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Abstract

In this paper, we analyse the investment allocation and the downside risk faced by the retiring
member of a defined contribution pension scheme, where optimal investment strategies (derived
from a dynamic programming approach) have been adopted. The behaviour of the optimal
investment strategy is analysed when changing the disutility function and the correlation between
the assets. Three different risk measures are considered in analysing the final net replacement ratios
achieved by the member: the probability of failing the target, the mean shortfall and a Value at Risk
type measure. The replacement ratios encompass the financial and annuitization risks faced by the
retiree. We consider the relationship between the risk aversion of the member and these different
risk measures in order to understand better the choices confronting different categories of scheme
member. We consider the case of a 2 assets portfolio, where the asset returns are correlated and

consider the sensitivity of the results to the level of the correlation coefficient.
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1. INTRODUCTION
In this paper we derive and analyse the optimal investment strategy for a defined contribution
pension scheme and consider the downside risk (in terms of net replacement ratio achieved at
retirement) faced by the member of the scheme, thereby extending the model introduced in Vigna
and Haberman (2001).

The extensions introduced are essentially threefold:

1. we now consider the more general case of dependent assets,

2. we generalise the disutility function in such away that deviations of the fund above the target
are not penalised to the same degree as deviations below; and

3. we consider a sequence of targets which grow exponentialy instead of linearly.

The downside risk has been studied by examining three risk measures: the probability of failing the
target, the mean shortfall and the Vaue at Risk measure (VaR) at three different confidence levels
(1%, 5% and 10%).

The annuity risk faced by the member has aso been analysed through these risk measures by
comparing the results relative to the net replacement ratio both in the case of a fixed conversion
factor and in the case of a random conversion factor, which depends on the prevailing yield on the
low risk asset.

2. THE MODEL

2.1 ASSUMPTIONS AND STRUCTURE

We consider a defined contribution pension scheme with a 2-asset portfolio, a high-risk and a low-
risk asset. The forces of interest of the 2 assets are assumed to be normaly distributed and

correlated at any time with alinear correlation factor r .

Contributions are paid in advance every year as a fixed proportion of the salary of the scheme's

member. Taxation, expenses and decrements other than retirement are not taken into consideration.

The model is presented in discrete time and we assume that the portfolio is reallocated every year

between the 2 assets, depending on the past history of the market returns and on the current size of



the fund, which is compared to an a priori target. We then find the optimal investment allocation

every year that minimises the deviations of the fund from these corresponding targets.

The fund at time t+1 is given by the following equation:

1) ft+1 =(ft +C)[(l' Yt)em +ytelt]

where:

fi: fund level at timet

C: contribution rate

Y. proportion of fund invested in the high-risk asset during year [t, t+1]

m: real force of interest for the low-risk asset in year [t, t+1], assumed to be constant over the year
[t, t+1]

| «: real force of interest for the high-risk asset in year [t, t+1], assumed to be constant over the year
[t, t+1]

We assume that there are no real salary increases and that for simplicity the salary is 1 each year.

The sequences {m} and {| } are supposed to be IID with normal distribution, while the annual
forces of interest m and | ; are correlated with correlation factor r, constant for any t.
Therefore:

m» N(m s19) and l¢»N(l, 829,

where:

mE | 3125522

22TARGETS
The member is assumed to join the scheme at time t=0 and contribute until retirement at time t=N,

which isatime point that is fixed in advance.

Since the fund and contributions are invested in a 2-asset portfolio, we have chosen the yearly
targets as the accumulated fund using a particular average of the rates of return of the 2 assets. We

have considered three different cases: (a) the rate of return equal to m as though the fund were fully
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invested in the low risk asset; (b) the rate of return equal to the Chisini average of mand | ; relative
to the expected return over one year of a portfolio invested equally in the 2 assets, as though the
fund were invested half in the low risk and half in the high risk asset; (c) the rate of return equal to
|, asthough the fund were fully invested in the high risk asset.

Therefore, the yearly target at timetis:

2) F, = foe' +c8 t=1,...,N

with i such that:
@i=m@i=r-(i=lI,
with!

3) r*:%(m+l)+1—16(25f+rslsz+255)

We set Fp = fo , where f is the fund held by the member when he/she joins the scheme (i.e. the
transfer value, which may be zero).

3. THE PROBLEM
3.1FORMULATION OF THE PROBLEM
We define the “cost” incurred by the fund at timet as follows:

4) = (F - f)?+a(F - ) t=1,...,N-1

5) CN:q[(FN'fN)2+a(FN'fN)] t=N

witha 3 0Oandq?® 1.

The use of target valuesin the cost function is supported by the analysis of Kahneman and Tversky

(1979). The target-based approach in decison making under uncertainty is investigated and



supported also by Bordley and Li Calzi (2000), although they present a more general model in
which the targets are stochastic and the utility function is the probability of matching the target.

It may be argued that there is little scope for yearly targets between joining the scheme and
retirement, since it may not be possible for the scheme member to change the annual contribution to
the fund by either withdrawing money from the fund or paying additional money to the fund. A
similar argument regarding decrements other than retirement, which are excluded from our model,
could be advanced. In this case, the cost function should be defined only at retirement, and the
actual fund compared with the fina target only. We think that this different formulation of the
problem is interesting and we will consider it in further research. The choice of having a target
every year is adopted for reasons of mathematical tractability of the model as well as reasons of
cautiousness (since in practice it would probably be easier to meet a final target if the path of the
fund’s growth were monitored at periodic intervals)®.

The cost defined by (4) and (5) is positive when the fund is below the target and above a certain
level, which is equal to the target plus a, and negative between the target and this level. Intuitively,
this means that the deviations below the target are penalised, while the deviations above the target
are rewarded, until a certain level (linked to the target), after which they are penalised again. The
economic interpretation of this choice is that the possibility of gaining from high market returns are
incentivised, but, when the fund becomes too large in relation to the target, the trade-off between

risk and return means that the portfolio is cautiously invested.
Indeed, equation 4) can be rewritten as

1 1
C,=(F +>a-f)*-=a?’
Ra-f)t S
so that it is clear that the “real” target being pursued by the model is F, +%a. With this

formulation, the f, values are pulled back towards the “real” targets so that the generation of very

high values of f, is penalized.

m*H
! Wefound r* by solving E[e"] = E[e 2 ], following the definition given above.

2 |t should be noticed, however, that the different weight given to i, and Fy (1 and g2 1) reflects the greater importance
of the final target in comparison with the yearly ones.



By varying the parameter a we are actually considering different disutility functions with different
risk aversion factors, so that we are considering individuals with different risk profiles. In fact, it
can be shown (see Pratt 1964, Owadally 1998) that an individual’s risk aversion can be measured

ul((x)) if u(x) istheindividual’s utility function, or by A(y):% if I(y) isthe
u'(x y

either by A(x) =-

individual’s disutility (or loss) function, where the relationship between utility and disutility

functionsis: u(x)= - a(y)+b (a>0) and the relationship between loss and gain is. x+y=constant.

The disutility function considered hereis|(y) = y* + ay (with the loss being y = F- f;), and therefore
the resulting risk aversion is:

"y) . 2

I'(ly) 2y+a

We observe not only that the risk aversion depends on the value of a, but also that it is decreasing

A(y) =

when a is increasing, which means that lower values of a represent more risk averse individuals

and vice versa

We aso observe that, in our model if a ® 0O, i.e. for very risk averse individuals, the target pursued
tends to F; Instead, if a ® ¥, i.e. for risk neutral individuals (A(y) = 0 means a null risk aversion,
which is equivalent to risk neutrality), the target pursued tends to infinity, which means that the
individual wants to make as much money as possible and always gain from higher than usual rates
of return. Thus, F and infinity are the lower and upper bounds for our real targets, when we

consider the dependence between them and the risk aversion.

The cost at time N has a weight g which can be greater than 1. When q is greater than 1 more
importance is given to the final target than to the yearly ones, and the rationale for this choiceis that
decrements other than retirement are not considered, and therefore the achievement of the final
target - at retirement — can be considered more important than the achievement of the annual ones —

before retirement.

The total future cost at time't is obtained by discounting the future costs until N, using a subjective

inter-temporal discount factor b asin Bellman and Kalaba (1965):



N
6) G, =g b*'C,

s=t
We define X, the s- field generated by all information available at time t:
7) Xt = S(f01 fl; ey ftl yO! yl,--- yt-l)
The value function at timet is defined as:

8) (%) = min, E[G, |X,] t=0, 1,..., N-1

where p; isthe set of the future investment allocations, i.e.:

Pt ={{Ys}s=tt+1,..N-1, : OE Ys £ 1} ={{V¥1, Yt+1,..., Yn-1}, : OE ys £ 1}

The investment allocation at time t, y;, is bounded between 0 and 1 because in our application short
selling is not allowed.

We now find the future portfolio allocations that minimise the discounted future cost incurred by

the fund.

3.2BELLMAN' SOPTIMALITY PRINCIPLE
By applying Bellman’s optimality principle we find:

9 3X) = min, E[& b*'C, |X,] = min, [C, +bE[XX,..) 1X,]]

s=t
Since the sequences {m} and {l ¢} are supposed to be independent, {f;} isaMarkov chain and:

Pr[fua | Xi] = Pr[fw1 | f], and aso: Pr[fuq, fio,..., Tn | X = Pr[fee, feeo,.nn, I | il



S0 that:

Pr[G; | X{] = Pr[G | f{]

and:

10) JX¢) = min, E[G, |X,] = min, E[G, |f]=J({,,1)
The dynamic programming problem, which we have defined, now becomes:
DPP J(f,,t) = minyt[(Ft -f)? +a(F - f,) +bEJ(f,,, t+1)|f.]]
with boundary condition:

BC v, N) =Cn=q [(F, - f\)* +a(R, - fy)]

with {F} 1.~ given by 2) above.

.....

3.3SOLUTION OF THE DYNAMIC PROGRAMMING PROBLEM
It can be proved by mathematical induction that :

11) J(ft’t) = Ptft2 B 2Qtft +R,

where the sequences { P} and {Q;} are given by the recursive relationship:

1 Pt :1+b&Pt+l

1

o —

a b
Qt = Ft +E' g_(cgzpt+1 - gth+1)

1

— — ——

starting from: Pv=q andQn =q(Fy +a/2),



and:

10, =0,(2+9,(2- 29, (1) >0
|

9. =9x(2)9, (2)- 9, 11)* >0

10: 79,09, (D +9,(2)9 O gy L[9D) +g, @] >0

where gq{h) and g (h) are the moment generating functions of m and | ; and gn, (h,k) is the moment

generating function of thesumm + 1 ;.
A similar recursive relationship holds also for the sequence { R} .

We dso find that the optimal investment strategy is given by the following optimal investment
alocation at timet:

* _ Qualg @ - 9,@] + 0.,(2) - O ()

12)
" Pa(f +og, 9,

with the same notation as before.

As noted earlier, in the application presented here, short selling is not alowed so that y; is
constrained to liein the interval [0,1].

3.4RELATIONSHIP BETWEEN a AND THE OPTIMAL INVESTMENT STRATEGY
Looking at formula (12) above, we observe that a affects the sequence {Qi} only, which increases
in value as a increases, leading to higher values of y;, everything else being equal. Thus, we

concludethat y; increases on average as a increases.

Thisis quite a reasonable result as we observe that a measures the risk aversion of the individual: a
higher value of a corresponds to a lower risk aversion and leads to a higher fraction of the portfolio
being invested in the riskier asset. This result is consistent also with intuition: by increasing a we
are increasing both the penalisation of deviations below the target and the reward of deviations

above, pushing the optimal portfolio to be invested more in riskier assets.



In particular, considering again the behaviour of the risk neutral investor (a ® ¥), we seethat, in our
model, the risk neutral individual would invest the whole fund in the high risk asset and never
switch into the low risk asset®. This asset allocation is supported by Blake et a (2001), who argue
that there is no evidence for the appropriateness of switching the fund into lower risk assets prior to
retirement for the risk neutral individual, except for prudentia reasons. However, in their analysis

they do not consider individuals with different levels of risk aversion.

The meaning of a will be considered again later, when we discuss the ssmulation results.

35SIMULATIONS FRAMEWORK
We have investigated the solution presented in section 3.3 for many scenarios, and have studied the

sensitivity of the resultsto changesin the valuesof i, a and r by carrying out smulations.

We have also considered different generations of members by changing the value of N: 10, 20, 30
and 40 years to retirement. We assume that the member joins the scheme without a transfer value,
which means that fo = 0. The contribution rate has been taken equal to 12%, the weight q given to
the final target has been chosen equal to 2 and the subjective inter-temporal discount factor b has

been taken equal to 0.95.

The parameters of the asset returns chosen are:

m= 4%; | =10%; S1=5%; S2 = 15%.

Therefore, the value of i for determining the target values takes the three different values: 4%, r* as
defined by 3) above (we observe that this value depends on the value of r, so it varies with the

different values of the correlation factor) and 10%.

The correlation factor r takes the values -1, -1/2, 0, 1/2, 1; a takes many values, depending on the

time to retirement.

The choice of different values of a for different durationsis not arbitrary and is due to the fact that,
since short selling is not alowed, the value of y; stabilises at 1 after a certain value of a (we recall

that y; increases as a increases), which depends on the time to retirement (see section 5.3).

% In this case the optimal investment strategy is: y*, =1 at any time O£tEN, recalling that short selling is not allowed.
10



Thus, for N = 10, a takes the following values: 0, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 6; for N = 20, a takes
thefollowing values: 0, 1, 2, 3, 4, 5, 6, 7, 10, 15, 20, 30; for N = 30, a takes the following values: O,
1,23 4,5, 75,10, 125, 15, 20, 25, 30, 40, 50, 60; for N = 40, a takes the following values. 0, 1,
25,5,75,10, 125, 15, 17.5, 20, 22.5, 25, 30, 35, 40, 50, 75, 100, 150, 200.

For each scenario, 1000 simulations have been carried out by generating, for each simulation, the
asset returns for N years (with N = 10, 20, 30, 40), and deriving, for each year, the optimal portfolio
allocation derived by the model. In all the scenarios investigated, we use the same 1000 paths of
returns and just change the other parameters like i, a and r. The rationale is that we wish to study
the effect of changing the parameters and we do not wish the results to be affected (and
confounded) by differences in the simulated paths of returns.

At the time of retirement, N, we have followed Vigna and Haberman (2001) and analysed the
behaviour of the optimal investment strategy and studied how it changes if we change the targets,
the disutility function, and the correlation factor r. Furthermore, we have caculated the fund
accumulated, and also the net replacement ratio achieved by the member using two different
methods, in order to measure the effect of the annuity risk on the retiree income. For the first
method, we have converted the accumulated fund into an annuity using an actuarial value, &, based
on discounting at the expected return of the low risk asset (i.e. afixed rate®). For the second method,
we have used a variable annuity value, a,, with discounting based on the average of the realised

returns by the low risk asset in the last 5 years before retirement (setting a minimum of 2% in order
to avoid unreasonable values in the case of a very poor performance of the low risk asset prior to
retirement) and the variance of the low risk asset experienced during the N years of membership®.
In both cases, the annuity values depend on the returns on the low risk asset in order to represent the
pricing behaviour of an insurance company, which would utilise the returns on matching fixed
interest bonds in its calculations. For both methods, the mortality table used to calculate the
actuarial value is the Italian projected mortality table (RGS48) and the retirement age has been

chosen throughout to be x = 62.

Considering that the salary is 1 at any time, the net replacement ratio achieved using the first
method of calculationis:

* The discount factor used to calculate the annuity value a isv=E[e "] = e ™ot with m= 4% and s = 5%.
® The discount factor used to calculate the annuity value 3, is V = e ™ with M= max{2%,average(m, . ,...,m, .)} ,
and S? = variance{m,...,m,_,}

11



whereas the net replacement ratio achieved using the second method of calculationis:

ol
xmz|z-"

The net replacement ratio achieved using the first method, by, takes into account only the

investment risk faced by the member®, as the conversion rate used is fixed. The net replacement
ratio achieved using the second method, BN (“bnt” or “bytilde” in the Figures that follow), takes

into account also the annuity risk faced by the member’, as the conversion rate is linked to the
simulated returns on the low risk asset in the years before retirement, and therefore it is variable,
reflecting the ssmulated behaviour of the low risk asset.

We illustrate only the results for the 30 years' case (we note that the other durations, N=10, 20, 40,
give similar results). Similarly, we illustrate only the results for the VaR at 5% confidence level (we

note that the VaR measures at 1% and 10% confidence levels give similar results).

3.6 MEASURES OF RISK

The downside risk faced by the member of the pension scheme is analysed by comparing the net
replacement ratios achieved by and BN with the target ratio By. Thisis the fund target Fy divided

by an actuarial annuity value a. In other words:

® By “investment risk” we mean the risk that the returns experienced during the membership have been too low leading
to alow final fund. Thisrisk is borne during the accumulation period.

" By “annuity risk” we mean the risk that the rate used in the conversion of the capital into annuity is too low, leading to
a low pension rate (the actual conversion rate used to calculate the annuity is directly linked to the current market
yields, and so the perceived pension will strongly depend on the level of the markets rates at retirement). Thisrisk is
borne at retirement, when the annuity is purchased.

12



The idea of comparing the n.r.r. achieved with the target pursued is consistent with the analysis of
Kahneman and Tversky (1979), who observe that individuals perceive the outcomes as gains and

losses relative to some neutral “reference point” (which, in our case, isthe target).

The risk has been measured in the three different ways:

a) Probability of failing the tar get.

This is defined as the proportion of outcomes where by (or BN) Is less than the target By. Thus

Pr(by <By) = KT)O where k represents the number of failures out of 1000 simulations. We note

that the amount by which by (or BN ) falls below By is not taken into account by this risk measure.

In the same way we define Pr(EN <By) -

b) Mean shortfall.
The mean shortfall is the conditional mean of shortfall below the target, conditional on (by - Byn)<O

(or (BN - Bn) <0). Thus, using the upper suffix j to refer to a simulation, we have:

mean shortfall (by) = where (bl - B,) <Oforj=1,2, ...k

P

K
° .

a (b} - By)
j=1

In the same way we define the mean shortfall ( BN ).

As demonstrated by Artzner et a (1999) and Artzner (2000), risk measures based on the mean
shortfall have more desirable properties than the commonly used Value-at-Risk (VaR) measures. In
particular, these are coherent risk measures (as introduced by Artzner et al (1998)), whereas a VaR
measure is not, as it fails to satisfy the sub-additive property (as many examples can show), which
is required of any coherent risk measure. As a result, mean shortfall risk measures have become
widely used in the recent actuarial literature: for example, see Albrecht et a (2001) for a discussion
of equity risk and Hardy (2001) for an application to segregated funds.

¢) Valueat Risk (VaR).
The VaR measure at confidence level e is defined to be the 100eth lowest percentile of the

simulated distribution of by (or by, ).

13



4. RESULTS: THE OPTIMAL INVESTMENT STRATEGY

4.1 0PTIMAL INVESTMENT STRATEGY

We observe, as in Vigna and Haberman (2001), that the optimal investment allocation y; decreases
on average with the time, which indicates the suitability of the lifestyle policy® for defined
contribution pension schemes. Thisis illustrated by the results in Figures 1-3 (and by other detailed
results not shown here but available on request from the authors).

The only exception to the suitability of the lifestyle strategy is when the individual isrisk neutral, as
mentioned above. In this case, the scheme member will invest the whole fund in the high risk asset

at any time between joining the scheme and retirement.

4.2 EFFECT OF CHANGING THE TARGETS

We have studied the behaviour of the optimal investment strategy when the targets change. The
three graphs of Figure 1 report some percentiles (5", 25", 50", 75" and 95™), the minimum and
maximum of the distribution of y; in the cases of mbased targets, r*-based targets and | -based

targets, when a=1.

We observe that moving from mibased targets to | —based targets, the optimal proportion of the
portfolio to be invested in the high risk asset increases. Thisis evident if we look at formula (12) for
y; : it can be easily seen that the value of y; increases as the target F; increases, everything else
being equal. This is adso an intuitive result, since one must increase the aggressiveness of the

strategy if the target to be attained increases.

8 We recall that by “lifestyle strategy” we mean the investment strategy largely adopted in defined contribution pension
schemes in UK, which consistsin investing at the beginning the whole fund in equities, switching it into bonds and cash
as retirement approaches (usualy 3-5 years before retirement).

14



FIGURE 1: CHANGING THE TARGETS (THE VALUE OF i)
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Y*t with | targets (a=1)
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4.3 EFFECT OF CHANGING THE DISUTILITY FUNCTION
We have studied the effect of changing the disutility function by observing the behaviour of y;’

when we change the value of a and leave unchanged the value of r .

Inall cases (i.e. for any N and any r) we have found that y;” increases on average as a increases.
This is consistent with the fact that, the higher is a, the lower is the risk aversion of the individual,

hence the riskier the investment strategy adopted.

The graphs reported in Figure 2 show how the level of the optimal investment strategy increases
with a inthe 2 casesr = - (on the left) and r = %2 (on the right) with the r*-based targets. The

graphs report the mean of y; (for t = 0, 1,..., 29) over the 1000 simulations that have been carried
out.
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CHANGING DISUTILITY FUNCTION (THE VALUE OF a)

FIGURE 2
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4.4 EFFECT OF CHANGING THE CORRELATION BETWEEN THE ASSET RETURNS
We have studied the effect of changing the correlation factor r on the optimal investment strategy

by comparing the behaviour of y; when N and a arefixed and r changes.

We have discovered two interesting trends:

1 — in the early years of membership, the optimal allocation y; increases as r increases from
negative to positive values, while in the last years of membership, towards retirement, it decreases
asr increases,

2 —apart from the early years of membership, the standard deviation of y; increasesasr increases.

The graphs in Figure 3 show the optimal investment strategy for the different values of r (-1, -%2, 0,
%, 1) when a = 0 (on the left) and when a = 10 (on the right). The graphs report certain percentiles
(5™, 25" 50™ 75" and 95™), the minimum and the maximum of the distribution of y;” over the 1000
simulations carried out. We can see that, when r increases from —1 to +1, the curves reporting the
percentiles become steeper in their descent from 1 to O, confirming the first trend above explained

(higher values of y; at the beginning and lower at the end when r increases).

An economic explanation of thisfeature is as follows. We observe that a strategy is well diversified
if the curve y; decreases gradually towards zero, less diversified if the curve decreases steeply
towards zero. When r is low, in the range (-1, -¥2), there is negative correlation between the asset
returns and it is convenient to diversify the portfolio between the assets and, therefore, the optimal
investment allocation leads to a fraction to be invested in the riskier asset which decreases very
gradually towards zero. When r is high, in the range (*%, 1), there is positive correlation between the
asset returns and the diversification effect is not so rewarding, so the portfolio can be invested more
heavily either in the riskier or in the less risky asset, leading the optimal investment allocation to
decrease steeply towards zero.

The graphs in Figure 4 show how the standard deviation of y; changes in value when r increases.

When a = 0, the standard deviation increases as r increases. This feature is also observed in Figure

3: with negative values of r, the percentiles tend to stabilise around a certain percentage (30-40%),

while with positive values of r the percentiles are more spread between 0 and 1.
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An economic explanation of this feature is the following. When r increases from —1 to +1, the
benefits of diversification decrease, pushing y; upwards. On the other hand, with high positive
values of r, the investor needs more hedging in order to achieve the target at time N and this factor
pushes y; downwards. The value of the optimal investment alocation will be high or low
depending on which of these two effects is dominating (and this depends only on the returns
experienced in the past), leading the values to be more spread and the standard deviation to be
higher. For higher values of a, for example a =10, the optimal asset allocation y; increases and the
balance between these two effects is different.

This phenomenon seems to indicate that, with negative correlation between the asset returns, the
investment strategy is more stable on average than for the case of positive correlation, where it
remains on amost the same level regardless of the past experience of asset returns. This feature
may be interesting from the pension scheme investment manager’s point of view in two respects:
firstly, when he/she considers projections and plans regarding the investment strategy to be adopted
over along period in the future, and, secondly, considering the fact that, in the real world, portfolios
tend to be invested in assets with returns that are negatively correlated.

The detailed results for y; indicate that they are relatively insensitive to small changesin r . This
corresponds to the results of Chopra and Ziemba (1993), who find that optimal asset allocation

results are much more sensitive to errors in means than to errors in variances and much more
sensitive to errors in variances than to errors in covariances. This finding is particularly apparent as

the risk aversion of the investor reduces — this corresponds here to increases in the value of a .
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FIGURE 3: CHANGING CORRELATION BETWEEN ASSETS (VALUE OF r)
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STANDARD DEVIATION OF Yy WHENr CHANGES

FIGURE 4
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5.RESULTS: THE DOWNSIDE RISK

5.1 THE MEANING OF a

Before consideration of the results, it is worth recalling that a can be given two meanings in our
model. On the one hand, as we have already seen, it is a measure of the risk profile of the individual
with the disutility function C;: the higher is its value, the less risk averse is the individual. On the
other hand, it is a measure of the aggressiveness of the optimal investment strategy. In fact, if we
look at the formulathat determines y*; above, (12), we can easily observe that it depends directly on
a, so that we have an increasing y*; with a increasing. Therefore, a low value of a indicates a
cautious investment strategy, while a higher value of a indicates a riskier investment strategy. It is

clear that these two viewpoints are consistent with each other.

5.2 THE DIFFERENT RISK MEASURES
In Figure 5, we have plotted the three different risk measures considered against the different values

of a inthe case of 30 years, r*-targetsand r = 0.

We observe the following results:
a) the probability of failing the target decreases as a increases;
b) the mean shortfall increases dightly as a increases;

c) theVaR at 5% level isrelatively stable as a increases.

The explanation for a) and b) is the following. Lower values of a lead to more cautious strategies,
which lead to a greater number of failures but to more limited “losses’ when a failure occurs. In
contrast, higher values of a lead to riskier strategies and to a higher mean and a higher standard
deviation of the distribution of both by and BN , and this leads to a smaller number of failures (due
to a higher mean) but slightly greater deviations from target when a failure occurs. This arises
because the higher mean and standard deviation lead to a much longer right tail of the distribution
of the net replacement ratio and to a dightly longer left tail of the distribution, with the lowest

percentiles being smaller, so that a slightly greater mean shortfall results (as a increases).

The explanation for c) is the following: the VaR at 5% level remains stable because of the

combined and opposing effects of the higher mean and standard deviation of the distribution of by

and BN , @S a increases, and the net effect isto lead to the lower percentiles remaining fairly stable.
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FIGURE 5: RISK MEASURES AGAINST a
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5.3THE DIFFERENT TARGETSAND THE RISK MEASURES
In Figures 6, 7 and 8, we show the results for bset and bz as a varies, for the three different risk
measures with each of the different targets chosen, and for the case of r =0. We consider the effect

of changesin r in alater section.

A general result that comes out of the graphsis that, by increasing the targets (ie moving down the
page from mbased targets to | -based targets), the levels of all of the risk measuresincrease. Thisis
an intuitive result, asit is more difficult to reach higher targets than lower ones. Furthermore, as we
move down the page, the optimal investment strategy becomes riskier, since y*; increases as the

target values of F increase (see section 4.2).

Another general result is that, for very high values of a, in all of the graphs, the risk measures tend
to stabilise themselves, leading to the curves becoming approximately horizontal. As mentioned
before, this is a feature of the model: since short selling is not allowed and since increasing the
value of a will increase the riskiness of the strategy, after a certain value of a the value of y*; will
be always 1. This leads to the same strategy regardiess of the rates of return that have been
simulated (in which all the fund is invested in the high risk asset at any time), and hence to very
small differences in the results, and therefore to the flat curves displayed in Figures 6-8 for the risk

measures at extreme values of a.

We aso find (in results not shown here) that the value of a after which y*; reachesl increases with
the time to retirement N, and this suggests that the choice of a for different durations should be
different. This also reflects the intuitive fact that, with a short time to retirement, an individual is
more risk averse so that a takes low values, while, with a long time to retirement, an individual is

lessrisk averse so that a takes high values.

We now analyse the different figures separately.

Probability of failing the target.
The three graphs of Figure 6 report the probability of failing the target with the three different
targets. We observe the following points:

1 —when we consider the initial values of the probability of failing the target in the two cases of by
and bsot, when a=0, we see that this probability is higher for bt than for bsg in the case of mbased
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targets (with an approximate 10% gap), whereas it islower for bsgt than for bsg in the case of the r*-
based (with an approximate 10% gap) and | -based targets (with an approximate 20% gap). The fact
that the probability of failing the target is higher for bsgt than for bsy may not be a surprise, as it
arises from the fact that the magnitude of bgg is affected by the investment risk only, whereas the
magnitude of bgot is affected by both the investment and annuity risk. What may seem strange is the
fact that the probability of failing the target is lower for bsot than for by with the r*- and | -based
targets. A possible explanation for this is given by looking at the aggressiveness of the strategy in
the considered cases. In the case of the mbased targets, the a=0 strategies are very cautious, so the
fund is likely to be invested more in the low risk asset during membership and entirely in the low
risk asset just before retirement (because of the lifestyle profile shown by the optimal values of y*+),
so that the reason for failing the target is likely to be mainly due to poor performance of the low risk
asset, either during the period of membership and/or just before retirement. On the other hand, in
the case of the r*- and | -based targets, the strategies are riskier and the reason for failure may
depend also on the adverse performance of the high risk asset. When this happens, there are casesin
which the poor performance of the high risk asset leads to a failure regarding the achievement of
bso, but not to a failure regarding the achievement of bzt due to the good performance of the low
risk asset prior to retirement (leading to a more favourable annuity conversion rate than the one
used in the bsy case). The gap between the probabilities values becomes larger when moving from
the r*- to | -based targets as the strategies become riskier and the weight attaching to the adverse

performance of the high risk asset increases;

2 — the descent of the probability curve is steeper for the bz case than for the bsgt one. This is
probably to be explained by referring to the annuity risk and the aggressiveness of the strategies.
Moving from the left to the right in each of the graphs, the value of a increases and the strategy
becomes more aggressive. The increased aggressiveness of the strategy affects the general level of
the final fund fy which increases, but does not affect the values of the simulated m in the final years
before retirement, which are used (by the insurance company) to price the annuity in the case of
bsot. We observe that, in the case of bgg , failures are only due to the low value of fy in relation to
the target Fy, whereas in the case of bggt, failures are due also to the low value of the ssimulated min
the final years before retirement. Therefore, acting on the general level of the final fund fy will have
a greater effect on the probability of failing the target in the bsy case, because we are reducing the
impact of the only cause of failures in the by case (but only one of the 2 causes in the bggt case),
and this leads to a steeper decrease in the probability curve.
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These two features explain the shape of the curves in Figure 6 and the fact that in the last 2 graphs

(r*- and | -based targets) the bz and the bsot curves exhibit a cross-over.

M ean shortfall.
The three graphs of Figure 7 report the mean shortfall with the three different targets. We observe
the following points:

1 — when we consider theinitial values of the mean shortfall, when a=0, in the two cases of bsy and
b3t we see that thisis always higher for bsot than for bsp. A failure in the case of by occurs when f3g
< F3p, and the size of the failure is proportional to the difference f3p - F3o. But, in the case of b,
the size of the failure is also determined by the behaviour of the low-risk asset prior to retirement,
with a poor performance leading to a bigger deviation in the case of bt than in the case of bzy. We
see that, in most cases of failure for both bsy and bsot, the low risk asset has a return lower than 4%
in the last 5 years before retirement (also noting that failure depends heavily on the return of the low
risk asset, due to the lifestyle strategy adopted and cautiousness of the strategy), and this leads to

bigger deviations for bsgt and therefore a bigger mean shortfall;

2 — as before, the mean shortfall curve increases more smoothly for bggt than for bgy (Note that, in
some places, the curve appears to be decreasing, but this is a small effect and may be due to the
relatively small number of cases considered — recalling that the mean shortfall does not consider the
deviations from the target of the 1000 simulations, but only the simulations in which the target is
missed). This difference in smoothness can be explained in the following way. When we move from
the left to the right of the graph, the strategy becomes more aggressive and this leads to results that
are more spread out in terms of final fund achieved, affecting directly the net replacement achieved
in the bz case. In the bgt case, this effect is not so direct, as the final fund has still to be
transformed into a net replacement ratio by applying the variable conversion rate; therefore, it may
happen that, in some of the cases of failure, the effect of a very low final fund may be reduced by a

lower than usual conversion rate (i.e. a lower a ). Again, increasing the aggressiveness of the

strategy will affect only the final fund achieved, not the distribution of the ssmulated rates of return

of the low risk asset, and this has a more adverse effect on the bz case than the bzt case.

These 2 features explain the shape of the curves and the fact that, in al of the figures, the bz, and

the bsot curves cross over.
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VaR at 5% confidence.
The three graphs of Figure 8 report the VaR at 5% confidence with the three different targets. We

observe the following points:

1 —the VaR curves are fairly stable when a changes and they dlightly increase with low — medium

values of a in the case of mbased targets;

2 —the VaR curve lies always at a higher level for the bgy case than for the bsst one and the two
curves do not cross over. This underlines the annuity risk that the member hasto face, asthe VaR at
5% confidence is the 5 percentile of the distribution of the net replacement ratio and the fact that
the VaR of the bsot is lower than the VaR of the by indicates that the poor outcomes are more

adverse in the case of avariable annuity rate;

3 —for high values of a the VaR curves stay in the same range (60% - 65%), regardless of the target

chosen.

The relative stability of the VaR values shown in Figure 8 is explained by the effect of increasing a
on the underlying ssmulated distributions of bz and bsot. These are not shown here but examination
of these distributions and the associated sample moments and quantiles shows that, as a increases,
the means, medians and standard deviations al increase, as do the higher quantiles eg the 75"
However, the lower quantiles are relatively stable (and these, of course, directly affect the VaR
estimates), representing the net effect of 2 conflicting influences — distributions with increasing

means and increasing spreads about the means.

27



FIGURE 6: PROBABILITY OF FAILING THE TARGET
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FIGURE 7: MEAN SHORTFALL
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FIGURE 8: VaR AT 5% CONFIDENCE
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5.4 EFFECT OF CHANGING CORRELATION BETWEEN THE ASSET RETURNS

Up to now (in Figures 5-8) the downside risk borne by the member has been analysed in the case of
uncorrelated assets, i.e. r=0. Tables 1, 2 and 3 and Figures 9 and 10 report the different results
relative to the three risk measures when we let the correlation factor vary fromr =-1tor =1 (fora

term of 30 years and r*-based targets).

We observe that, when r changes, there are very small changes in the behaviour of the three risk
measures. This phenomenon is to be explained by considering the behaviour of the optimal
investment strategies: the optimal investment strategy changes very little when the correlation factor
r varies, and this is due to the small influence of the coefficient r ony; (consider formula (12)

above), compared to the much larger influence of other factors like a and the targets F.. As noted

earlier, asimilar result has been found by Chopra and Ziemba (1993) in respect of covariances.

TABLE 1: PROBABILITY OF FAILING THE TARGET WHEN r CHANGES

PROBABILITY OF FAILING THE TARGET
r=-1 r=-1/2 r=0 r=1/2 r=1
b30 b30t b30 b30t b30 b30t b30 b30t b30 b30t
a=0 60.00% | 57.90% | 65.80% | 59.30% | 71.20% | 60.00% | 75.50% | 61.40% | 73.30% [ 62.00%
a=1 44.00% | 51.60% | 47.90% [ 53.10% [ 52.20% | 54.30% | 57.40% | 54.90% | 57.50% | 54.60%
a=2 31.60% | 47.30% | 34.00% | 48.10% | 36.90% | 48.80% | 39.00% | 50.20% | 40.00% [ 49.30%
a=3 22.90% | 41.80% | 23.30% | 43.20% | 24.40% | 45.00% | 25.10% | 45.00% | 23.90% | 43.90%
a=4 17.60% | 37.00% | 18.10% | 38.60% | 18.00% | 40.00% | 17.90% | 40.90% | 16.40% | 40.90%
a=5 15.00% | 33.10% | 14.90% | 34.30% | 14.10% | 36.10% | 14.20% | 36.90% | 13.60% | 36.40%
a=7.5 10.80% | 23.20% | 11.00% | 24.90% | 11.30% | 26.70% | 11.70% | 28.90% | 11.90% | 28.80%
a=10 10.70% | 17.50% | 11.10% | 18.70% | 11.20% | 19.50% | 11.80% | 20.10% | 12.70% | 20.70%
a=12.5 11.30% | 14.00% | 11.90% | 14.70% | 12.30% | 15.00% | 12.60% | 15.10% | 13.40% | 15.40%
a=15 12.30% | 13.50% | 12.60% | 13.40% | 12.90% | 13.10% | 13.20% | 13.90% | 13.50% | 14.20%
a=20 13.00% | 13.30% | 13.00% | 13.70% | 13.40% | 13.90% | 13.50% | 14.00% | 13.60% | 14.50%
a=25 13.30% | 13.80% | 13.30% | 13.90% | 13.40% | 14.10% | 13.50% | 14.40% | 13.70% | 14.70%
a=30 13.30% | 13.80% | 13.30% | 14.20% | 13.50% | 14.40% | 13.70% | 14.80% | 13.80% | 14.90%
a=40 13.50% | 14.40% | 13.50% | 14.80% | 13.60% | 14.90% | 13.80% | 15.10% | 13.90% | 15.40%
a=50 13.60% | 14.70% | 13.60% | 14.90% | 13.70% | 15.10% | 13.80% | 15.20% | 13.90% | 15.40%
a=60 13.60% | 14.80% | 13.60% | 15.00% | 13.70% | 15.10% | 13.80% | 15.20% | 13.90% | 15.40%
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TABLE 22 MEAN SHORTFALL WHENTr CHANGES

MEAN SHORTFALL

r=-1 r=-1/2 r=0 r=1/2 r=1

b30 b30t b30 b30t b30 b30t b30 b30t b30 b30t

10.93% | 18.20% [ 10.57% | 18.51% [ 10.39% | 18.97% | 10.35% | 19.09% | 10.95% | 19.28%

10.55% | 16.91% [ 10.16% | 17.18% [ 9.77% | 17.54% | 9.26% | 17.87% | 9.57% | 18.20%

10.89% | 15.38% [ 10.42% | 15.93% [ 9.87% | 16.45% | 9.51% | 16.58% | 9.43% | 17.08%

12.04% | 14.62% | 11.98% | 14.98% | 11.52% | 15.16% [ 11.27% | 15.74% | 11.82% | 16.14%

13.38% | 14.10% [ 13.03% | 14.26% [ 13.09% | 14.52% | 13.49% | 14.88% | 15.16% | 15.08%

14.20% | 13.55% [ 14.29% | 13.80% [ 15.48% | 13.93% | 16.15% | 14.37% | 17.90% | 15.06%
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18.71% | 14.41% [ 19.17% | 14.00% [ 19.72% | 13.89% | 20.69% | 13.79% | 22.41% | 14.59%
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o

20.32% [ 16.52% | 20.69% | 16.14% | 21.79% | 16.26% | 22.26% | 16.59% | 22.14% | 16.78%

(&)]

20.94% [ 20.09% | 20.86% | 19.82% | 21.32% | 20.13% | 21.89% | 20.92% | 21.65% | 21.05%

P I
N

20.52% | 21.12% | 20.83% | 21.99% | 21.23% | 23.30% | 21.60% | 22.58% | 22.02% | 23.05%

N
o

20.83% [ 22.36% | 21.44% | 22.32% | 21.41% | 22.63% | 21.84% | 23.09% | 22.10% | 22.75%

20.88% [ 22.11% | 21.37% | 22.45% | 21.62% | 22.56% | 21.86% | 22.51% | 21.95% | 22.56%

WIN

21.00% [ 22.27% | 21.40% | 22.05% | 21.48% | 22.16% | 21.67% | 22.14% | 22.00% | 22.49%

N

20.84% [ 21.67% | 21.26% | 21.51% | 21.52% | 21.85% | 21.62% | 22.07% | 21.87% | 22.09%

20.76% [ 21.48% | 21.15% | 21.61% | 21.39% | 21.73% | 21.63% | 21.99% | 21.87% | 22.09%
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20.76% | 21.38% | 21.15% | 21.49% | 21.39% | 21.74% | 21.63% | 21.99% | 21.87% | 22.09%

TABLE 3: VaR AT 5% CONFIDENCE WHEN r CHANGES

VAR AT 5% CONFIDENCE

r=-1 r=-1/2 r=0 r=1/2 r=1

b30 b30t b30 b30t b30 b30t b30 b30t b30 b30t

61.80% [ 54.57% | 62.40% | 54.34% | 62.04% | 54.74% | 59.81% | 54.40% | 58.32% | 54.83%

65.65% | 56.54% | 65.12% | 57.08% | 65.67% | 57.24% | 66.06% | 56.90% | 63.32% | 57.24%

67.88% | 59.23% | 68.21% | 58.74% | 68.83% | 59.77% | 67.87% | 59.54% | 66.85% | 59.28%

70.15% [ 60.49% | 70.69% | 60.98% | 71.14% | 61.49% | 71.47% | 61.66% | 70.79% | 61.78%

71.98% | 62.55% | 72.85% | 62.74% | 72.62% | 63.31% | 72.69% | 62.71% | 71.71% | 63.80%

73.63% | 64.56% | 73.67% | 65.33% | 73.15% | 65.33% | 71.76% | 64.74% | 70.52% | 64.92%
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73.76% | 65.57% | 71.98% | 65.02% | 71.03% | 64.04% | 68.10% | 64.65% | 64.71% | 62.52%
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70.60% [ 65.57% | 70.49% | 64.75% | 69.68% | 64.83% | 65.22% | 63.48% | 64.71% | 61.76%

(&)]

69.65% | 64.72% | 67.05% | 63.50% | 65.22% | 62.57% | 64.71% | 61.76% | 63.76% | 61.76%

P I
N

65.22% | 63.80% | 65.22% | 62.93% | 64.71% | 61.78% | 63.76% | 61.76% | 63.60% | 61.76%

N
o

63.80% | 61.78% | 63.76% | 61.76% | 63.60% | 61.76% | 63.60% | 61.65% | 63.60% | 61.65%

63.60% | 61.76% | 63.60% | 61.65% | 63.60% | 61.65% | 63.60% | 61.65% | 63.60% | 61.65%

WIN

63.60% [ 61.65% | 63.60% | 61.65% | 63.60% | 61.65% | 63.60% | 61.65% | 63.36% | 61.65%

N

63.60% [ 61.65% | 63.60% | 61.65% | 63.36% | 61.65% | 63.36% | 61.65% | 63.36% | 61.65%

63.36% [ 61.65% | 63.36% | 61.65% | 63.36% | 61.65% | 63.36% | 61.65% | 63.36% | 61.65%

DD (DD (DD [D DD D (DD (DD D
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63.36% | 61.65% | 63.36% | 61.65% | 63.36% | 61.65% | 63.36% | 61.65% | 63.36% | 61.65%
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FIGURE 9: RISK MEASURESWHEN r CHANGES (b30)

Probability of failing target whenr changes (b30)
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FIGURE 10: RISK MEASURESWHEN r CHANGES (b30t)

Probability of failing target when r changes (b30t)
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6. CONCLUDING COMMENTS

We have investigated the financial risks in a defined contribution pension scheme, considering the
investment risk borne by the member during the accumulation period up to retirement and the

annuity risk arising when the fund is converted into an annuity at retirement.

We have analysed the investment allocation and the downside risk faced by the retiring member,
where optimal investment strategies (derived from the dynamic programming approach of Vigna
and Haberman (2001)) have been adopted. The behaviour of the optimal investment strategy has
been analysed alowing for changes in the disutility function (via the parameter a ). Three different
risk measures have been considered in analysing the final net replacement ratios achieved by the
member: the probability of failing the target, the mean shortfall and a Value at Risk type measure.
We have considered the relationship between the risk aversion of the member and these different
risk measures in order to understand better the choices confronting different categories of scheme

member.

We have aso considered the case of a 2 assets portfolio, where the asset returns are correlated and

consider the sensitivity of the results to the level of the correlation coefficient, r .

The main results of our investigation are the following:

The optimal investment strategy to be adopted by a risk averse member of a defined
contribution pension scheme is the so-called lifestyle strategy, which consists in investing the
whole fund in high risk assets at the beginning of the membership, and then switching into low
risk assets some years prior to retirement. The point in time when the switch occurs depends on
both the risk aversion of the individual (the more risk averse, the sooner the switch) and the time
to retirement (the longer the membership, the later the switch).

The optimal investment strategy for a risk neutra member (for whom a ® ¥) of a defined
contribution pension scheme is to invest the whole fund in high risk assets for the whole period
of membership, and never switch into low risk assets.

The different risk measures of the downside risk faced by the member of a defined contribution

pension scheme give different and contradictory indications.
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Looking at the results for the probability of failing the target, the conclusion seems to be that
increasing the risk aversion of the individual or (which is the same) adopting more cautious
strategies leads to greater number of failures relative to atarget chosen apriori.

Looking at the results for the mean shortfall, the conclusion seems to be that increasing the risk
aversion of the individual or (which is the same) adopting more cautious strategies leads to
dlightly lower mean shortfall, which means more limited reductions to pensioner income when a
failure occurs.

Looking at the VaR results, we note that the VaR at 1%, 5% and 10% level does not change
very much when changing the risk aversion of the individual.

The effect of changing the correlation factor r between the assets is very small both on the

optimal investment strategy and on the downside risk borne by the member of the scheme.

We suggest that the risk profile of the individual and the trade-off between different risk measures
of the downside risk borne by the member (for example, the number of failures and size of failures
in respect of a certain target), are important factors to be taken into consideration when determining

the choice of investment strategies in defined contribution pension schemes.
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