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Abstract

We prove results that relate random correspondences with their
measurable selections, thus providing a foundation for viewing random
correspondences as �bundles� of random variables.

1 Introduction
Since the seminal works of Dempster (1967, 1968), Kendall (1974), andMath-
eron (1975), random correspondences have been widely used as a generaliza-
tion of standard random variables. Given two measurable spaces (S,Σ) and
(X,B), while random variables associate to elements of S single elements of
X, random correspondences relax this assumption by associating nonempty
subsets of X to elements of S. This added ßexibility turned out to be use-
ful in several areas and we refer the interested reader to the original works,
as well as to the recent surveys in Stoyan, Kendall, and Mecke (1995) and
Barndorff-Nielsen, Kendall, and van Lieshout (1999). For example, build-
ing on Dempster�s works, random correspondences have been recently used
in Bayesian decision theory to model unforeseen contingencies by Mukerji
(1997) and Ghirardato (2000).

∗Castaldo is at Dipartimento di Matematica e Statistica, Università di Napoli, Italy,
acastald@unina.it; Marinacci is at Dipartimento di Statistica e Matematica Applicata,
Università di Torino, Italy, and ICER; massimo@econ.unito.it. We wish to thank Fabio
Maccheroni for valuable discussions. The Þnancial support of MURST is gratefully
acknowledged.

1



Given a probability P : Σ → [0, 1], a suitably measurable random corre-
spondence F : S → 2X induces a lower distribution ν and upper distribution
ν on X as follows:

ν (A) = P ({s : F (s) ⊆ A}) ,
ν (A) = P ({s : F (s) ∩A 6= ∅})

for all subsets A ∈ B. In the special case of a random variable f : S → X, we
have ν (A) = ν (A) for all A ∈ B and ν reduces to the standard probability
distribution Pf induced by f .
The distributions ν and ν therefore generalize the usual probability dis-

tributions induced by random variables. The purpose of our work is to study
these distributions and in particular their relationships with the standard
probability distributions induced by the measurable selections of the random
correspondence F .
SpeciÞcally, let S (F ) be the set of all measurable selections of the ran-

dom correspondence F , that is, the set of all random variables h : S → X
such that h (s) ∈ F (s) for all s ∈ S. Each selection h ∈ S (F ) induces
a probability distribution Ph on X deÞned by Ph (A) = P ({s : h (s) ∈ A})
for all A ∈ B. Our purpose is to relate the distributions ν and ν with the
set {Ph : h ∈ S (F )} of the standard probability distributions induced by the
selections of F . In this we follow Aumann (1965)�s lead, who showed that
a fruitful way to look at correspondences is as �bundles� of their selections,
a standpoint that makes it possible to relate correspondences with the more
familiar single-valued functions. In a probabilistic setting, we adopt a simi-
lar view and we provide a connection between the generalized distributions
ν and ν and the standard probability distributions {Ph : h ∈ S (F )} that are
naturally associated with a random correspondence F .
We have two main results. Consider a real-valued function u : X → R

deÞned on the space X, that in applications will be in general the space
of interest � e.g., a space of consequences. Since ν and ν are non-additive
set functions, we have to consider their Choquet integrals

R
udν and

R
udν,

deÞned in the next section. Our Þrst result, Theorem 1, shows that
R
udν

and
R
udν are, respectively, the lower and upper envelopes of the sets of the

standard integrals
©R
udPh : h ∈ S (F )

ª
. That is, we prove thatZ

udν = inf

½Z
udPh : h ∈ S (F )

¾
,
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Z
udν = sup

½Z
udPh : h ∈ S (F )

¾
,

provided X is Polish and F compact-valued, conditions often satisÞed in
applications.
Our second main result, Corollary 1, considers core (ν), the set of all

countably additive probability measures that setwise dominate ν. This set is
often associated with the distribution ν (see, e.g., Huber and Strassen, 1973),
and Corollary 1 shows that it is nothing but the weak∗-closed convex hull of
the set {Ph : h ∈ S (F )} of induced probability distributions. That is,

core (ν) = cow
∗
({Ph : h ∈ S (F )}) .

These two results (as well as Corollary 2) show that there exists a tight
connection between the generalized distributions ν and ν and the standard
probability distributions {Ph : h ∈ S (F )} that are naturally associated with
them. In this way, we can relate these generalized notions with more familiar
standard notions and offer a novel perspective on random correspondences
as �bundles� of random variables.
We close by mentioning that in our derivation we obtain two results of

some independent interest: Theorem 2 provides a change of variable for-
mula for the Aumann integral, while Lemma 7 generalizes the classic Lusin
Theorem to Choquet capacities.
The paper is organized as follows. Section 2 contains notation and some

preliminary results. Section 3, which is the heart of the paper, states our
main results. Section 4 contains two subsections. Subsection 4.1 contains
change of variable formula for the Aumann integral, while subsection 4.2
extends our results to random sets. Finally, section 5 contains the proofs
and related material.

2 Termini technici and preliminary results
Let Σ be an event σ-algebra of a state space S, and X a metric space with
Borel σ-algebra B. As usual in Probability Theory, we will often assume that
X is a Polish space, i.e., a separable and complete metric space.
We denote by ca (B) the set of all countably additive measures on B

that are bounded with respect to the variation norm. Probabilities are the
positive and normalized elements of ca (B) that take on value 1 on X. On
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ca (B) we use the weak∗-topology induced by Cb (X), the set of all continuous
and bounded functions f : X → R. In particular, a net of probabilities
{pα}α ⊆ ca (B) weak∗-converges to a p ∈ ca (B) if limα

R
fdpα =

R
fdp for

all f ∈ Cb (X).
A capacity ν : B → [0, 1] is a set function such that:

1. ν (∅) = 0 and ν (X) = 1;
2. ν (A) ≤ ν (B) for all A,B ∈ B such that A ⊆ B.

The capacity ν is convex if ν (A ∪B) + ν (A ∩B) ≥ ν (A) + ν (B) for
all A,B ∈ B. We denote by core (ν) the core of a capacity ν, i.e., the set
{p ∈ ca (B) : p (X) = 1 and p (A) ≥ ν (A) for all A ∈ B} of all probabilities
that setwise dominate the capacity. If ν is convex, then core (ν) is nonempty.
The notion of integral associated with capacities is the Choquet integral.

Given a measurable real-valued function u : X → R, the Choquet integralR
udν is deÞned byZ

udν =

Z +∞

0

ν (u ≥ t) dt+
Z 0

−∞
[ν (u ≥ t)− 1] dt,

where the right hand side is a Riemann integral, which is well deÞned since
ν (u ≥ t) is a monotone function in t.
A correspondence F : S → 2X associates nonempty subsets of X to states

of S. The strong inverse F−1 of F is deÞned by F−1 (A) = {s : F (s) ⊆ A}
for all sets A ⊆ X, while the weak inverse Fw is deÞned by Fw (A) =
{s : F (s) ∩ A 6= ∅}. Since Fw (A) = S − F−1 (Ac) for all A ⊆ X, in general
it will be enough to focus on F−1.
Using a standard notion of measurability, we now introduce random cor-

respondences.

DeÞnition 1 A correspondence F : S → 2X is B-measurable if F−1 (A) ∈
Σ for all Borel sets A ∈ B. A correspondence F : S → 2X which is B-
measurable is called a random correspondence.

If the values of F are singletons, random correspondences reduce to stan-
dard random variables. Random correspondences are closely related to ran-
dom sets, the only difference being in the notion of measurability used. The
main reason why we use random correspondences is to have the distribution
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ν deÞned on the entire σ-algebra B. In any event, in section 4 we show that
our main result holds for random sets as well.
Given a probability measure P : Σ→ [0, 1] on the state space, a random

variable f : S → X induces a distribution Pf : B → [0, 1] deÞned by Pf (A) =
P ({s : f (s) ∈ A}) for all A ∈ B. In a similar way, random correspondences
induce a lower distribution ν : B → [0, 1] and an upper distribution ν : B →
[0, 1] deÞned by:

ν (A) = P
¡
F−1 (A)

¢
= P ({s : F (s) ⊆ A}) , and

ν (A) = P (Fw (A)) = P (s : F (s) ∩ A 6= ∅)
for all A ∈ B. Since ν (A) = 1−ν (Ac) for all A ∈ B, there is a simple duality
between the two distributions, and in the sequel we will mostly focus on ν.
Unlike the distributions Pf , the set function ν is in general non-additive.

However, it is totally monotone, i.e.,

ν

Ã
n[
i=1

Ai

!
≥

X
∅6=I⊆{1,...,n}

(−1)|I|+1 ν
Ã\
i∈I
Ai

!

for all {Ai}i∈{1,...,n} ⊆ B (see, e.g., Nguyen, 1978). Besides total monotonicity,
the distributions ν have other important properties. Following Kuratowski
(1966) we say that a monotone increasing sequence {An}n≥1 of Borel sets is
strictly monotone if An ⊆ int (An+1) for all n ≥ 1 (e.g., all sets An are open).

Proposition 1 Let ν : B → [0, 1] be the distribution induced by a random
correspondence. Then:

(i) limn→∞ ν (An) = ν
¡T

n≥1An
¢
for all non-increasing sequences of Borel

sets.

If, in addition, the correspondence has compact values, then:

(ii) limn→∞ ν (An) = ν
¡S

n≥1An
¢
for all non-decreasing strictly monotone

sequences of Borel sets.

Point (i) is easy to check (see, e.g., Nguyen, 1978). Point (ii) is in general
false if the sequence is not strictly monotone, as the following example shows.

Example. Let X = [0, 1] and K = [1/2, 1]. Consider the multifunction
F : S → 2X deÞned by F (s) = K for all s ∈ S. Then ν is {0, 1}-valued and
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ν (A) = 1 if and only if K ⊆ A.1 Set An = [0, 1− 1/n] ∪ {1}. The sequence
{An}n≥1 is not strictly monotone and so Proposition 1 does not apply. We
have An ↑ X, but limn ν (An) 6= ν (X). In fact, limn ν (An) = 0.

The next result shows some regularity properties of the distribution ν.
Parts of this result are more or less known, though we did not Þnd a reference
for the result in this generality.2 For this reason we provide a proof.

Proposition 2 The distribution ν induced by a compact-valued random cor-
respondence is regular, i.e.,

ν (A) = sup {ν (C) : C ⊆ A and C closed}
= inf {ν (G) : A ⊆ G and G open}

for all Borel sets A. If, in addition, X is Polish, then ν is tight, i.e., ν (A) =
sup {ν (K) : K ⊆ A and K compact} for all Borel sets A.

3 Main results
In this section we characterize the random correspondence F : S → 2X via
the probability distributions induced by its measurable selections. The Þrst
result, which is our main result, shows that the Choquet integral relative to
ν can be expressed in terms of the standard integrals associated with the
probability distributions induced by the measurable selections of F .
Before stating the result we introduce a class of functions.

DeÞnition 2 A real-valued function u : X → R is lower (upper, resp.)
Weierstrass if it attains its inÞmum (supremum, resp.) on all compact sets
of X.

The class of lower Weierstrass functions is broad and it includes:

(i) all lower semicontinuous functions u : X → R;

(ii) all Þnite-valued functions u : X → R.
1In other words, ν is the unanimity game uK .
2For example, the Polish space part is an immediate consequence of an unproved ob-

servation on p. 253 of Huber and Strassen (1973).
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On the other hand, continuous functions and Þnite-valued functions are
examples of functions that are both lower and upper Weierstrass.
We can now state our main result. Recall that S (F ) is the set of mea-

surable selections of F .

Theorem 1 Let ν be the distribution induced by a compact-valued random
correspondence F : S → 2X . If X is a Polish space, thenZ

udν = inf
h∈S(F )

Z
udPh (1)

for all bounded and measurable functions u : X → R. If, in addition, u is
lower Weierstrass, then in (1) we have a min instead of an inf.

Remark. A dual version of Theorem 1 holds, where ν, inf, and lower Weier-
strass are replaced respectively with ν, sup, and upper Weierstrass.

From a probabilistic standpoint, the set of induced probability distribu-
tions {Ph : h ∈ S (F )} is a very important subset of core (ν) since it has a
direct connection with the random correspondence F . It would be therefore
desirable that {Ph : h ∈ S (F )} were also a mathematically important subset
of core (ν). In general, {Ph : h ∈ S (F )} is not a convex set and so in gen-
eral core (ν) 6= {Ph : h ∈ S (F )}. For example, let S = X = [0, 1] and let
F (s) = {0, s} for all s ∈ S. It can be checked that {Ph : h ∈ S (F )} is not
convex.
However, the next result � based on Theorem 1 � shows that {Ph : h ∈ S (F )}

is still an important subset of core (ν). As a matter of fact, core (ν) is nothing
but the weak∗-closed convex hull cow

∗
(·) of {Ph : h ∈ S (F )}.

Corollary 1 Let ν be the distribution induced by a compact-valued random
correspondence F : S → 2X . If X is a Polish space, then

core (ν) = cow
∗
({Ph : h ∈ S (F )}) ,

and ext (core (ν)) ⊆ {Ph : h ∈ S (F )}w
∗
, i.e., all extreme points of core (ν)

belong to the weak∗-closure of {Ph : h ∈ S (F )}.

We close with a simple but useful consequence of Theorem 1, that further
shows the importance of the set {Ph : h ∈ S (F )} for ν.
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Corollary 2 Let ν be the distribution induced by a compact-valued random
correspondence F : S → 2X . If X is a Polish space, then:

(i) for each Þnite chain {Ai}ni=1 of Borel sets there exists h ∈ S (F ) such
that ν (Ai) = Ph (Ai) for each i = 1, ..., n.

(ii) for each inÞnite chain {Gi}i∈[0,1] of open sets with

(a) Gi ⊇ Gj if i ≥ j and G0 = ∅,
(b)

S
j<iGj = Gi,

there exists h ∈ S (F ) such that Ph (Gi) = ν (Gi) for all i ∈ [0, 1].
(iii) for each inÞnite chain {Ci}i∈[0,1] of closed sets with

(a) Ci ⊆ int (Cj) if i ≥ j,
(b)

T
j<iCj = Ci,

there exists h ∈ S (F ) such that Ph (Ci) = ν (Ci) for all i ∈ [0, 1].

4 Additional results

4.1 A change of variable formula for the Aumann in-
tegral

Given a correspondence G : S → 2R, let eS (G) be the set of all P -a.e.
measurable selections, i.e., h ∈ eS (G) if it is measurable and P -a.e. h (s) ∈
G (s). The Aumann integral

R
GdP is then deÞned as the set½Z

hdP : h integrable and h ∈ eS (G)¾ .
Consider the correspondence u ◦ F : S → 2R, the composition of the

function u : X → R with the correspondence F : S → 2X . For all s ∈ S,
(u ◦ F ) (s) = {u (x) : x ∈ F (s)}.

8



Lemma 1 Let F : S → 2X be a compact-valued random correspondence. If
X is a Polish space, thenZ

(u ◦ F ) dP =
½Z

udPh : h ∈ S (F )
¾

(2)

for all bounded and measurable functions u : X → R.

Along with Theorem 1, this lemma delivers a change of variable formula
for the Aumann integral. Our result complements Theorem 5 of Hildenbrand
(1974), that considers the composition of a correspondence with a function;
in contrast, we consider the composition of function with a correspondence.

Theorem 2 Let ν be the distribution induced by a compact-valued random
correspondence F : S → 2X . If X is a Polish space, thenZ

udν = inf

Z
(u ◦ F ) dP (3)

for all bounded and measurable functions u : X → R. If, in addition, u is
lower Weierstrass, then in (3) we have a min instead of an inf.

Using Lemma 1 we can get some further information about the set of
induced distributions {Ph : h ∈ S (F )} by using some well-known properties
of the Aumann integral. First of all, if u is continuous and bounded or Þnite-
valued, the correspondence u ◦ F is closed-valued and integrably bounded
provided F is compact-valued. Hence,

R
(u ◦ F ) dP is a compact subset of

R (see, e.g., Proposition 7 p. 73 of Hildenbrand, 1974), and we conclude
that the set

©R
udPh : h ∈ S (F )

ª
is a compact subset of R provided F is

compact-valued and u is continuous and bounded or Þnite-valued.
Another interesting property of the Aumann integral is that it is convex

when P is non-atomic. Along with Theorem 1 and Lemma 1, this immedi-
ately implies the following useful result.

Proposition 3 Let ν be the distribution induced by a compact-valued random
correspondence F : S → 2X. If X is a Polish space and P is non-atomic,
then µZ

udν,

Z
udν

¶
⊆
½Z

udPh : h ∈ S (F )
¾
⊆
·Z

udν,

Z
udν

¸
9



for all measurable functions u : X → R. If, in addition, u is lower Weier-
strass, then ·Z

udν,

Z
udν

¶
⊆
½Z

udPh : h ∈ S (F )
¾

while, if u is upper Weierstrass, thenµZ
udν,

Z
udν

¸
⊆
½Z

udPh : h ∈ S (F )
¾
.

4.2 The results for random sets

As mentioned before, the difference between random sets and random corre-
spondences lies in the notion of measurability used.

DeÞnition 3 A correspondence F : S → 2X is measurable if F−1 (G) ∈ Σ
for all open sets G ⊆ X. A correspondence F : S → 2X which is measurable
is called a random set.

Remark. In σ-compact Hausdorff spaces, a closed-valued correspondence is
a random set if and only if {s : F (s) ∩K 6= ∅} ∈ Σ for all compact sets K
(cf. Himmelberg (1975) Theorem 3.5). In particular, this is true in separable
locally compact Hausdorff spaces.

Clearly, all random correspondences are random sets. Though the con-
verse is in general false, the next result, due to Debreu (1967), provides an
important case where it holds (cf. Himmelberg (1975) pp. 57-58). Σ∗ de-
notes the completion of Σ under P , i.e., the collection of all sets of the form
A ∪N , where A ∈ Σ and N is P -null.

Theorem 3 Let F : S → 2X be a closed-valued random set and suppose X
is a Polish space. Then F−1 (A) ∈ Σ∗ for all A ∈ B, and so F is a ran-
dom correspondence provided Σ = Σ∗, i.e., provided (S,Σ, P ) is a complete
measure space.

Theorem 3 suggests a simple way to extend our results to random sets
even when (S,Σ, P ) is not a complete measure space. For, let F : S → 2X

be a closed-valued random set. Its distribution ν is deÞned only on open sets
and we have ν (G) = P (F−1 (G)) for all open sets G ⊆ X. However, let P∗
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be the unique extension of P to Σ∗ and deÞne a set function ν∗ : B → [0, 1]
as follows:

ν∗ (A) = P∗
¡
F−1 (A)

¢
for all A ∈ B. If X is Polish, the set function ν∗ is well deÞned by Theorem
3 and it coincides with ν on the open sets. Actually, more is true since it is
easy to see that F−1 (C) ∈ Σ for all closed sets C ⊆ X when F is a random
set. Hence, ν∗ (C) = ν (C) also for all closed sets C ⊆ X.
We call ν∗ the extended distribution of F . It satisÞes the same properties

as the standard distributions induced by random correspondences.

Proposition 4 Suppose X is Polish, and let ν∗ : B → [0, 1] the extended
distribution induced by a compact-valued random set. Then:

(i) limn→∞ ν∗ (An) = ν∗
¡T

n≥1An
¢
for all non-increasing sequences of

Borel sets.

(ii) limn→∞ ν∗ (An) = ν∗
¡S

n≥1An
¢
for all non-decreasing strictly monotone

sequences of Borel sets.

(iii) ν∗ is regular and tight.

We can now extend Theorem 1 to random sets.

Proposition 5 Let X be a Polish space and let ν∗ be the extended distribu-
tion induced by a compact-valued random set F : S → 2X. ThenZ

udν∗ = inf
h∈S(F )

Z
udPh (4)

for all bounded and measurable functions u : X → R. If, in addition, u is
lower Weierstrass, then in (4) we have a min instead of an inf.

Remark. Since ν and ν∗ coincide on all open sets and on all closed sets,R
udν∗ =

R
udν for all upper semicontinuous and all lower semicontinuous

functions u : X → R.
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5 Proofs and related material

5.1 Proof of Proposition 1

We only prove (ii), point (i) being well-known. Let A∗n = {s : F (s) ⊆ An}
and A∗ = {s : F (s) ⊆ A}. Clearly,

S
n≥1A

∗
n ⊆ A∗. We want to show

that
S
n≥1A

∗
n ⊇ A∗. Let s ∈ A∗. By strict monotonicity,

S
n≥1An =S

n≥1 int (An), and so F (s) ⊆
S
n≥1 int (An). Since F (s) is compact, there

exists a Þnite index set I = {n1, ..., nk} such that n1 < n2 < · · · < nk and
F (s) ⊆ Sk

j=1 int
¡
Anj

¢
. Hence, F (s) ⊆ Snk

i=1Ai = Ank , and so s ∈ A∗nk . This
completes the proof that

S
n≥1A

∗
n = A

∗. Then,

ν (A) = P (A∗) = P

Ã[
n≥1
A∗n

!
= lim

n
P (A∗n) = lim

n
ν (An) ,

as desired.

5.2 Proof of Proposition 2

We prove a more general statement, where we use the following deÞnition.

DeÞnition 4 A Choquet capacity ν : 2X → [0, 1] is a capacity satisfying the
following two properties

(i) limn→∞ ν (An) = ν
¡T

n≥1An
¢
for all non-increasing sequences {An}n≥1 ⊆

X.

(ii) limn→∞ ν (Gn) = ν
¡S

n≥1Gn
¢
for all non-decreasing sequences {Gn}n≥1 ⊆

X of open sets.

A Dempster capacity is a Choquet capacity such that:

(iii) limn→∞ ν (An) = ν
¡S

n≥1An
¢
for all non-decreasing strictly monotone

sequences {An}n≥1 ⊆ X of Borel sets.

Remarks. (i) We use this deÞnition of Choquet capacities, which is a sym-
metric version of the more usual one, because we are mostly interested in
lower envelopes. (ii) We named after Dempster the Choquet capacities that
are continuous along non-decreasing strictly monotone sequences of Borel
sets because, by Proposition 1 and Lemma 5, the distributions induced by

12



compact-valued random correspondences can be extended on 2X to a Demp-
ster capacity.

We can now state the result.

Proposition 6 Let ν be a convex Dempster capacity. If X is metric, then
ν is regular. If, in addition, X is Polish, then ν is tight.

The rest of the subsection is devoted to proving Proposition 6. We start
by establishing a couple of lemmas. The Þrst one is a variation of Choquet�s
capacitability results proved in Meyer (1966).

Lemma 2 Let X be a metric space and ν a capacity on 2X such that:

(i) ν (An) ↓ ν (A) if {An}n≥1 is a sequence of Borel sets of X such that
An ↓ A and An ⊇ cl (An+1) for all n ≥ 1;

(ii) ν (An) ↑ ν (A) if {An}n≥1 is a sequence of subsets of X such that An ↑
A;

(iii) ν (A1 ∪ A2) + ν (A1 ∩A2) ≤ ν (A1) + ν (A2) for any two Borel sets A1
and A2.

Then, for all Borel sets A we have:

ν (A) = inf {ν (G) : A ⊆ G and G open}
= sup {ν (C) : C ⊆ A and C closed} .

Proof. Let F be the set of closed sets. Since X is metric, all open sets
belong to Fσ, and so they are F -analytic by Theorem 8 p. 34 of Meyer
(1966). Hence, by Theorem 12 p. 35 of Meyer (1966), all Borel sets are
F-analytic. By Choquet Capacitability Theorem, since F = Fδ we have

ν (A) = sup {ν (C) : C ⊆ A and C closed} (5)

for all Borel sets A (see Theorem 19 p. 39 of Meyer, 1966). DeÞne νe on 2X

as follows:

1. ν (C) = νe (C) for all closed sets C;

2. νe (T ) = sup {ν (C) : C ⊆ T and C closed} for all T ∈ Fσ;

13



3. νe (A) = inf {νe (T ) : A ⊆ T and T ∈ Fσ} for all A ⊆ X.

Since (i) holds, by Theorem 23 of Meyer (1966),

νe (A) = sup {ν (C) : C ⊆ A and C closed}

for all Borel sets A. By (5), νe (A) = ν (A) for all Borel sets A. Hence,

ν (A) = inf {ν (T ) : A ⊆ T and T ∈ Fσ} (6)

for all Borel sets A. On the other hand, let C be a closed set. Since X is a
metric space, there exists a sequence {Gn}n≥1 of open sets such that Gn ↓ C
and Gn ⊇ cl (Gn+1) for all n ≥ 1. By property (i), limn ν (Gn) = ν (C), and
so

ν (C) = inf {ν (G) : C ⊆ G and G open} . (7)

To prove the result we have to show that (7) holds for any Borel set A of X.
Let ε > 0. By (6), there exists T ∈ Fσ such that A ⊆ T and ν (T ) < ν (A)+ε.
Let {Cn}n be a non-decreasing sequence of closed sets such that Cn ↑ T . By
(ii), it follows that limn ν (Cn) = ν (T ). On the other hand, by (7), for each n
there exists an open set Gn such that Cn ⊆ Gn and ν (Gn) < ν (Cn) + ε2−n.
As ν is submodular by (iii), we have:

ν

Ã
n[
i=1

Gi

!
+

nX
i=1

ν (Ci) ≤ ν
Ã

n[
i=1

Ci

!
+

nX
i=1

ν (Gi)

for all n (see, e.g., Meyer (1966) p. 41). This implies:

ν

Ã
n[
i=1

Gi

!
≤ ν (Cn) +

nX
i=1

[ν (Gi)− ν (Ci)] < ν (Cn) +
nX
i=1

ε

2i
≤ ν (Cn) + ε.

(8)
SetG =

S
n≥1Gn. By (ii), limn ν (

Sn
i=1Gi) = ν (G), and so, being limn ν (Cn) =

ν (T ),
ν (G) ≤ lim

n
ν (Cn) + ε = ν (T ) + ε < ν (A) + 2ε.

Since εwas arbitrary, we conclude that ν (A) = inf {ν (G) : A ⊆ G and G open},
as desired.
The next lemma shows an interesting compactness property of cores.
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Lemma 3 Let X be a metric space and ν : B → [0, 1] a regular capacity.
Then core (ν) is weak∗ compact. If, in addition, X is Polish, then for each
ε > 0 there exists a compact set Kε such that P (Kε) ≥ 1 − ε for all P ∈
core (ν) (i.e., core (ν) is tight).

Proof. By the Alaoglu Theorem it suffices to prove that core (ν) is weak∗-
closed. Let {pα}α be a net in core (ν) that weak∗-converges to p ∈ ca (B). We
want to show that p ∈ core (ν). Let C be a closed set. By the Portmanteau
Theorem, lim supα pα (C) ≤ p (C). Hence, ν (C) ≤ p (C). By the regularity
of ν,

ν (A) = sup {ν (C) : C ⊆ A and C closed}
for all Borel sets A. Hence, all probabilities in ca (B) being regular,

ν (A) = sup {ν (C) : C ⊆ A and C closed}
≤ sup {p (C) : C ⊆ A and C closed} = p (A) .

This proves that p ∈ core (ν), and so core (ν) is weak∗ compact. Next,
suppose that X is Polish. Then, all measures in core (ν) are separable and
by Theorem 7 p. 240 of Billingsley (1968), core (ν) is tight.

The Þnal lemma is Lemma 2.5 p. 254 of Huber and Strassen (1973).

Lemma 4 Let ν be a convex Choquet capacity. If X is a Polish space, then
for every Borel set A ⊆ X there exists p ∈ core (ν) such that ν (A) = p (A).

Proof of Proposition 6. Let ν be a convex Dempster capacity. Let ν be
the dual capacity of ν. It satisÞes the hypotheses of Lemma 2. In particular,
point (i) holds because

¡
A
¢c
= int (Ac) and (Ac) = (int (A))c for all subsets

A of X. By Lemma 2,

ν (A) = sup {ν (C) : C ⊆ A and C closed}
= inf {ν (G) : A ⊆ G and G open} ,

for all Borel sets A. On the other hand,

ν (A) = 1− ν (Ac) = 1− sup {ν (C) : C ⊆ Ac}
= 1− sup {1− ν (Cc) : A ⊆ Cc} = inf {ν (Cc) : A ⊆ Cc}
= inf {ν (G) : A ⊆ G} .
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Similarly, ν (A) = inf {ν (G) : A ⊆ G and G open} implies
ν (A) = sup {ν (C) : C ⊆ A and C closed} .

We conclude that ν is regular.
Assume that X is Polish. By Lemma 3, core (ν) is tight. By DeÞnition 4,

ν satisÞes the hypotheses of Lemma 4. Along with the tightness of core (ν),
this implies that for each ε > 0 there exists a compact set Kε such that
ν (Kε) ≥ 1− ε. Let A be a Borel set. Since ν is regular, there exists a closed
set Cε ⊆ A such that ν (A)−ν (Cε) ≤ ε. Set K 0

ε = Kε∩Cε. By the convexity
of ν, we have

ν (K 0
ε) ≥ ν (Kε) + ν (Cε)− ν (Kε ∪ Cε)

≥ (1− ε) + (ν (A)− ε)− 1 = ν (A)− 2ε,
and so ν (A)− ν (K 0

ε) ≤ 2ε. Since this holds for any ε > 0, we conclude that
ν (A) = sup {ν (K) : K ⊆ A}.

Lemma 5 Let ν : B → [0, 1] be a convex capacity satisfying properties (i)
and (ii) of Proposition 1. Then there exists a convex Dempster capacity that
extends ν on 2X .

Proof. DeÞne ν 0 : 2X → [0, 1] by

ν 0 (A) = sup {ν (B) : B ⊆ A and B ∈ B}
for all A ⊆ X. We now prove that ν 0 is a Dempster capacity that extends ν
on 2X . Property (iii) of DeÞnition 4 holds because ν and ν 0 coincide on Borel
sets. As to property (i) of DeÞnition 4, consider the dual capacity ν of ν.
Clearly, it is a submodular capacity such that ν

¡S
n≥1An

¢
= limn ν (An) for

all non-decreasing sequences of Borel sets {An}n. DeÞne ν∗ : 2X → [0, 1] by
ν∗ (A) = inf {ν (B) : B ⊇ A and B ∈ B}. By Theorem 23 of Meyer (1966),
applied to B, the set function ν∗ is submodular and such that ν∗ ¡Sn≥1An

¢
=

limn ν
∗ (An) for all non-decreasing sequences of subsets {An}n ofX. It is easy

to check that ν 0 is the dual capacity of ν∗, and so ν0 satisÞes also property
(i) of DeÞnition 4. It is therefore a convex Dempster capacity.

Proof of Proposition 2. It is now an immediate consequence of Proposition
6 and Lemma 5.
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5.3 Proof of Theorem 1

The Theorem is based on some lemmas. The Þrst one is a special case of
results on p. 59 and p. 93 of Srivastava (1998).

Lemma 6 Suppose (X, τ ) is a Polish space and u : X → R a Borel function.
Then there is a Þner Polish topology τu on X generating the same Borel σ-
algebra and such that u is continuous with respect to τu. Moreover, if K is
compact with respect to τu, the two topologies coincide on K.

In the next lemma, which is of independent interest, we extend the Lusin
Theorem to Dempster convex capacities.

Lemma 7 Let ν be a convex Dempster capacity and u : X → R a Borel
measurable function. Suppose X is a Polish space. Given ε > 0 there exists
a compact set Kε such that ν (Kε) ≥ 1− ε and u|Kε is continuous.
Proof. By Proposition 6, ν is regular. Moreover, by Lemma 4,

ν (A) = min {p (A) : p ∈ core (ν)} (9)

for all sets A ∈ B. Let τ be the Polish topology on X and τu the Þner
Polish topology that, by Lemma 6, makes u continuous. The Borel σ-algebra
generated by τu coincides with B, the Borel σ-algebra generated by τ . The
capacity ν is also regular with respect to τu. In fact, being ν regular with
respect to τ , for all Borel sets A we have

ν (A) = sup {ν (C) : C ⊆ A and Cc ∈ τ} = inf {ν (G) : A ⊆ G and G ∈ τ} ,
and so, being τu Þner,

ν (A) = inf {ν (G) : A ⊆ G and G ∈ τ}
≥ inf {ν (G) : A ⊆ G and G ∈ τu} ≥ ν (A) ,

and

ν (A) = sup {ν (C) : C ⊆ A and Cc ∈ τ}
≤ sup {ν (C) : C ⊆ A and Cc ∈ τu} ≤ ν (A) .

We conclude that ν is regular with respect to τu as well, i.e.,

ν (A) = sup {ν (C) : C ⊆ A and Cc ∈ τu} = inf {ν (G) : A ⊆ G and G ∈ τu} .
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Since ν is convex on B and regular on τu, by Lemma 3 core (ν) is tight
with respect to τu. Along with (9), this implies that for each ε > 0 there
exists a setKε, compact for τu (and so for τ as well), such that ν (Kε) ≥ 1−ε.
Clearly, u|Kε is continuous with respect to τu. On the other hand, by the last
part of Lemma 6, τ and τu coincide on Kε. Hence, u|Kε is also continuous
with respect to τ .

The next lemma shows that for continuous functions a stronger version
of Theorem 1 holds.

Lemma 8 Let X be a separable metric space and ν be the distribution in-
duced by a compact-valued random correspondence F : S → 2X. If X is
σ-compact or complete, then for each continuous function u : X → R there
is h ∈ S (F ) such that, for all t ∈ R,

Ph ({x : u (x) ≥ t}) = ν ({x : u (x) ≥ t}) (10)

and
Ph ({x : u (x) > t}) = ν ({x : u (x) > t}) . (11)

Proof. If X is complete, by Proposition 2 there exists a σ-compact set
Kσ ⊆ X such that ν (Kσ) = ν (X). Hence, to prove the result we can
assume that X is a σ-compact and separable metric space.
Since F is measurable and has closed values, and X is a σ-compact sep-

arable metric space, by Theorem 5.6 p. 62 of Himmelberg (1975), F admits
a Castaing representation {fi}∞i=1. DeÞne g : S → R as follows: g (s) =
infi≥1 u (fi (s)) for each s ∈ S. Since u is continuous and F (s) = {fi (s)}i≥1,
it is easy to see that infi≥1 u (fi (s)) = infx∈F (s) u (x). Hence, g (s) ∈ R for all
s ∈ S because F (s) is compact. Moreover, being the inÞmum of a countable
collection of measurable functions, g as well is measurable. DeÞne the mul-
tifunction Γ : S → X as follows: Γ (s) = u−1 (g (s)) ∩ F (s) for all s ∈ S. By
what we have just said, g (s) = infx∈F (s) u (x). Therefore, by the Weierstrass
Theorem, Γ (s) 6= ∅ for all s ∈ S. Moreover, Γ has compact values. In fact,
u−1 (g (s)) is a closed set because u is continuous, and so Γ (s) as well is a
closed set which is included in the compact set F (s).
We now prove that Γ is measurable. We begin by proving that the mul-

tifunction u−1 : R→X is measurable, i.e., that¡
u−1
¢w
(C) ≡ ©r ∈ R : u−1 (r) ∩ C 6= ∅ª ∈ B (R)
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for all closed sets C. Since X is σ-compact, it is enough to look at compact
sets K. We prove that (u−1)w (K) is closed for each compact set K. Let
{rn}n≥1 ⊆ (u−1)w (K) and suppose that rn converges to some r ∈ R. We
want to show that r ∈ (u−1)w (K). Since {x : u (x) = rn} ∩K 6= ∅ for each
n ≥ 1, there is a sequence {xn}n≥1 such that xn ∈ {x : u (x) = rn} ∩ K
for each n ≥ 1. Since K is compact, there is a subsequence {xnk}k≥1 that
converges to some x0 ∈ K. Since u is continuous,

r = lim
k
rnk = lim

k
u (xnk) = u (x0) ,

and so x0 ∈ {x : u (x) = r} ∩ K. In turn this implies that r ∈ (u−1)w (K),
and so (u−1)w (K) is a closed set.
Having established the measurability of u−1, we can now prove that the

multifunction Γ is measurable. Since F is measurable, again by Theorem
4.1 of Himmelberg (1975) it suffices to prove that the multifunction u−1 ◦ g :
S → 2X is measurable. But this is indeed the case because©

s : u−1 (g (s)) ∩K 6= ∅ª = g−1 ¡©r : u−1 (r) ∩K 6= ∅ª¢
and we just proved that the set {r : u−1 (r) ∩K 6= ∅} is measurable.
Summing up, Γ : S → 2X is a measurable multifunction with compact

values. By the classic selection theorem of Ryll-Nardzewski and Kuratowski
(see, e.g., Himmelberg (1975) p. 60), there exists a measurable function
h : S → X with h (s) ∈ Γ (s) for all s ∈ S. We then have:

©
s : u

¡
h (s)

¢ ≥ tª =

½
s : inf

i≥1
u (fi (s)) = g (s) ≥ t

¾
= {s ∈ S : u (fi (s)) ≥ t for all i ≥ 1} .

On the other hand,

{s ∈ S : u (fi (s)) ≥ t for all i ≥ 1} = {s ∈ S : F (s) ⊆ {x : u (x) ≥ t}} .

For, F (s) = {fi (s)}∞i=1 and, u being continuous, the sets {x : u (x) ≥ t} are
closed. This proves (10). Equality (11) follows from (10) and the continuity
property (i) in Proposition 1.

The last lemma is a continuity result.
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Lemma 9 Let ν be a convex capacity and suppose {An}n≥1 is a monotone
increasing sequence of Borel sets such that limn ν (An) = 1. For any bounded
measurable function u : X → R and C ⊆ core (ν),

lim
n→∞

·
inf
p∈C

Z
An

udp

¸
= inf

p∈C

Z
udp.

Proof. Let coreba (ν) = {p ∈ ba : p ≥ ν and p (X) = 1}. It is easy to check
that coreba (ν) is σ (ba, B)-compact. Let u : X → R be a bounded measurable
function. Without loss of generality, assume u ≥ 0. For each p ∈ ca (B) set
φn (p) =

R
An
udp and φ (p) =

R
A
udp. It is easy to check that φ and each φn

are σ (ba,B)-continuous. Moreover, for each Borel set B we have

lim
n
p (B ∩An) = lim

n
[p (B)− p (B ∪An) + p (An)] = p (B)

since
1 = lim

n
ν (An) ≤ lim

n
p (An) ≤ lim

n
p (B ∪An) ≤ 1.

Hence,

lim
n
φn (p) = lim

n

Z
An

udp = lim
n

Z
(1Anu) dp

= lim
n

Z
p (An ∩ (u ≥ t)) dt =

Z
p (u ≥ t) dt = φ (p) .

Therefore, {φn}n≥1 is an increasing sequence of σ (ba, B)-continuous func-
tions that pointwise converges to the σ (ba, B)-continuous function φ on the
σ (ba, B)-compact set coreba (ν). By the Dini Theorem, the convergence
is uniform, and so on each subset C ⊆ coreba (ν) � in particular on each

C ⊆ core (ν) � we have limn→∞
h
infp∈C

R
An
udp

i
= infp∈C

R
udp.

Proof of Theorem 1. We divide the proof in two parts, part (i) establishes
Eq. (1) and shows that it holds with a min for continuous functions u : X →
R. Part (ii) shows that Eq. (1) holds with a min for all lower Weierstrass
functions.

Part (i). Suppose u is continuous and bounded. Without loss of generality,
assume that u ≥ 0. It is easy to check that Ph ∈ core (ν) for all h ∈ S (F ).
Hence,

R
u (x) dν ≤ infh∈S(F )

R
u (x) dPh, and so to prove (1) we have to Þnd

20



a selection h ∈ S (F ) such that R u (x) dν = R u (x) dPh. Because of Lemma
8, there is h ∈ S (F ) such that:Z ∞

0

ν ({x : u (x) ≥ t}) dt =
Z ∞

0

Ph ({x : u (x) ≥ t}) dt,

and so
R
u (x) dν =

R
u (x) dPh, as wanted. This completes the proof of the

theorem for continuous functions.
Next suppose u is a Borel and bounded function. Again without loss of

generality, assume that u ≥ 0. By Lemma 7, for each n > 0 there exists
a compact set Kn such that ν (Kn) ≥ 1 − 1/n and u is continuous on Kn.
Since u is continuous on any Þnite union of these compact sets (see, e.g.,
Kuratowski (1966) p. 106), we can assume that {Kn}n≥1 is an increasing
sequence with limn ν (Kn) = 1. If we set Xu =

S
nKn, we have ν (Xu) = 1.

Let Sn = {s : F (s) ⊆ Kn}. Since Kn is compact and F is measurable,
it holds that Sn = F−1 (Kn) ∈ Σ (cf. Theorem 3.5 of Himmelberg, 1975).
Consider the multifunction Fn : Sn → 2Kn deÞned by Fn (s) = F (s) for all
s ∈ Sn. For all Borel sets A ⊆ Kn, set νn (A) = P ({s : Fn (s) ⊆ A}). The
multifunction Fn is compact-valued on Sn. Moreover, Fn is measurable. In
fact, for all Borel sets A ⊆ Kn

(Fn)
−1 (A) = {s ∈ Sn : F (s) ⊆ A} = Sn∩{s ∈ S : F (s) ⊆ A} = Sn∩F−1 (A)

and, since F is measurable, we have (Fn)
−1 (A) ∈ Σ|Sn.

We conclude that Fn : Sn → 2Kn is a measurable and compact-valued
multifunction with values in the compact metric space Kn. Hence, by what
we have just proved for continuous functions (which holds for any Þnite pos-
itive measure P not necessarily normalized to 1 on S),Z

Kn

udνn = min
h∈S(Fn)

Z
Kn

udPh.

Since Sn ∈ Σ, it is easy to check that if h ∈ S (F ), its restriction h|Sn
to Sn belongs to S (Fn). The converse is true: each h ∈ S (Fn) admits an
extension to a h∗ ∈ S (F ). For, let h0 ∈ S (F ) and deÞne h∗ : S → X as
follows: h∗ (s) = h (s) for all s ∈ Sn and h∗ (s) = h0 (s) for all s /∈ Sn. Hence,
h∗ extends h on S and it is easy to check that h∗ ∈ S (F ).
We conclude that S (Fn) =

©
h|Sn : h ∈ S (F )

ª
, and soZ

Kn

udνn = min
h∈S(Fn)

Z
Kn

udPh = min
h∈S(F )

Z
Kn

udPh|Sn . (12)
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Since P (Sn) = ν (Kn) ≥ 1− 1/n, for all A ∈ B and all h ∈ S (F ) we have:
Ph (A) = P ({h ∈ A}) = P (({h ∈ A}) ∩ Sn) + P (({h ∈ A}) ∩ Scn)

≤ P ({s ∈ Sn : h ∈ A}) + 1

n
= Ph|Sn (A) +

1

n
.

Hence, for all h ∈ S (F ) we have:Z
Kn

udPh =

Z ∞

0

Ph ((u ≥ t) ∩Kn) dt

≤ 1

n
+

Z ∞

0

Ph|Sn ((u ≥ t) ∩Kn) dt =
1

n
+

Z
Kn

udPh|Sn ,

and so

inf
h∈S(F )

Z
Kn

udPh ≤ inf
h∈S(F )

µ
1

n
+

Z
Kn

udPh|Sn

¶
=
1

n
+ inf
h∈S(F )

Z
Kn

udPh|Sn .

Together with (12), this implies:

inf
h∈S(F )

Z
Kn

udPh − 1

n
≤
Z
Kn

udνn. (13)

On the other hand, for all Borel sets A ⊆ Kn we have:

νn (A) = P ({s : Fn (s) ⊆ A}) = P ({s ∈ Sn : F (s) ⊆ A})
= P ({s ∈ S : F (s) ⊆ A}) = ν (A) .

Hence,
R
Kn
udνn =

R
Kn
udν, and together with (13) it implies:

inf
h∈S(F )

Z
Kn

udPh − 1

n
≤
Z
Kn

udν.

By Lemma 9,

lim
n→∞

·
inf

h∈S(F )

Z
Kn

udPh

¸
= inf

h∈S(F )

Z
Xu

udPh.

On the other hand, since the Choquet integral is monotone,
R
Xu
udν ≥R

Kn
udν for each n ≥ 1, and soZ

Xu

udν ≥ lim
n→∞

Z
Kn

udν ≥ lim
n→∞

µ·
inf

h∈S(F )

Z
Kn

udPh

¸
− 1

n

¶
= inf

h∈S(F )

Z
Xu

udPh ≥
Z
Xu

udν.
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Hence, Z
Xu

udν = inf
h∈S(F )

Z
Xu

udPh.

As ν (Xu) = Ph (Xu) = 1 for all h ∈ S (F ) and ν is convex, we conclude that:Z
X

udν =

Z
Xu

udν = inf
h∈S(F )

Z
Xu

udPh = inf
h∈S(F )

Z
X

udPh,

as desired.

Part (ii). We prove that Lemma 8 holds for lower Weierstrass measurable
functions. First notice that by Lemma 4, ν (A) = min {p (A) : p ∈ core (ν)}
for all A ∈ B. Next, given a lower Weierstrass measurable function u :
X → R, let τu be the Þner Polish topology that, by Lemma 6, makes u
continuous. The correspondence F has still closed values with respect to τu.
Moreover, since the Borel σ-algebra generated by τu coincides with B, F is
still B-measurable. Finally, ν is also regular with respect to τu as shown
in the proof of Lemma 7. By Lemma 3, core (ν) is tight with respect to
τu. Then, being ν (A) = min {p (A) : p ∈ core (ν)} for all A ∈ B, there is
a set Kσ which is σ-compact with respect to τu and such that ν (Kσ) = 1.
Hence, to prove the result we can assume that the space X is a σ-compact
and separable metric space.
By Theorem 5.6 of Himmelberg (1975), F has a Castaing representation.

DeÞne the correspondence Γ : S → 2X as in the proof of Lemma 8. We have
Γ (s) 6= ∅. In fact, though F (s) may be not compact with respect to τu and
so we cannot invoke the Weierstrass Theorem, we know that minx∈F (s) u (x)
exists because u is lower Weierstrass with respect to the original topology τ .
We can then proceed as in the proof of Lemma 8 to show that Γ is

measurable and closed-valued. Again by Theorem 5.6 of Himmelberg (1975),
Γ has a measurable selection h. The rest of the proof is now as in Lemma 8.
This completes the proof of part (ii).

5.4 Proof of Corollary 1

Given any weak∗-continuous and linear functional φ : ca (B) → R, there
exists u ∈ Cb (X) such that φ (P ) =

R
udP for all P ∈ ca (B) (see, e.g.,

Megginson (1998) p. 224). Hence, by Theorem 1,

inf {φ (p) : p ∈ core (ν)} = min {φ (p) : p ∈ A} ,
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whereA ≡ {Ph : h ∈ S (F )}. In fact, as ν is convex,
R
udν = minp∈core(ν)

R
udp

for all u ∈ Cb (X). The result then follows from Lemma 3 and Theorem 13.B
p. 74 of Holmes (1975).

5.5 Proof of Lemma 1

We start with a lemma.

Lemma 10 If F : S → 2X is a correspondence such that S(F ) 6= ∅, thenZ
FdP =

½Z
hdP : h integrable and h ∈ S(F )

¾
.

Proof. Clearly, it suffices to show that½Z
hdP : h integrable and h ∈ eS(F )¾ (14)

⊆
½Z

hdP : h integrable and h ∈ S(F )
¾
. (15)

Let eh ∈ eS(F ) be integrable. Let A ∈ Σ be such that P (A) = 1 and eh(s) ∈
F (s) for all s ∈ A. As S(F ) 6= ∅, let h0 ∈ S(F ). Let h00(s) = eh(s) for all
s ∈ A and h00(s) = h0(s) for all s ∈ Ac. Then h00 ∈ S(F ). Moreover, since eh is
integrable and h00 = eh P -a.e., h00 is integrable and R ehdP = R h00dP . Hence,R ehdP ∈ ©R hdP : h integrable and h ∈ S(F )ª, which proves the inclusion
(14).

Proof of Lemma 1. Let u : X → R be a measurable function. By the
argument used in Part (ii) of the proof of Theorem 1, we can assume that u
is a continuous function, X is a σ-compact and separable metric space (not
necessarily complete), and F closed-valued and B-measurable (not necessarily
compact-valued).
DeÞne the correspondence u ◦ F : S → 2R by (u ◦ F )(s) = {u(x) : x ∈

F (s)}. By Theorem 5.6 of Himmelberg (1975), S(F ) 6= ∅. Hence S(u◦F ) 6= ∅
since u ◦ h ∈ S(u ◦ F ) if h ∈ S(F ). Therefore, by Lemma 10,Z

(u ◦ F ) dP =
½Z

gdP : g integrable and g ∈ S(u ◦ F )
¾
.
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Let g ∈ S(u◦F ). Consider the correspondence u−1◦g : S → 2X . Since g is
measurable, by proceeding as in the proof of Lemma 8 we can prove that the
correspondence u−1 ◦g : S → 2X is measurable. Since F is closed-valued and
X is a σ-compact and separable metric space, by Corollary 4.2 of Himmelberg
(1975) the closed-valued correspondence (u−1◦g)∩F : S → 2X is measurable.
Then, by Theorem 5.6 of Himmelberg (1975), S((u−1 ◦ g) ∩ F ) 6= ∅. Let
γ ∈ S((u−1 ◦ g) ∩ F ). We have u(γ(s)) = g(s) for all s ∈ S and γ ∈ S(F ).
All this implies that S(u ◦ F ) = {u ◦ h : h ∈ S(F )}. Since u is bounded, all
measurable selections of u ◦ F are integrable. We then have:
Z
(u ◦ F ) dP =

½Z
gdP : g ∈ S(u ◦ F )

¾
=

½Z
(u ◦ h)dP : h ∈ S(F )

¾
=

½Z
udPh : h ∈ S(F )

¾
,

as desired.

5.6 Proofs of Corollary 2 and Propositions 4 and 5

Corollary 2. As to point (ii), it is easy to deÞne a lower semicontinuous
function g : X → [0, 1] such that Gi = {x : g (x) > (1/i)} for all i ∈ (0, 1]
and G0 = ∅. Hence, by what has been proved in Part (ii) of the proof
of Theorem 1, there is h ∈ S (F ) such that Ph (Gi) = ν (Gi). A similar
argument proves point (i), where we take Þnite-valued functions in place of
lower semicontinuous ones. Finally, as to point (iii), by Kuratowski (1966)
p. 267, there exists a continuous function g : X → [0, 1] such that Ci =
{x : g (x) ≥ i} for all i ∈ [0, 1]. The result then follows form Lemma 8.

Proposition 4. It is an immediate consequence of Theorem 3 and Proposi-
tions 1 and 2, when applied to (S,Σ∗, P∗).

Proposition 5. By Theorem 3, the random set F is a compact-valued ran-
dom correspondence with respect to Σ∗. Let S∗(F ) be the set of all selections
of F that are Σ∗-measurable. For h ∈ S∗(F ), let P ∗h be the distribution in-
duced by h, i.e., P ∗h (A) = P∗(h ∈ A) for all A ∈ B. Apply Theorem 1 to
(S,Σ∗, P∗). We have thatZ

udν∗ = inf
h∈S∗(F )

Z
udP ∗h
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for all bounded and measurable functions u : X → R.
Given h ∈ S∗(F ), it is easy to check that there is a Σ-measurable function

h0 such that h0(s) = h(s) for all s ∈ S except those in some set A ∈ Σ
with P (A) = 0. On the other hand, as S(F ) 6= ∅, let h00 ∈ S(F ) and
deÞne a function h000 : S → X as follows: h000(s) = h0(s) for all s /∈ A and
h000(s) = h00(s) for all s ∈ A. Then h000 ∈ S(F ) and h000 = h P -a.e. on S. This
implies that

R
udP ∗h =

R
udPh000 for all measurable functions u : X → R,

and so infh∈S(F )
R
udPh ≤ infh∈S∗(F )

R
udP ∗h . The rest of the proof is now

trivial.
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