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Abstract 
 

In this paper, we analyse the investment allocation and the downside risk faced by the retiring 

member of a defined contribution pension scheme, where optimal investment strategies (derived 

from a dynamic programming approach) have been adopted. The behaviour of the optimal 

investment strategy is analysed when changing the disutility function and the correlation between 

the assets. Three different risk measures are considered in analysing the final net replacement ratios 

achieved by the member: the probability of failing the target, the mean shortfall and a Value at Risk 

type measure. The replacement ratios encompass the financial and annuitization risks faced by the 

retiree. We consider the relationship between the risk aversion of the member and these different 

risk measures in order to understand better the choices confronting different categories of scheme 

member. We consider the case of a 2 assets portfolio, where the asset returns are correlated and 

consider the sensitivity of the results to the level of the correlation coefficient. 
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1. INTRODUCTION 

In this paper we derive and analyse the optimal investment strategy for a defined contribution 

pension scheme and consider the downside risk (in terms of net replacement ratio achieved at 

retirement) faced by the member of the scheme, thereby extending the model introduced in Vigna 

and Haberman (2001). 

 

The extensions introduced are essentially threefold: 

1. we now consider the more general case of dependent assets; 

2. we generalise the disutility function in such a way that deviations of the fund above the target 

are not penalised to the same degree as deviations below; and 

3. we consider a sequence of targets which grow exponentially instead of linearly. 

 

The downside risk has been studied by examining three risk measures: the probability of failing the 

target, the mean shortfall and the Value at Risk measure (VaR) at three different confidence levels 

(1%, 5% and 10%). 

 

The annuity risk faced by the member has also been analysed through these risk measures by 

comparing the results relative to the net replacement ratio both in the case of a fixed conversion 

factor and in the case of a random conversion factor, which depends on the prevailing yield on the 

low risk asset. 

 

 

2. THE MODEL 

2.1 ASSUMPTIONS AND STRUCTURE 

We consider a defined contribution pension scheme with a 2-asset portfolio, a high-risk and a low-

risk asset. The forces of interest of the 2 assets are assumed to be normally distributed and 

correlated at any time with a linear correlation factor ρ.  

 

Contributions are paid in advance every year as a fixed proportion of the salary of the scheme’s 

member. Taxation, expenses and decrements other than retirement are not taken into consideration. 

 

The model is presented in discrete time and we assume that the portfolio is reallocated every year 

between the 2 assets, depending on the past history of the market returns and on the current size of 
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the fund, which is compared to an a priori target. We then find the optimal investment allocation 

every year that minimises the deviations of the fund from these corresponding targets. 

 

The fund at time t+1 is given by the following equation: 

 

1)    ]eye)y1)[(cf(f tt
ttt1t

λµ
+ +−+=  

 

where: 

ft: fund level at time t 

c: contribution rate 

yt: proportion of fund invested in the high-risk asset during year [t, t+1] 

µt: real force of interest for the low-risk asset in year [t, t+1], assumed to be constant over the year 

[t, t+1] 

λt: real force of interest for the high-risk asset in year [t, t+1], assumed to be constant over the year 

[t, t+1] 

 

We assume that there are no real salary increases and that for simplicity the salary is 1 each year. 

 

The sequences {µt} and {λt} are supposed to be IID with normal distribution, while the annual 

forces of interest µt and λt are correlated with correlation factor ρ, constant for any t. 

Therefore: 

µt ≈ N(µ, σ1
2)   and   λt ≈ N(λ, σ2

2), 

 

where: 

µ ≤ λ    σ1
2 ≤ σ2

2 

 

 

2.2 TARGETS 

The member is assumed to join the scheme at time t=0 and contribute until retirement at time t=N, 

which is a time point that is fixed in advance. 

 

Since the fund and contributions are invested in a 2-asset portfolio, we have chosen the yearly 

targets as the accumulated fund using a particular average of the rates of return of the 2 assets. We 

have considered three different cases: (a) the rate of return equal to µ, as though the fund were fully 
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invested in the low risk asset; (b) the rate of return equal to the Chisini average of µt and λt relative 

to the expected return over one year of a portfolio invested equally in the 2 assets, as though the 

fund were invested half in the low risk and half in the high risk asset; (c) the rate of return equal to 

λ, as though the fund were fully invested in the high risk asset. 

 

Therefore, the yearly target at time t is: 

 

2)   
it

ti
t scefF &&+= 0    t=1,…,N 

 

with i such that: 

 

(a) i = µ; (b) i = r*; (c) i = λ, 

 

with1    

3)   r* = )22(
16
1

)(
2
1 2

221
2
1 σ+σρσ+σ+λ+µ  

 

We set F0 = f0 , where f0 is the fund held by the member when he/she joins the scheme (i.e. the 

transfer value, which may be zero). 

 

 

3. THE PROBLEM 

3.1 FORMULATION OF THE PROBLEM 

We define the “cost” incurred by the fund at time t as follows: 

 

4)   Ct = )fF()fF( tt
2

tt −α+−    t=1,…,N-1 

5)   CN = θ )]fF()fF[( NN
2

NN −α+−   t=N 

 

with α ≥ 0 and θ ≥ 1. 

 

The use of target values in the cost function is supported by the analysis of Kahneman and Tversky 

(1979). The target-based approach in decision making under uncertainty is investigated and 
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supported also by Bordley and Li Calzi (2000), although they present a more general model in 

which the targets are stochastic and the utility function is the probability of matching the target. 

 

It may be argued that there is little scope for yearly targets between joining the scheme and 

retirement, since it may not be possible for the scheme member to change the annual contribution to 

the fund by either withdrawing money from the fund or paying additional money to the fund. A 

similar argument regarding decrements other than retirement, which are excluded from our model, 

could be advanced. In this case, the cost function should be defined only at retirement, and the 

actual fund compared with the final target only. We think that this different formulation of the 

problem is interesting and we will consider it in further research. The choice of having a target 

every year is adopted for reasons of mathematical tractability of the model as well as reasons of 

cautiousness (since in practice it would probably be easier to meet a final target if the path of the 

fund’s growth were monitored at periodic intervals)2. 

 

The cost defined by (4) and (5) is positive when the fund is below the target and above a certain 

level, which is equal to the target plus α, and negative between the target and this level. Intuitively, 

this means that the deviations below the target are penalised, while the deviations above the target 

are rewarded, until a certain level (linked to the target), after which they are penalised again. The 

economic interpretation of this choice is that the possibility of gaining from high market returns are 

incentivised, but, when the fund becomes too large in relation to the target, the trade-off between 

risk and return means that the portfolio is cautiously invested. 

 

Indeed, equation 4) can be rewritten as 

 

22
ttt 4

1
)f

2
1

F(C α−−α+=  

 

so that it is clear that the “real” target being pursued by the model is α+
2
1

Ft . With this 

formulation, the tf  values are pulled back towards the “real” targets so that the generation of very 

high values of tf  is penalized. 

                                                                                                                                                                                                 

1 We found r* by solving ]e[E]e[E 2*r
tt λ+µ

= , following the definition given above. 
2 It should be noticed, however, that the different weight given to Ft and FN (1 and θ≥1) reflects the greater importance 
of the final target in comparison with the yearly ones. 
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By varying the parameter α we are actually considering different disutility functions with different 

risk aversion factors, so that we are considering individuals with different risk profiles. In fact, it 

can be shown (see Pratt 1964, Owadally 1998) that an individual’s risk aversion can be measured 

either by 
)x('u
)x(''u

)x(A −=  if u(x) is the individual’s utility function, or by 
)y('l
)y(''l

)y(A =  if l(y) is the 

individual’s disutility (or loss) function, where the relationship between utility and disutility 

functions is: u(x)= −al(y)+b (a>0) and the relationship between loss and gain is: x+y=constant. 

 

The disutility function considered here is l(y) = y2 + αy (with the loss being y = Ft−ft), and therefore 

the resulting risk aversion is: 

α+
==

y2
2

)y('l
)y(''l

)y(A . 

We observe not only that the risk aversion depends on the value of α, but also that it is decreasing 

when α is increasing, which means that lower values of α represent more risk averse individuals 

and vice versa. 

 

We also observe that, in our model if α → 0, i.e. for very risk averse individuals, the target pursued 

tends to Ft Instead, if α → ∞, i.e. for risk neutral individuals (A(y) = 0 means a null risk aversion, 

which is equivalent to risk neutrality), the target pursued tends to infinity, which means that the 

individual wants to make as much money as possible and always gain from higher than usual rates 

of return. Thus, Ft and infinity are the lower and upper bounds for our real targets, when we 

consider the dependence between them and the risk aversion. 

 

The cost at time N has a weight θ which can be greater than 1. When θ is greater than 1 more 

importance is given to the final target than to the yearly ones, and the rationale for this choice is that 

decrements other than retirement are not considered, and therefore the achievement of the final 

target - at retirement – can be considered more important than the achievement of the annual ones – 

before retirement. 

 

The total future cost at time t is obtained by discounting the future costs until N, using a subjective 

inter-temporal discount factor β as in Bellman and Kalaba (1965): 

 



 

 

 

7 

6)   ∑
=

−β=
N

ts
s

ts
t CG  

 

We define Xt the σ−field generated by all information available at time t: 

 

7)   Xt = σ(f0, f1, ..., ft, y0, y1,... yt-1) 

 

The value function at time t is defined as: 

 

8)   J(Xt) = ]X|G[Emin tttπ     t=0, 1,..., N-1 

 

where πτ is the set of the future investment allocations, i.e.: 

 

  πt = {{ys}s = t, t+1,…,N-1, : 0 ≤ ys ≤ 1} = {{yt, yt+1,…, yN-1}, : 0 ≤ ys ≤ 1} 

 

The investment allocation at time t, yt, is bounded between 0 and 1 because in our application short 

selling is not allowed. 

 

We now find the future portfolio allocations that minimise the discounted future cost incurred by 

the fund. 

 

 

3.2 BELLMAN’S OPTIMALITY PRINCIPLE 

By applying Bellman’s optimality principle we find: 

 

9)   J(Xt) = ]X|C[Emin t

N

ts
s

ts
t ∑

=

−
π β  = ]]X|)X(J[EC[min t1tty t +β+  

 

Since the sequences {µt} and {λt} are supposed to be independent, {ft} is a Markov chain and: 

 

Pr[ft+1 | Xt] = Pr[ft+1 | ft], and also: Pr[ft+1, ft+2,..., fN | Xt] = Pr[ft+1, ft+2,..., fN | ft] 
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so that: 

 

Pr[Gt | Xt] = Pr[Gt | ft] 

 

and: 

 

10)   J(Xt) = ]X|G[Emin tttπ  = )t,f(J]f|G[Emin ttty t
=  

 

The dynamic programming problem, which we have defined, now becomes: 

 

DPP  ]]f|)1t,f(J[E)fF()fF[(min)t,f(J t1ttt
2

ttyt t
+β+−α+−= +  

 

with boundary condition: 

 

BC  J(fN, N) = CN = θ )]fF()fF[( NN
2

NN −α+−  

 

with {Ft}t=1,…,N given by 2) above. 

 

 

3.3 SOLUTION OF THE DYNAMIC PROGRAMMING PROBLEM 

It can be proved by mathematical induction that : 

 

11)   ttt
2
ttt RfQ2fP)t,f(J +−=  

 

where the sequences {Pt} and {Qt} are given by the recursive relationship: 

 










−
β

−
α

+=

β+=

++

+

)QgPcg(
g2

FQ

P
g
g

1P

1t31t2
1

tt

1t
1

2
t

 

 

starting from:  PN = θ  and QN  = θ (FN + α/2),  
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and: 

 









>+−+=

>−=

>−+=

λµλµλµλµ

λµλµ

λµλµ

0)]1(g)1(g)[1,1(g)1(g)2(g)2(g)1(gg

0)1,1(g)2(g)2(gg

0)1,1(g2)2(g)2(gg

,3

2
,2

,1

 

 

where gµ(h) and gλ(h) are the moment generating functions of µt and λt and gµ,λ(h,k) is the moment 

generating function of the sum µt + λt. 

 

A similar recursive relationship holds also for the sequence {Rt}. 

 

We also find that the optimal investment strategy is given by the following optimal investment 

allocation at time t: 

 

12)   
1

,

1t1t

1t*
t g

)1,1(g)2(g

g)cf(P

)]1(g)1(g[Q
y λµµ

+

µλ+ −
+

+
−

=  

 

with the same notation as before. 

 

As noted earlier, in the application presented here, short selling is not allowed so that yt
* is 

constrained to lie in the interval [0,1]. 

 

 

3.4 RELATIONSHIP BETWEEN α AND THE OPTIMAL INVESTMENT STRATEGY 

Looking at formula (12) above, we observe that α affects the sequence {Qt} only, which increases 

in value as α increases, leading to higher values of yt
*, everything else being equal. Thus, we 

conclude that yt
* increases on average as α increases. 

 

This is quite a reasonable result as we observe that α measures the risk aversion of the individual: a 

higher value of α corresponds to a lower risk aversion and leads to a higher fraction of the portfolio 

being invested in the riskier asset. This result is consistent also with intuition: by increasing α we 

are increasing both the penalisation of deviations below the target and the reward of deviations 

above, pushing the optimal portfolio to be invested more in riskier assets.  
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In particular, considering again the behaviour of the risk neutral investor (α → ∞), we see that, in our 

model, the risk neutral individual would invest the whole fund in the high risk asset and never 

switch into the low risk asset3. This asset allocation is supported by Blake et al (2001), who argue 

that there is no evidence for the appropriateness of switching the fund into lower risk assets prior to 

retirement for the risk neutral individual, except for prudential reasons. However, in their analysis 

they do not consider individuals with different levels of risk aversion. 

 

The meaning of α will be considered again later, when we discuss the simulation results. 

 

3.5 SIMULATIONS FRAMEWORK 

We have investigated the solution presented in section 3.3 for many scenarios, and have studied the 

sensitivity of the results to changes in the values of i, α and ρ by carrying out simulations. 

 

We have also considered different generations of members by changing the value of N: 10, 20, 30 

and 40 years to retirement. We assume that the member joins the scheme without a transfer value, 

which means that f0 = 0. The contribution rate has been taken equal to 12%, the weight θ given to 

the final target has been chosen equal to 2 and the subjective inter-temporal discount factor β has 

been taken equal to 0.95.  

 

The parameters of the asset returns chosen are: 

µ = 4%;  λ = 10%;  σ1 = 5%;     σ2 = 15%. 

Therefore, the value of i for determining the target values takes the three different values: 4%, r* as 

defined by 3) above (we observe that this value depends on the value of ρ, so it varies with the 

different values of the correlation factor) and 10%. 

 

The correlation factor ρ takes the values -1, -1/2, 0, 1/2, 1; α takes many values, depending on the 

time to retirement.  

 

The choice of different values of α for different durations is not arbitrary and is due to the fact that, 

since short selling is not allowed, the value of yt
* stabilises at 1 after a certain value of α (we recall 

that yt
* increases as α increases), which depends on the time to retirement (see section 5.3).  

                                                           
3 In this case the optimal investment strategy is: y*t =1 at any time 0≤t≤N, recalling that short selling is not allowed. 
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Thus, for N = 10, α takes the following values: 0, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 6; for N = 20, α takes 

the following values: 0, 1, 2, 3, 4, 5, 6, 7, 10, 15, 20, 30; for N = 30, α takes the following values: 0, 

1, 2, 3, 4, 5, 7.5, 10, 12.5, 15, 20, 25, 30, 40, 50, 60; for N = 40, α takes the following values: 0, 1, 

2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, 25, 30, 35, 40, 50, 75, 100, 150, 200. 

 

For each scenario, 1000 simulations have been carried out by generating, for each simulation, the 

asset returns for N years (with N = 10, 20, 30, 40), and deriving, for each year, the optimal portfolio 

allocation derived by the model. In all the scenarios investigated, we use the same 1000 paths of 

returns and just change the other parameters like i, α and ρ. The rationale is that we wish to study 

the effect of changing the parameters and we do not wish the results to be affected (and 

confounded) by differences in the simulated paths of returns. 

 

At the time of retirement, N, we have followed Vigna and Haberman (2001) and analysed the 

behaviour of the optimal investment strategy and studied how it changes if we change the targets, 

the disutility function, and the correlation factor ρ. Furthermore, we have calculated the fund 

accumulated, and also the net replacement ratio achieved by the member using two different 

methods, in order to measure the effect of the annuity risk on the retiree income. For the first 

method, we have converted the accumulated fund into an annuity using an actuarial value, ax, based 

on discounting at the expected return of the low risk asset (i.e. a fixed rate4). For the second method, 

we have used a variable annuity value, xa~ , with discounting based on the average of the realised 

returns by the low risk asset in the last 5 years before retirement (setting a minimum of 2% in order 

to avoid unreasonable values in the case of a very poor performance of the low risk asset prior to 

retirement) and the variance of the low risk asset experienced during the N years of membership5. 

In both cases, the annuity values depend on the returns on the low risk asset in order to represent the 

pricing behaviour of an insurance company, which would utilise the returns on matching fixed 

interest bonds in its calculations. For both methods, the mortality table used to calculate the 

actuarial value is the Italian projected mortality table (RGS48) and the retirement age has been 

chosen throughout to be x = 62. 

 

Considering that the salary is 1 at any time, the net replacement ratio achieved using the first 

method of calculation is: 

                                                           
4 The discount factor used to calculate the annuity value ax is v=

2
1t 5.0e]e[E σ+µ−µ− = , with µ = 4% and σ1 = 5%. 

5 The discount factor used to calculate the annuity value xa~  is 
2
1

~5.0~
ev~ σ+µ−= , with )},...,(average%,2max{~

5N1N −− µµ=µ , 

and },...,{iancevar~
1N1

2
1 −µµ=σ  
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x

N
N a

f
b = , 

 

whereas  the net replacement ratio achieved using the second method of calculation is: 

 

x

N
N a~

f
b
~

= . 

 

The net replacement ratio achieved using the first method, bN, takes into account only the 

investment risk faced by the member6, as the conversion rate used is fixed. The net replacement 

ratio achieved using the second method, Nb
~

 (“bNt” or “bNtilde” in the Figures that follow), takes 

into account also the annuity risk faced by the member7, as the conversion rate is linked to the 

simulated returns on the low risk asset in the years before retirement, and therefore it is variable, 

reflecting the simulated behaviour of the low risk asset. 

 

We illustrate only the results for the 30 years’ case (we note that the other durations, N=10, 20, 40, 

give similar results). Similarly, we illustrate only the results for the VaR at 5% confidence level (we 

note that the VaR measures at 1% and 10% confidence levels give similar results). 

 

 

3.6 MEASURES OF RISK 

The downside risk faced by the member of the pension scheme is analysed by comparing the net 

replacement ratios achieved bN and Nb
~

 with the target ratio BN. This is the fund target FN divided 

by an actuarial annuity value ax. In other words: 

 

x

N
N a

F
B = . 

 

                                                           
6 By “investment risk” we mean the risk that the returns experienced during the membership have been too low leading 
to a low final fund. This risk is borne during the accumulation period. 
7 By “annuity risk” we mean the risk that the rate used in the conversion of the capital into annuity is too low, leading to 
a low pension rate (the actual conversion rate used to calculate the annuity is directly linked to the current market 
yields, and so the perceived pension will strongly depend on the level of the markets rates at retirement). This risk is 
borne at retirement, when the annuity is purchased. 
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The idea of comparing the n.r.r. achieved with the target pursued is consistent with the analysis of 

Kahneman and Tversky (1979), who observe that individuals perceive the outcomes as gains and 

losses relative to some neutral “reference point” (which, in our case, is the target). 

 

The risk has been measured in the three different ways: 

 

 

a) Probability of failing the target. 

This is defined as the proportion of outcomes where bN (or Nb
~

) is less than the target BN. Thus 

1000
k

)BbPr( NN =< , where k represents the number of failures out of 1000 simulations. We note 

that the amount by which bN (or Nb
~

) falls below BN is not taken into account by this risk measure.  

In the same way we define )Bb
~

Pr( NN < . 

 

b) Mean shortfall. 

The mean shortfall is the conditional mean of shortfall below the target, conditional on (bN − BN)<0 

(or ( Nb
~

 − BN) < 0). Thus, using the upper suffix j to refer to a simulation, we have: 

mean shortfall (bN) = ∑
=

−
k

1j
N

j
N )Bb(

k
1

 where )Bb( N
j
N −  < 0 for j = 1, 2, …,k. 

 

In the same way we define the mean shortfall ( Nb
~

). 

As demonstrated by Artzner et al (1999) and Artzner (2000), risk measures based on the mean 

shortfall have more desirable properties than the commonly used Value-at-Risk (VaR) measures. In 

particular, these are coherent risk measures (as introduced by Artzner et al (1998)), whereas a VaR 

measure is not, as it fails to satisfy the sub-additive property (as many examples can show), which 

is required of any coherent risk measure. As a result, mean shortfall risk measures have become 

widely used in the recent actuarial literature: for example, see Albrecht et al (2001) for a discussion 

of equity risk and Hardy (2001) for an application to segregated funds. 

 

c) Value at Risk (VaR). 

The VaR measure at confidence level ε is defined to be the 100εth lowest percentile of the 

simulated distribution of bN (or Nb
~

). 
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4. RESULTS: THE OPTIMAL INVESTMENT STRATEGY 

 

4.1 OPTIMAL INVESTMENT STRATEGY 

We observe, as in Vigna and Haberman (2001), that the optimal investment allocation yt
* decreases 

on average with the time, which indicates the suitability of the lifestyle policy8 for defined 

contribution pension schemes. This is illustrated by the results in Figures 1-3 (and by other detailed 

results not shown here but available on request from the authors). 

 

The only exception to the suitability of the lifestyle strategy is when the individual is risk neutral, as 

mentioned above. In this case, the scheme member will invest the whole fund in the high risk asset 

at any time between joining the scheme and retirement. 

 

4.2 EFFECT OF CHANGING THE TARGETS 

We have studied the behaviour of the optimal investment strategy when the targets change. The 

three graphs of Figure 1 report some percentiles (5th, 25th, 50th, 75th and 95th), the minimum and 

maximum of the distribution of yt
* in the cases of µ-based targets, r*-based targets and λ-based 

targets, when  α=1. 

 

We observe that moving from µ-based targets to λ–based targets, the optimal proportion of the 

portfolio to be invested in the high risk asset increases. This is evident if we look at formula (12) for 

yt
*: it can be easily seen that the value of yt

* increases as the target Ft increases, everything else 

being equal. This is also an intuitive result, since one must increase the aggressiveness of the 

strategy if the target to be attained increases. 

 

                                                           
8 We recall that by “lifestyle strategy” we mean the investment strategy largely adopted in defined contribution pension 
schemes in UK, which consists in investing at the beginning the whole fund in equities, switching it into bonds and cash 
as retirement approaches (usually 3-5 years before retirement). 
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FIGURE 1: CHANGING THE TARGETS (THE VALUE OF i) 
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Y*t with λ  targets (α=1 )
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4.3 EFFECT OF CHANGING THE DISUTILITY FUNCTION 

We have studied the effect of changing the disutility function by observing the behaviour of yt
* 

when we change the value of α and leave unchanged the value of ρ.  

 

In all cases (i.e. for any N and any ρ) we have found that yt
* increases on average as α increases. 

This is consistent with the fact that, the higher is α, the lower is the risk aversion of the individual, 

hence the riskier the investment strategy adopted. 

 

The graphs reported in Figure 2 show how the level of the optimal investment strategy increases 

with α in the 2 cases ρ  = -½ (on the left) and ρ = ½ (on the right) with the r*-based targets. The 

graphs report the mean of yt
* (for t = 0, 1,…, 29) over the 1000 simulations that have been carried 

out. 
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FIGURE 2: CHANGING DISUTILITY FUNCTION (THE VALUE OF α) 
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4.4 EFFECT OF CHANGING THE CORRELATION BETWEEN THE ASSET RETURNS 

We have studied the effect of changing the correlation factor ρ on the optimal investment strategy 

by comparing the behaviour of yt
* when N and α are fixed and ρ changes. 

 

We have discovered two interesting trends: 

1 – in the early years of membership, the optimal allocation yt
* increases as ρ increases from 

negative to positive values, while in the last years of membership, towards retirement, it decreases 

as ρ increases; 

2 –apart from the early years of membership, the standard deviation of yt
* increases as ρ increases. 

 

The graphs in Figure 3 show the optimal investment strategy for the different values of ρ (-1, -½, 0, 

½, 1) when α = 0 (on the left) and when α = 10 (on the right).  The graphs report certain percentiles 

(5th, 25th, 50th, 75th and 95th), the minimum and the maximum of the distribution of yt
* over the 1000 

simulations carried out. We can see that, when ρ increases from –1 to +1, the curves reporting the 

percentiles become steeper in their descent from 1 to 0, confirming the first trend above explained 

(higher values of yt
* at the beginning and lower at the end when ρ increases). 

 

An economic explanation of this feature is as follows. We observe that a strategy is well diversified 

if the curve yt
* decreases gradually towards zero, less diversified if the curve decreases steeply 

towards zero. When ρ is low, in the range (-1, -½), there is negative correlation between the asset 

returns and it is convenient to diversify the portfolio between the assets and, therefore, the optimal 

investment allocation leads to a fraction to be invested in the riskier asset which decreases very 

gradually towards zero. When ρ is high, in the range (½, 1), there is positive correlation between the 

asset returns and the diversification effect is not so rewarding, so the portfolio can be invested more 

heavily either in the riskier or in the less risky asset, leading the optimal investment allocation to 

decrease steeply towards zero. 

 

The graphs in Figure 4 show how the standard deviation of yt
* changes in value when ρ increases. 

When α = 0, the standard deviation increases as ρ increases. This feature is also observed in Figure 

3: with negative values of ρ, the percentiles tend to stabilise around a certain percentage (30-40%), 

while with positive values of ρ the percentiles are more spread between 0 and 1.  
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An economic explanation of this feature is the following. When ρ increases from –1 to +1, the 

benefits of diversification decrease, pushing yt
* upwards. On the other hand, with high positive 

values of ρ, the investor needs more hedging in order to achieve the target at time N and this factor 

pushes yt
* downwards. The value of the optimal investment allocation will be high or low 

depending on which of these two effects is dominating (and this depends only on the returns 

experienced in the past), leading the values to be more spread and the standard deviation to be 

higher. For higher values of α , for example α =10, the optimal asset allocation yt
* increases and the 

balance between these two effects is different. 

 

This phenomenon seems to indicate that, with negative correlation between the asset returns, the 

investment strategy is more stable on average than for the case of positive correlation, where it 

remains on almost the same level regardless of the past experience of asset returns. This feature 

may be interesting from the pension scheme investment manager’s point of view in two respects: 

firstly, when he/she considers projections and plans regarding the investment strategy to be adopted 

over a long period in the future, and, secondly, considering the fact that, in the real world, portfolios 

tend to be invested in assets with returns that are negatively correlated. 

 

The detailed results for yt
* indicate that they are relatively insensitive to small changes in ρ . This 

corresponds to the results of Chopra and Ziemba (1993), who find that optimal asset allocation 

results are much more sensitive to errors in means than to errors in variances and much more 

sensitive to errors in variances than to errors in covariances. This finding is particularly apparent as 

the risk aversion of the investor reduces – this corresponds here to increases in the value of α . 
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FIGURE 3: CHANGING CORRELATION BETWEEN ASSETS (VALUE OF ρ) 
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FIGURE 4: STANDARD DEVIATION OF Yt
* WHEN ρ CHANGES 
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5. RESULTS:  THE DOWNSIDE RISK 

 

5.1 THE MEANING OF α 

Before consideration of the results, it is worth recalling that α can be given two meanings in our 

model. On the one hand, as we have already seen, it is a measure of the risk profile of the individual 

with the disutility function Ct: the higher is its value, the less risk averse is the individual. On the 

other hand, it is a measure of the aggressiveness of the optimal investment strategy. In fact, if we 

look at the formula that determines y*t above, (12), we can easily observe that it depends directly on 

α, so that we have an increasing y*t with α increasing. Therefore, a low value of α indicates a 

cautious investment strategy, while a higher value of α indicates a riskier investment strategy. It is 

clear that these two viewpoints are consistent with each other. 

 

5.2 THE DIFFERENT RISK MEASURES 

In Figure 5, we have plotted the three different risk measures considered against the different values 

of α in the case of 30 years, r*-targets and ρ = 0. 

 

We observe the following results: 

a) the probability of failing the target decreases as α increases; 

b) the mean shortfall increases slightly as α increases; 

c) the VaR at 5% level is relatively stable as α increases. 

 

The explanation for a) and b) is the following. Lower values of α lead to more cautious strategies, 

which lead to a greater number of failures but to more limited “losses” when a failure occurs. In 

contrast, higher values of α lead to riskier strategies and to a higher mean and a higher standard 

deviation of the distribution of both bN and Nb
~

, and this leads to a smaller number of failures (due 

to a higher mean) but slightly greater deviations from target when a failure occurs. This arises 

because the higher mean and standard deviation lead to a much longer right tail of the distribution 

of the net replacement ratio and to a slightly longer left tail of the distribution, with the lowest 

percentiles being smaller, so that a slightly greater mean shortfall results (as α increases). 

 

The explanation for c) is the following: the VaR at 5% level remains stable because of the 

combined and opposing effects of the higher mean and standard deviation of the distribution of bN 

and Nb
~

, as α increases, and the net effect is to lead to the lower percentiles remaining fairly stable. 
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FIGURE 5: RISK MEASURES AGAINST α 
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5.3 THE DIFFERENT TARGETS AND THE RISK MEASURES 

In Figures 6, 7 and 8, we show the results for b30t and b30 as α varies, for the three different risk 

measures with each of the different targets chosen, and for the case of ρ=0. We consider the effect 

of changes in ρ  in a later section. 

 

A general result that comes out of the graphs is that, by increasing the targets (ie moving down the 

page from µ-based targets to λ-based targets), the levels of all of the risk measures increase. This is 

an intuitive result, as it is more difficult to reach higher targets than lower ones. Furthermore, as we 

move down the page, the optimal investment strategy becomes riskier, since y*t increases as the 

target values of Ft increase (see section 4.2). 

 

Another general result is that, for very high values of α, in all of the graphs, the risk measures tend 

to stabilise themselves, leading to the curves becoming approximately horizontal. As mentioned 

before, this is a feature of the model: since short selling is not allowed and since increasing the 

value of α will increase the riskiness of the strategy, after a certain value of α the value of y*t will 

be always 1. This leads to the same strategy regardless of the rates of return that have been 

simulated (in which all the fund is invested in the high risk asset at any time), and hence to very 

small differences in the results, and therefore to the flat curves displayed in Figures 6-8 for the risk 

measures at extreme values of α.  

 

We also find (in results not shown here) that the value of α after which y*t reaches1 increases with 

the time to retirement N, and this suggests that the choice of α for different durations should be 

different. This also reflects the intuitive fact that, with a short time to retirement, an individual is 

more risk averse so that α takes low values, while, with a long time to retirement, an individual is 

less risk averse so that α takes high values. 

 

We now analyse the different figures separately.  

 

Probability of failing the target. 

The three graphs of Figure 6 report the probability of failing the target with the three different 

targets. We observe the following points: 

 

1 – when we consider the initial values of the probability of failing the target in the two cases of b30 

and b30t, when α=0, we see that this probability is higher for b30t than for b30 in the case of µ-based 
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targets (with an approximate 10% gap), whereas it is lower for b30t than for b30 in the case of the r*- 

based (with an approximate 10% gap) and λ-based targets (with an approximate 20% gap). The fact 

that the probability of failing the target is higher for b30t than for b30 may not be a surprise, as it 

arises from the fact that the magnitude of b30 is affected by the investment risk only, whereas the 

magnitude of b30t is affected by both the investment and annuity risk. What may seem strange is the 

fact that the probability of failing the target is lower for b30t than for b30 with the r*- and λ-based 

targets. A possible explanation for this is given by looking at the aggressiveness of the strategy in 

the considered cases. In the case of the µ-based targets, the α=0 strategies are very cautious, so the 

fund is likely to be invested more in the low risk asset during membership and entirely in the low 

risk asset just before retirement (because of the lifestyle profile shown by the optimal values of y*t), 

so that the reason for failing the target is likely to be mainly due to poor performance of the low risk 

asset, either during the period of membership and/or just before retirement. On the other hand, in 

the case of the r*- and λ-based targets, the strategies are riskier and the reason for failure may 

depend also on the adverse performance of the high risk asset. When this happens, there are cases in 

which the poor performance of the high risk asset leads to a failure regarding the achievement of 

b30, but not to a failure regarding the achievement of b30t due to the good performance of the low 

risk asset prior to retirement (leading to a more favourable annuity conversion rate than the one 

used in the b30 case). The gap between the probabilities values becomes larger when moving from 

the r*- to λ-based targets as the strategies become riskier and the weight attaching to the adverse 

performance of the high risk asset increases; 

 

2 – the descent of the probability curve is steeper for the b30 case than for the b30t one. This is 

probably to be explained by referring to the annuity risk and the aggressiveness of the strategies. 

Moving from the left to the right in each of the graphs, the value of α increases and the strategy 

becomes more aggressive. The increased aggressiveness of the strategy affects the general level of 

the final fund fN which increases, but does not affect the values of the simulated µt in the final years 

before retirement, which are used (by the insurance company) to price the annuity in the case of  

b30t. We observe that, in the case of b30 , failures are only due to the low value of fN in relation to 

the target FN, whereas in the case of b30t, failures are due also to the low value of the simulated µt in 

the final years before retirement. Therefore, acting on the general level of the final fund fN will have 

a greater effect on the probability of failing the target in the b30 case, because we are reducing the 

impact of the only cause of failures in the b30 case (but only one of the 2 causes in the b30t case), 

and this leads to a steeper decrease in the probability curve. 
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These two features explain the shape of the curves in Figure 6 and the fact that in the last 2 graphs 

(r*- and λ-based targets) the b30 and the b30t curves exhibit a cross-over. 

 

Mean shortfall. 

The three graphs of Figure 7 report the mean shortfall with the three different targets. We observe 

the following points: 

 

1 – when we consider the initial values of the mean shortfall, when α=0, in the two cases of b30 and 

b30t we see that this is always higher for b30t than for b30. A failure in the case of b30 occurs when f30 

< F30, and the size of the failure is proportional to the difference f30 − F30. But, in the case of b30t, 

the size of the failure is also determined by the behaviour of the low-risk asset prior to retirement, 

with a poor performance leading to a bigger deviation in the case of b30t than in the case of b30. We 

see that, in most cases of failure for both b30 and b30t, the low risk asset has a return lower than 4% 

in the last 5 years before retirement (also noting that failure depends heavily on the return of the low 

risk asset, due to the lifestyle strategy adopted and cautiousness of the strategy), and this leads to 

bigger deviations for b30t and therefore a bigger mean shortfall; 

 

2 – as before, the mean shortfall curve increases more smoothly for b30t than for b30 (Note that, in 

some places, the curve appears to be decreasing, but this is a small effect and may be due to the 

relatively small number of cases considered – recalling that the mean shortfall does not consider the 

deviations from the target of the 1000 simulations, but only the simulations in which the target is 

missed). This difference in smoothness can be explained in the following way. When we move from 

the left to the right of the graph, the strategy becomes more aggressive and this leads to results that 

are more spread out in terms of final fund achieved, affecting directly the net replacement achieved 

in the b30 case. In the b30t case, this effect is not so direct, as the final fund has still to be 

transformed into a net replacement ratio by applying the variable conversion rate; therefore, it may 

happen that, in some of the cases of failure, the effect of a very low final fund may be reduced by a 

lower than usual conversion rate (i.e. a lower xa~ ). Again, increasing the aggressiveness of the 

strategy will affect only the final fund achieved, not the distribution of the simulated rates of return 

of the low risk asset, and this has a more adverse effect on the b30 case than the b30t case. 

 

These 2 features explain the shape of the curves and the fact that, in all of the figures, the b30 and 

the b30t curves cross over. 
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VaR at 5% confidence. 

The three graphs of Figure 8 report the VaR at 5% confidence with the three different targets. We 

observe the following points: 

 

1 – the VaR curves are fairly stable when α changes and they slightly increase with low – medium 

values of α in the case of µ-based targets;  

 

2 – the VaR curve lies always at a higher level for the b30 case than for the b30t one and the two 

curves do not cross over. This underlines the annuity risk that the member has to face, as the VaR at 

5% confidence is the 5th percentile of the distribution of the net replacement ratio and the fact that 

the VaR of the b30t is lower than the VaR of the b30 indicates that the poor outcomes are more 

adverse in the case of a variable annuity rate; 

 

3 – for high values of α the VaR curves stay in the same range (60% - 65%), regardless of the target 

chosen. 

 

The relative stability of the VaR values shown in Figure 8 is explained by the effect of increasing α 

on the underlying simulated distributions of b30 and b30t. These are not shown here but examination 

of these distributions and the associated sample moments and quantiles shows that, as α increases, 

the means, medians and standard deviations all increase, as do the higher quantiles eg the 75th. 

However, the lower quantiles are relatively stable (and these, of course, directly affect the VaR 

estimates), representing the net effect of 2 conflicting influences – distributions with increasing 

means and increasing spreads about the means. 
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FIGURE 6: PROBABILITY OF FAILING THE TARGET 
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FIGURE 7: MEAN SHORTFALL 
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FIGURE 8: VaR AT 5% CONFIDENCE  
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5.4 EFFECT OF CHANGING CORRELATION BETWEEN THE ASSET RETURNS 

Up to now (in Figures 5-8) the downside risk borne by the member has been analysed in the case of 

uncorrelated assets, i.e. ρ=0. Tables 1, 2 and 3 and Figures 9 and 10 report the different results 

relative to the three risk measures when we let the correlation factor vary from ρ = −1 to ρ = 1 (for a 

term of 30 years and r*-based targets). 

 

We observe that, when ρ changes, there are very small changes in the behaviour of the three risk 

measures. This phenomenon is to be explained by considering the behaviour of the optimal 

investment strategies: the optimal investment strategy changes very little when the correlation factor 

ρ varies, and this is due to the small influence of the coefficient ρ on yt
* (consider formula (12) 

above), compared to the much larger influence of other factors like α and the targets Ft. As noted 

earlier, a similar result has been found by Chopra and Ziemba (1993) in respect of covariances. 

 

 

 

 

 

TABLE 1: PROBABILITY OF FAILING THE TARGET WHEN ρ CHANGES 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
 

b30 b30t b30 b30t b30 b30t b30 b30t b30 b30t
α=0 60.00% 57.90% 65.80% 59.30% 71.20% 60.00% 75.50% 61.40% 73.30% 62.00%
α=1 44.00% 51.60% 47.90% 53.10% 52.20% 54.30% 57.40% 54.90% 57.50% 54.60%
α=2 31.60% 47.30% 34.00% 48.10% 36.90% 48.80% 39.00% 50.20% 40.00% 49.30%
α=3 22.90% 41.80% 23.30% 43.20% 24.40% 45.00% 25.10% 45.00% 23.90% 43.90%
α=4 17.60% 37.00% 18.10% 38.60% 18.00% 40.00% 17.90% 40.90% 16.40% 40.90%
α=5 15.00% 33.10% 14.90% 34.30% 14.10% 36.10% 14.20% 36.90% 13.60% 36.40%
α=7.5 10.80% 23.20% 11.00% 24.90% 11.30% 26.70% 11.70% 28.90% 11.90% 28.80%
α=10 10.70% 17.50% 11.10% 18.70% 11.20% 19.50% 11.80% 20.10% 12.70% 20.70%
α=12.5 11.30% 14.00% 11.90% 14.70% 12.30% 15.00% 12.60% 15.10% 13.40% 15.40%
α=15 12.30% 13.50% 12.60% 13.40% 12.90% 13.10% 13.20% 13.90% 13.50% 14.20%
α=20 13.00% 13.30% 13.00% 13.70% 13.40% 13.90% 13.50% 14.00% 13.60% 14.50%
α=25 13.30% 13.80% 13.30% 13.90% 13.40% 14.10% 13.50% 14.40% 13.70% 14.70%
α=30 13.30% 13.80% 13.30% 14.20% 13.50% 14.40% 13.70% 14.80% 13.80% 14.90%
α=40 13.50% 14.40% 13.50% 14.80% 13.60% 14.90% 13.80% 15.10% 13.90% 15.40%
α=50 13.60% 14.70% 13.60% 14.90% 13.70% 15.10% 13.80% 15.20% 13.90% 15.40%
α=60 13.60% 14.80% 13.60% 15.00% 13.70% 15.10% 13.80% 15.20% 13.90% 15.40%

ρ=0 ρ=1/2 ρ=1
PROBABILITY OF FAILING THE TARGET

ρ=−1 ρ=−1/2
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TABLE 2: MEAN SHORTFALL WHEN ρ CHANGES 

 
 
 

 

 

 

 

 

 

 

 

 

 

TABLE 3: VaR AT 5% CONFIDENCE WHEN ρ CHANGES 

 

 

 

 

 

 

 

 

 

 

 

 

 

b30 b30t b30 b30t b30 b30t b30 b30t b30 b30t
α=0 10.93% 18.20% 10.57% 18.51% 10.39% 18.97% 10.35% 19.09% 10.95% 19.28%
α=1 10.55% 16.91% 10.16% 17.18% 9.77% 17.54% 9.26% 17.87% 9.57% 18.20%
α=2 10.89% 15.38% 10.42% 15.93% 9.87% 16.45% 9.51% 16.58% 9.43% 17.08%
α=3 12.04% 14.62% 11.98% 14.98% 11.52% 15.16% 11.27% 15.74% 11.82% 16.14%
α=4 13.38% 14.10% 13.03% 14.26% 13.09% 14.52% 13.49% 14.88% 15.16% 15.08%
α=5 14.20% 13.55% 14.29% 13.80% 15.48% 13.93% 16.15% 14.37% 17.90% 15.06%
α=7.5 18.71% 14.41% 19.17% 14.00% 19.72% 13.89% 20.69% 13.79% 22.41% 14.59%
α=10 20.32% 16.52% 20.69% 16.14% 21.79% 16.26% 22.26% 16.59% 22.14% 16.78%
α=12.5 20.94% 20.09% 20.86% 19.82% 21.32% 20.13% 21.89% 20.92% 21.65% 21.05%
α=15 20.52% 21.12% 20.83% 21.99% 21.23% 23.30% 21.60% 22.58% 22.02% 23.05%
α=20 20.83% 22.36% 21.44% 22.32% 21.41% 22.63% 21.84% 23.09% 22.10% 22.75%
α=25 20.88% 22.11% 21.37% 22.45% 21.62% 22.56% 21.86% 22.51% 21.95% 22.56%
α=30 21.00% 22.27% 21.40% 22.05% 21.48% 22.16% 21.67% 22.14% 22.00% 22.49%
α=40 20.84% 21.67% 21.26% 21.51% 21.52% 21.85% 21.62% 22.07% 21.87% 22.09%
α=50 20.76% 21.48% 21.15% 21.61% 21.39% 21.73% 21.63% 21.99% 21.87% 22.09%
α=60 20.76% 21.38% 21.15% 21.49% 21.39% 21.74% 21.63% 21.99% 21.87% 22.09%

MEAN SHORTFALL
ρ=−1 ρ=−1/2 ρ=0 ρ=1/2 ρ=1

b30 b30t b30 b30t b30 b30t b30 b30t b30 b30t
α=0 61.80% 54.57% 62.40% 54.34% 62.04% 54.74% 59.81% 54.40% 58.32% 54.83%
α=1 65.65% 56.54% 65.12% 57.08% 65.67% 57.24% 66.06% 56.90% 63.32% 57.24%
α=2 67.88% 59.23% 68.21% 58.74% 68.83% 59.77% 67.87% 59.54% 66.85% 59.28%
α=3 70.15% 60.49% 70.69% 60.98% 71.14% 61.49% 71.47% 61.66% 70.79% 61.78%
α=4 71.98% 62.55% 72.85% 62.74% 72.62% 63.31% 72.69% 62.71% 71.71% 63.80%
α=5 73.63% 64.56% 73.67% 65.33% 73.15% 65.33% 71.76% 64.74% 70.52% 64.92%
α=7.5 73.76% 65.57% 71.98% 65.02% 71.03% 64.04% 68.10% 64.65% 64.71% 62.52%
α=10 70.60% 65.57% 70.49% 64.75% 69.68% 64.83% 65.22% 63.48% 64.71% 61.76%
α=12.5 69.65% 64.72% 67.05% 63.50% 65.22% 62.57% 64.71% 61.76% 63.76% 61.76%
α=15 65.22% 63.80% 65.22% 62.93% 64.71% 61.78% 63.76% 61.76% 63.60% 61.76%
α=20 63.80% 61.78% 63.76% 61.76% 63.60% 61.76% 63.60% 61.65% 63.60% 61.65%
α=25 63.60% 61.76% 63.60% 61.65% 63.60% 61.65% 63.60% 61.65% 63.60% 61.65%
α=30 63.60% 61.65% 63.60% 61.65% 63.60% 61.65% 63.60% 61.65% 63.36% 61.65%
α=40 63.60% 61.65% 63.60% 61.65% 63.36% 61.65% 63.36% 61.65% 63.36% 61.65%
α=50 63.36% 61.65% 63.36% 61.65% 63.36% 61.65% 63.36% 61.65% 63.36% 61.65%
α=60 63.36% 61.65% 63.36% 61.65% 63.36% 61.65% 63.36% 61.65% 63.36% 61.65%

VAR AT 5% CONFIDENCE
ρ=−1 ρ=−1/2 ρ=0 ρ=1/2 ρ=1
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FIGURE 9: RISK MEASURES WHEN ρ CHANGES (b30) 
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FIGURE 10: RISK MEASURES WHEN ρ CHANGES (b30t) 
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6. CONCLUDING COMMENTS 

 

We have investigated the financial risks in a defined contribution pension scheme, considering the 

investment risk borne by the member during the accumulation period up to retirement and the 

annuity risk arising when the fund is converted into an annuity at retirement. 

 

We have analysed the investment allocation and the downside risk faced by the retiring member, 

where optimal investment strategies (derived from the dynamic programming approach of Vigna 

and Haberman (2001)) have been adopted. The behaviour of the optimal investment strategy has 

been analysed allowing for changes in the disutility function (via the parameter α ). Three different 

risk measures have been considered in analysing the final net replacement ratios achieved by the 

member: the probability of failing the target, the mean shortfall and a Value at Risk type measure. 

We have considered the relationship between the risk aversion of the member and these different 

risk measures in order to understand better the choices confronting different categories of scheme 

member.  

 

We have also considered the case of a 2 assets portfolio, where the asset returns are correlated and 

consider the sensitivity of the results to the level of the correlation coefficient, ρ . 

 

The main results of our investigation are the following: 

 

• The optimal investment strategy to be adopted by a risk averse member of a defined 

contribution pension scheme is the so-called lifestyle strategy, which consists in investing the 

whole fund in high risk assets at the beginning of the membership, and then switching into low 

risk assets some years prior to retirement. The point in time when the switch occurs depends on 

both the risk aversion of the individual (the more risk averse, the sooner the switch) and the time 

to retirement (the longer the membership, the later the switch). 

• The optimal investment strategy for a risk neutral member (for whom α → ∞) of a defined 

contribution pension scheme is to invest the whole fund in high risk assets for the whole period 

of membership, and never switch into low risk assets. 

• The different risk measures of the downside risk faced by the member of a defined contribution 

pension scheme give different and contradictory indications. 
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•  Looking at the results for the probability of failing the target, the conclusion seems to be that 

increasing the risk aversion of the individual or (which is the same) adopting more cautious 

strategies leads to greater number of failures relative to a target chosen a priori. 

• Looking at the results for the mean shortfall, the conclusion seems to be that increasing the risk 

aversion of the individual or (which is the same) adopting more cautious strategies leads to 

slightly lower mean shortfall, which means more limited reductions to pensioner income when a 

failure occurs. 

• Looking at the VaR results, we note that the VaR at 1%, 5% and 10% level does not change 

very much when changing the risk aversion of the individual. 

• The effect of changing the correlation factor ρ between the assets is very small both on the 

optimal investment strategy and on the downside risk borne by the member of the scheme. 

 

We suggest that the risk profile of the individual and the trade-off between different risk measures 

of the downside risk borne by the member (for example, the number of failures and size of failures 

in respect of a certain target), are important factors to be taken into consideration when determining 

the choice of investment strategies in defined contribution pension schemes. 
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