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Abstract

Concavity and supermodularity are in general independent prop-
erties. A class of functionals defined on a lattice cone of a Riesz
space has the Choquet property when it is the case that its mem-
bers are concave whenever they are supermodular. We show that for
some important Riesz spaces both the class of positively homogeneous
functionals and the class of translation invariant functionals have the
Choquet property. We extend in this way the results of Choquet [1]
and Konig [4].

1 Introduction

Let E+ = {x ∈ E : x ≥ 0} be the positive convex cone of a Riesz space E. In
this paper we consider functionals I : E+ → R defined on E+ and we study
the relations among two classic properties they may have, that is, concavity
and supermodularity.
In general, these two properties are altogether independent, there are con-

cave functionals that are not supermodular, as well as supermodular func-
tionals that are not concave. However, in a classic article Choquet [1, Thm
54.1] claimed that supermodularity implies concavity for the important class
of positively homogeneous functionals. Unfortunately, his proof of this re-
markable claim considered only Euclidean spaces, and even for this special
case his argument was incomplete.
Recently, Konig [4] finally established a rigorous proof of Choquet’s claim

in the finite dimensional case. Our purpose in this paper is to study to
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what extent Choquet’s claim holds in general Riesz spaces. Our first main
result, Theorem 9, fully characterizes the Riesz spaces for which Choquet’s
claim holds, when no other additional assumptions on the functionals is made
besides positive homogeneity. It turns out that this is the well know class
of Riesz spaces that have Archimedean quotient space, often called hyper-
Archimedean spaces.
Though hyper-Archimedean spaces are relatively few, fortunately they are

dense in many other Riesz spaces. Hence, by imposing a continuity condition
on the functionals, in Section 5 we show how Choquet’s claim holds in a
large number of Riesz spaces. In Section 6 we actually show that for some
important classes of Riesz spaces Choquet’s claim holds more generally for
upper semicontinuous functionals.
Besides studying the validity of Choquet’s claim in general Riesz spaces,

in Section 7 we show that supermodularity implies concavity also for the
important class of translation invariant functionals, that is, functionals I :
E → R such that I (x+ αe) = I (x) +αI (e) for all x ∈ E and α ∈ R, where
e is an order unit of E. In this way we provide a new important class of
functionals that have the remarkable property that Choquet envisaged for
positively homogeneous functionals.
Interestingly, positive homogeneity and translation invariance are the two

main properties enjoyed by Choquet integrals, the class of functionals in
which Choquet [1] was mostly interested in.1 As a result, Choquet integrals
turn out to be only a quite special class of functionals for which Choquet’s
claim holds.

2 Preliminaries

We follow [7] for notation and terminology on Riesz spaces. Given a Riesz
spaceE (i.e., a vector lattice), we denote byE+ its positive cone {x ∈ E : x ≥ 0}.
A vector subspace L of E is a sublattice (or a Riesz subspace) if u, v ∈ L
implies u ∧ v ∈ L; E [u, v] denotes the sublattice generated by two elements
u, v ∈ E. Two elements u, v ∈ E are disjoint, written u ⊥ v, if |u| ∧ |v| = 0.
Given a subset M ⊆ E, M⊥ denotes the set {u ∈ E : u ⊥ x for all x ∈M}.
A vector subspace J is called an ideal if |u| ≤ v and v ∈ J+ implies u ∈ J .

The symbol Ju denotes the ideal generated by u. An ideal J is a principal
ideal if J = Ju for some u. An element e ∈ E+ is said to be an order unit if

1See, e.g., [9] for a detailed study of the properties of Choquet integrals.
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Je = E. An ideal P is prime if u ∧ v = 0 implies that either u or v belongs
to P .
A Riesz space is Archimedean if 0 ≤ nu ≤ v for all the integers n implies

u = 0. Given an ideal J of E, the vector quotient space E/J has a nat-
ural structure of Riesz space. Observe that, in general, E/J may fail to be
Archimedean, even if E is Archimedean.
A band B is an ideal such that u ∈ B if 0 ≤ uα ↑ u and {uα} ⊆ B. A

band B is a principal band if there exists u ∈ B such that B is the smallest
band containing u. In this case, we write Bu. A band B is a projection band
if there exists a linear projection P : E → B such that 0 ≤ Px ≤ x for all
x ∈ E+. Equivalently, a band B is a projection band if E = B⊕B⊥. A Riesz
space E is said to have the principal projection property if any principal band
is a projection band (see [7, Ch. 4]).
A linear map T : E → F between the two Riesz spaces E and F is a lattice

homomorphism if it preserves the lattice operations. When it is one-to-one,
T is a Riesz isomorphism and the two spaces are called Riesz isomorphic.
A linear topology τ on a Riesz space is compatible if the lattice operations

are continuous with respect to τ . A Riesz normed space or, a normed lattice,
is a Riesz space equipped with a norm k.k such that |u| ≤ |v| implies kuk ≤
kvk. When the space is norm complete, it is called a Banach lattice.
A normed lattice is an M space if kx ∨ yk = kxk ∨ kyk for all x, y ∈ E+,

while it is an L space if kx+ yk = kxk+ kyk for all x, y ∈ E+. When E is a
Banach lattice, they are called AM and AL spaces, respectively.
Let C be either E+ or E. A functional I : C → R is

1. concave if I (tx+ (1− t) y) ≥ tI (x) + (1− t) I (y) for all t ∈ [0, 1] and
all x, y ∈ C,

2. supermodular if I (x ∨ y) + I (x ∧ y) ≥ I (x) + I (y) for all x, y ∈ C,
3. positively homogeneous if I (αx) = αI (x) for all α ≥ 0 and all x ∈ C,
4. translation invariant if I (x+ αe) = I (x)+αI (e) for all α ≥ 0 and all
x ∈ C, where e is an order unit of E.

Observe that a functional I : E → R is translation invariant if and only
if I (x+ αe) = I (x) + αI (e) for all α ∈ R and all x ∈ E. For, given α < 0,

I (x)+αI (e) = I (x+ αe− αe)+αI (e) = I (x+ αe)−αI (e)+αI (e) = I (x+ αe) .
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The next lemma gives another simple property of translation invariant
functionals.

Lemma 1 Every translation invariant functional I : E+ → R has a unique
translation invariant extension on the entire space E. Moreover, If I is
supermodular, then the extension is supermodular, and if I is concave, then
the extension is concave.

Proof. Given any x ∈ E, there is β > 0 such that x + βe ∈ E+. DefineeI : E → R by eI (x) = I (x+ βe)− βI (e) for all x ∈ E, where β > 0 is such
that x+ βe ∈ E+. The functional eI is well defined. In fact, let β1,β2 ∈ R++
be such that x + β1e, x + β2e ∈ E+. W.l.o.g., suppose β1 > β2. Then,
I (x+ β1e) = I (x+ β2e+ (β1 − β2) e) = I (x+ β2e)+(β1 − β2) I (e), and so
I (x+ β1e)−β1I (e) = I (x+ β2e)−β2I (e), as desired. Clearly, I (x) = eI (x)
for each x ∈ E+, and, uniqueness being trivial, it remains to prove that eI
is translation invariant. Given x ∈ E, let β > 0 be such that x + βe ∈ E+.
Given any α ≥ 0, we then haveeI (x+ αe) = I (x+ αe+ βe)− βI (e)

= I (x+ βe) + αI (e)− βI (e) = eI (x) + αI (e) .

Suppose that I is supermodular. Given x, y ∈ E, let α > 0 be such that
both x+ αe and y + αe belong to E+. Then,eI (x ∨ y) + eI (x ∧ y)

= I (x ∨ y + αe)− αI (e) + I (x ∧ y + αe)− αI (e)

= I ((x+ αe) ∨ (y + αe)) + I ((x+ αe) ∧ (y + αe))− 2αI (e)
≥ I (x+ αe) + I (y + αe)− 2αI (e) = eI (x) + eI (y) ,

and eI (tx+ (1− t) y) = I (tx+ (1− t) y + αe)− αI (e)

= I (t (x+ αe) + (1− t) (y + αe))− αI (e)

≥ tI (x+ αe) + (1− t) I (y + αe)− αI (e)

= teI (x) + (1− t) eI (y) ,
which completes the proof. ¥

Next we give a key definition for our purposes.

4



Definition 2 A class of functionals I : C → R has the Choquet property if
its members are concave whenever they are supermodular.

In the paper we will consider the class of positively homogeneous func-
tionals and the class of translation invariant functionals, and for them we
will study the validity of the Choquet property. For brevity, we will say
that positively homogeneous (or translation invariant) functionals have the
Choquet property instead of saying that the class of such functionals has the
Choquet property.
Observe that for positively homogeneous functionals concavity and su-

peradditivity are equivalent properties, and so for this case Definition 2 can
be equivalently stated in terms of supermodularity and superadditivity.

3 Finite Dimensional Case

The starting point of our study is the following theorem, a slight improvement
of Konig’s [4] main result that will turn out to be very useful for our purposes.

Theorem 3 The positively homogeneous functionals I : Rn+ → R have the
Choquet property.

In other words, a positively homogeneous functional I : Rn+ → R is su-
peradditive whenever it is supermodular. The proof is based on the following
Lemma, which is a version of a property of supermodular functions estab-
lished in [8, Lm 6].

Lemma 4 Let E be a Riesz space and (ai)
n
i=1 ⊆ E+ be mutually disjoint ele-

ments. If I : E+ → R is supermodular and I (0) = 0, then it is superadditive
over (ai)

n
i=1, i.e.,

I

Ã
nX
i=1

ai

!
≥

nX
i=1

I (ai) . (1)

Proof. As ai ∧ aj = 0, we have that ∨ni=1ai =
Pn

i=1 ai. We prove the result
by induction. For n = 1, (1) is trivially true. Suppose that it is true for
n > 1. We have

I
¡∨n+1i=1 ai

¢
= I ((∨ni=1ai) ∨ an+1) = I ((∨ni=1ai) ∨ an+1) + I ((∨ni=1ai) ∧ an+1)

≥ I (∨ni=1ai) + I (an+1) = I
Ã

nX
i=1

ai

!
+ I (an+1) ≥

n+1X
i=1

I (ai) ,
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as desired. ¥

Proof of Theorem 3. Let (ei)
n
i=1 be the standard basis of Rn. The elements

of this basis are mutually disjoint. By (1), we have

I (x) = I

Ã
nX
i=1

xiei

!
≥

nX
i=1

xiI (ei) (2)

for all x ∈ Rn+. Hence, for all u, v ∈ Rn+ the scalar function t→ I (tu+ (1− t) v)
is bounded from below on some non-trivial subinterval of [0, 1]. By [4, Thm
2.10], I is then superadditive. ¥

The converse of Theorem 3 only holds in R2, something not surprising in
view of the key role that R2 plays in Konig’s proof.

Proposition 5 A positively homogeneous functional I : R2+ → R is super-
additive if and only if it is supermodular.

Proof. The proof is based on the following simple property of R2 (see Lemma
17 in the Appendix): given any u, v ∈ R2+, there exist α,σ ∈ [0, 1] such that
x ∧ y = σ (αx+ αy), where α = 1− α.
As x ∧ y + x ∨ y = x + y, it follows that x ∨ y = σ1

¡
βx+ βy

¢
, where

σ1 = 2− σ and β = (1− ασ) (2− σ)−1. Assume that I is concave. We then
obtain

I (x ∧ y) = σI (αx+ αy) ≥ σαI (x) + σαI (y) ,

I (x ∨ y) = σ1I
¡
βx+ βy

¢ ≥ σ1βI (x) + σ1βI (y) ,

and so

I (x ∧ y) + I (x ∨ y) ≥ (σα+ σ1β) I (x) +
¡
σα+ σ1β

¢
I (y)

= I (x) + I (y) ,

as desired. ¥

The next example shows that Proposition 5 does not hold in Rn with
n > 2.

Example 6 Consider the function f (x, y, z) = z−1 (−x2 − y2 − εxy), with
0 < ε < 1. It is positively homogeneous and concave over R3++. On the other
hand, D12f = −εz−1 < 0, and so it is not supermodular. N
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Even though Proposition 5 in general fails when n > 2, there are special
classes of functionals for which it holds. For instance, this is the case for
Choquet integrals (see [1], [4], and [9]).

4 Infinite Dimensional Case

Consider the following class of Riesz spaces, which has been extensively stud-
ied in literature.

Definition 7 A Riesz space E is said to be hyper-Archimedean if all quotient
spaces E/J, with J ideal in E, are Archimedean.

Several alternative characterizations of hyper-Archimedean spaces are
known (see [6], [7, Thms 37.6, 61.1, and 61.2] and [13]). For later use, we col-
lect some of them in the following lemma. HereQ (u) = {v ∈ E+ : v ∧ (u− v) = 0}
is the set of all quasi units with respect to u ∈ E+ ([10, p. 20]).

Lemma 8 A Riesz space E is hyper-Archimedean if and only if any of the
following equivalent conditions holds:

(i) every principal ideal in E is a projection band,

(ii) every ideal in E is uniformly closed,

(iii) every proper prime ideal is a maximal ideal,

(iv) spanQ (u) = Ju for all u ∈ E+.

We can now state and prove our first main result. It shows that hyper-
Archimedean Riesz spaces are the class of Riesz spaces E in which the Cho-
quet property holds for positively homogeneous functionals I : E+ → R. We
thus provide a further characterization of hyper-Archimedean Riesz spaces.

Theorem 9 A Riesz space E is hyper-Archimedean if and only if the posi-
tively homogeneous functionals I : E+ → R have the Choquet property.

In other words, a Riesz space E is hyper-Archimedean if and only if every
positively homogeneous functionals I : E+ → R is superadditive whenever it
is supermodular.
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Proof. Suppose every functional I : E+ → R has the Choquet property.
Suppose, per contra, that E is not hyper-Archimedean. By Lemma 8-(iii),
there exists a prime ideal P which is not maximal. Consider the quotient
space E/P and the quotient map π : E → E/P . The map π is a lattice
homomorphism between E and E/P . As P is prime, the quotient space
E/P is linearly ordered (see [7, Thm 33.2]). On the other hand, E/P is
isomorphic to R if and only if P is maximal (see [7, Thm 27.3]). There-
fore, E/P is not isomorphic to R. Moreover, E/P is then not Archimedean,
since the unique linearly ordered Archimedean space is R. Pick any two
points [u] , [v] ∈ E/P that are linearly independent and positive. By us-
ing an Hamel basis, construct a linear functional L : E/P → R such that
L ([u]) = 1 and L ([v]) = −1. The functional |L (x)| is positively homoge-
neous and trivially supermodular, as E/P is totally ordered. Consequently,
the functional I (x) = |L (π (x))|, defined over E+, is convex, positively ho-
mogeneous and supermodular. On the other hand, I (u) = I (v) = 1, while
I (u+ v) = 0, and thus I is strictly subadditive, a contradiction.
To prove the converse implication, suppose that E is hyper-Archimedean.

We first show that, for any u, v ∈ E+, the sublattice E [u, v] is finite-
dimensional. Assume first that E has a order unit e ∈ E+. By [7, Thm
37.7], E is Riesz isomorphic to a space B0 (Σ) for some algebra Σ of sub-
sets of some space X2. By using this identification, if u =

P
i λi1Ai and

v =
P

j µj1Bj , we can find a common finite partition {Ck} ⊆ Σ of X such

that u =
P

k λ
0
k1Ck and v =

P
k λ

00
k1Ck . Hence, E [u, v] ⊆ Span {1Ck}.

Assume now that E has no order unit. By Lemma 8-(ii), every ideal J
of E is in turn hyper-Archimedean. On the other hand, for any u, v ∈ E+,
we have that E [u, v] ⊆ Ju+v, where Ju+v is the principal ideal generated by
u + v. The desired property then follows from the previous result, as u + v
is a order unit in Ju+v. We conclude that, for any u, v ∈ E+, the sublattice
E [u, v] is finite-dimensional.
By the Judin Theorem (see [7, Thm 26.11]), E [u, v] is then Riesz isomor-

phic to some Rn with the coordinate-wise ordering. By Theorem 3, every
functional I : E+ → R is then easily seen to have the Choquet property. ¥

Remark. In the proof of Theorem 9 we have shown that in each non
hyper-Archimedean Riesz space E we can construct a functional which is

2B0 (Σ) denotes the space of all Σ-measurable simple functions; i.e., B0 (Σ) =
span {1A : A ∈ Σ}.
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strictly convex, positively homogeneous and supermodular. Though it is
likely to be highly discontinuous, all its one-dimensional restrictions t →
I (tu+ (1− t) v) are continuous, as it is convex. Therefore, this type of reg-
ularity does not suffice to rule out these pathological examples and stronger
regularity conditions are needed.

We now illustrate our result with few examples.

• Given a set X, let F00 (X) be the Riesz space of all the function f :
X → R having a finite support (namely, such that the set {f 6= 0} has
finite cardinality). The Riesz space F00 (X) is hyper-Archimedean.

• Given an algebra Σ of subsets of a space X, consider the Riesz space
B0 (Σ) of all simple Σ-measurable functions f . The space B0 (Σ) is
hyper-Archimedean. If µ : Σ→ R is a measure, the setM (Σ, µ) of all
µ-a.e. Σ-measurable simple functions is also hyper-Archimedean.

• The spaces C (K), with K compact and Hausdorff, are an important
example of Riesz spaces that are not hyper-Archimedean, unless K
is finite. In fact, when K is infinite, C (K) has more prime ideals
than maximal ideals ([7, Thm 34.3]), and so by Lemma 8-(iii) it fails
to be hyper-Archimedean. As a result, the Kakutani Theorem ([10,
Thm 2.1.3]) implies that in all infinite dimensional AM spaces with
order unit there are (discontinuous) functionals violating the Choquet
property.

5 Topological Riesz Spaces

Turn now to Riesz spaces having compatible linear topologies. In this setting
it is natural to consider the Choquet property on continuous functionals. The
next fact, an immediate consequence of Theorem 9, already shows that the
continuous and positively homogeneous functionals of a large family of Riesz
spaces have the Choquet property.

Lemma 10 Suppose the Riesz space E contains an hyper-Archimedean sub-
lattice that is dense in E for some lattice compatible linear topology τ . Then,
the τ -continuous and positively homogeneous functionals I : E+ → R have
the Choquet property.
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In view of this lemma, the following Riesz spaces are examples where the
Choquet property holds for continuous and positively homogeneous function-
als.

• The space F0 (X), the supnorm completion of F00 (X).
• The space B (Σ), the supnorm completion of B0 (Σ). When Σ is a

σ-algebra, B (Σ) is the space of all bounded Σ-measurable functions.

• For all p > 0, let `p (X) be the space all functions f : X → R such that

sup

(X
x∈D

|f (x)|p : D ⊆ X finite

)
< +∞.

It is a Banach lattice for p ≥ 1, and a metrizable and complete metric
space for 0 < p < 1. Observe that F00 (X) is dense in `p (X) with
respect to the strong topology.

• The spaces Lp (Ω,Σ, µ), with 0 < p ≤ ∞. In fact, in all these spaces
M0 (Ω,Σ, µ) is dense in the strong topology. By the Kakutani Rep-
resentation Theorem, the Choquet property then holds for continuous
and positively homogeneous functionals defined on AL spaces and on
abstract Lp spaces.

The next simple lemma shows how to find new Riesz spaces on which con-
tinuous and positively homogeneous functionals satisfy the Choquet property.

Lemma 11 Let π : E → F be a continuous and surjective lattice homomor-
phism between two normed lattices E and F . If the continuous and positively
homogeneous functionals on E have the Choquet property, then the same is
true for the continuous and positively homogeneous functionals on F .

Proof. Assume per contra that the Choquet property does not hold in F
for some continuous functional I : F+ → R that is positively homogeneous
and supermodular, but non superadditive. Namely, there exist f1, f2 ∈ F+
such that I (f1 + f2) < I (f1) + I (f2). Consider the continuous functionaleI = I ◦ π over E. Clearly, it is positively homogeneous and supermodular.
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By hypothesis, eI is then superadditive. As π is onto, there are two elements
x1, x2 ∈ E+ such that π (x1) = f1 and π (x2) = f2. We have

eI (x1 + x2) ≥ eI (x1) + eI (x2) ,
I (π (x1) + π (x2)) ≥ I (π (x1)) + I (π (x2)) ,

I (f1 + f2) ≥ I (f1) + I (f2) ,

a contradiction. ¥

We now state our key lemma.

Lemma 12 Suppose X is a zero-dimensional normal space. Then, the sup-
norm continuous and positively homogeneous functionals I : C+b (X) → R
have the Choquet property. If, in addition, X is compact, then the Choquet
property also holds for the continuous and positively homogeneous functionals
I : J+ → R, where J is a closed ideal of C (X).

Proof. If X is a zero-dimensional normal space, then, its inductive dimen-
sion is null as well, namely Ind (X) = 0 (see [11, p. 45]). Therefore, given
any two disjoint closed sets F1 and F2, there exists a clopen set G such that
F1 ⊆ G ⊆ F c2 . Let Σ be the algebra of the clopen sets of X. It is easy to
check that Cb (X) = B (Σ), i.e., B0 (Σ) is supnorm dense in Cb (X) (see, e.g.,
the proof of [10, Prop. 2.1.19]). We conclude that any supnorm continuous
functional I : Cb (X)→ R has the Choquet property.
Let us prove the last statement. Let J ⊂ C (X) be a closed ideal. We

know that J is an algebraic ideal as well. Namely, there is a compact set
X0 ⊆ X, such that f ∈ J ⇐⇒ f (X0) = 0 (see for instance [10, Prop. 2.1.9]).
Consider again the simple functions

P
i λi1Ai, where Ai are clopen sets

and {Ai} is a partition of the space X. Restrict this family to those having
the property that if Ai ∩ X0 6= ∅ =⇒ λi = 0. Clearly, this family lies in J .
Moreover, they are an hyper-Archimedean space. Our objective is to show
that such a family is dense in J.
Fix a function f ∈ J and a scalar ε > 0. Consider the closed set Xε =

{x ∈ X : |f (x)| ≥ ε}. ClearlyXε∩X0 = ∅. As before, there is a clopen set G
such that Xε ⊆ G ⊆ Xc

0. Moreover, there is a simple function
P

i λi1Ai such
that kf −Pi λi1Aik < ε and Ai are clopen sets. If we define the new simple
function

P
i λi1Ai∩G, we have kf −

P
i λi1Ai∩Gk < ε as well and

P
i λi1Ai∩G

is a simple function of the above type. This concludes the proof. ¥
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The following result is the main consequence of our key lemma. Recall
that spaces satisfying the principal projection property include AL spaces
and L∞ (µ) spaces (and B (Σ)).

Theorem 13 If the normed lattice E has the principal projection property,
then the norm continuous and positively homogeneous functionals I : E+ → R
have the Choquet property.

Remark. The principal projection property is implied by the σ-Dedekind
completeness, but the converse implication does not hold (see [7, Ch. 4]).

Proof. Suppose first that E has an order unit e. Let k·k be the lattice
norm of E and ρe the order norm induced by e. Consider the isomorphism
T : (E, ρe) → (E, k·k) given by T (x) = x for each x ∈ E. Since kxk ≤
ρ (x) kek for all x ∈ E, we have T (xn) k·k→ T (x) if xn

ρe→ x. By Lemma 11, to
prove the result it is then enough to show that all ρe-continuous functionals
I : E+ → R have the Choquet property.
The lattice (E, ρe) is anM-space. By the Kakutani Theorem ([5, p. 164]),

there is an isometric lattice isomorphism T from (E, ρe) into (C (X) , k·ks),
where X is a suitable compact Hausdorff space and k·ks is the supnorm.
Moreover, T (e) = 1X and T (E) is dense in C (X).
Since E has the principal projection property, also T (E) does. By [2,

Thm 2.9], X is totally disconnected. Hence, X is zero-dimensional ([11, p.
46]) and so, by Lemma 12, all continuous functionals I : C+ (X) → R have
the Choquet property. Hence, any ρe-continuous functional I : E+ → R has
the Choquet property, as desired.
Suppose now that E does not have a unit. For any u, v ∈ E+, consider

the principal ideal Ju+v generated by u+ v and the restriction I : Ju+v → R
of our functional to the ideal Ju+v. As the principal projection property is
inherited by ideals [7, Thm 25.2] and u + v is an order unit in Ju+v, from
what we just proved before, I : Ju+v → R is superadditive, provided I is
supermodular and linearly homogeneous. In particular, as u, v ∈ Ju+v, we
have I (u+ v) ≥ I (u) + I (v). ¥

Spaces C (K), with K compact, having the principal property are those
for which K is σ-Stonian ([10, Prop. 2.1.5]). Therefore, Theorem 13 covers
few AM spaces, and it has eluded us whether the Choquet property is valid
for continuous functionals defined over general AM spaces.
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6 The Semicontinuous Case

In the previous section we have investigated the Choquet property for con-
tinuous functionals. The next theorem considers this property for functionals
that are only semicontinuous.

Theorem 14 If E is an AL space, then the upper semicontinuous and pos-
itively homogeneous functionals I : E+ → R have the Choquet property. The
same property holds for separable and non-atomic Banach lattices having a
p additive norm, with p > 1, and for L∞ (µ) spaces with µ finite.

Proof. Observe that the upper semicontinuity of I at 0 implies that I (u) ≤
L kuk for some L ≥ 0. Moreover, by the Kakutani Representation Theo-
rem [10, Thm 2.7.1] E is isometrically isomorphic to some L1 (µ) space of
functions.

Step 1. The norm k·k is modular over E, namely, kx ∧ yk + kx ∨ yk =
kxk+ kyk. Actually, from the obvious identities

(x ∧ y)+ = x+ ∧ y+, (x ∧ y)− = x− ∨ y−
(x ∨ y)+ = x+ ∨ y+, (x ∨ y)− = x− ∧ y−,

we obtain

|x ∧ y| = x+ ∧ y+ + x− ∨ y−, |x ∨ y| = x+ ∨ y+ + x− ∧ y−.
Hence,

kx ∧ yk+ kx ∨ yk = °°x+ ∧ y+°°+ °°x− ∨ y−°°
+
°°x+ ∨ y+°°+ °°x− ∧ y−°° = k|x|+ |y|k = kxk+ kyk

where the property of additivity over E+ for the norm is repeatedly used.

Step 2. The norm k·k is ultramodular over E (see [8]). Namely,
kx+ hk− kxk ≤ ky + hk− kyk (3)

holds for all x ≤ y in E and all h ∈ E+. For, this ultramodularity property
holds for the function t → |t|, as it is convex. Hence, by representing the
elements of E by functions, we have that

|x (t) + h (t)|− |x (t)| ≤ |y (t) + h (t)|− |y (t)|
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for x ≤ y and h ≥ 0. By integration,Z
|x (t) + h (t)|µ (dt)−

Z
|x (t)|µ (dt)

≤
Z
|y (t) + h (t)|µ (dt)−

Z
|y (t)|µ (dt) ,

which yields (3).

Step 3. The function (x, y) → kx− yk from E × E → R is submodular.
Actually, by Step 1, the maps x → kx− yk and y → kx− yk are modular.
Hence, by [12, Thm 2.6.2] it suffices to check that kx− yk has decreasing
differences. That is, the function x → kx− y2k− kx− y1k decreases for all
y2 ≥ y1. Namely,

kx+ h− y2k− kx+ h− y1k− kx− y2k+ kx− y1k ≤ 0
for h ≥ 0 and y2 ≥ y1. By setting x0 = x− y2 and y0 = x− y1, this inequality
follows from (3).

Step 4. Define the sequence of functionals

In (x) = sup
y∈E+

[I (y)− n kx− yk] (4)

over E+. By virtue of I (u) ≤ L kuk, In are finite for n ≥ L. Clearly, In are
Lipschitz continuous and positively homogeneous. Moreover, In ≥ I and the
sequence decreases. Let us prove that In (x) ↓ I (x). Fix x and ε > 0. Then,
for all n ≥ L, there is a sequence yn ∈ E+ such that

n kx− ynk ≤ I (yn)− In (x) + ε ≤ L kynk− In (x) + ε

≤ L kynk− I (x) + ε

As kynk ≤ kyn − xk + kxk, we have (n− L) kx− ynk ≤ L kxk − I (x) + ε.
Hence, kx− ynk→ 0 as n→∞. Now, from

I (yn) ≥ I (yn)− n kx− ynk ≥ In (x)− ε,

by the upper semicontinuity,

I (x) ≥ lim sup
n
I (yn) ≥ lim

n
In (x)− ε

14



and we conclude that In (x) ↓ I (x) for all x ∈ E+.

Step 5. To conclude the proof, we observe that In are supermodular. For,
given that the map (x, y) → I (y) − n kx− yk is supermodular, this is a
consequence of [12, Thm 2.7.6]. We infer that each In is superadditive. From
In (a+ b) ≥ In (a)+In (b), by taking the limit we have I (a+ b) ≥ I (a)+I (b).

Step 6. If E is non-atomic, separable and has a p-additive norm, then E
is isometrically isomorphic to Lp [0, 1] , (see [10, Thm 2.7.3]). As Lp [0, 1] ⊂
L1 [0, 1] is a projection band in L1 [0, 1], the band projection P : L1 (0, 1)→
Lp (0, 1) is an onto homomorphism. P is continuous, as kPfk ≤ kfk. Hence,
the result follows by Lemma 11. The same argument holds for L∞ (µ), which
is a projection band in L1 (µ), provided µ is finite. ¥

7 Translation Invariant Functionals

In this last section we consider the class of translation invariant functionals.
For these functionals the relations between supermodularity and concavity
turn out to be similar to the ones that we have established in the previous
sections for positively homogeneous functions. For brevity, we do not detail
all such properties, but we limit ourselves to state and prove the counterparts
of Theorems 3 and 9, leaving to the interested reader the counterparts of the
other results proved in Sections 5 and 6.
We begin with the counterpart of Theorem 3. Here we consider both

functionals defined on the positive cone Rn+ and functionals defined on the
entire space Rn.

Theorem 15 The translation invariant functionals I : Rn → R have the
Choquet property, as well as the translation invariant functionals I : Rn+ → R.

In other words, both a translation invariant functional I : Rn → R and
a translation invariant functional I : Rn+ → R is concave whenever it is
supermodular. Observe that if in the definition of translation invariance we
do not require e to be an order unit, then Theorem 15 fails. In fact, consider
I (x, y) = x + φ (y) over R2, where φ is not concave. The function I is
both translation invariant, with e = (1, 0), and supermodular, but it is not
concave.

15



Proof. Begin with I : Rn → R. As it is translation invariant, there
is u ∈ Rn++ such that I (x+ αu) = I (x) + αI (u) for all x ∈ Rn and all
α ∈ R. W.l.o.g., set u = e = (1, 1, ..., 1) . The new function eI (x) = I (ux),
where ux = (uixi)

n
i=1 , satisfies eI (x+ αe) = eI (x) + αeI (e). Moreover, by

normalizing the function, we can always set I (e) = 1,−1, 0. Our proof goes
through in the similar way in all these three cases. We shall set I (e) = 1,
namely, I (x+ αe) = I (x) + α.
The proof proceeds by induction. As it is trivially true for n = 1, we

show that it holds in Rn+1 provided it is true in Rn. In the sequel, vectors
in Rn+1 are denoted by x and the following decompositions are used: x =
(x0, x) ≡ (x0, x1, x0), with x ∈ Rn and x0 ∈ Rn−1.
If I (x0, x1, x0) is a function over Rn+1, and c ∈ R, Ic : Rn → R denotes

the function Ic (x0, x0) = I (x0, x0 + c, x0). Clearly, Ic is translation invariant
and supermodular whenever I is.
Since I (x0, x) = I (0, x− x0e0) + x0, to prove the theorem it suffices to

show that I (0, x) is concave. Take any two points (0, u) ≡ (0, u1, u
0) and

(0, v) ≡ (0, v1, v0). By Lemma 17-(iii), there are σ1,σ2,λ, µ such that
1

2
(0, u1) +

1

2
(0, v1) + σ1 (1, 1) = [(0, u1) + λ (1, 1)] ∧ [(0, v1) + µ (1, 1)](5)

1

2
(0, u1) +

1

2
(0, v1) + σ2 (1, 1) = [(0, u1) + λ (1, 1)] ∨ [(0, v1) + µ (1, 1)]

with σ1 + σ2 = λ+ µ. Consider the two points in Rn+1

a = [(0, u) + λe] ∧ [(0, v) + µe] ,
b = [(0, u) + λe] ∨ [(0, v) + µe] ,

where λ and µ are as above. By (5), we obtain

a0 = σ1, a1 = σ1 + 2
−1 (u1 + v1) (6)

b0 = σ2, b1 = σ2 + 2
−1 (u1 + v1) .

If we set c = 2−1 (u1 + v1), (6) implies that I (a) = Ic (σ1, a
0) and I

¡
b
¢
=

Ic (σ2, b
0). As the function Ic is concave, we have

Ic

µ
1

2
(σ1 + σ2) ,

1

2
(a0 + b0)

¶
≥ 1

2
Ic (σ1, a

0) +
1

2
Ic (σ2, b

0) = (7)

1

2
I (a) +

1

2
I
¡
b
¢ ≥ 1

2
I ((0, u) + λe) +

1

2
I ((0, v) + µe)

=
1

2
I (0, u) +

1

2
I (0, v) +

1

2
(λ+ µ)

16



On the other hand, the first term of (7) equals

I

µ
1

2
(σ1 + σ2) ,

1

2
(σ1 + σ2) +

1

2
(u1 + v1) ,

1

2
(u0 + v0) +

1

2
(λ+ µ) e0

¶
= I

µ
0,
1

2
(u+ v)

¶
+
1

2
(λ+ µ) ,

as σ1 + σ2 = λ+ µ. Consequently,

I
¡
0, 2−1 (u+ v)

¢ ≥ 2−1I (0, u) + 2−1I (0, v) ,
and so the function I (0, x) is mid-concave. By [3, Thm 111], I (0, x) is
concave since I (0, x) is bounded from below by Lemma 4. This proves the
Theorem for the case I : Rn → R.
Consider now a translation invariant and supermodular functional I :

Rn+ → R. By Lemma 1, there exists a translation invariant and supermodular
extension eI : Rn → R. By what it has been just proved, eI is concave, and so
I is. ¥

We close with the counterpart of Theorem 9.

Theorem 16 For a Riesz space E with order unit, the following conditions
are equivalent:

(i) is hyper-Archimedean,

(ii) the translation invariant functionals I : E+ → R have the Choquet
property,

(iii) the translation invariant functionals I : E → R have the Choquet prop-
erty.

Proof. The equivalence of (ii) and (iii) follows from Lemma 1. The proof
that (i) and (iii) are equivalent is rather similar to that of Theorem 9, and
so we only mention the points at which they differ. In the first implication
we assume per contra that E is not hyper-Archimedean. The proof then
goes on in constructing a functional that is not concave, though translation
invariant and supermodular. This is obtained by of the same quotient map
π : E → E/P of Theorem 9. Note that if e is an order unit of E, then
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[e] is an order unit of the quotient space E/P . Pick a point [u] ∈ E/P
linearly independent of [e], and construct two linear functionals L1 and L2
over E/P such that L1 ([u]) = −1, L1 ([e]) = 1, L2 ([u]) = 1 and L2 ([e]) =
1. The functional (L1 ∨ L2) (x) is translation invariant with respect [e] and
trivially supermodular. Note that (L1 ∨ L2) (− [u]) = 1, (L1 ∨ L2) ([u]) = 1
and (L1 ∨ L2) (2−1 [u]− 2−1 [u]) = 0. Therefore, L1 ∨ L2 is not concave.
As to converse, it suffices to prove here that the sublattice E [u, v, e] is

finite-dimensional, where e is the order unit. ¥

8 Appendix: The Space R2

The space R2 plays a fundamental role in view of the geometrical properties
described below. Property (ii) below is closely related to Konig’s construc-
tion, while (iii) is its translation invariant counterpart.

Lemma 17 (i) For all u, v ∈ R2+ there is some σ ∈ [0, 1] and α ∈ [0, 1] ,
such that

u ∧ v = σ (αu+ αv) . (8)

If u ∧ v 6= 0 and u, v are linearly independent, σ and α are uniquely deter-
mined.
(ii) For all u, v ∈ R2+ there is a unique α ∈ [0, 1] and σ ∈ [0, 1] such that

αu ∧ αv = σ (αu ∨ αv) . (9)

If in addition u, v ∈ R2++, then α ∈ (0, 1) . More precisely,

α =

√
v1v2√

u1u2 +
√
v1v2

σ =

√
u1v2 ∧√v1u2√
u1v2 ∨√v1u2 .

(iii) For all u, v ∈ R2, there are σ1,σ2,λ, µ ∈ R, with σ2 ≥ σ1 and σ1+σ2 =
λ+ µ, such that

1

2
(u+ v) + σ1e = (u+ λe) ∧ (v + µe) (10)

1

2
(u+ v) + σ2e = (u+ λe) ∨ (v + µe)

where e = (1, 1).

18



Proof. (i) If u∧ v = 0, set σ = 0. If u and v are comparable, set σ = 1 and
α ∈ {0, 1}. Hence, it remains to check it when u = (u1, u2) and v = (v1, v2),
with u1 < v1, v2 < u2 and u1, v2 not both equal to 0. Clearly σ 6= 0, in this
case. Suppose first that u1, v2 > 0. For (8) holds, it must be

1

σ
=

αu1 + αv1
u1

=
αu2 + αv2

v2
. (11)

The function ϕ (α) = (αu1 + αv1)u
−1
1 decreases, as ϕ (0) = v1u−11 > 1 and

ϕ (1) = 1. While the function ψ (α) = (αu2 + αv2) v
−1
2 increases, as ψ (0) = 1

and ψ (1) = u2v
−1
2 > 1. Hence, a unique α ∈ (0, 1) exists such that ψ (α) =

ϕ (α). This α, along with σ = ψ (α)−1, solves (8). By taking the inverse
of (11), we can deal with the case in which either u1 or v2 vanish. The
uniqueness, when u and v are linearly independent, is obvious. Otherwise,
u ∧ v = σ (αu+ αv) = σ1 (αu+ αv) which implies σ = σ1.
(ii) This property has been proved by Konig [4]. It suffices to check that

√
v1v2u ∧√u1u2v = (

√
u1v2 ∧√v1u2)

√
uv√

v1v2u ∨√u1u2v = (
√
u1v2 ∨√v1u2)

√
uv,

where
√
uv =

¡√
u1v1,

√
u2v2

¢
.

(iii) It suffices to check that (10) is true by setting

λ = −µ = 1

4
(v1 − u1) + 1

4
(v2 − u2)

σ2 = −σ1 = 1

4
|(v2 − u2)− (v1 − u1)| .

¥
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