
INTERNATIONAL CENTRE FOR ECONOMIC RESEARCH

WORKING PAPER SERIES

Andrea Roncoroni

CHANGE OF NUMERAIRE FOR AFFINE ARBITRAGE PRICING MODELS
DRIVEN BY MULTIFACTOR MARKET POINT PROCESSES

Working Paper no. 22/2001
September 2001

APPLIED MATHEMATICS
WORKING PAPER SERIES

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6929001?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Change of Numéraire for Affine Arbitrage Pricing Models
Driven by Multifactor Marked Point Processes

Andrea Roncoroni
ICER & Università degli Studi di Torino,

Italy
e-mail: roncoron@cims.nyu.edu

August 2001

Abstract

We derive a general formula for the change of numéraire in multifactor affine arbitrage
free models driven by marked point processes. As a complement, we present both affine
structures and change of measures in the general setting of jump diffusions. This provides for
a comprehensive view on the subject.
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Interest-rate derivatives can be expressed as contingent claims on zero-coupon bonds. Thus, one
may wish to build an arbitrage-free bond-market model where discount bonds have a predeÞned
convenient form that facilitates computations for pricing. Several particular short rate models
generate bonds of exponential affine form. On the one hand, they are solution of the fundamental
pricing equation with Þnal value identically equal to 1: that is, for such models, the backward
equation can be explicitly solved and has an exponential affine solution. On the other hand, such a
solution, the bond price, enters the pay-off function of interest rate European contingent claims; if
these function is linear in the bond price, one intuitively looks for a solution of the backward equation
for the bond-option of the exponential affine form. In any case, one may look for the characteristic
function of the underlying interest rate process. This is itself a solution of the backward equation
with boundary condition an exponential complex function. Still based on a purely intuitive ground,
one may still have a strong conÞdence to Þnd a solution of this problem, that is the characteristic
function, of exponential affine form.
Several example of particular short rate models give rise to exponential affine bond prices and

let one successfully accomplish the above stated program delivering explicit expressions for bond-
options and for the characteristic function of the underlying short rate.
This arises the issue of Þnding sufficient and necessary conditions for short rate process to give

rise to an exponential affine bond market.
In this section the problem of determining such conditions is solved in a pretty general case.

SpeciÞcally we work within arbitrage pricing theory, in a short rate framework, where a model is
deÞned by a short rate process of Markovian type, that is the discount bond price is generated by
formula:

PT (t,ω) = EP
∗
t

³
e−

R T
t
r(s)ds

´
(ω) = F (t, r (t,ω) ;T ) ,

where the last equality hold true for some function F since Markovianity of r implies that conditional
expectations with respect to Ft (i.e.e the cumulated information up to t) coincide with the σ-
algebra Gr(t) generated by the random variable r (t,ω) (i.e.e the information generated by the only
observation of the short rate at time t) and thus are functions of the short rate at time t. We work
in a multifactor setting, in that r (t) is generated by a multidimensional marked point Markovian
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Brownian diffusion:

dX (t) = µ (t,X (t)) dt+Σ (t,X (t)) · dW (t) +

Z
E

m (t,X (t) , y)µ (dt, dy;ω) (0.1)

according to:

r (t,ω)
def
= R (t,X (t,ω)) . (0.2)

Here X is in Rnand µ,Σ,m are deterministic functions with values respectively in Rn, M (n× d) ,
Rn; W is a d-dimensional Brownian motion; µ is a Random measure on a Lusin space E, with
compensator given by ν (t,X (t) , dy) dt for a suitable deterministic function ν. Notice that the
compensator is absolutely continuous with respect to the Lebesgue measure on the time axis and
the randomness is exclusively through the current state of the factor process.
In synthesis, a model is speciÞed by (µ,Σ,m, ν;R). Indeed one might redeÞne µ by setting

its compensator as �ν
def
= mν and specify a model by (µ,Σ,eν;R), that is a tern deÞning the semi-

martingale factor and a short rate process generated from it. Since in concrete models one usually
takes for a Poisson measure and uses m to model the impact factor on X stemming from µ, it is
more convenient to work with a model speciÞcation of form (µ,Σ,m, ν;R).
A bond market is exponential affine, or simpler exp-affine, if F has form:

F (t, r;T ) = exp (α (t, T )− β (t, T ) ·X (t)) . (0.3)

The minus sign in front of β is conventional: if this coefficient is strictly positive, then one realize
the appealing property that bond prices are decreasing in underlying short rates. Our aim is to
Þnd necessary and sufficient conditions on the model (µ,Σ,m, ν;R) such that the resulting bond
market is exp-affine.
To warm up, we begin with the easiest case of a single factor short rate process of continuous

diffusion type. Then we proceed with identiÞcation of sufficient conditions in the general case by
studying a more general problem that will let us to apply Fourier transform analysis in order to
come up to valuation formulae for European derivative assets with exponential pay-off function.
Finally we attack the much harder problem of identifying necessary conditions for exp-affine bond
markets. The basic tool we use will be Ito calculus, a part from the point concerning necessary
conditions in the general case of multidimensional marked point diffusions.

1. Affine term-structures driven by one-factor continuous diffusions

Let r be given by:
dr (t) = µ (t, r (t)) dt+ σ (t, r (t)) dW (t) . (1.1)
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This corresponds to setting (0.1) , (0.2) with R (t, r) = X ∈ R and m = 0.
Fix a maturity T > t0 deÞning a discount bond PT . Suppose this bond has an exp-affine form

PT (t) = exp (α (t, T )− β (t, T ) r (t)). In other words, this is a solution of the backward equation£
∂t + µ∂r +

1
2
σ2∂2rr − r·

¤
F (t, r) = 0 on [t0, T ]×R, with terminal condition F (T, r) ≡ 1, computed

at (t, r (t)). Plugging partial derivatives, this is equivalent to state that functions α and β satisfy:

∂tα (t, T )− r∂tβ (t, T )− µ (t, r) β (t, T ) + 1
2
σ2 (t, T ) β2 (t, T )− r = 0 (1.2)

for all t ∈ [t0, T ]. We want to Þnd sufficient condition for this to hold, that is functions µ and σ
such that (1.1) admits a unique solution and there exist functions α and β satisfying the equation
above with terminal conditions:

α (T, T ) = 0 (1.3)

β (T, T ) = 0, (1.4)

which derive from exp (α (T, T )− β (T, T ) r) = PT (T ) = 1 (note that a+bx is identically zero for all
x in R iff both a and b are zero: this is the linear matching principle). In other words we look for a
short rate of interest process r, solution of (1.1), generating an arbitrage-free bond market model of
exp-affine form. Notice that problem (1.2),(1.3) , (1.4) is equivalent to simultaneously imposing both
an exp-affine bond price and the absence of arbitrage opportunities in that an exp-affine function
satisÞes the backward equation for a discount arbitrage-free bond price.
Equation (1.2) is linear in r. Thus, one argues that functions µ and σ2 linear in r let equation

(1.2) preserve its linear structure to which one may apply the linear matching principle and come
up to a system of two ordinary differential equation in α and β. More precisely, if µ (t, r) =
k0 (t) + k1 (t) r and σ (t, r) =

p
h0 (t) + h1 (t) r equation (1.2) becomes:

0 =

·
∂tα (t, T )− k0 (t)β (t, T ) + 1

2
h0β

2 (t, T )

¸
+

·
−∂tβ (t, T )− k1β (t, T ) + 1

2
h1β

2 (t, T )− 1
¸
r

for each Þxed T , identically for any t ∈ [t0, T ]. This happens iff, for each T , both of the coefficient
of this linear relation in r are identically zero along t ∈ [t0, T ], namely:½ −∂tβ (t, T )− k1β (t, T ) + 1

2
h1β

2 (t, T )− 1 = 0 t0 ≤ t ≤ T
β (T, T ) = 0½

∂tα (t, T )− k0 (t) β (t, T ) + 1
2
h0β

2 (t, T ) = 0 t0 ≤ t ≤ T
α (T, T ) = 0.

(1.5)
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Conclusion: if, for each T > t0, the short rate process is given by:

dr (t) = [k0 (t) + k1 (t) r (t)] dt+
p
h0 (t) + h1 (t) r (t)dW (t) ,

for deterministic functions k0,k1,h0,h1 of t, then the bond prices are of exp-affine form PT (t) =

F (t, r;T ) = exp (α (t, T )− β (t, T ) r (t)) where β (·, T ) is the solution of the Riccati equation (1.5)
and α (·, T ) is the solution of the degenerate linear equation obtained by substituting solution
β (t, T ) in expression (1.5).
In the next section, this sufficient condition will be generalized for multifactor short rate models

driven by marked point diffusion factor dynamics. The technique employed will be similar to
that here shown. In the following section we will prove the converse for multifactor short rate
models driven by continuous diffusions. The result holds for single-factor short rate models driven
by marked point diffusions. Next, a counterexample will show that for multidimensional factor
processes of marked point diffusion type, one may well have an affine term structure without factor
processes possessing linear coefficients.

2. Affine term-structures driven by multi-factor marked point diffusions

Wework within the setting deÞned by (0.1) , (0.2) and look for sufficient conditions on (µ,Σ,m, ν;R)

such that the resulting bond price dynamics EP∗t
³
e−

R T
t
R(s,X(s))ds

´
has an exp-affine form (0.3). We

indeed study a slight variation of the problem which actually accommodates the Fourier transform
analysis method for derivative pricing that will be dealt with in the last section of this paragraph.

Theorem 2.1.
Let a multi-factor short rate model be given by:

r (t,ω)
def
= R (t,X (t,ω))

dX (t) = µ (t,X (t)) dt+Σ (t,X (t)) · dW (t) +
R
E
m (t,X (t) , y)µ (dt, dy;ω) ,

whereW is a d-dimensional Brownian motion under P∗, µ is a random measure on [t0, T ]× E, for
any T > t0. X is thus an n-dimensional marked point diffusion process. Suppose that:

� (affinity) drift, squared volatility, compensator, short rate function are all affine in the fac-
tor state and the marked point coefficient is independent of the factor process, that is the
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determining quintuple (µ,Σ,m, ν;R) has form:

µ (t,x)
def
= k0 (t) +K1 (t) · x

Σ (t,x)Σ (t,x)T
def
= H0 (t) +H1 (t) · x

m (t,x, y)
def
= m (t, y)

ν (t,x, dy) dt
def
= l0 (t, dy) + l1 (t, dy) · x

R (t,x)
def
= ρ0 (t) + ρ1 (t) · x,

(2.1)

where H (t) : Rn →MS (n, d) , the class of symmetric positive deÞnite matrices n by d.

� (ode-s) coefficients are such that solutions β and α to the following system of ordinary
differential equations exist:

∂tβ (t, T ) = −ρ1 (t)−K1 (t)
T β (t, T ) + 1

2
β (t, T )TH1 (t)β (t, T )

+

Z
E

h
e−β(t,T )

Tm(t,y) − 1
i
l1 (t, dy)

β (T, T ) = u
∂tα (t, T ) = ρ0 (t) + k0 (t) · β (t, T )− 1

2
β (t, T )TH0 (t)β (t, T )

−
Z
E

h
e−β(t,T )

Tm(t,y) − 1
i
l0 (t, dy)

α (T, T ) = 0.

(2.2)

� (regularity) local martingales are true martingales.

Then, for each u ∈ Rn, the process:

ψ (t,ω;u)
def
= Et

³
e−

R T
t
R(s,X(s))dseu·X(T )

´
(2.3)

has exponential affine form in X, namely:

ψ (t,ω; u) = exp (α (t, T )− β (t, T ) ·X (t)) .

Corollary 2.2. Under the above mentioned conditions, the generated arbitrage-free bond-market
model is exp-affine. Just take u = 0.
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Proof.
1. The problem consists in solving equation:

exp
³
α (t, T )− β (t, T )TX (t)

´
= Et

³
e−

R T
t
R(X(s))dseu·X(T )

´
in α and β, for given T > t0 and any t ∈ [t0, T ]. Throughout the proof, T is Þxed.
2. The above expression reminds the martingale property if not for the time dependence of the expression inside
the conditional expectation. To get rid of it, one may multiply both of sides by exp

³
− R t

t0
R (s,X (s)) ds

´
and use a

well-known property of conditional expectations to obtain the equivalent equation:

M (t) := e
− R t

t0
r(X(s))ds

exp
³
α (t, T )− β (t, T )TX (t)

´
= Et

³
e
− R T

t0
r(X(s))ds

eu·X(T )
´

(2.4)

This equation holds true for t ∈ [t0, T ] iff: 1) the left-hand-side is a martingale and 2) both of sides have equal Þnal
value. This follows from the a.s.s-P∗ unicity of the conditional expectation operator.
3. The latter condition is:

e
− R T

t0
R(s,X(s))ds

exp
³
α (T, T )− β (T, T )TX (t)

´
= e

− R T
t0
R(s,X(s))ds

eu·X(T ),

that is coefficients α and β must satisfy:

α (T, T ) = 0

β (T, T ) = u.

4. By applying Ito formula toM and imposing the resulting drift to be zero, one obtains equations for α and β as in

the statement of the theorem. In other words, one imposes the above exponential to satisfy the backward equation

relative to a discount bond in the considered market. Driftless Ito processes are local martingales. Regularity

conditions ensure the true martingale property for M . Notice that one is allowed to apply Ito formula to M because

it is a product of a Þnite variation process times an exponential which, by

(2.4), is itself a product of a Þnite variation process and a local martingale; thus M is a semimartingale.
5. To simplify notation, set: R = R (t,X (t)), M =M (t), α = α (t, T ), β = β (t, T ), X− = X− (t), Σ = Σ (t,X (t)),
dl0 = l0 (t, dy), dl1 = l1 (t, dy), dµ = µ (dt, dy;ω) and similarly for other measures and time dependent variables. By
Ito formula, we have:

dtM (t) = −RMdt+ e−
R T
t0
Rds
eα−β ·X (∂tαdt− ∂tβXdt− βdtXc) + 1

2Tr
h
He
£
eα−β ·X

¤
ΣΣT

i
dt

+
R
E

£
eα−β [X−+m(t,X(t),y)] − eα−β ·X−

¤
dµ,

that is:

dtM (t) = −RMdt+ e−
R T
t0
Rds
eα−β ·X−

³
∂tαdt− ∂tβXdt − βTµdt− βTΣdW

´
+ 1

2β
TΣΣTβdt

+
R
E

£
e−βm(t,X(t),y) − 1¤d (ν + µ) ,
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where µ is the compensated martingale measure under the underlying probability measure P∗. By substituting
expressions (2.1) and setting the Þnite variation term to zero one obtains:

0 = −R+ ∂tα− ∂tβ ·X − β ·µ+1
2
βTΣΣTβ +

Z
E

h
e−β ·m(t,y) − 1

i
dν

= −ρ0 − ρ1X + ∂tα− ∂tβX − β · k0 − βK1X +
1

2
βTH0β̄+

1

2
βTH1Xβ +

Z
E

£
e−βm − 1¤ (dl0 + dl1X) .

By gathering terms homogeneous of degree 1 in the factor process, one has:

0 = −ρ0 + ∂tα− β · k0 +
1

2
βTH0β̄ +

Z
E

£
e−β ·m − 1¤ dl0 + ·−ρ1 − ∂tβ −KT

1β +
1

2
βTH1β +

Z
E

£
e−β·m − 1¤dl1¸X.

Finally, the principle of affinity matching gives (2.2).

An example of regularity conditions referred to in condition 3. are:

1. E
³R T

t0

¯̄
M (t)

R
E

£
e−β(t,T )m(t,y) − 1¤ (l0 (t, dy) + l1 (t, dy)X (t))¯̄ dt´ <∞

2. E
·³R T

t0
β (t, T )TΣ (t,X (t))β (t, T )TΣ (t,X (t)) dt

´ 1
2

¸
<∞

3. E (|M (T )|) <∞,
where M may be computed in terms of α,β and R by its very deÞnition. That is, the compensator
of the marked point term is in L1 (Ω× [t0, T ] ,P∗ ×L), the volatility is in L2 (Ω× [t0, T ] ,P∗ ×L)
and the Þnal discounted gain is an integrable r.v.
In practical applications, one decomposes the compensating measure as:

ν (t,x, dy) dt
def
= eν (t,x, dy)λ (t,x) dt,

where λ (t,x) =
R
E
ν (t,x, dy) interprets a measure of arrival rate and eν is a conditional probability

density of jumping in points belonging to E given that a jump has occurred.. Further one assumeseν to be independent of x. In this context, the affine condition for ν translates to λ being affine in
x.
Suppose one is given an affine bond market driven by a multidimensional factor processX generating
an affine short rate process r (t) = R0+R1 ·X (t). Consider a contingent claim on X whose proÞle
is given by a Þnal cash amount of h (X (T )) Euros. The time t value of this claim is:

V (t,X (t)) = EP∗t
³
e
R T
t
r(X(u))duh (X (T ))

´
.
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In section (5) we will see that the general theorem above stated lets a direct pricing of such claims
in the case of either affine or exponential affine pay-off functions in the factor X. If this is not the
case, one may proceed as follows. First, redeÞne the state variable as:

X∗ (s)T
def
=

·
X (s)T

¯̄̄ Z s

t

r (X (u)) du

¸
and the pay-off functions as:

h∗ (x∗)
def
= h

³¡
x∗(1), ...,x

∗
(n)

¢T´
g∗ (s,x∗)

def
= g

³
s,
¡
x∗(1), ...,x

∗
(n)

¢T´
,

for x∗∈Rn+1. A x∗ indicates a vector in Rn+1, whereas x identiÞes an element in Rn. Secondly,
write the pricing expectation as:

V (t,X (t)) = EP∗t
³
eX

∗
(n+1)

(T )h∗ (X∗ (T ))
´
.

Thirdly, compute the Green function ψ (s,y∗; t,x)of X∗ (s) given t, that is the conditional density
at point y∗ of the random variable X∗ (s) given X∗ (t) = x∗. Finally compute:

V (t,X (t)) =

Z
D∗

h
ey

∗
(n+1)h∗ (y∗)

i
ψ (T,y∗; t,x∗) dy∗,

where D∗ is the support of the process X∗. Since pay-off do not depend on y∗(n+1), one can decuple
the integral above in two parts, the former over the support D1 of y∗(n+1), the latter on the support
D of X:

V (t,X (t)) =

Z
D1×D

h
ey

∗
(n+1)h

³¡
y∗(1), ...,y

∗
(n)

¢T´i
ψ (T,y∗; t,x) dy∗

=

Z
D

·Z
D1

ey
∗
(n+1)ψ (T,y∗; t,x∗) dy∗(n+1)

¸
h (y) dy

def
=

Z
D

ψ (T,y; t,x) h (y) dy,

where x :=
³
x∗(1), ...,x

∗
(n)

´T
. The problem is to evaluate this green function. By deÞnition:

ψ (T,y∗; t,x∗) = EP∗t
¡
e−iy

∗·X∗(T )¢ .
9



Since the considered bond-market model is affine, this expectation is recovered by the explicit
formula in the theorem, where u = −iy∗, ρ0 = 0, ρ1 = 0 and the dynamics of the Þrst n components
of X∗ equates that of X, while the (n+ 1)-th component is given by:

dtX
∗
(n+1) (t) = dt

µZ t

t0

r (s) ds

¶
= r (t) dt = R0 +R1 ·X (t)

and thus it is affine too.

3. Necessary conditions for exponential-affine bond markets

We have seen that affinity conditions on the model coefficients imply exp-affine bond prices. This
holds for short rate dynamics driven by marked point diffusions. Turning the other way around, the
exp-affinity of a bond market does not in general imply affinity in coefficients. Indeed, under pretty
weak assumption, one can prove the reverse side claim in the case of short rate dynamics driven
by multidimensional continuous diffusions. However, a simple counterexample shows that this is
not the case once one turns to more general processes. Moreover, even the sufficient conditions are
subject to some degree of incertitude about the regularity conditions required in the theorem. In
particular, L1 and L2 conditions are often not very easy to check since explicit solutions of the two
ode-s are pretty rarely available (recall the Riccati equations are not analytically solvable unless one
already knows one particular solution) and this is necessary for having an analytical expression for
M to plug into regularity conditions. In view of these remarks, one might legitimately argue that Ito
calculus is not the best analytical tool to deal with such Markov processes. From a purely theoretical
ground, it can be shown that classical tool for studying Markov processes such as generators and
resolvents, deliver nicer results in term of necessary and sufficient conditions. Yet, from a practical
side, this method has not much more to offer than Ito calculus.
In this section we investigate necessary conditions for exp-affinity of a bond market, provide the

stated counterexample and summarize recent results obtained using the classical tool-kit from the
theory of Markov processes.
Suppose an exp-affine bond market is given in a multidimensional continuous diffusion setting.

By applying Ito formula to the exponential-affine function representing the bond price and the
underlying factor process, setting the resulting drift to 0 and supposing that the short rate is affine
in the facto process, one comes up to:

0 = −ρ0 − ρ1 · x+ ∂tα− ∂tβ · x− β · µ+
1

2
βTΣΣTβ̄.
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This follows immediately by replacing R with ρ0 + ρ1 · x and delete the marked point term. This
condition is necessary for a exp-affine bond prices. We look at it as an equation in the unknowns
µ and Σ. Set A := ΣΣT. After gathering the Þrst four summand into a unique affine function in
x, say −d (t, T,x), the previous equation takes form:

h
βT, β(1)2

2
, ... β(1)β(n)

2
, β(2)β(1)

2
, ..., β(n)2

2

i
| {z }

def
= cT(t,T )

·



µ

A11

...

A1n

A21

...

Ann


| {z }
def
= h(t,x)

= d (t, T,x) ,

or:
c (t, T ) · h (t,x) = d (t, T,x) ,

where vectors are columnwise expressed and c has dimension N := n + n2−n
2
+ n (i.e.e dimension

of β + number of elements in the upper-east triangular part of A + number of elements in the
main diagonal of A). For each T > t0 identifying a bond, last equation must hold identically for
t ∈ [t0, T ] and x ∈ Rn.
Condition I : for each t > t0, there exist times T1, ..., Tn greater than t, such that matrixC (t, T1, ..., Tn),
deÞned by:

C (t, T1, ..., Tn)
def
=

 c (t, T1)...

c (t, Tn)

 ,
is invertible.
Suppose that condition I holds. Then, for each time t, one has:

h (t,x) = C (t, T1, ..., Tn)
−1

 d (t, T1,x)...

d (t, Tn,x)

 .
Since all d are affine in x, then the components of h are affine in x too.

Theorem 3.1. If a short rate is affine in a factor process driven by a multidimensional continuous
diffusion satisfying condition I above stated, then the corresponding bond market is exp-affine only
if drift and squared diffusion coefficients of the factor dynamics are all affine in the factor.

We now turn to applications involving affine term structures.
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4. A method for identifying factors

Multi-factor models serves the scope of driving bond dynamics by several imperfectly correlated
noises underlying a given market. Once such noises are detected in their cardinality and impact
over the discount function, the model can be used to price exotic interest-rate derivatives whose
pay-off function acts on several points on the discount function, either directly or through interest-
rates. It is just the asynchronous movement of these points (discount factors or rates) that reßects
the presence of several underlying factors. Intuitively, one may argue that a good property of a
multi-factor model is the identiÞcation of these noises with market observables, such as rates or
yields. If this is possible, one would be given a short rate dynamics as a deterministic function of
several market values. In principle one could estimate these dynamics, impose a structure and Þnd
and estimate of the prices of risk for all of these factors and come up with a risk-neutral dynamics
of the short rate in terms of observable quantities. this can be used to price derivatives.
In this section we identify factor with some observables and give some examples of concrete affine

term-structure models. We present a method for changing variables in a given affine model. Suppose
an affine structure has already been determined in that PT (t) = exp (α (t, T )− β (t, T ) ·X (t)), for
an n-dimensional factor process X. For each i = 1, ..., n, let Fi be a function of X, possibly
representing observable values in the market place.
For instance, Fi may be the yield in τ i years, that is:

Fi (t,X (t))
def
= − lgPt+τ i (t)

τ i
=
−α (t, t+ τ i) + β (t.t+ τ i) ·X (t)

τ i
.

Let Yi (t)
def
= Fi (t,X (t)) be the components of the observable vector-valued process Y (t). If

F : (F1, ..., Fn) is invertible with respect toX, then one can identify factorsX1, .., Xn with observable
values Y1, ..., Yn according to the relation:

X (t) = F−1 (t, Y (t)) .

In general, under the new vector of factors, the model is no more affine since:

PT (t) = exp
¡
α (t, T )− β (t, T ) · F−1 (t, Y (t))¢ .

If F−1 is affine, then the bond market stay exp-affine. This is the case for the example above.
Indeed:

F−1 (t, Y (t)) = K−1 (t) [Y (t) + k(t)] ,

12



with:

k(t)
def
=

 τ−11 α (t, t+ τ1)...

τ−1n α (t, t+ τn)

 , K def
=

 τ−11 β (t.t+ τ1)T...

τ−1n β (t.t+ τ1)
T


and thus:

PT (t) = exp
¡
α (t, T )− β (t, T ) ·K−1 (t) [Y (t) + k(t)]

¢
= exp (α0 (t, T )− β0 (t, T ) · Y (t)) .

Of course, apart from the invertibility condition of F and the affinity requirement, further constraints
are imposed by the redemption at par property of discount bonds:

α0 (t, t) = 0, β0 (t, t) = 0

and by conditions of the particular instance. For the case of yield factor, one must have:

Yi (t) = − lgPt+τ i (t)
τ i

=
−α0 (t, t+ τ i) + β0 (t.t+ τ i) · Y (t)

τ i
,

which holds iff:
α0 (t, t+ τ i) = 0, i = 1, ..., n
β0j (t.t+ τ i) = 0, j 6= i
β0i (t.t+ τ i) = 1.

This tells us nothing else but our factors are just yields, in that:

Pt+τ i (t) = exp (α
0 (t, t+ τ i)− β0 (t, t+ τ i) · Y (t)) = exp [−Yt (t)] .

If F is in C1,2, then the new factor dynamics is easily computed by Ito formula. In the case of yield
factors, if:

dX (t) = µdt+ΣdW (t) ,

one has:

dY (t) = dtF (t,X (t)) = Kµ
¡
K−1 (Y (t) + k)

¢
dt+KΣ

¡
K−1 (Y (t) + k)

¢
dW (t) .

5. Pricing via Fourier transform methods

We can use the general result in theorem (2.1) in order to compute characteristic function of
distributions and then numerically invert them so to recover the corresponding density functions.
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A typical application of this method is the following. Consider a call option on a function g of the
underlying factor expiring at T and striken at price c. For any monotonically increasing function h
one has:

V call (t) = E∗t
³
e−

R T
t
R(X(s))ds (g (X (T ))− c)+

´
= E∗t

³
e−

R T
t Rdsg (X (T )) I{−h◦g(X(T ))≤−h(c)}

´
− cE∗t

³
e−

R T
t Rdsχ{−h◦g(X(T ))≤−h◦c}

´
,

where R is a shorthand for R (X (s)). By now, h is arbitrarily Þxed. Later we will see it has to
chosen according to the functional form of the pay-off function g.
The function:

fhg (x)
def
= E∗t

³
e−

R T
t
R(X(s))dsg (X (T ))χ{−h◦g(X(T ))≤x}

´
is not easy to compute, especially due to the presence of the indicator function. Yet, it is non-
decreasing in x and thus it can be seen as a distribution function on R so that we can calculate its
Fourier transform:

F [fg] (v) =

Z
R
eivxdxE∗t

³
e−

R T
t R(X(s))dsg (X (T ))χ{−h◦g(X(T ))≤x}

´
= E∗t

µ
e−

R T
t
R(X(s))dsg (X (T ))

Z
R
eivxdxχ{−h◦g(X(T ))≤x}

¶
= E∗t

³
e−

R T
t R(X(s))dsg (X (T )) eiv(−h◦g(X(T )))

´
, (5.1)

what gets rid of the indicator. Once F [fg] (v) is computed, one can numerically invert it and recover
the values of f . The price of the call is then:

V call (t) = fg (−h (c))− cf1 (−h (c)) ,

where 1 indicates the constant function equal to 1.
For a given g, the idea is to choose h and eventually express g conveniently, such that the

conditional expectation (5.1) is of form (2.3). We examine two cases. Throughout R is affine X.
Suppose that g (x) = ea·x+d for some a. Setting h (x) = lg (x), one has:

F [fg] (v) = e
dE∗t

³
e−

R T
t R(X(s))dse(1−iv)a

TX(T )
´
,

which is given by constant ed times the exp-affine function in X provided by theorem (2.1), where
u has been replaced by (1− iv) a. An explicit expression for this expectation is given by theorem
(2.1).The following instances provide concrete derivatives in this class.
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� Bond options. The time t value of a call option written on a bond PS in an affine term
structure model, striken at c and expiring at T < S, is:

V call (t) = fg (−h (c))− cf1 (−h (c)) ,

with h = lg. This follows as PT (t) = exp (α (t, T ) + β (t, T ) ·X (t)) and thus g (x) =
exp (α (T, T ) + β (T, T ) · x (t)).

� Quanto options. A quanto option on an asset S whose value is expressed in unit of numéraire
N1, say dollars, pays out a functional of S many unities of another numéraire N2, say Euros. If
the underlying asset S is exponential affine in the factorX, say S (t) = exp (α (t) + β (t) ·X (t)),
and the conversion value ofN1 intoN2 can be expressed as an exponential affine function of the
state variable, that is each unity ofN1 at T is Þnancially equivalent to exp (a0 (T ) ·X (T ) + e0 (T ))
units of N2 and we wish to evaluate a quanto call option striken at c on the S (T ) unities of
N2, expiring at T , the pay-off is:

(exp (α (t) + β (t) ·X (t)) exp (a0 (T ) ·X (T ) + e0 (T ))− c)+
and the time t value of this derivative is given by same formula as above, with a = a0+β and
e = e0 + α. An example is a foreign bond option.

A slight extension occurs when the pay-off function g and the term determining the moneyness
of the option are different exp-affine functions, that is g (x) = ea·x+c and the indicator function is
χ{− lgm(X(T ))≤x} with m (x) = e

b·x+d. In this case:

F [fg] (v) = e
c+dE∗t

³
e−

R T
t
R(X(s))dse(a−ivb

T)X(T )
´

and u = a− ivbT.This expression lets us computes the value of trigger options.

� Exchange-assets options. An option on the exchange of two assets has pay-off:

g := max (S1 (T ) , S2 (T )) = S1 (T )χ{S1(T )>S2(T )} + S2 (T )χ{S1(T )≤S2(T )}

and has time t value decomposable as the sum of the arbitrage-free value of each of the pay-off
components. For the Þrst one, let X = (lg S1, lg S2), a = (1, 0), b = (+1,−1)T , c = d = 0
and h = exp. Similarly for the other summand.

15



� Trigger bond option. Let a contingent claim pay-off at time T the time T value of a bond PS
if the time T value of a second bond PU is above a certain ceiling d. Suppose the underlying
bond-market model is affine. The pay-off is:

g (PS (T ) , PU (T )) = PS (T )χ{PU (T )>d}
= exp (α (T, S) + β (T, S) ·X (T ))χ{−α(T,U)+β(T,U)·X(T )≤− lg d},

so that: c = α (T, S), d = β (T, S), a = β (T, S) and b = β (T, U) work out the case.

Consider pay-off functionals of the form:

g (X)
def
= α1k

T
1X (T ) + α2

Z T

t

kT2 (s)X (s) ds = ∂θ∂υe
θα1kT1X(T )+υα2

R T
t kT2 (s)X(s)ds

¯̄̄
θ=0=υ

,

where X denotes the whole trajectory of the underlying factor over [t, T ]. Then:

F [fg] (v) = E∗t
³
e−

R T
t
R(X(s))dsg (X) eiv(−g(X))

´
= E∗t

³
e−

R T
t R(X(s))ds ∂θ∂υe

θα1kT1X(T )+υα2
R T
t kT2 (s)X(s)ds

¯̄̄
θ=0=υ

× eiv(−α1kT1X(T )−α2
R T
t kT2 (s)X(s)ds)

´
= ∂θ∂υE∗t

³
e−

R T
t [R(X(s))+(υ−iv)α2kT2 (s)X(s)]dse(θ−iv)α1k

T
1X(T )

´¯̄̄
θ=0=υ

.

If the model is affine, one redeÞnes the rate function as:

R (x) = ρ0 +
¡
ρ1 + (υ − iv)α2kT2 (s)

¢
x

and applies theorem (2.1) with ρ01 = ρ1+(υ − iv)α2k2 (s) and u =(θ − iv)α1k1 to obtain an explicit
solution of the expectation inside differentiation. Taking partial derivatives gives the characteristic
function.

� Asian options. The pay-off is
³
1
T

R T
0
S (u) du− c

´
, with S exp-affine, let X (t) = lg S (t).

In both of the cases just considered, we tried to represent the transform induced by the pay-off
as a the conditional expectation of the theorem. That is the argument inside expectation must be
represented as an exponential affine function of the factor. One has two degrees of freedom. One
can use linear operators switching with conditional expectation in order to represent the real term
in exp-affine form. Also the function h is free to accommodate an exp-affine form for the imaginary
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term. When the pay-off is exp-affine, one already has an exp-affine real term; thus function h has
to be used in order for the imaginary part to be represented as an exp-affine function. In the case
of an affine pay-off, the imaginary part is already of the required form; thus h is useless a tool and
one has to play with linear operators to represent the real part as an exponential affine object. In
this case we represented an affine function as partial derivatives of an exponential affine function
with respect to dummy variables computed at 0. If we leave these variables at unspeciÞed values,
the exponential does not delete and one is left with:·

θα1k
T
1X (T ) + υα2

Z T

t

kT2 (s)X (s) ds

¸
eθα1k

T
1X(T )+υα2

R T
t
kT2 (s)X(s)ds. (5.2)

This may arise the suspect that the transform method can be applied to such kinds of pay-off..
Unfortunately this is not the case. Indeed at look at expression (5.1) show immediately that for
this kind of mixed affine-exponential pay-off, no function h exists such that h◦g (X (T )) is affine too,
what ought to be veriÞed for the theorem to apply. Therefore one cannot use this technique to value
vanilla options, such as calls and puts, one underlying assets having time T value of form (5.2). Yet
the discussion just made is not useless. Indeed, any contingent claim on an asset whose dynamics
is either of affine-integral form θα1kT1X (T )+υα2

R T
t
kT2 (s)X (s) ds or of exponential affine-integral

form exp
³
θα1k

T
1X (T ) + υα2

R T
t
kT2 (s)X (s) ds

´
and whose payoff is of mixed affine-exponential

form (5.2) (possibly with constants α1, α2 different than those at the exponent and kT1 , k
T
2 multiple

of the ones at the exponent) can be evaluated with the transform method above. If suffices to take h
equal to the identity in the former case, equal to lg in the latter and conveniently adjust the values
of variables θ and υ according to the values of the other constants and deterministic functions in
the pay-off expression. We summarize the two cases just mentioned.
If the pay-off is:

g (X) =

·
α1k

T
1X (T ) + α2

Z T

t

kT2 (s)X (s) ds

¸
eα1k

T
1X(T )+α2

R T
t
kT2 (s)X(s)dsχ

D
,

where D
def
=
n
−
³
α01k

0
1 ·X (T ) + α02

R T
t
k02 · (s)X (s) ds

´
≤ −c

o
, then the Fourier transform for h =

1 is:

F [fg] (v) = E∗t
³
e−

R T
t R(X(s))dsg (X) eiv(−g(X))

´
= E∗t

³
e−

R T
t
R(X(s))ds∂2θυe

θα1kT1X(T )+υα2
R T
t
kT2 (s)X(s)dseiv(−α1k

0
1X(T )−α2

R T
t
k02(s)X(s)ds)

´
= ∂θ∂υE∗t

³
e−

R T
t [R(X(s))+[υα2k2(s)−ivα2k02(s)]X(s)]dse[θα1k1−ivα1k

0
1]X(T )

´¯̄̄
θ,υ
,
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which is a double partial derivative of an exponential affine function determined by theorem (2.1).
This is also the expression for the Fourier transform for h = lg in the case of a pay-off of form:·

θα1k1 ·X (T ) + υα2
Z T

t

k2 (s) ·X (s) ds
¸
eθα1k1·X(T )+υα2

R T
t k2(s)·X(s)dsχD,

where D
def
=
n
exp

³
θα1k

0
1 ·X (T ) + υα2

R T
t
k02 (s) ·X (s) ds

´o
.

6. Change of numéraire

6.1. Forward contract and measure construction in a lognormal market

At time t, two counterparts trade for a zero spot price a security, called forward contract, for which
the holder will obtain at a subsequent time T a Þnancial payoff h from the short party in exchange
of a price fhT (t), Þxed at t once for ever: this trade is compulsory for both of the counterparts.. A
mathematical deÞnition runs as follows:

DeÞnition 6.1 (forward price and forward contract). Let anFt-measurable random variable
h (ω) represent the time T value of a given security and let prices be expressed in terms of a given
currency $. The $-denominated time t forward price for delivery of h at maturity T is the Ft-
measurable number fhT (t) representing the price decided at time t (and then kept constant up to
T ) such that the time t value of the time t set up security, called forward contract, deÞned by its
time T payoff h− fhT (t), is zero.

Evidently the forward price is not a spot price of any security; its time t numerical value is simply
the price then contracted for a trade on h to be performed at a future time T ; once Þxed, it stays
Þxed up to T ; on the other hand the forward contract corresponding to the forward price fhT (t) is
an actual security denoted by fwd (T, h), deÞned on [t, T ] and whose time s value is the spot price
V fwd(T,h) (s).
In order to fully specify a forward contract one needs a date of issue t, a maturity T , an underlying
Þnancial quantity h available at time T and a currency $: this information coupled with the above
contractual structure fully determine the corresponding forward price. By �contractual structure�
we mean the statement according to which the value of the forward contract is 0 at t and h− f at
the delivery time T :

V fwd(T,h) (t) := 0

V fwd(T,h) (T ) := h− fhT (t)
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The forward contract value V fwd(T,h) (s) for 0 < s < T is not a priori speciÞed, yet its two endpoints
values above provide sufficient information to have the forward price be well deÞned and thus to
determine such intermediate values by arbitrage pricing. Indeed:

0 := V fwd(T,h) (t) = EP
∗
µ
e−

R T
t r(s)ds

£
h (·)− fhT (t)

¤¯̄̄
Ft

¶
= V h (t)− fhT (t)EP

∗
µ
e−

R T
t r(s)ds

¯̄̄
Ft

¶
implies:

fhT (t) =
V h (t)

P T (t)

Therefore, for each 0 < s < T , the time s forward contract value is:

V fwd(T,h) (s) = V h−f
h
T (s) = V h (s)− P T (s) fhT (t) (6.1)

which needs not be 0 such as at time t, because V h and P T vary over [t, T ], but f is held Þxed from
t on.
A scheme summarizes the former results:

data


t

T

h

$

contractual
structure

½
V (t) := 0

V (T ) := h− fhT (t)


→

fhT (t)

Þxed
on [t, T ]

→ ©
V fwd(T,h) (s)

ª
t≤s≤T

Formula (6.1) states also that a long forward contract is replicated by a short position of as many
T -maturing bonds as f and a long position in one unity of the security deÞned by h. We now turn
to the construction of a forward measure in the case of a lognormal market.
Given a market

©
M,S1, ..., Sn, P

T
ª
with risk neutral dynamics for the rolled over money market

account M , time T maturing zero coupon bond P T and risky assets Si given by:

dSi (t) = Si (t) (r (t) dt+ σi (t) · dW (t)) (6.2)

dP T (t) = P T (t)
¡
r (t) dt+ σT (t) · dW (t)

¢
(6.3)

dM (t) = M (t) r (t) dt (6.4)

the forward price fSiT is not a martingale under the risk neutral measure PM . By applying Ito
formula to the function lg x, processes Si and P T one Þnds explicit solutions to (6.2) and (6.3);
thus:

fSiT (s) :=
Si (s)

P T (s)
=
Si (0)

P T (0)
e
R s
0 − 1

2

h
kσi(t)k2−kσT (t)k2idt+R s0 [σi(t)−σT (t)]·dW (t)
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under PM . By completing the square:

−1
2

h
kσi (t)k2 −

°°σT (t)°°2i = −1
2

°°σi (t)− σT (t)°°2 − σT · £σi (t)− σT (t)¤ ,
we see that:

fSiT (s) = f
Si
T (0) e

R s
0 − 1

2kσi(t)−σT (t)k2dt+R s0 [σi(t)−σT (t)]·d(W (t)−R t0 σT (u)du) (6.5)

According to the Girsanov theorem, under the measure PP
T
deÞned by:

dPP
T

dPM

¯̄̄̄
¯
Ft
:= E

µZ ·

0

c0 · dW (u)

¶
t

(6.6)

with c0 such that c0·fwd volatility=driftPPT -driftPM , namely:
c0 · £σ (t)− σT (t)¤ = 0− £−σT · ¡σ (t)− σT (t)¢¤ (6.7)

c0 = σT (6.8)

all the processes fSiT satisfy a zero drift s.d.e.:

dfSiT (s) = f
Si
T (s)

£
σi (t)− σT (t)

¤
dW T (t) (6.9)

where:

W T (t) :=W (t)−
Z t

0

σT (u) du

is an n-dimensional Brownian motion under P P
T
.

(6.9) states that the forward price process is the exponential martingale:

fSiT (s) = f
Si
T (0) E

µZ ·

0

£
σi (t)− σT (t)

¤ · dW T (t)

¶
s

We have created a probability measure PP
T
under which the P T discounted prices Si(s)

PT (s)
, which

are also forward prices relative to assets Si, are martingales: this is a martingale measure for the
numeraire P T , in contrast with PM , which is a martingale measure for the money market account
M .

Remark 1. The newmeasure is built up from the process σT (t)which formally represents
dhlgPT (·)i

t

dt
.

Remark 2. Instead of P T we could have had any lognormally distributed asset: taking the T -maturing
bond implies that under the new measure forward prices are martingales.
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The martingale deÞning the Radon-Nikodym (6.6)can be put in terms of asset processes; indeed:

d
P T (t)

M (t)
=
P T (t)

M (t)
σT (t) dW (t) (6.10)

follows from the product rule applied to (6.3) and (6.4). Its solution it just the right hand side of
(6.6) with c0 = σT :

dP P
T

dPM

¯̄̄̄
¯
Ft
=
P T (t)

M (t)

M (0)

P T (0)
(6.11)

The factor M(0)
PT (0)

is the normalizing constant ensuring PP
T
(Ω) = 1. Since in a lognormal market

any asset value V per unity of money market account M is a martingale satisfying an equation of
form (6.10), we argue that the transformation from the risk neutral to a martingale measure for
the V -discounted prices is obtained by a Radon-Nikodym transformation of form (6.11) where V
substitutes P T , namely:

dP V

dPM

¯̄̄̄
Ft
=
V (t)

M (t)

M (0)

V (0)
(6.12)

This formula will be proved to hold independently from the lognormal assumption to which we
owe the nice representation of the derivative (6.11) in exponential form (6.6)and this, in turns,
lets us determine the drift modiÞcation in the underlying processes due to change of measure. In
concrete applications a Radon-Nikodym of form (6.12) is chosen according to the user�s need, then
a representation in terms of stochastic exponential is looked for in order to determine the drift
modiÞcations occurring in the underlying processes. We now turn to a Þnancial interpretation of
the result above. Formula (6.5)shows that the quantity σT · ¡σi (t)− σT (t)¢ is the defect or excess
of percentage instantaneous mean return of all the T -forward prices fSiT , i = 1, ..., n in the risk
neutral world over the T -maturing bond P T . Expression (6.7) states that the Girsanov coefficient
c0 = σT is the same for all the assets and represents that excess or defects per unit of instantaneous
volatility σi (t)− σT (t) of the relative prices Si

PT
.

It is convenient to draw a parallel between the risk neutral world and the forward risk adjusted.
Arbitrage pricing theory characterizes absence of arbitrage opportunities by the possibility of car-
rying an objective probability measure P to a risk neutral one PM under which each asset grows in
percentage, instantaneously and on average (p.i.a.) as the money market account; this amounts to
Þnd a Girsanov coefficient λ satisfying:

λ · i-th asset volatility = risk neutral drift− objective drift
Since the money market account is thought of as the riskless security, the world where all assets�
p.i.a. growth equates the money market account�s can be said risk neutral. The vector λ is easily
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interpreted as the market price of risk because it represents the excess or defects of p.i.a. return
of any traded asset over the risk free asset�s per unit of p.i.a. volatility. On the other hand it is
difficult to be inferred from the market.
Alternatively, if we think of the bond P T as the riskless asset, then the world where all the assets�
values relative to the bond P T do not p.i.a. grow is the �risk neutral world�. Since this latter
expression is by convention attached to the case where the money market account is the riskless
asset, in our situation a new label is needed: commonly adopted terms are �forward neutral � [17],[18]
and �forward risk adjusted � measure [19]. The meaning is the same.
We turn to the interpretation of Girsanov coefficients as prices of risk.
If one passes from the objective measure P to the forward risk adjusted PP

T
and interprets P T as

the riskless asset, then the corresponding Girsanov coefficient λ + c0 is worth to be called �market
price of risk� or, in order to avoid confusion with the case where the money market is the riskless
asset, �market price of forward risk�. Actually we start from the risk neutral world, not the objective
one: the gain is that the Girsanov coefficient is surely determined by market dynamics: it is the
T -maturing bond volatility σT , which is independent of the asset whose forward is considered. The
drawback is that we cannot interpret it as a market price of risk because we pass from a Þctitious
(not real) world to another Þctitious environment.
Finally, it is inconsistent to label more than one asset (here more than one bond) as the riskless
asset : in fact for each P T there is a corresponding forward neutral world. This is because c0 depends
on T .
Summarizing, in a lognormal market, the T -forward prices are 1) stochastic exponentials 2) of an
Ito integral 3) of the difference between the unitary diffusion coefficients of the asset price and the
T maturing bond price 4) with respect to a standard Brownian motion. Since nothing formally
distinguished the asset P T from the others in terms of dynamics, any lognormal asset can be taken
as numeraire.

6.2. General change of numeraire

A market model is a Þnite collection of semimartingales {N0,N1, ..., Nn} each one representing the
stochastic behavior of a corresponding security price.
Given i such that Ni is strictly positive, a probability measure PNi is a Ni-martingale measure for
the market if all the relative prices Nj

Ni
, j = 0, 1, ..., n, are martingales w.r.t. PNi. It turns out

that this property also holds for all the value process V of admissable replicable securities (see [?]
sections 2 and 3)
If Ni = e

R t
0 r(u)du, where r is the instantaneous interest rate rolling over in the money market, then

the Ni-martingale measure is called risk neutral probability.
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Problem: given PNi, Þnd the Radon-Nykodim derivative dPNj

dPNi
carrying to PNj .

Solution: Abstract Bayes formula (see Appendix) gives PNj conditional expectation in terms of
the ones w.r.t. PNi :

EP
Nj

µ
V (T )

Nj (T )

¯̄̄̄
Ft
¶
=

EP
Ni

µ³
dPNj

dPNi

´
FT

V (T )
Nj(T )

¯̄̄̄
Ft
¶

EP
Ni

µ³
dPNj

dPNi

´
FT

¯̄̄̄
Ft
¶ (6.13)

where the subscript Fs, for 0 ≤ s ≤ T, selects the restriction of dP
Nj

dPNi
(ω) to the σ-algebra Fs. In

order to exploit the martingale property for the Ni-discounted prices under the measure PNi , it
seems reasonable to try with: µ

dPNj

dPNi

¶
Ft
:= k

Nj (t)

Ni (t)
(6.14)

so that the left hand side of (6.13) becomes equal to:

EP
Ni

³
k V (T )
Ni(T )

| Ft
´

k
Nj(t)

Ni(t)

(6.15)

and then:

EP
Nj

µ
V (T )

Nj (T )
| Ft

¶
=
V (t)

Nj (t)
(6.16)

If we prove that the measure PNj is indeed a probability measure, then (6.16) implies that (6.14)
deÞnes the required measure.

1
imposed
=

Z
Ω

dPNj =

Z
Ω

µ
dPNj

dPNi

¶
FT
dPNi =

=

Z
Ω

k
Nj (T )

Ni (T )
dPNi =

= kEP
Ni

µ
Nj (t)

Ni (t)

¶
= k

Nj (0)

Ni (0)

imposes a value for k :

k =
Ni (0)

Nj (0)
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The new martingale measure is assigned by the derivative:µ
dPNj

dPNi

¶
Ft
:=
Ni (0)

Nj (0)

Nj (t)

Ni (t)
(6.17)

Since any replicable security V can be added to the market model without altering its properties of
completeness and absence of arbitrage, if V is strictly positive it can take the place of Nj in (6.17),
giving rise to the V -martingale measure. In the following example, the time-T zero coupon bond
martingale measure will be considered.

Example 6.2 (The forward risk adjusted probability measure). DeÞnition (6.17) sets up the
process Rt described in section (3.2). If the dynamics of processes Ni and Nj are available, it is
possible to compute the differential equation for Rt by making use of product rule for stochastic
differentials. As an example, let Ni be the money market account, that is:

Ni (t) :=M (t) = e
R t
0 r(u)du (6.18)

and Nj represent the time-T maturing zero coupon bond price, namely:

Nj (t) := P
T (t) . (6.19)

Then we deÞne the T -forward risk adjusted probability measure P P
T
on FT by its Radon-

Nykodim derivative with respect to the risk neutral probability P ∗ according to formula (6.17):Ã
dPP

T

dP ∗

!
FT
:=

1

P T (0)

P T (T )

e
R T
0 r(u)du

=
e−

R T
0 r(u)du

P T (0)
(6.20)

Under PP
T
all the relative price processes V (t)

PT (t)
are martingales.

Therefore:
V (t)

P T (t)
= EP

PT

t,r

µ
V (T )

P T (T )

¶
If the Þnal payoff V (T ) is assigned by a deterministic function h of the underlying state variable
rt, one gets to:

V (t) = P T (t)EP
PT

t,r (h (rT ))

in contrast to the more awkward risk neutral valuation formula:

V (t) = EP
∗
t,r

³
e−

R t
0 r(u)duh (rT )

´
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Let M (t) denote the time t value of the money market account and the new numeraire have
P -dynamics assigned by:

dP T (t) = P T (t)
¡
mT (t) dt+ σT (t) dWt

¢
;

since under PM the relative price PT (t)
M(t)

is a martingale, we have:

d

µ
P T (t)

M (t)

¶
= σT (t)

P T (t)

M (t)
dWt (6.21)

which, together with (6.20), leads to a differential expression for Rt:

dRt = σ
T (t)RtdWt (6.22)

whose unique solution is:

Rt = e
R t
0 σ

T (u)dWu−1
2

R t
0(σT )

2
(u)du (6.23)

which recovers (??) with c0 := σT .

7. Extension to markets driven by marked point processes

7.1. General results

Results presented for general change of numeraire are directly applicable to the present context
by simply performing computations of the case. We recall that changing the measure from PN1 ,
under which discounted prices PT

N1
are all martingales, to PN2 , under which

PT
N2
are martingales for

all maturities T , is possible by setting:

dPN1
dPN2

¯̄̄̄
Ft
:=
N1 (t0)

N2 (t0)

N2 (t)

N1 (t)

Let X be any Ito process in the canonical form under the original measure PN1 , say:

X (t) = x+

Z t

t0

κ (s) ds+

Z t

t0

Z
E

f (s, x) νPN1 (ds, dx) (7.1)

+

Z t

t0

Σ (s) dWPN1 (s) +

Z t

t0

Z
E

f (s, x)µPN1 (ds, dx) ,

25



where coefficients κ, Σ and f are suitable adapted stochastic process. In view of the preceding
results on change of equivalent measure for marked point diffusion, if one can represent this process
as a discontinuous Doléan exponential martingale E 0 (c, d− 1), that is a process Z satisfying:

dZ (t) = Z (t)

·
c (s) dWPN1 (t) +

Z
E

[d (t, x)− 1]µPN1 (dt, dx)
¸
,

then one automatically has the following change of the Þnite variation term in the stochastic differ-
ential of X:

κ (s) ds+
R
E
f (s, x) νPN1 (ds, dx)

↓
κ (s) ds+ c (s)Σ (s) +

R
E
f (s, x) d (s, x) νPN1 (s, dx)

(7.2)

that is drift changes from κ to κ + cTΣ and the compensator from νPN1 to d times νPN1 . The
resulting dynamics of X under the new measure PN2 is:

X (t) = x+

Z t

t0

[κ (s) + c (s)Σ (s)] ds+

Z
E

f (s, x) d (s, x) νPN1 (s, dx)

+

Z t

t0

Σ (s) dWPN2 (s) +

Z t

t0

Z
E

f (s, x)µPN2 (ds, dx) (7.3)

7.2. Forward-risk-adjusted measure

We recall that changing the measure from the risk neutral P∗, under which discounted prices PS
B
are

all martingales, to the forward risk adjusted PT , under which PS
PT
are martingales for all maturities

S, is possible by setting:
dPT
dP∗

¯̄̄̄
Ft
:=

1

PT (t0)

PT (t)

B (t)
=: Z (t)

Notation: superscript ∗ denotes the correspondent process under P∗, while superscript T stands for
�under PT�.
Under P∗ we know bond dynamics are:

dPT (t)

PT (t−) = r (t) dt+ vT (t) · dW
∗ (t) +

Z
E

nT (t, x)µ
∗ (dt, dx) (7.4)
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where all of the measure dependencies have been speciÞed for clarity. Also dB (t) = B (t) r (t) dt.
Either by direct computation using the product formula rule or by use of E [X] /E [Y ] = E [X − Y ]−
[X, Y ] one arrives at:

dZ (t)

Z (t)
= vT (t) · dW∗ (t) +

Z
E

nT (t, x)µ
∗ (dt, dx)

which matches (??) for:

c := vT

(7.5)

as in the continuous diffusions case, and:

d = nT + 1

(7.6)

With these coefficients, one can compute drift and compensator changes of any process of form
(7.1) by use of (7.3). The marked point diffusion for a process X under PT is:

X (t) = x+

Z t

t0

h
κ∗ (s) + vT (s)

TΣ (s)
i
ds+

Z t

t0

Z
E

f (s, x) (nT (s, x) + 1) ν
∗ (s, dx)

+

Z t

t0

Σ (s) · dWT (s) +

Z t

t0

Z
E

f (s, x)µT (ds, dx) (7.7)

Example 7.1 (Forward-risk-adjustment in a whole-yield-curve model). In a whole-yield-
curve model in terms of instantaneous forward rates one has nT (t, x) = exp

n
− R T

t
ξS (t, x) dS

o
−1,

where ξT is the marked point coefficient of the forward rate process under the risk neutral measure

P∗. Thus d = exp
n
− R T

t
ξS (t, x) dS

o
and the Þnite variation term of the forward rate dynamics

changes of an amount:

vT (s)Σ (s) +

Z
E

f (s, x) e−
R T
t
ξS(t,x)dSν∗ (s, dx)

for a marked point diffusion factor process with instantaneous matrix volatility Σ and marked point
coefficient f .
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8. Application to multifactor affine models driven bymarked point processes

In a general multifactor bond market model one is given a factor dynamics under P∗ of form:

X (t) = x+

Z t

t0

κ∗ (s) ds+
Z t

t0

Σ (s) dW∗ (s) +
Z t

t0

Z
E

f (s, x)µ∗ (ds, dx)

and a bond price process PT (t,ω) := PT (t,X (t,ω)), with PT ∈ C1,2 [R+ ×Rn]. Alternatively, any
of the quantities equivalent to a full speciÞcation of that term-structure of interest-rate dynamics
can be imposed to be of this form, that is a deterministic function of time and factor�s value. In
the discount function formulation, we Þrst have to Þnd the bond dynamics by Ito formula (??) in
the form dtPT = PT × Ito differential and then substitute the obtained volatility function and
marked point coefficient into (7.7).

dtPT (t,X (t))

PT (t−, X (t−)) =

Ã
∂tPT +∇xPT · κ∗ + 1

2
Tr
£
HePT ·ΣT ·Σ

¤
PT (t−, X (t−))

!
dt

+∇x lgPT (t−,X (t−)) ·ΣdW ∗ (t)

+

Z
E

µ
PT (t,X (t−) + f (t, x))

PT (t,X (t−)) − 1
¶
µ∗ (dt, dx)

There is no need to compute the above drift: since dynamics is under P∗, then it must be equal to
r (t). Comparing this expression with (7.4) we see that instantaneous volatility and marked point
coefficients under P∗ are given by:

vT = ∇x lgPT (t−, X (t−)) ·Σ
nT =

PT (t,X (t−) + f (t, x))
PT (t,X (t−))

and the change of the Þnite variation term of the dynamics for X is:

κ∗ (s) ds +
R
E
f (s, x) ν∗ (ds, dx)
↓

κ∗ (s) ds+∇x lgPT (t−, X (t−))TΣ (s)TΣ (s) ds
+
R
E
f (s, x) PT (t,X(t−)+f(t,x))

PT (t,X(t−)) ν∗ (ds, dx) ,
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that is:

κT (s) = κ∗ (s) +∇x lgPT (t−, X (t−))TΣ (s)TΣ (s)

νT (ds, dx) = PT (t,X(t−)+f(t,x))
PT (t,X(t−)) ν∗ (ds, dx)

(8.1)

Let X be a multidimensional marked point process representing a factor process inducing an expo-
nential affine bond market. This may be accomplished by the following set up:

r (t,ω) : = R (t,X (t)) ,

dX (t) = κ∗ (t,X (t)) dt+Σ (t,X (t)) · dW (t) +

Z
E

f (t,X (t) , y)µ (dt, dy;ω) ,

under P∗, with:
κ∗ (t,x) = k∗0 (t) +K

∗
1 (t)x

Σ (t,x)Σ (t,x)T = H0 (t) +H1 (t)x
f (t,x, y) = f (t, y)

ν∗ (t,x, dy) dt = l∗0 (t, dy) + l
∗
1 (t, dy) · x

R (t,x) = ρ0 (t) + ρ1 (t) · x
where ν is the compensator of µ under P∗ and r is the short rate process.

Example 8.1. The bond price is given by:

PT (t) = exp (α (t, T )− β (t, T ) ·X (t))
for suitable processes α and β.
Formulae (8.1) give the forward-risk-adjusted coefficients of the dynamics of the factor process.

κT (s,X (s)) = κ∗ (s,X (s)) +∇x lgPT (t−,X (t−))TΣ (s)TΣ (s)
= k∗0 (t) +K

∗
1 (t)X (t) + β (t, T )

T (H0 (t) +H1 (t)X (t))

=
h
k∗0 (t) + β (t, T )

TH0 (t)
i
+
h
K∗
1 (t) + β (t, T )

TH1 (t)
i
X (t)

νT (ds, dx) =
PT (t,X (t−) + f (t, x))

PT (t,X (t−)) ν∗ (ds, dx)

= exp (−β (t, T ) · f (t, x)) ν∗ (ds, dx)
= exp (−β (t, T ) · f (t, x)) (l∗0 (t, dy) + l∗1 (t, dy) ·X (t))
= [exp (−β (t, T ) · f (t, x)) l∗0 (t, dy)]

+ [exp (−β (t, T ) · f (t, x)) l∗1 (t, dy)] ·X (t)
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Under PT , an affine model is deÞned by:

r (t,ω) : = R (t,X (t)) ,

dX (t) = κT (t,X (t)) dt+Σ (t,X (t)) · dW (t) +

Z
E

f (t,X (t) , y)µ (dt, dy;ω) ,

with:

κT (t,x) =
kT0 (t) +K

T
1 (t)x

with kT0 (t) :=
h
k∗0 (t) + β (t, T )

TH0 (t)
i

and KT
1 (t) :=

h
K∗
1 (t) + β (t, T )

TH1 (t)
i

Σ (t,x)Σ (t,x)T = H0 (t) +H1 (t)x
f (t,x, y) = f (t, y)

ν∗ (t,x, dy) dt = lT0 (t, dy) + l
T
1 (t, dy) · x

with lT0 (t, dy) := exp (−β (t, T ) · f (t, x)) l∗0 (t, dy)
and lT1 (t, dy) := exp (−β (t, T ) · f (t, x)) l∗1 (t, dy)

R (t,x) = ρ0 (t) + ρ1 (t) · x
where ν is the compensator of µ under P∗ and r is the short rate process.

9. A guide to affine models

This Þnal section is intended as a guide to the rapidly growing literature on affine arbitrage pricing
models. The problem of characterization of affine term structures is natural once it is realized that
two mostly used short rate models, namely the Gaussian and square-root models, share the common
nice feature of delivering explicit bond price processes which are affine in the underlying state
variable. Indeed all the studies of those models led to the system of ode-s identifying the coefficient
of the bond price. The Þrst studies in this direction are those of Vasicek [20] and, respectively,
Cox, Ingersoll and Ross [6]. Beaglehole and Tenney [2] investigated the direct problem of Þnding
sufficient conditions in several dynamical instances for both affine and quadratic structures. El
Karoui, Myneni and Viswanatan [12] investigated the direct problem for both affine and quadratic
structures in the case of general Gaussian multifactor models. They also carried out a complete
study on the pricing of interest-rate derivatives, accompanied by a rigorous treatment of convexity
adjustments for futures forward price relation. El Karoui and Lacoste [11] embodied these results
into a whole-yield curve model where factors are identiÞed with either instantaneous forward rates
or successive partial derivatives of one single rate. Frachot and Lesne [14] and Duffie and Kan [8][9]
independently studied the case of affine structures driven by more general diffusions, where volatility
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is allowed to be dependent on the factor process. The former authors gave a detailed econometric
analysis of the model for estimation in actual markets (see also Frachot, Lesne and Renault [15]).
The latter studied the inverse problem of Þnding necessary conditions for affinity of rates; they also
provided for explicit examples where numerical method are employed in order to obtain solution
to bond option. Instances of affine structures where factor are identiÞed with interest-rate mean
and volatility treated as parameters have been pursued by Balduzzi, Das, Foresi and Sundaram
[1], Beaglehole and Tenney [2], Chen [5] among others. Extension to one-factor jump-diffusion
is sketched by Duffie and Kan [9], to one-factor marked point processes by Björk, Kabanov and
Runggaldier [3], to multifactor jump-diffusion processes by Duffie, Pan and Singleton [10]. Our
detailed derivation in a multidimensional marked point diffusion setting is new and embraces all of
the other cases, except for a few pathological instances that cannot be dealt with by Ito calculus
and require a study based upon methods from the general theory of Markov processes. This point
has been recently illustrated in the nice technical study by Filipoviÿc [13]. The method of transform
has been developed by Duffie, Pan and Singleton [10] and applied to various pay-off functions by
Chacko and Das [4]. Our development uniÞes all of the possible cases treated in literature..
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