 1, such that for all m ≥ M1

P(Cm) ≥ 1− 3

m6
.

Notice that
lim

m→∞

√
δm = lim

m→∞
m

−1
n+1−|S| = 0.

Once Lemma 11 is proved, one can proceed exactly as in the proof of Lemma 8 and
as the end of the proof of Proposition 6, and Theorem 10 will be proved.
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Proof of Lemma 11. For each stage t, we define the random variables ξt and U t with
values in {0, 1} such that

ξt = 1 iff there are exactly n− |S| players in N \ (S ∪ {1}) that play R at stage t.

U t = 1 iff there are at least n + 1− |S| players in N \ (S ∪ {1}) that play R at stage t.

If U t = 1, the most crowded room at stage t is R. If ξt = 1, player 1’s payoff is 0,
and her action determines the most crowded room at stage t.

For each block number m, we also define

ξm =
1

|Bm|
∑
t∈Bm

ξt, Um =
1

|Bm|
∑
t∈Bm

U t, xm =
1

|Bm|
∑
t∈Bm

1{a1
t =R}.

Again we have Xm ≤ Um + xm.
Fix a block number m where Bm holds.
(ξt)t∈Bm are i.i.d. (given Bm) Bernoulli random variables with expectation

pm =

(
2n− |S|
n− |S|

)
δn−|S|
m (1− δm)n ≥ δn−|S|

m ,

for m large. Putting Qt = 1{a1
t =R} for each stage t, Lemma 5.6 of Lehrer (1990) gives

P

(∣∣∣∣∣∑
t∈Bm

ξtQt

m10
− pmxm

∣∣∣∣∣ ≥ θm

∣∣∣∣∣Bm

)
≤ 1

|Bm|θm
2 ≤

1

m6
.

For some stage t in Bm, the conditional probability (given Bm) that at least
n + 1− |S| players in N \ (S ∪ {1}) play R at stage t is at most(

2n− |S|
n + 1− |S|

)
δn+1−|S|
m =

K2

m2
.

Hence we obtain

P

(
Um >

2K2

m2

∣∣∣∣∣Bm

)
≤ m4

K2
2 |Bm|

≤ 1

m6
.

Similarly, the conditional probability (given Bm) that at least n − |S| players in
N \ (S ∪ {1}) play R at stage t is at most(

2n− |S|
n− |S|

)
δn−|S|
m = K3

(
1

m

) 2(n−|S|)
n+1−|S|

≤ K3

m
.

So we obtain

P

(
ξm + Um >

2K3

m

∣∣∣∣∣Bm

)
≤ 1

K2
3m

8
≤ 1

m8
.
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Assume that

Um ≤ 2K2

m2
,

∣∣∣∣∣∑
t∈Bm

ξtQt

m10
− pmxm

∣∣∣∣∣ ≤ θm,

and that there is no punishment after Bm, which implies∑
t∈Bm

ξtQt

m10
≤ θm.

Then pmxm ≤ 2θm, and

xm ≤ 2θm

δ
n−|S|
m

= 2m
−1

n+1−|S| = 2
√

δm.

Since Xm ≤ Um + xm, we obtain that Xm ≤ 3
√

δm for m large. Hence we have

P
(
Bm

⋂((
Um >

2K2

m2

)⋃(
Bm+1

⋂{
Xm > 3

√
δm

})⋃(
ξm + Um >

2K3

m

)))
≤ P

((
Um >

2K2

m2

) ∣∣∣∣∣Bm

)
+ P

((
Um ≤ 2K2

m2

)⋂
Bm+1

⋂{
Xm > 3

√
δm

} ∣∣∣∣∣Bm

)

+ P

((
ξm + Um >

2K3

m

) ∣∣∣∣∣Bm

)
≤ 1

m6
+

1

m6
+

1

m8
≤ 3

m6
.

So with probability at least 1− 3/m6, the following event holds

Gm = Bc
m

⋃((
ξm + Um ≤ 2K3

m

)⋂(
Um ≤ 2K2

m2

)⋂(
Bc

m+1

⋃{
Xm ≤ 3

√
δm

}))
,

Assume finally that both Gm and Bm hold. Then

• either Bm+1 holds, and this implies that Xm ≤ 3
√

δm,

• or Bc
m+1 holds, and therefore a punishment phase starts at block Bm+1. We have

Um ≤ 2K2/m
2 and ξm + Um ≤ 2K3/m. Consider D = {t ∈ Bm, l(at) = R}. We

have |D| ≥ m10θm, and |D| ≤ (ξm +Um)m10, so |D| ≤ 2K3/m
9. The number of

stages in D where player 1 may have a payoff of 1 is at most Umm10 ≤ 2K2m
8.

Consider a punishment block Bm, with m ∈ {m + 1, ...,m2}, and let d be the
integer such that d ≤ |Bm|/|D| < d + 1. The total payoff of player 1 at this block is

m10Xm ≤ 2dK2m
8 + |D| = d|D|2K2m

8

|D|
+ |D|.
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Hence we obtain

Xm ≤ d|D|
Bm

2K2

m2θm

+
2K3

m
≤ 2K2

m2θm

+
2K3

m
.

But
1

m2θm

= m
−1

n+1−|S| =
√

δm ≥ 1√
m

.

So for m large enough,
Xm ≤ 3K2

√
δm.

Hence we obtain that Gm ⊂ Cm. This concludes the proof of Lemma 11.

Remark 12. The arguments of Remark 9 can be used here, and one can easily show
that σ is also an almost sure equilibrium payoff. The set of almost sure equilibrium
payoffs, the set of uniform equilibrium payoffs, and the set of feasible payoffs coincide.
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