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Abstract

The implementation of credit risk models has largely relied on the use
of historical default dependence, as proxied by the correlation of equity
returns. However, as is well known, credit derivative pricing requires risk-
neutral dependence. Using the copula methodology, we infer risk neutral
dependence from CDS data. We also provide a market application and
explore its impact on the fees of some credit derivatives.

JEL classi�cation number: G12

The assessment of the joint default probability of groups of obligors, as well
as related notions, such as the probability that the n-th one of them defaults,
is a crucial problem in credit derivatives pricing and hedging. In order to solve
it, academics and practitioners have recently relied on copula methods, which
allow to split any joint default probability into the marginal ones and a function,
the copula itself, which represents only the dependence between defaults. The
splitting up makes both default modelling and calibration much easier, since it
permits separate �tting at the univariate and joint level.
Copula techniques require on the one side the choice of a speci�c dependence

or copula function C, on the other side the selection of a level of the parameter/s
which characterize the copula.
As for the copula choice, structural based models naturally lead to a so-

called Gaussian or Student copula, while in intensity-based models the same
copulas are very often introduced for analytical convenience, especially in high
dimensions.
As for parameter calibration, it is fairly standard, both in structural and

intensity-based models, to use the historical equity correlation as a proxy for

�A more technical version of the results in this paper has been presented at the XVII
Annual Warwick Options Conference, September 24, 2004, under the title "Credit derivatives
and counterparty risk pricing through copulas: recent developments". The current version has
been prepared for presentation at the 2005 EFMA meeting, Milan, July 2005. Computational
assistance by A. Fraquelli is gratefully acknowledged. Contact address: Prof. Elisa Luciano,
University of Turin & ICER, Villa Gualino, V. S. Severo, 63 I-10133 Torino, Italy, tel.+39-
011-6604828, fax + 39-011-6600082, luciano@econ.unito.it
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asset correlation. In turn, the use of historical correlation is based on the as-
sumption of no premium for default correlation. The assumption, which can be
shown to be theoretically incorrect, was compulsory in the presence of illiquid
and restricted credit derivatives markets. Growing markets for credit deriva-
tives however allow us to calibrate risk neutral correlation from observed market
prices of credit products, so as to avoid the restrictive hypothesis of no premium
for default dependence.
Up to now, the technique of dependence calibration from credit derivatives

has been extensively used with CDOs: since CDOs involve a huge number of
obligors, while dependence measures are bivariate, default correlation has been
assumed to be the same between all obligors in the pool or in one of its tranches.
This restriction, which can be justi�ed through one-factor models, has some
drawbacks, such as the so-called correlation smile, of which practitioners are
well aware. It can lead to misleading investment choices, as Mashal, Naldi and
Tejwani (2004) point out.
The equality of pairwise correlations could be relaxed by using derivatives

based on bivariate default, such as derivatives subject to counterpart risk, which
are naturally priced in the copula framework (see for instance Cherubini, Lu-
ciano and Vecchiato (2004)).
Credit default swaps (CDS's) seem to be the natural choice, due to their high

liquidity, once the possibility that the guarantor defaults is taken into account.
In turn, counterpart risk can be consistent with the empirical studies on CDS's
carried out so far: Blanco, Brennan and Marsh (2004) for instance �nd violations
of the parity between bond yield spreads and CDS premia, by ignoring the
vulnerability of the latter. Since CDS premia, once vulnerability is taken into
account, can be greater than their non-vulnerable correspondents, the violations
in Blanco et alii could disappear by taking counterpart defaults into account. As
another example, consider the evidence reported in Ericsson, Jacobs and Oviedo-
Helfenberger (2004): on their data, only 60% of the CDS premia is explained
by theoretical variables, with no apparent room for a residual common factor.
As Blanco et alii, they do not take into consideration the vulnerable nature
of CDS's: counterpart risk therefore could enhance their results, especially the
asymmetry between bid and ask R-squared.
From the theoretical point of view, vulnerable default swaps have been ac-

curately priced: see for instance Turnbull (2004). This paper shows how to use
these products in order to calibrate risk neutral default correlation and, at the
same time, to select the "best" copula1. It applies the methodology to a small
set of obligors and studies the impact on higher dimensional derivative pricing,
such as CDOs.

1From the theoretical point of view, choosing a best-�t copula is equivalent to selecting a
risk neutral measure among the several one which are consistent with market incompleteness.
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1 Credit Default Swaps with a vulnerable issuer

Let us recall �rst of all that under fairly weak conditions the joint default prob-
ability at time T;Pr(� i � T; � j � T ), where � i and � j are the times to default
of obligors i and j, can written as a function, the copula indeed, of the default
probabilities of the single obligors:

Pr(� i � T; � j � T ) = C(Pr(�1 � T );Pr(�2 � T ))

Among the most renowned copulas, which are used in credit modelling (see
for instance the Credit MetricsTM documentation, as well as Frey, McNeil and
Nyfeler (2001) or Mashal and Naldi M. (2003)), are the Gaussian and Student
one. They are respectively represented as:

CGa(v; z) = ��
�
��1(v);��1(z)

�
where �� is the bivariate cumulative normal distribution with correlation coe�-
cient �, while ��1 is the inverse of the univariate standard normal distribution,
and

C�;�(v; z) = t�;�
�
t�1� (v); t�1� (z)

�
where t�;� is the bivariate cumulative Student distribution with correlation coef-
�cient � and v degrees of freedom (dof), while t� is the corresponding univariate
function.
These two choices, while apparently awkward, have proved to provide a very

good �tting to hystorical asset and default data. In the sequel, while applying
the copula formalism, we will adopt them too. We will need them, in particular,
while writing down the payo� and valuation of CDS.
Let us denote as i the guarantor or insurance seller, who sells protection

against default within time T of a reference credit, issued by j. In case default
occurs to j, i should pay to the insurance buyer the so-called contingent leg
of the contract, consisting in the loss given default on the reference bond,
Lgd j = 1 � R j . However, in case of default both by the guarantor and
the reference credit, only a fraction of the due amount, corresponding to the
recovery rate of the guarantor, Ri, is paid. For the sake of simplicity2, let us
assume that, in case of default, the loss payment occurs at expiration of the
contract, T . Assume also that the default-free interest rates and recovery rates
are non-stochastic3. Denote as Bt the value at time 0 of a zcb with maturity t,
unit face value.
According to the no-arbitrage evaluation principle, the contingent leg should

then be priced as

BT
�
(1�R j) Pr (� i > T; � j � T ) +R i(1�R j) Pr (� i � T; � j � T )

�
2This assumption can be relaxed for more realistic calibration, and accrued interest con-

siderations can be introduced. For a continuous time version see for instance Hull and White
(2000).

3A straighforward extension consists in assuming them stochastic, but independent.
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where Pr() is the risk-neutral probability of the event in parenthesis, and � i; � j

are the times to default of the two obligors i and j.
Let Fi(T ) and F j(T ) be the (risk-neutral) distributions of � i; � j , evaluated

at T : Fi(T ) := Pr (� i � T ). Using these distributions and a (risk-neutral)
copula representation of the joint default probability, Pr (� i � T; � j � T ) =
C(F i(T ); F j(T )), the contingent leg becomes

BT (1�R j)
�
F j(T )�

�
1�R i

�
C(F i(T ); F j(T ))

�
As for the fee leg, the protection buyer pays to i a periodic fee, s, if and only if
both the guarantor and the reference credit survive. We then have the following
fee leg value:

T�1X
t=0

sBt �C(1� F i(t); 1� F j(t))

where �C is the (risk-neutral) copula representing the joint survival probability
of the two entities, Pr (� i > T; � j > T ), which in turn is related to the copula
C by the relationship

�C(1� F i(t); 1� F j(t)) = 1� F i(t)� F j(t) + C(F i(t); F j(t))

The theoretical CDS fee is therefore

s =
BT (1�R j)

�
F j(T )�

�
1�R i

�
C(F i(T ); F j(T ))

�PT�1
t=0 Bt

�C(1� F i(t); 1� F j(t))
(1)

2 Calibration and risk neutral dependence

Let us consider CDS ask quotes, as o�ered by major investment banks: in the
ask case, the bank acts as the agent i above4. At the same time, let us assume
that we can infer the marginal (risk neutral) default probabilities of both the
issuing bank and the reference credit from the bond market, either using an
analytical model, such as an intensity-based one, or simply taking the empirical
marginal default probabilities at the horizons t = 0; 1; :::T : in the sequel, we will
use the spread-over-Treasury curves and infer from them the empirical margins.
For a given copula choice, such as the Gaussian, the actual ask quotes and

their theoretical versions, given by (1) above, can be used in a straightforward
way to infer the (implied) dependence measure of i and j, for instance a linear
correlation coe�cient, �(� i; � j). As usual, the implied measure can be taken
to be the one which minimizes the pricing errors, over a given period of time.

4We do not consider bid quotes, since they involve the marginal default probability of a
generic counterpart, and its joint default with the quoting bank. At most, under an assumption
of prudential, "worst" default dependency between the bidding bank and its counterpart, bid
quotes could be used to infer the implicit default probability of the counterpart itself.
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Repeating the minimization for di�erent copula families and comparing the CDS
pricing errors, one will also have a selection criterion for copulas.
As an example of the above calibration, we constructed the risk neutral

dependence matrices for three names, used them as block matrices for bigger
portfolios, and compared them, in terms of impact on some credit derivatives
pricing, with the historical correlation one. The derivatives on which the impact
is appreciated are a FTD swap on three names, a FTD on nine names and a
CDO with nine homogeneous tranches.
Since the purpose of the whole calibration is purely illustrative, we work with

a small sample of three names, which, for privacy purposes, we will denote as
obligors 1, 2 and 3. The �rst two belong to the �nancial USA sector, the third
to the telecommunication, EU one: at the moment of the sample construction,
they belonged respectively, according to Standard & Poor's, to the rating classes
AA, A and BBB. Their CDS 's are part of the I-Traxx (both series 1 & 2), in
both cases being senior unsecured.

2.1 Marginal default probabilities

In order to calibrate the marginal risk neutral default probabilities, we took
from Bloomberg the appropriate (by sector and rating) spreads-over-Treasury,
for the maturities 1 to 5 years. We considered the spreads over the period
August 2-October 22, 2004, and we divided the observation period into three
subperiods, of 20 working days each.
We �rst obtained the average spread-over Treasury for each entity, in each

subperiod. We got from it the empirical default probabilities5, knowing that, if
the spread yi(t) for the maturity t is observed, and the recovery rate on i is Ri,
the corresponding default probability is

Fi(t) =
1� exp(�yi(t)t)

1�Ri
(2)

While doing this, we used the same recovery rate of the joint level, namely 40%,
due to the seniority of the CDS's under exam.
The marginal default probabilities so obtained are collected, for each ma-

turity (horizon, from 1 to 5 years) and each subperiod of observation, in the
following table:

5We preferred to use raw implied marginal probabilities, instead of �tting a marginal
default probability model, such as a constant intensity for each name or even a stochastic one,
in order to avoid marginal model risk.
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obligor #1 obligor #2 obligor #3

horizon
08/02/04­
08/27/04

08/30/04­
09/24/04

09/27/04­
10/22/04

08/02/04­
08/27/04

08/30/04­
09/24/04

09/27/04­
10/22/04

08/02/04­
08/27/04

08/30/04­
09/24/04

09/27/04­
10/22/04

1 0.33% 0.47% 0.47% 0.53% 0.53% 0.53% 0.31% 0.37% 0.37%
2 1.63% 1.42% 1.42% 1.92% 1.76% 1.76% 0.85% 0.94% 0.94%
3 3.00% 2.84% 2.84% 3.16% 3.14% 3.14% 1.49% 1.77% 1.77%
4 3.95% 3.56% 3.56% 4.19% 4.18% 4.18% 1.89% 2.15% 2.15%
5 5.17% 4.95% 4.95% 5.57% 5.44% 5.44% 3.61% 4.07% 4.07%

2.2 Joint default probabilities

At the joint level, we calibrated the dependence parameter for three di�erent
copulas: the Gaussian and the Student-t, with two di�erent dof, namely 3 and
8. Both the Gaussian and Student copulas, which are the most extensively
used ones in practice, include as dependence measures the linear correlation
coe�cients between the obligors. The Gaussian, in particular, is "the limit", as
the number of degrees of freedom diverges, of the Student copula. The levels
of dof have been chosen according the levels previously ascertained for stock
returns.
In order to work out the joint risk neutral default probabilities and the

corresponding correlation matrices, we collected the 5 year CDS ask quotes
from two of the obligors, over the period mentioned above (August 2-October
22, 2004). We selected the 5 year maturity because of the greater liquidity. As
mentioned above, we used a 
at recovery of 40%, considering the seniority of the
CDS's, and the appropriate swap curve for riskless discounting (USA or Euro).
In the swap case we used daily data from Bloomberg.
For each copula choice, each subperiod and each couple of obligors, we esti-

mated the linear correlation coe�cient between the survival times, �(� i; � j), so
as to minimize the sum of the squared CDS pricing errors. To end up with, we
took the average correlation over the whole period under exam.
The correlation matrices so obtained are reported in the table below, in bold,

together with their average (minimized) pricing error, in basis points:
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Risk
neutral
correlation
Student
copula
3dof obligor 1 obligor 2 obligor 3
obligor 1 1 0.785 ­0.246

0.554 1.994
obligor 2 1 ­0.742

1.701
obligor 3 1
Risk
neutral
correlation
Student
copula
8dof obligor 1 obligor 2 obligor 3
obligor 1 1 0.810 0.008

0.351 1.707
obligor 2 1 ­0.580

1.661
obligor 3 1
Risk
neutral
correlation
Gaussian
copula obligor 1 obligor 2 obligor 3
obligor 1 1 0.838 0.127

0.627 2.049
obligor 2 1 ­0.425

1.775
obligor 3 1

Implied Correlation coe�cients, averages over the three observation periods
(aug-oct 2004),

for di�erent copula functions (in bold),
together with their minimized pricing errors (plain)

As the number of degrees of freedom increases, our correlation coe�cients
increase too, as expected, since low dof compensate for low correlation. The
natural selection procedure for copulas representing the link between the three
couples of obligors consists, as said above, in choosing as "best" copula the one
which minimizes the pricing error: in the present case, despite the fact that
the errors are very close, the best �t is given by the Student copula with eight
degrees of freedom. However, in the sequel, while appreciating the impact of
risk neutrality on some derivatives pricing, we will use all the copulas explored
so far, so as to appreciate the potential e�ects of a non-best copula selection.
As concerns the historical (linear) correlation matrices, we obtained them

using the daily log returns over the last year (June 2003 to August 2004) from
Datastream. Since the data are liable to represent fat-tailed distributions, we
decided not to estimate directly the linear correlation coe�cients, but to work
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through the Kendall's taus. The historical correlation matrix so obtained is:

historical
correlation
matrix obligor 1 obligor 2 obligor 3
obligor 1 1 0.731 ­0.063
obligor 2 1 ­0.082
obligor 3 1

Historical correlation matrix, 2003-4

In order to discuss the impact of risk-nuetral versus historical correlation,
and therefore model risk, we use them to price multivariate credit derivatives.
Pricing is done using the marginal default probabilites and implied correlation
matrices of the last subperiod (not reported here for brevity), together with the
last day observations for the riskless rates.

3 Impact of risk neutral correlation on FTDs

This section explores the impact of moving the correlation matrix from the
historical to the risk neutral ones, in pricing a FTD on the three names under
exam and a FTD on a nine-asset portfolio built from them, both with maturity
5 years.
It is known that the no-arbitrage fee of a FTD is the one which equates the

fee and default leg.
As for the default leg, let us assume that the FTD pays at the end of year t,

in case default has occurred during it. With equal recovery on all the underlying
credits, as in our example, the default leg expected present value is

(1�R)
TX
t=1

Bt

h
�C123(t� 1)� �C123(t)

i
where the copula �C123(t) := �C123(1�F1(t); 1�F2(t); 1�F3(t)) is obtained from
the bivariate one, as in Cherubini, Luciano, Vecchiato (2004).
The fee leg, assuming an yearly fee w, has expected present value

w

T�1X
t=0

Bt �C
123(t)

Maintaining both the recovery rate and the (average) marginal survival proba-
bilities above, we have the no-arbitrage fees presented in the following picture:
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FTD spread (bp), three assets
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Gaussian, R hist
Gaussian, R risk n.
Student 8dof, R hist.
Student 8dof, R risk n
Student 3dof, R hist.
Student 3dof, R risk n

Fees of the FTD, three assets, in bp, for di�erent copula functions and
correlation matrices

The reader can notice that - with the exception of the Gaussian case, on
which we will comment further below - the impact of the copula choice seems
to be higher than the correlation matrix one, for a given copula. It is therefore
crucial to be able to select the best �t copula (in our case, the Student with 8
dof), something which makes sense under risk neutrality, not under the historical
measure.
In order to explore whether copula selection plays even a more pronounced

role with more obligors, let us construct a portfolio of nine names, as follows:
the �rst three have the same marginal distribution as obligor 1, the second three
as 2, the last three as 3. As for the correlation structure, the �rst group has
the same cross-correlation as 1 and 2, the second as 2 and 3, the last as 1 and
3. This implies, in terms of correlation matrix, building a 9 � 9 block matrix
from each of the previous ones6. We disregard the Student t case with three
dof, since the block correlation matrix is not positive de�nite. With this new
portfolio, we repeat the FTD fee calculation. The results are reported in the
�gure below:

6As an illustrative example, the correlation matrix corresponding to the historical measure
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FTD spread (bp), nine assets
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Student 8dof, R hist.
Student 8dof, R risk n

Fees of the FTD, nine assets, in bp, for di�erent copula functions and
correlation matrices (R)

The phenomenon that we observed for the three asset case seems to be even
more pronounced in this synthetic, nine-asset one: the copula choice (i.e. the
selection of "the" risk neutral measure) seems to be much more relevant, in
terms of the impact on FTD prices, than using the equity historical correlation
instead of a time-to-default, risk-neutral one. Changing the correlation (from
historical to risk neutral) while keeping the copula �xed produces a change in the
fee of less than 0.06 percentage points in the Student case, less than 3.5 points
in the Gaussian case. Opposite to this, changing the copula from Gaussian to
Student increases the fee by 12.5% under the historical measure, by 9% under
the risk neutral one. In terms of basis points, as the reader can notice from the

is:
1 .731 .731

1 .731
1

1 -0.063 -0.063
1 -0.063

1
1 -0.082 -0.082

1 -0.082
1
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picture, the order of magnitude of the change goes from around ten to around
�fty bp.
The anomaly observed above for the three asset case disappears: we can

explain this with the fact that a Gaussian dependence structure, as is well
known, fails to capture the actual default behavior - this is con�rmed by the
pricing errors reported above). However, this failure is weaker when the number
of assets increases.

4 Impact of risk neutral correlation on CDOs

In order to appreciate further the e�ect of using a risk-neutral time-to-default
correlation matrix instead of an equity historical one, we investigated a syn-
thetic collateralized debt obligation (CDO) case. Each CDOs has a reference
portfolio, is divided into tranches, speci�ed by the percentage of portfolio losses
they cover, and presents again a loss and a premium leg.
The loss leg for each tranche consists in loss refunding up to the upper

bound of the tranche, L+, with a deductible equal to the lower bound, L�. If m
obligors, denoted as k1; k2; :::km; belong to the tranche (L

+; L�), the expected
value of the refund for the tranche ; E (L+; L�; t), is:

E
�
L+; L�; t

�
=

mX
i=1

max

�
min

�
L� +

i

n

�
L+ � L�

�
; L+

�
� L�; 0

�
P (M(t) = ki)

where P (M(t) = ki) is the risk-neutral probability of having a number of de-
faulted �rms at time t; M(t), equal to ki: This probability can be calculated
from the survival copula of the n obligors, via Montecarlo simulation. Assuming
a maturity of T years, and refunding evenly distributed over the year, one can
evaluate the loss leg of the tranche (L+; L�) as

TX
t=1

Bt�0:5
�
E
�
L+; L�; t

�
� E

�
L+; L�; t� 1

��
As for the fee leg of the tranche, the premium is generally proportional to the
non-defaulted tranche amount. Assuming that the loss grows linearly during
the year, and denoting as W the percentage fee, one has the fee leg

W
T�1X
t=0

1

2
Bt

�
1� E (L

+; L�; t+ 1)

L+ � L� + 1� E (L
+; L�; t)

L+ � L�

�
By equating the two legs, we get as usually the no-arbitrage fee.
We implemented the computation of this fee assuming T = 5, with the same

swap term structure of the FTD, for the portfolio of nine assets described in
the previous section, using the marginal distributions described there and the
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di�erent risk-neutral correlation matrices, as well as the equity-historical one.
We made each tranche collapse in a single asset (m = 1), for simplicity, so as
to have 9 tranches, each covering 1/9 of the losses. The Montecarlo simulations
were run using Gauss, with 1 m illion runs for each case. The results for the no-
arbitrage W and the corresponding graph for the junior tranche and the whole
CDO are reported in �gures 3 and 4 respectively:

tranches 1 2 3 4 5 6 7 8 9 all

11% 22% 33% 44% 56% 67% 78% 89% 100%

Gaussian copula R hist 58.522 11.957 3.205 0.674 0.068 0.006 0.000 0.000 0.000 73.108

Gaussian copula R risk n 55.383 11.340 4.195 0.989 0.112 0.012 0.000 0.000 0.000 70.850

Student 8 dof R hist 47.765 12.677 4.317 1.475 0.390 0.069 0.006 0.000 0.000 65.815

Student 8 dof R risk n 47.955 11.945 4.537 1.767 0.414 0.072 0.004 0.000 0.000 65.809

CDO fee, nine assets, all tranches (separately and, in the last column,
together),

for di�erent copula functions and correlation matrices (R)
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CDO fee, nine assets
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CDO fee, nine assets, junior tranche and whole CDO,
for di�erent copula functions and correlation matrices (R)

As in the FTD case, the copula choice seems to a�ect the no-arbitrage fee
much more than the correlation structure: if one considers all the tranches, for
instance, switching from the Gaussian to the Student copula while keeping the
correlation matrix �xed changes the fee by 10% with the historical correlation,
by 7% under the risk-neutral one. In basis points, the change amounts to 8 and
5 bp. Switching from the historical to the risk neutral matrix while keeping
the copula �xed changes the corresponding fee only by 3% under the Gaussian
copula. With the Student copula the �gure furtherly drops to almost zero. Most
of the e�ect is perceived on the �rst tranche (up to 11%), whose protection fee
changes by 11 bp while going from the Gaussian to the Student copula and
adopting the historical correlations, by 10 under the implied measure. The
corresponding bp changes under the same copula and di�erent correlations are
either negligible (Student case) or close to 3 bp (Gaussian case).

5 Summary and conclusions

Default correlation is an important feature of credit derivatives pricing and
hedging. The current practice consists in relying on asset correlation, as proxied
by the stock returns one, in order to assess default correlation. However, the
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correlation which is needed is a risk-neutral, not the historical one given by
stock behavior.
In this paper, we showed how to use the vulnerability feature of CDS's

to infer risk neutral default correlation. We provided a calibration example,
in order to appreciate possible e�ects of using - as customary - the historical
correlations instead of the market-implied, risk neutral ones. On the example,
the e�ect of using the best-�t risk neutral correlation matrix instead of the
corresponding historical one (which presumes no price of default risk), is lower
than the impact of using a non-best copula, while keeping the linear correlation
coe�cients of the times to default �xed. In a sense, this is good news: the
literature so far in fact has used the historical correlation and tried to evaluate
the copula-choice e�ect, although under the wrong measure.
Nonetheless, any general statement needs further investigation.
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