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Abstract

We provide a behavioral foundation to the notion of ‘mixture’ of acts, which is used
to great advantage in the decision setting introduced by Anscombe and Aumann [1].

Our construction allows one to formulate mixture-space axioms even in a fully sub-
jective setting, without assuming the existence of randomizing devices. This simplifies
the task of developing axiomatic models which only use behavioral data. Moreover, it
is immune from the difficulty that agents may ‘distort’ the probabilities associated with
randomizing devices.

For illustration, we present simple subjective axiomatizations of some models of choice
under uncertainty, including the maxmin expected utility model of Gilboa and Schmeidler
[11], and Bewley’s model of choice with incomplete preferences [2].

Introduction

The axiomatizations of subjective expected utility (SEU) of Savage [18] and Anscombe and
Aumann [1, AA for short] are often contrasted in terms of their analytical complexity and
behavioral content.

In particular, Savage explicitly aimed at constructing a theory that relies solely upon
purely behavioral data—preferences among acts, i.e. maps assigning consequences to states.
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In contrast, the AA approach requires assuming the existence of pre-assigned, ‘objective’
probabilities. However, the latter is much more amenable to mathematical treatment than
Savage’s approach, as it allows for a direct application of familiar vector space techniques.

The main contribution of this paper is to show that it is possible to reconstruct the AA
setting in a fully behavioral fashion; this places models that follow the AA approach on
comparable epistemological footing with those that follow Savage’s, at virtually no cost in
terms of analytical tractability.

As noted above, Savage’s purpose was to show that subjective probability and utility
can be derived without assuming the existence of extraneous devices characterized by ‘objec-
tive’ probabilities, or ‘ethically neutral’ events. This independence from non-behavioral data
makes it relatively easy to test the assumptions and implications of the theory; arguably,
such features have been instrumental in making SEU maximization the reference model in
economic theory.

Anscombe and Aumann suggested abandoning Savage’s general setting and allowing pay-
offs to be lotteries contingent on the behavior of a randomizing device, which they called
a ‘roulette wheel’. They observed that the roulette wheel enables one to define ‘objective
mixtures’ of acts, and hence to extend the axiomatics of von Neumann and Morgenstern [21]
to the case in which the probabilities of the (non-roulette) events are not objective.

This considerably simplifies the axiomatic derivation of the SEU model. The presence
of mixtures makes the set of acts a convex subset of a vector space: If the decision maker’s
preferences conform to expected utility over the ‘roulette wheel acts’,1 the utility profile
corresponding to the ‘objective mixture’ of two acts is the convex combination of the utility
profiles of the latter. Such algebraic structure may be exploited in the formulation of the
axioms, as well as in the construction of the mathematical representation.

Appropriate extensions of the AA setting also simplify the development of models that
address well-known descriptive limitations of the SEU representation (see, e.g, Luce [13,
Chap. 3]). Many of the most successful extensions of SEU were first carried out in an AA-type
setting: among others, we mention Schmeidler’s ‘Choquet expected utility’ (CEU) model [19],
Gilboa and Schmeidler’s ‘maxmin expected utility’ (MEU) model [11], and Bewley’s model
[2] of choice with incomplete preferences.2

However, by employing a roulette wheel, the AA approach reintroduces a non-behavioral
element in the decision model, thus restricting its conceptual appeal and its scope (see our
discussion of ‘distorted probabilities’ below).

In this paper, we show that it is possible to construct a ‘subjective AA setting’ in a
fully behavioral setting like Savage’s, thus overcoming this difficulty. Our construction holds
for preferences that satisfy some mild conditions, and it requires that the set of possible
outcomes be sufficiently rich (e.g., an interval in the real line). If these conditions are met,
‘subjective mixtures’ of acts can be constructed using only behavioral data. More details on

1The acts which only depend on the behavior of the roulette wheel.
2Some of these models have later been reformulated in Savage-type settings; however, this line of research

has clearly shown that the ‘purity’ of Savage’s approach imposes substantial costs in terms of analytical
complexity.
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this construction are given below.
As an illustration of our technique, we employ subjective mixtures to offer simple ax-

iomatizations of the CEU and MEU models (of which SEU is a special case), as well as of
Bewley’s model. Essentially, our main result allows us to state and characterize axioms as
if the analysis was carried out in the AA setting. However, we do not need roulette wheels.
Clearly, other fruitful applications of our subjective AA setting are possible.

Identifying a subjective vector structure in Savage’s setting is not merely of ‘technical’ in-
terest. In fact, the subjective construction has at least two significant conceptual advantages.
First, it enables us to avoid the philosophically difficult concept of ‘objective’ probability. As
de Finetti and Savage argued extensively, the existence of objective probabilities is debatable.

Second, it sidesteps a descriptive limitation of the AA framework. It is well known that
many experimental subjects do not act consistently with the expected utility model even
when choosing among roulette wheel acts: they behave as if they ‘distorted’ the probabilities
of the roulette events. Consequently, these subjects do not treat the set of acts with objective
mixtures as a convex subset of a vector space, and the axioms in the style of von Neumann and
Morgenstern become meaningless for them. Thus, the advantage of the AA setting effectively
disappears.

This is not the case with subjective mixtures, as the notion of subjective mixture is
unrelated to external objects, which could be interpreted differently by the decision maker
and the modeller. For any preference relation that satisfies our minimal conditions, the
subjective vector structure of the set of acts can be observed by the modeller.

Preference Averages and Subjective Mixtures of Acts

The key step in our construction of subjective mixtures of acts is the notion of a ‘preference
average’ of two outcomes. In our interpretation, a preference average of two outcomes x and
y is an outcome z with the following property: if x and y are possible results which play a
symmetric role in the decision maker’s evaluation of a bet, then replacing x and y with z
leaves the decision maker indifferent. This appears to us to constitute a sensible behavioral
definition of the midpoint of the preference interval between two outcomes.

To see how a preference average is practically observed, fix an event E, and consider the
decision maker’s preferences over the bets on E, i.e., uncertain prospects of the form xE y
=‘receive x if E obtains, and y otherwise’, where outcome x is (weakly) preferred to outcome
y. Take E to be ‘non-trivial’; that is, for some pair x and y such that x is strictly preferred
to y the bet xE y is strictly between x and y. Also, assume that every xE y has a certainty
equivalent cxEy.

Given two such outcomes x and y, suppose that z is a third outcome that satisfies the
following condition:

xE y is indifferent to cxEz E czEy. (1)

Under mild assumptions on the decision maker’s preference, such a z exists for every x

3



and y. We now argue that the same assumptions allow us to interpret z as a ‘preference
average’ of x and y.

Since xE y is trivially indifferent to cxExE cyEy, we have that

cxExE cyEy is indifferent to cxEz E czEy. (2)

Substituting z for the inner x and y in the ‘compound’ act on the left-hand side leaves the
decision maker indifferent; thus, z is a ‘local’ certainty equivalent for x and y.3

Moreover, our preference axioms imply that the inner outcomes in the ‘compound’ bets
in Eq. (2) have the same impact on the decision maker’s evaluation. Formally, if z′ and z′′

are both between x and y in preference, then

cxEz′ E cz′′Ey is indifferent to cxEz′′ E cz′Ey.

In words, permuting z′ and z′′ does not affect the decision maker’s preferences: the two inner
outcomes play a symmetric role in his evaluation of these bets.

We conclude that z is a local certainty equivalent for x and y in a situation in which x
and y have the same impact on the decision maker’s preferences over bets on the same event
E. Therefore, z fits our intuitive description of a preference average of x and y.

To see this from a different perspective, we remark that the same mild assumptions on
preferences imply that there exists a cardinal utility u on the set of outcomes and a number
ρ(E) ∈ (0, 1) such that xE y is preferred to x′E y′ if and only if4

u(x) ρ(E) + u(y) (1− ρ(E)) ≥ u(x′) ρ(E) + u(y′) (1− ρ(E)). (3)

Using this representation, it is simple to show that z satisfies Eq. (1) if and only if

u(z) =
1
2
u(x) +

1
2
u(y). (4)

The key step in the proof is the quantitative counterpart to the intuition provided above: The
inner outcomes x and y in the act cxExE cyEy and the z’s in the act cxEz E czEy all receive the
same ‘weight’ according the evaluation functional described by Eq. (3). (Notice that Eq. (4)
also implies that the notion of preference average is independent of the ‘non-trivial’ event E
that we use to construct it.)

The preference average described above corresponds to the 1
2 : 1

2 mixture of two outcomes.
It is clear that by iterating our definition, arbitrary dyadic mixtures may be defined. Finally,
we can use these dyadic mixtures of outcomes to define subjective mixtures of acts state-by-
state, as is done in the AA framework.

3This terminology is justified by noting that v is a (global) certainty equivalent of w E w′ if v E v is
indifferent to w E w′.

4We emphasize that the following representation only holds for bets on E (acts of the form x E y with x
(weakly) preferred to y). As the results in Sections 3 and 4 indicate, our axioms allow considerable flexibility
in the evaluation of all other acts.
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Related Literature and Organization of the Paper

This paper is not first in noticing the advantages of defining a mixture operation on the choice
set in Savage’s setting. Most notable is the work of Gul [12], and its extensions in Chew and
Karni [5] and Casadesus-Masanell, Klibanoff and Ozdenoren [4]. We now briefly describe the
approaches proposed by these authors; we refer the interested reader to Subsection 2.3 for a
more detailed discussion of some of these models.

Gul’s main objective is to provide an axiomatization of SEU which, differently from
Savage’s, does not require the state space to be infinite. As we do, he requires that the set
of outcomes be infinite and that every bet have a certainty equivalent. He then assumes the
existence of an ‘ethically neutral’ event A such that the preference over bets on A have an
SEU representation assigning probability 1/2 to it. Then, it is natural to call a certainty
equivalent of the bet xAy the ‘eventwise’ preference average of x and y. One may then
define the ‘eventwise’ mixture of two acts as the act whose payoff at any given state is the
‘eventwise’ preference average of the outcomes assigned at that state by the original acts (cf.
our definition of subjective mixtures of acts).

The main difference with our approach lies in the use of the notion of preference average.
Gul essentially employs it as a technical device to derive a cardinal utility function over
outcomes, which is then used to explicitly construct probabilities and show that preferences
admit a SEU representation. In contrast, we show that it can be used to endow the set of
acts with an AA-style algebraic structure. As a result, the usual axiomatics and functional-
analytic machinery deliver the characterization results with minimal effort (cf. Prop. 9).

Chew and Karni [5] show that, for the purposes of obtaining a SEU or CEU representation
of preferences, ‘eventwise’ mixtures may be defined with respect to an arbitrary essential event
A. Such generalization prevents the construction of a vector space structure over the set of
acts (see Subsection 2.3 for details), which is anyway not an objective of their work.

In an axiomatization of the MEU model that builds upon Gul’s construction, Casadesus-
Masanell et al. [4] employ ‘eventwise’ mixtures defined via bets on an event A that is not
necessarily ethically neutral; however, they still require that bets on A have a SEU repre-
sentation. As is the case for all the papers cited so far, Casadesus-Masanell et al. [4] does
not introduce a vector-space structure on the set of acts. (See Subsection 2.3 for further
remarks.)

On the other hand, in the companion paper [3] Casadesus-Masanell et al. do explicitly
attempt to build a vector structure in Savage’s setting, in order to retain the spirit of the
axiomatization of MEU in the AA setting. Their notion of subjective mixtures is based on
standard sequences, and is therefore less immediate than the one we present. The same may
be said of the relative interpretations of the axioms.

Machina [14] moves along a different direction in showing how to construct ‘almost-
objective’ events in a Savage-style setting. He assumes that the state space has a Euclidean
structure, and that preferences satisfy an ‘event smoothness’ condition; he then constructs
sequences of events that, in the limit, are treated by the decision-maker ‘as if’ they had
an ‘objective’ (agreed upon) probability. He investigates the properties of almost-objective
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events, and also suggests constructing ‘almost-objective mixtures’ of acts.5 The latter differ
from our subjective mixtures, in that they do not yield a preference average of the outcomes
in every state, and do not induce an algebraic structure over the set of acts.

A secondary contribution of this paper is the introduction of simple axiomatic charac-
terizations of the CEU, MEU, and Bewley’s models in Savage’s setting. To the best of our
knowledge, there are no axiomatizations of the latter in Savage’s setting. There exist several
axiomatizations of the CEU model in Savage’s setting (e.g., Gilboa [10], Nakamura [16] and
Chew and Karni [5]), while Casadesus-Masanell et al. [3, 4] contain the only axiomatizations
of MEU. The main advantage of our characterizations lies in their simplicity.

Finally, this paper improves over Ghirardato and Marinacci [9] by showing how to refine
their ‘biseparable preferences’ model in order to guarantee the uniqueness of what they call
‘the canonical functional’ (see also Ghirardato, Maccheroni and Marinacci [7]).

The paper proceeds as follows. Section 1 introduces the required terminology and no-
tation. Section 2 is the core of the paper. It introduces the notion of subjective mixture
formally, as well as the preference conditions that are needed to make it consistent. Section 3
presents the axiomatizations of the CEU, SEU and MEU models, while Section 4 looks at
Bewley’s model. The appendices contain the proofs of the results in the main text, as well
as some more technical material.

1 Preliminaries

Consider a set S of states of the world, an algebra Σ of subsets of S called events, and
a set X of consequences. We denote by F the set of all the simple acts: finite-valued
functions f : S → X which are measurable with respect to Σ. For x ∈ X we define x ∈ F
to be the constant act such that x(s) = x for all s ∈ S. So, with the usual slight abuse of
notation, we identify X with the subset of the constant acts in F . Also, given x, y ∈ X and
A ∈ Σ, we use xAy to denote the binary act which yields x if s ∈ A and y otherwise.

We model the DM’s preferences on F by a binary relation <. A functional V : F → R
represents < if V (f) ≥ V (g) if and only if f < g. Clearly, a necessary condition for < to
have a representation is that it be a weak order — a complete and transitive relation — so
that, as customary, we can denote by ∼ and � its symmetric and asymmetric components,
respectively. V is monotonic if V (f) ≥ V (g) whenever f(s) < g(s) for all s ∈ S.

We let B(Σ) denote the set of all real-valued Σ-measurable simple functions. Given a
functional I : B(Σ) → R, we say that I is: monotonic if ϕ ≥ ψ implies I(ϕ) ≥ I(ψ) for all
ϕ,ψ ∈ B(Σ); c-linear if I(aϕ+ b) = aI(ϕ) + b for all ϕ ∈ B(Σ), all a ∈ R such that a ≥ 0,
and all b ∈ R.

Next, we need to define a special class of functions on Σ. A set-function ρ on (S,Σ) is
called a capacity if it is monotone and normalized; that is, ρ(A) ≤ ρ(B) if A ⊆ B, and
ρ(∅) = 0 and ρ(S) = 1. A capacity is called a probability if it is (finitely) additive:
ρ(A ∪B) = ρ(A) + ρ(B) if A ∩B = ∅.

5For instance, an almost-objective mixture of two constant acts x, y is defined as a bet x E y on the
appropriate almost-objective event E.
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Finally, we have an assumption on the set of consequences that holds except where oth-
erwise noted.

Structural Assumption The set X is a connected and separable topological space with
topology τ .

2 Preferences with Subjective Mixtures

In this section we provide a basic characterization result for a general class of preferences
that includes most of the decision models originally formulated in an AA framework. The
axioms guarantee that the preferences have enough structure to define a ‘subjective mixture’
operation that is the subjective equivalent of the ‘objective mixture’ in the AA framework.

2.1 Basic Axioms

The first two axioms in the characterization are standard. First of all, we require that the
relation be a weak order.

Axiom A 1 (Weak Order) (a) For all f, g ∈ F , f < g or g < f . (b) For all f, g, h ∈ F ,
if f < g and g < h, then f < h.

Next, we require that the preference satisfy the behavioral equivalent of monotonicity.

Axiom A 2 (Dominance) For every f, g ∈ F , if f(s) < g(s) for every s ∈ S then f < g.

The next axiom requires a definition. We say that an event A ∈ Σ is essential if
x � xAy � y for some consequences x and y such that x � y.

Axiom A 3 (Essentiality) There exists an essential event E ∈ Σ.

This axiom implies that < is nontrivial, as no event is essential if < is trivial. Given E, we
denote by ΣE the algebra generated by E and by FE the set of the ΣE-measurable acts.

We now have three axioms that impose with one exception restrictions on the DM’s
preferences over the acts in FE . The first (a weak version of Savage’s P3 [18] axiom) is a
converse to axiom A2. We use the following terminology: An event A ∈ Σ is null (resp.
universal) if y ∼ xAy (resp. x ∼ xAy) for every x � y. It follows from axiom A1 that an
event can be only one of null, essential, or universal.

Axiom A 4 (E-Monotonicity) For every non-null A ∈ ΣE and every x, y < z ∈ X,

x � y =⇒ xAz � y A z.

For every non-universal A ∈ ΣE and every x, y 4 z ∈ X,

x � y =⇒ z Ax � z A y.

7



The next axiom is a weak continuity property. To state it, we first observe that the
topology τ on X induces the product topology on the set XS of all functions from S into
X. In this topology, a net {fα}α∈D ⊆ XS converges to f ∈ XS if and only if fα(s) τ−→ f(s)
for all s ∈ S (remember that S is arbitrary). For this reason it is also called the topology of
pointwise convergence.

Axiom A 5 (E-Continuity) Let {gα}α∈D ⊆ FE be a net that pointwise converges to g.
For every f ∈ F , if gα < f (resp. f < gα) for all α ∈ D, then g < f (resp. f < g).

This axiom is the announced exception, as the act f can be any element of F . It is straightfor-
ward to show (see Lemma 12 in Appendix B) that any binary relation satisfying axioms A1–
A3 and A5 (on a connected X) has certainty equivalents. That is, for every f ∈ F , there
exists a x ∈ X such that x ∼ f . Granted this, we henceforth denote by cf an arbitrarily
chosen certainty equivalent of f ∈ F .

The next axiom imposes a behavioral restriction. We write x < {z′, z′′} (resp. {z′, z′′} <
y) if x < z′ and x < z′′ (resp. z′ < y and z′′ < y)

Axiom A 6 (E-Substitution) For all x, y, z′, z′′ ∈ X and A,B ∈ ΣE. Suppose that x <
{z′, z′′} < y. Then

cxAz′ B cz′′Ay ∼ cxBz′′ Acz′By. (5)

Axioms in the spirit of our A6 are standard in the literature originating from Nakamura [16].
Note however that axiom A6 only involves preferences on the (binary) acts in FE .6

First, Axiom A6 may be interpreted as imposing a ‘substitution’ requirement (see Quiggin
[17] for a similar interpretation of a related axiom). Recall that, following Gul [12] and Chew
and Karni [5], binary acts and their certainty equivalents may be employed to construct
‘eventwise’ mixtures of acts. In this sense, the act cx A z′Bcz′′ Ay may be regarded as the ‘A-
mixture’ of the acts xB z′′ and z′B y. On the other hand, cx B z′′Acz′ By is the ‘A-mixture’ of
the certainty equivalents of the same acts. Therefore, Eq. (5) requires that substituting acts
in an ‘eventwise’ mixture with their certainty equivalents leave the decision maker indifferent.

An alternative interpretation of the axiom involves the idea of ‘reduction of compound
acts’ (see also Luce [13, Ch. 3]). Suppose that, in order to simplify the evaluation of ‘com-
pound’ acts such as cx A z′Bcz′′ Ay, the decision maker imagines a fictitious setting wherein
two identical copies of the experiment described by ΣE are performed simultaneously.7 He
then reduces these acts to fictitious ‘product’ acts. In particular, he reduces cx A z′Bcz′′ Ay

(resp. cx B z′′Acz′ By) in the original setup to the fictitious act represented on the right (resp.
on the left) of Figure 1. By the simultaneity assumption, both ficticious acts can be repre-
sented by the table in the center. Therefore, the decision maker should be indifferent between
cx A z′Bcz′′ Ay and cx B z′′Acz′ By. Thus, axiom A6 reflects one consequence of the assumption

6Chew and Karni [5] show that this axiom is equivalent to a form of comonotonic independence (cf. axiom
A9 below and axiom S2 in Ghirardato and Marinacci [9]) restricted to acts in FE .

7Simultaneity reflects the idea that in the decision maker’s mind the outcome of one experiment does not
influence the outcome of the other in any way.
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Figure 1: The acts cx A z′Bcz′′ Ay and cx B z′′Acz′ By

that the decision maker adopts the evaluation procedure just described. We now show that
a preference < that satisfies axioms A1–A6 can be given a representation V which on the set
FE has a simple separable form (a weaker form of the biseparable representation introduced
in [9]).

Recalling the discussion in the Introduction, Axiom A6 is responsible for the fact that the
‘internal’ outcomes z′ and z′′ have symmetric importance in the decision maker’s evaluation
of composite acts in Eq. (5).

The axioms stated so far imply that the DM’s preferences over consequences have a
cardinal representation. However, we cannot say anything (beyond monotonicity) about the
structure of the functional V for acts which are not ΣE-measurable.

Lemma 1 < is a binary relation satisfying axioms A1–A6 if and only if there is a τ -
continuous nonconstant utility index u : X → R and a capacity ρE : ΣE → [0, 1], with
ρE(E) ∈ (0, 1), such that the functional V : F → R defined by V (f) ≡ u(cf ) for any f ∈ F
represents <, it is monotonic and it satisfies, for all x < y and all A ∈ ΣE,

V (xAy) = u(x)ρE(A) + u(y)(1− ρE(A)). (6)

Moreover, such u and V are unique up to a positive affine transformation and ρE is unique.

We stress that in general ρE(E) + ρE(Ec) 6= 1; that is, the representation of the DM’s
preferences over bets on events in ΣE is not necessarily expected utility with ‘beliefs’ ρE .

2.2 Subjective Mixtures and Independence

We now introduce the key notion of the ‘subjective mixture’ of two acts using the essential
event E of axiom A3. This is then used to state the last axiom, which guarantees that this
notion of mixture is independent of the essential event E. We start with the definition of
preference average of two consequences.

Definition 2 Given x, y ∈ X such that x < y (resp. y < x), we denote by (1/2)x ⊕ (1/2) y
a consequence z ∈ X such that x < z < y (resp. y < z < x) and

xE y ∼ cxEz E czEy (resp. y E x ∼ cyEz E czEx). (7)

9



Two remarks are in order. The first is that the definition implies that (1/2)x ⊕ (1/2) y ∼
(1/2)y⊕(1/2)x. The second is that there may be many consequences that satisfy the required
conditions: Lemma 3 below shows that all the consequences that satisfy the conditions form
an indifference class of <. As stated in the definition, (1/2)x⊕(1/2) y denotes a representative
of the indifference class. Nothing would change in our results if we required every property
related to mixtures to hold for every z that satisfies the conditions in Definition 2.

We explained in the Introduction why we interpret the consequence (1/2)x ⊕ (1/2) y as
the preference average of x and y. We now show that the consequence z averages the utilities
of x and y with the cardinal utility index u provided by Lemma 1.

Lemma 3 Suppose that < satisfies axioms A1–A6. For any x, y ∈ X, there exists a z =
(1/2)x⊕ (1/2)y. Moreover, if u is the cardinal utility that represents < by Lemma 1, z is an
arbitrarily chosen element of the set of the z′ satisfying

u(z′) =
1
2
u(x) +

1
2
u(y).

Clearly, we can consider iterated averages such as (1/2)x⊕(1/2)[(1/2)x⊕(1/2) y], which is
tantamount to a 3/4:1/4 mixture of x and y. More generally, consider any dyadic rational:
a number γ ∈ (0, 1) such that for some finite N ,

γ =
N∑

i=1

ai/2i,

where ai ∈ {0, 1} for every i and aN = 1. We use γ x ⊕ (1 − γ) y as a short-hand for the
iterated preference average

1
2
z1 ⊕

1
2

(
. . .

(
1
2
zN−1 ⊕

1
2

(
1
2
zN ⊕ 1

2
y

))
. . .

)
,

where for every i, zi = x if ai = 1 and zi = y otherwise. The mixture of acts f and g is now
defined as the act which state by state pays the mixture of the payoffs of f and g.

Definition 4 Given f, g ∈ F and a dyadic rational γ, we define γf ⊕ (1−γ) g the act h ∈ F
such that h(s) = γf(s) ⊕ (1− γ) g(s) for every s ∈ S.

It follows from this definition (see Lemma 13 in Appendix B) that for every f, g ∈ F and
s ∈ S,

u[(γf ⊕ (1− γ)g)(s)] = γu(f(s)) + (1− γ)u(g(s)).

That is, the act γf ⊕ (1− γ) g is the act whose utility profile mixes with weight γ those of f
and g. This act has a utility profile which is identical to that of the ‘objectively mixed’ act
γf + (1 − γ) g in the AA framework. The difference is that in our framework the mixture
has the correct convex combination of utilities by definition, rather than by assumption.

Our final axiom uses the notion of mixture thus derived to impose a very weak and natural
property of separability of preferences.
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Axiom A 7 (Weak Certainty Independence) For every f, g ∈ F , x ∈ X and dyadic
rational γ,

f ∼ g =⇒ γ f ⊕ (1− γ)x ∼ γ g ⊕ (1− γ)x. (8)

This axiom is a (weaker) ‘subjective’ version of the identically named axiom of Gilboa
and Schmeidler [11]. The interpretation is analogous: If the DM prefers f to g, he should
also prefer the mixture of f with the constant x to the mixture of g with the x. In fact, a
mixture with a constant delivers an act whose utility profile is a positive affine transformation
of the original one. The novelty in our axiom is that the mixtures used in (8) are derived in
a purely subjective fashion, so that as explained above they certainly induce the appropriate
profile of utilities.

The following result characterizes the preferences that satisfy the given axioms:

Theorem 5 Let < be a binary relation on F . Then < satisfies axioms A1–A7 if and only
if there exist a τ -continuous nonconstant function u : X → R and a monotonic c-linear
functional I : B(Σ) → R such that for all f, g ∈ F ,

f < g ⇐⇒ I(u ◦ f) ≥ I(u ◦ g), (9)

and such that I(1E) /∈ {0, 1} for some E ∈ Σ. Moreover, u is unique up to a positive affine
transformation and I is unique.

It follows from the properties of the functional I that, setting V (f) = I(u ◦ f), for every
f ∈ F and x ∈ X and dyadic rational γ,

V (γ f ⊕ (1− γ)x) = γ V (f) + (1− γ)V (x). (10)

It can also be shown (Proposition 14 in Appendix B) that the functional V satisfies the
separable representation of Lemma 1 for every binary act (rather than just those in FE). In
fact, let ρ : Σ → R be defined by ρ(A) ≡ I(1A). Then ρ is a capacity and for all x, y ∈ X
such that x < y and all A ∈ Σ,

V (xAy) = u(x)ρ(A) + u(y)(1− ρ(A)). (11)

Moving beyond binary acts, though, the representation in Theorem 5 allows a great degree
of flexibility. Indeed, we show in the next section that both the CEU and MEU models
are encompassed by it. Moreover, it is immediate to modify the discussion in Ghirardato
and Marinacci [9] to show that most of the decision models which deliver a cardinal state-
independent utility function are special cases of this representation.

The observation of Eq. (11) enables us to address the question of whether the definition of
subjective mixture depends on the choice of the essential event E. In general, this is possible
even if the preference < satisfies axioms A1–A6. However, such dependence is ruled out when
axiom A7 is added (see also Remark 8 below):
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Corollary 6 Suppose that < satisfies axioms A1–A7 and let F 6= E be an essential event.
Then for every x < z < y,

xE y ∼ cxEz E czEy if and only if xF y ∼ cxFz F czFy.

That is, for a preference satisfying axioms A1–A7 the definition of 1/2:1/2 (hence dyadic)
mixture is independent of the choice of essential event E.

Remark 7 In view of the potential dependence of ‘subjective mixtures’ on the essential event
E, one could envision a stronger version of axiom A7 that requires that implication (8) hold
for the mixtures defined using any essential event. Corollary 6 shows that all such mixtures
agree whenever certainty independence holds for the mixtures defined using E. Hence, the
alternative formulation of the axiom is not stronger than axiom A7.

In conclusion, we have shown that under weak preference axioms it is possible to construct
a subjective version of the algebraic structure that is assumed in the AA framework. In the
next section, we extend three axiomatic models from the AA framework to a fully subjective
one, by way of illustrations of the usefulness of this construction.

While the axiomatization that we propose is designed mostly with generality in mind, it
is perhaps worth remarking that it is stronger than what is necessary for correctly defining
subjective mixtures. In fact, we show in Section 4 that the completeness part of axiom A1
to a large extent can be relaxed without affecting subjective mixtures. The next remark
observes that, analogously, the full strength of certainty independence is not needed.

Remark 8 The independence of the notion of even mixture from the essential event E
follows from Eq. (11), not from the other properties of the functional I. Therefore, the
subjective foundation to the AA framework presented here can be extended to the more
general ‘biseparable preferences’ model of Ghirardato and Marinacci [9]. The main benefit of
the model introduced here is that the functional I is independent of the specific representation
V (which is not necessarily the case for general biseparable preferences). The main cost is the
certainty independence property, which is weak and it is satisfied by most models of decision
under uncertainty.

2.3 A Comparison with ‘Eventwise’ Mixtures

It is perhaps useful at this point to compare our definition of subjective mixture to the
alternative notion of ‘eventwise’ mixture employed in the literature originating from Gul [12].

Consider first an extension of the axiomatization proposed by Chew and Karni [5],
whereby the preferences over bets on essential events are represented as in Eq. (11); cf.
Ghirardato and Marinacci [9]. In this setting, given an essential event A, one may define the
eventwise A-mixture of any two acts f and g as the act f A g such that f A g(s) = cf(s) A g(s)

in any state s ∈ S (cf. our discussion of Axiom A6).
For arbitrary A, this notion of mixture lacks a feature that is essential to reproducing the

AA vector space structure on the set of acts. In fact, suppose that two acts f and g are given
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which do not dominate each other state-by-state. Then, there are states s and s′ such that
f(s) � g(s) and f(s′) ≺ g(s′), so that f(s)Ag(s) and f(s′)Ag(s′) are bets on the different
events A and Ac respectively. Using the representation in Eq. (11), the utility achieved by
the A-mixture in state s is

u(f(s))ρ(A) + u(g(s))(1− ρ(A)),

whereas in state s′ the A-mixture yields

u(f(s′))(1− ρ(Ac)) + u(g(s′))ρ(Ac).

Thus, unless ρ(Ac) = 1 − ρ(A) (that is, the bets on A satisfy SEU), the notion under
consideration may lead to mixing utility profiles with different weights in different states.

In other words, eventwise mixtures may only provide a workable building block for the
definition of an AA-style structure if the event A is such that bets on A are evaluated
according to SEU. If an event A with the latter property is assumed to exist, then we
conjecture that eventwise mixtures may be employed to induce a vector space structure
on the set of acts. Such a construction would plausibly involve iterated eventwise mixtures,
mimicking our definition of dyadic subjective mixtures.8

Clearly, inducing a vector space structure in this fashion would require more restrictive
assumptions on preferences than the ones we impose. Moreover, we envision two difficulties,
related to the interpretation of mixtures, with this alternative approach. The first is that the
DM’s willingness to bet ρ(A) on the event A can only be determined by eliciting a significant
portion of the DM’s preferences. Absent this elicitation, we can only interpret the A-mixture
of f and g as an α:(1 − α) average, for some undetermined α, making the interpretation of
iterated A-mixtures especially problematic.

The second difficulty stems from the fact that identifying a suitable event A on the basis
of behavioral data is very demanding; in particular, it involves the observation of infinitely
many preference comparisons. This is a problem because the actual construction of eventwise
mixtures (say, in order to verify that a given axiom holds) presupposes that an appropriate
A has been identified. In view of Corollary 6, this difficulty does not arise with subjective
mixtures: the latter may be constructed by means of bets on an arbitrary essential event E
— and verifying that an event is essential only entails checking two preference conditions.

3 Some Immediate Consequences

It is simple to build on the characterization in Section 2 to provide an axiomatic foundation of
some popular models of decision making under uncertainty in a fully subjective environment.

We start with the axiomatization of the classical SEU model of Anscombe and Aumann
[1], as well as that of the CEU model of Schmeidler [19]. The key step to obtaining a SEU
preference is requiring that axiom A7 hold for every triple of acts:

8For an illustration of the difficulties that arise in the absence of such iterations, see the discussion of
Axiom 6 in Casadesus-Masanell et al. [4].
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Axiom A 8 (Weak Independence) For every f, g, h ∈ F ,

f ∼ g =⇒ 1
2
f ⊕ 1

2
h ∼ 1

2
g ⊕ 1

2
h.

On the other hand, CEU follows if we weaken axiom A8 by requiring that the implication
holds only for acts which are ‘commonly monotonic’, in the following sense: f, g ∈ F are
comonotonic if there are no s, s′ ∈ S such that f(s) � f(s′) and g(s′) � g(s).

Axiom A 9 (Weak Comonotonic Independence) For every f, g, h ∈ F , such that f, g
and h are pairwise comonotonic,

f ∼ g =⇒ 1
2
f ⊕ 1

2
h ∼ 1

2
g ⊕ 1

2
h.

Notice that, differently from axiom A7, both these axioms require that the implications hold
only for γ = (1/2).

In either case, the functional I of Theorem 5 becomes a Choquet integral with respect to
a function that represents the DM’s beliefs.9 Depending on whether independence holds only
for comonotonic acts or for all acts, such function is either a capacity or a probability.

Proposition 9 Let < be a binary relation on F . Then < satisfies axioms A1–A6 and A8
(resp. A9) if and only if there exist a τ -continuous nonconstant function u : X → R and a
probability (resp. capacity) P on Σ such that the functional I : B(Σ) → R defined by

I(ϕ) =
∫

S
ϕdP,

represents < in the sense of Eq. (9), and such that P (E) ∈ (0, 1). Moreover, u is unique up
to a positive affine transformation and P is unique.

Next, we offer a subjective axiomatization of Gilboa and Schmeidler’s maxmin expected
utility model [11]. Here it is key to add the following axiom, which is analogous (but slightly
weaker) to the axiom Gilboa and Schmeidler call ‘uncertainty aversion’.10

Axiom A 10 (Ambiguity Hedging) For every f, g ∈ F ,

f ∼ g =⇒ 1
2
f ⊕ 1

2
g < f.

Intuitively, a DM displays ambiguity hedging if he prefers the ‘even mixture’ of indifferent
acts (which possibly hedges ambiguity) to either of the ‘pure’ acts (which certaintly do not).
A symmetric axiom, called ‘ambiguity speculating’, describes a DM with opposite preferences.

9 See Appendix A for a definition, and notice that a Choquet integral with respect to a probability is a
standard integral.

10 See Ghirardato and Marinacci [8] for a discussion of such terminology, motivating our departure from it.
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It is worth underscoring that, since the mixtures used in the axiom are subjective, am-
biguity hedging does not describe, as its counterpart in the AA framework, a preference for
‘objective’ randomization. Rather, it embodies a preference for utility smoothing, which is
completely unrelated to the decision maker’s attitude towards possible randomized choices.
The latter interpretation makes, at least in our opinion, ambiguity hedging a much more
palatable property than its AA analogue.

Adding axiom A10 to those in the previous section allows a full description of the func-
tional I in Theorem 5. (If we used ‘ambiguity speculating’ instead, we would get a ‘max’
rather than a ‘min’.)

Proposition 10 Let < be a binary relation on F . Then < satisfies axioms A1–A7 and A10
if and only if there exist a τ -continuous nonconstant function u : X → R and a nonempty,
closed and convex set C of probabilities on Σ such that the functional I : B(Σ) → R defined
by

I(ϕ) = min
P∈C

∫
S
ϕdP,

represents < in the sense of Eq. (9), and such that [minP∈C P (E),maxP∈C P (E)] ⊆ (0, 1).
Moreover, u is unique up to a positive affine transformation and C is unique.

4 A Subjective Axiomatization of Bewley’s Model

In this final section, we modify the model of Section 2 to provide a subjective foundation to
Bewley’s [2] model of choice with incomplete preferences.

Besides showing that the full strength of completeness is not necessary for defining sub-
jective mixtures, the exercise serves the purpose of demonstrating that subjective mixtures
can be helpful in modelling choice also when ambiguity aversion is not a motivating factor.
In fact, incompleteness of preferences may plausibly be due to causes unrelated to ambiguity.
Moreover, the model we present here does not embody ambiguity aversion, as it remains
agnostic on the procedure by which the DM resolves incomparabilities (one possible solution
is Bewley’s ‘inertia’ assumption, which does not reflect ambiguity aversion).

For this section only, we add further structure to the set of consequences X. We also
assume, as Bewley [2] did, that S is finite.

Structural Assumption The set X is a connected, separable and compact topological space
with topology τ . The set S is finite.

As in Section 2, our axiomatization comprises seven axioms, labelled B1–B7. Axioms B2,
B4 and B6 are exactly axioms A2, A4 and A6. Therefore, we do not restate them. We only
state the axioms which, though analogous to their ‘A’ counterpart, need adaptation to the
present setting. The first two axioms parallel axioms A1 and A3, but here we require that <
is complete only on the set of the acts measurable with respect to the essential event E.
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Axiom B 1 (Preorder) (a) For all f ∈ F , f < f . (b) For all f, g, h ∈ F , if f < g and
g < h, then f < h.

Axiom B 3 (Complete Essentiality) There exists an essential event E ∈ Σ such that <
is complete on FE.

The next axiom imposes a stronger continuity requirement than axiom A5, needed in
order to compensate the incompleteness of <.

Axiom B 5 (Continuity) Let {fα}α∈D ⊆ F be a net that pointwise converges to f ∈ F
and {gα}α∈D ⊆ F be a net that pointwise converges to g ∈ F . If fα < gα for all α ∈ D, then
f < g.

As before, it is possible to show that if < satisfies axioms B1, B2, B3 and B5, every act
f ∈ FE has a certainty equivalent cf (notice that this need not be true of acts outside FE).

As all acts involved in the definition of (1/2)x ⊕ (1/2)y belong to FE , the definition of
mixture is unchanged from the previous section. We can thus state the independence axiom,
which is stronger than the previous versions, as it applies to every triple of acts.

Axiom B 7 (Independence) For every f, g, h ∈ F and every dyadic rational γ,

f < g =⇒ γ f ⊕ (1− γ)h < γ g ⊕ (1− γ)h.

Our last result shows that, unsurprisingly, axioms B1–B7 yield a representation of pref-
erences weaker than Proposition 9: a DM satisfying the axioms has a family of probabilities
as beliefs, and prefers act f to act g when the expected utility of f is unanimously greater
than the expected utility of g.

Theorem 11 Let < be a binary relation on F . Then < satisfies axioms B1–B7 if and only
if there exist a τ -continuous nonconstant function u : X → R and a nonempty, closed and
convex set C of probabilities on Σ such that for all f, g ∈ F ,

f < g ⇐⇒
∫

S
(u ◦ f) dP ≥

∫
S
(u ◦ g) dP for all P ∈ C,

and such that P (E) = P ′(E) ∈ (0, 1) for all P, P ′ ∈ C for some E ∈ Σ. Moreover, u is
unique up to a positive affine transformation and C is unique.

It is simple to see that a result analogous to Corollary 6 holds in this setting: If F 6= E is
an essential event such that < is complete on FF , then xF y ∼ cxFz F czFy if and only if
xE y ∼ cxEz F czEy.

Appendix
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A An Integral for Capacities

The notion of integral used for capacities is the Choquet integral: For a given Σ-measurable
function ϕ : S → R, the Choquet integral of ϕ with respect to a capacity ν is defined as:∫

S
ϕdν =

∫ ∞

0
ν({s ∈ S : ϕ(s) ≥ α})dα+

∫ 0

−∞
[1− ν({s ∈ S : ϕ(s) ≥ α})]dα (12)

where the r.h.s. is a Riemann integral (which is well defined because ν is monotone). When ν
is additive, (12) becomes a standard (additive) integral. In general it is seen to be monotonic,
positive homogeneous and comonotonic additive: If ϕ,ψ : S → R are comonotonic, then∫

(ϕ+ψ) dν =
∫
ϕdν+

∫
ψ dν. Two functions ϕ,ψ : S → R are called comonotonic if there

are no s, s′ ∈ S such that ϕ(s) > ϕ(s′) and ψ(s) < ψ(s′).

B Proofs

B.1 Proof of Lemma 1

We show that axioms A1–A6 imply that axioms 1-6 of Nakamura [16] hold on FE . Axiom A2
immediately implies that axioms 1 and 4 are satisfied. The fact that our axiom A4 is equiv-
alent to his 3 follows from these simple observations: an event A is ‘null’ (resp. ‘universal’)
in the sense of Nakamura if and only if Ac is universal (resp. null), while if A is essential,
then Ac ∈ ΣE is neither ‘null’ nor ‘universal’ in his sense. Axiom 6 is clearly equivalent to
our axiom A6.

To show that his axioms 2 and 5 hold, we use the following lemma. As it is analogous to
Lemma 29 in [9], we omit its proof.

Lemma 12 Let < be a binary relation satisfying axioms A1, A2, A3 and A5. If X is
connected, then

(a) for every f ∈ F there exists x ∈ X such that f ∼ x.

(b) for every x, y, z ∈ X, A ∈ ΣE, and f ∈ F , if xAz � f � y A z, there exists x′ ∈ X
such that x′Az ∼ f .

Part (b) is exactly Nakamura’s axiom 2. As to axiom 5, it is possible to mimic the proof of
Lemma 30 of [9] to show that Lemma 12 and axiom A4 imply its validity.

It now follows from Theorem 1 of Nakamura [16] that there exists a unique ρE on ΣE and
a function u : X → R, unique up to positive affine transformations, such that the functional
V : FE → R defined by Eq. (6) represents < on FE . We extend V to all of F by letting
V (f) = u(cf ) for any f ∈ F . It is immediate to check that, thus defined, V represents <.
Moreover, u is shown to be τ -continuous (see the proof of Lemma 31 in [9]).
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The necessity of axioms A1–A2 is obvious, and that of axiom A6 is proved in [16, Theorem
1]. As to axiom A3, it suffices to observe that since ρE(E) ∈ (0, 1) and u is nonconstant, we
have

u(x) > u(x) ρE(E) + u(y)(1− ρE(E)) > u(y),

for some x � y, proving that E is essential. Axiom A4 similarly follows from the observation
that A ∈ ΣE is null (resp. universal) iff ρE(A) = 0 (resp. ρE(A) = 1). To show that
axiom A5 holds, assume that fα = xαE yα → xE y = f pointwise and that fα < g. Since u
is τ -continuous, we have that

max{|u(xα)− u(x)|, |u(yα)− u(y)|} → 0.

Consequently, u ◦ (xαE yα) → u ◦ (xE y) uniformly, whence

V (fα) =
∫

[u ◦ (xαE yα)] dρE →
∫

[u ◦ (xE y)] dρE = V (f),

where the integrals are taken in the sense of Choquet [6]. This shows that f < g, and
concludes the proof of necessity.

The uniqueness of V is shown as follows: Suppose that V ′ : F → R is another functional
satisfying the representation, which corresponds to a utility u′ and capacity ρ′E . By the
uniqueness properties mentioned above, u′ = au + b for a > 0 and b ∈ R and ρ′E = ρE .
Therefore

V ′(f) = u′(cf ) = au(cf ) + b = aV (f) + b.

B.2 Proof of Lemma 3

Assume w.l.o.g. that x < y, and suppose that there is a z satisfying the conditions of
Definition 2. By axiom A2 and the fact that x < z < y, it follows that xE z < z E y. Let
r = ρE(E) ∈ (0, 1). Applying the representation of Lemma 1, we have

V (xE z) = u(x)r + u(z)(1− r)
V (z E y) = u(z)r + u(y)(1− r).

Using these equations, we obtain

V (cxEz E czEy) = u(cxEz)r + u(czEy)(1− r)
= V (xEz)r + V (zEy)(1− r)
= [u(x)r + u(z)(1− r)]r + [u(z)r + u(y)(1− r)](1− r)
= u(x)r2 + u(y)(1− r)2 + 2u(z)r(1− r),

and

V (xE y) = u(x)r + u(y)(1− r)
= u(x)r2 + u(y)(1− r)2 + [u(x) + u(y)]r(1− r).
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Thus, V (xE y) = V (cxEz E czEy) is equivalent to

u(x) + u(y)
2

= u(z). (13)

By the continuity of u and the connectedness of X, for all x < y there exists a z ∈ X such
that Eq. (13) is satisfied. By the above argument, such z = (1/2)x⊕ (1/2)y.

B.3 Proof of Theorem 5

Let u and V be respectively the utility and functional from Lemma 1. We start with a simple
observation on dyadic mixtures:

Lemma 13 Let x, y ∈ X and γ be a dyadic rational. Then

u(γ x⊕ (1− γ) y) = γ u(x) + (1− γ)u(y).

Proof : If γ =
∑∞

i=1 ai/2i, define `(γ) = max{i ≥ 1 : ai = 1}. The proof is by induction on
`(γ). If `(γ) = 1, then γ = 1/2 and the result follows from Lemma 3.

Suppose that the result holds for all γ such that `(γ) ≤ n, and let γ =
∑n+1

i=1 ai/2i (where
an+1 = 1, otherwise the result is true by the induction hypothesis). Let δ =

∑n
i=1 ai+1/2i, so

that γ = (1/2)a1 + (1/2)δ. Then,

u(γx⊕ (1− γ)y) = u

(
1
2
z1 ⊕

1
2

(δx⊕ (1− δ)y)
)

=
1
2
u(z1) +

1
2
(δu(x) + (1− δ)u(y))

If a1 = 0 (resp. a1 = 1), then z1 = y (resp. z1 = x) and the above equation is rewritten as

u(γx⊕ (1− γ)y) =
1
2
δ u(x) + (1− 1

2
δ)u(y) (resp. = (

1
2

+
1
2
δ)u(x) +

1
2
(1− δ)u(y))

= γ u(x) + (1− γ)u(y).

This concludes the proof.

Since u is nonconstant, we can choose u s.t. u(X) ⊇ [−1, 1]. Denote by B(Σ, u(X)) the
subset of B(Σ) consisting of simple measurable functions with range in u(X). It is simple to
show that B(Σ, u(X)) = {u ◦ f : f ∈ F}.

Define I ′(u ◦ f) = V (f) for all f ∈ F . Clearly, u ◦ f = u ◦ g iff u(f(s)) = u(g(s))
for all s ∈ S iff f(s) ∼ g(s) for all s ∈ S only if V (f) = V (g) (by axiom A2). Hence,
I ′ : B(Σ, u(X)) → R is well defined. It is also monotonic: If ϕ = u ◦ f and ψ = u ◦ g and
ϕ ≥ ψ, then u(f(s)) ≥ u(g(s)) for all s ∈ S, which by axiom A2 implies f < g so that
I ′(ϕ) = I ′(u ◦ f) = V (f) ≥ V (g) = I ′(u ◦ g) = I ′(ψ). Finally, for every b = u(x) for x ∈ X,
I ′(b) = I ′(u(x)) = V (x) = u(x) = b.
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Take a dyadic rational γ, a ϕ = u ◦ f ∈ B(Σ, u(X)) and b ∈ u(X). Denote by x an
element in X such that u(x) = b. By Lemma 13,

u ◦ (γ f ⊕ (1− γ)x) = γ u ◦ f + (1− γ)u(x) = γ ϕ+ (1− γ) b.

By axiom A7, f ∼ cf implies γ f ⊕ (1− γ)x ∼ γ cf ⊕ (1− γ)x. We thus obtain

I ′(γ ϕ+ (1− γ) b) = V (γ f ⊕ (1− γ)x)
= u(γ cf ⊕ (1− γ)x)
= γ V (f) + (1− γ)u(x)
= γ I ′(ϕ) + (1− γ) b.

In particular, setting b = 0 in the equation above yields I ′(γ ϕ) = γ I ′(ϕ).
We now extend I ′ to a functional I : B(Σ) → R as follows:

I(ψ) = 2nI ′(
1
2n
ψ) if

1
2n
ψ ∈ B(Σ, u(X)).

I is well defined: if (1/2m)ψ ∈ B(Σ, u(X)) for, say, m = n + p, then, using the facts that
1/2p is dyadic and that (1/2n)ψ ∈ B(Σ, u(X)),

2mI(
1

2m
ψ) = 2n2pI(

1
2p

1
2n
ψ) = 2nI(

1
2n
ψ).

We now show that I(γϕ+ (1− γ)b) = γI(ϕ) + (1− γ)b for every dyadic rational γ, every
ϕ ∈ B(Σ) and every b ∈ R. Let q ∈ N be such that ϕ/2q ∈ B(Σ, u(X)) and b/2q ∈ u(X).
Then

I(γ ϕ+ (1− γ) b) = 2q I ′(γ ϕ/2q + (1− γ) b/2q)
= 2q[γ I ′(ϕ/2q) + (1− γ) b/2q]
= γ 2q I ′(ϕ/2q) + (1− γ) b
= γ I(ϕ) + (1− γ) b.

As a consequence of this equality, I(ϕ/2) = I(ϕ)/2 for every ϕ ∈ B(Σ). Using this result
and the equality again yields I(ϕ+ b) = I(ϕ) + b. Therefore I is c-additive.

The monotonicity of I descends from the monotonicity of I ′. Sup-norm continuity of I
then follows from monotonicity and c-additivity. The positive homogeneity of I then follows
from the property that I(γϕ) = γI(ϕ) for every dyadic rational γ and sup-norm continuity.
We thus conclude that I is c-linear, proving sufficiency.

To prove necessity, we show that the representation V has a special form on all binary
acts.

Proposition 14 Let < be the binary relation on F induced by the functional V defined by
V (f) = I(u(f)), where I : B(Σ) → R is a monotonic c-linear functional and u : X → R is a
nonconstant function. Then there exists a unique capacity ρ : Σ → [0, 1] such that for every
x < y and A ∈ Σ,

V (xAy) = u(x)ρ(A) + u(y)(1− ρ(A)). (14)
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Proof : Set ρ(A) = I(1A) for all A ∈ Σ. Consider x < y and A ∈ Σ. Then

V (xAy) = I[u ◦ (xAy)]
= I[(u(x)− u(y))1A + u(y)]
= u(x)ρ(A) + u(y)(1− ρ(A)).

To show uniqueness, assume that ρ′ also satisfies Eq. (14) and choose x � y. We have

ρ′(A) =
V (xAy)− u(y)
u(x)− u(y)

=
I[(u(x)− u(y)) 1A + u(y)]− u(y)

u(x)− u(y)

=
u(x)− u(y)
u(x)− u(y)

I(1A),

which concludes the proof.

Since the proposition shows that the utility u and capacity ρ are such that V satisfies Eq. (6),
it now follows from Lemma 1 that axioms A1–A6 must hold. Axiom A7 is clearly necessary.

We close with the proof of the uniqueness of I and cardinality of u. By the proposition
and Lemma 1, V and u are cardinal and ρE = ρ. Suppose that I ′ : B(Σ) → R and u′

correspond to another representation of <. Then, V ′ = I ′ ◦u′ = aV + b with a > 0 and b ∈ R
and for all f ∈ F

aI(u ◦ f) + b = I ′(u′ ◦ f) = I ′(a(u ◦ f) + b) = aI ′(u ◦ f) + b.

This shows that I ′ = I on B(Σ, u(X)). By positive homogeneity, I ′ ≡ I.

B.4 Proof of Proposition 9

We prove the statement for the case of a preference satisfying axioms A1–A6 and A9. The
other case is proved analogously (just remove all references to ‘comonotonic’ and change
‘capacity’ into ‘probability’).

As in the proof of Theorem 5, we consider the utility u and functional V from Lemma 1,
chosen so that u(X) ⊇ [−1, 1]. Observe that then f, g ∈ F are comonotonic iff u ◦ f and u ◦ g
are comonotonic. We next define I ′(u ◦ f) = V (f) for all f ∈ F . As before, I ′ is well-defined
and monotonic, and I ′(b) = b. Given comonotonic ϕ,ψ ∈ B(Σ, u(X)), let ϕ = u ◦ f and
ψ = u ◦ g. By Lemma 3,

u ◦ ((1/2) f ⊕ (1/2) g) = (1/2)u ◦ f + (1/2)u ◦ g = (1/2)ϕ+ (1/2)ψ.

By axiom A9, f ∼ cf and g ∼ cg imply

(1/2) f ⊕ (1/2) g ∼ (1/2) cf ⊕ (1/2) g ∼ (1/2) cf ⊕ (1/2) cg.
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We thus obtain

I ′((1/2)ϕ+ (1/2)ψ) = V ((1/2) f ⊕ (1/2) g)
= u((1/2) cf ⊕ (1/2) cg)
= (1/2)V (f) + (1/2)V (g)
= (1/2) I ′(ϕ) + (1/2) I ′(ψ).

This implies I ′((1/2)ϕ) = (1/2)I ′(ϕ), so that I ′((1/2)nϕ) = (1/2)nI ′(ϕ) for all n ∈ N.
We now extend I ′ to a functional I : B(Σ) → R as follows:

I(ψ) = 2nI ′(
1
2n
ψ) if

1
2n
ψ ∈ B(Σ, u(X)).

Again, I is well defined. We now show that I((1/2)ϕ + (1/2)ψ) = (1/2) I(ϕ) + (1/2) I(ψ),
for every comonotonic ϕ,ψ ∈ B(Σ). Let q ∈ N be such that ϕ/2q, ψ/2q ∈ B(Σ, u(X)). Then

I((1/2)ϕ+ (1/2)ψ) = 2q I ′((1/2)ϕ/2q + (1/2)ψ/2q)
= 2q[(1/2) I ′(ϕ/2q) + (1/2) I ′(ψ/2q)]
= (1/2) 2q I ′(ϕ/2q) + (1/2) 2qI ′(ψ/2q)
= (1/2) I(ϕ) + (1/2) I(ψ).

As a consequence of this equality, I(ϕ/2) = I(ϕ)/2 for every ϕ ∈ B(Σ). Using this result
and the equality again yields I(ϕ+ ψ) = I(ϕ) + I(ψ). That is, I is comonotonic additive.

Since I is comonotonic additive, monotonic (the monotonicity of I descends from the
monotonicity of I ′) and satisfies I(b) = b for all b ∈ R, there exists a unique capacity P on
Σ such that I(ϕ) =

∫
ϕdP , where the integral is taken in the sense of Choquet. This proves

sufficiency. Necessity and uniqueness are straightforward.

B.5 Proof of Proposition 10

Consider the function u and the monotonic c-linear functional I in Theorem 5. We now show
that, if we add axiom A10, the functional I is also superadditive. This is shown to yield the
desired representation (see, e.g., Marinacci [15]).

For all ϕ = u ◦ f and ψ = u ◦ g such that I(ϕ) = I(ψ), we have

I

(
1
2
ϕ+

1
2
ψ

)
= I

(
u ◦

(
1
2
f ⊕ 1

2
g

))
≥ I(u ◦ f) = I(ϕ) =

1
2
I(ϕ) +

1
2
I(ψ).

Given ϕ,ψ ∈ B(Σ), suppose first that I(ϕ) = I(ψ). Choose α ∈ (0, 1] such that αϕ, αψ ∈
B(Σ, u(X)). By the previous observation

I

(
1
2
αϕ+

1
2
αψ

)
≥ 1

2
I(αϕ) +

1
2
I(αψ),

which by homogeneity of I implies I(ϕ+ψ) ≥ I(ϕ)+I(ψ). If, on the other hand, I(ϕ) 6= I(ψ),
let γ = I(ϕ) − I(ψ) and apply c-linearity and the previous argument to ϕ and ψ + γ. This
proves the superadditivity of I.
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B.6 Proof of Theorem 11

Necessity is straightforward. We prove sufficiency. We depart from the observation that, as
we did in Section 2, we can use axioms B1–B6 to show that the preference < has a separable
representation on FE . This time, however, the representation is not extendable to all F .

Lemma 15 < is a binary relation satisfying axioms B1–B6 if and only if there is a τ -
continuous nonconstant utility index u : X → R and a capacity ρE : ΣE → [0, 1], with
ρE(E) ∈ (0, 1), such that the functional V : FE → R defined by V (f) ≡ u(cf ) for any f ∈ FE

represents <, it is monotonic and it satisfies, for all x < y and all A ∈ ΣE,

V (xAy) = u(x)ρE(A) + u(y)(1− ρE(A)). (15)

Moreover, such u and V are unique up to a positive affine transformation and ρE is unique.

Proof : This is analogous to the proof of Lemma 1. The major difference is that only the acts
in FE necessarily have certainty equivalents.

Let u and V be respectively the utility and functional from the Lemma. Since u is
nonconstant, we can choose u s.t. u(X) ⊇ [−1, 1]. We define a binary relation on B(Σ, u(X))
as follows: For all f, g ∈ F , we let u ◦ f %1 u ◦ g iff f < g. The following are then true:

• %1 is well-defined and monotonic: Assume u ◦ f = u ◦ f ′ and u ◦ g = u ◦ g′. By
monotonicity f ∼ f ′ and g ∼ g′. Then f < g iff f ′ < g′. The proof of monotonicity is
obvious.

• %1 is reflexive: for all f ∈ F , f ∼ f , hence u ◦ f ∼1 u ◦ f .

• %1 is transitive: If u ◦ f %1 u ◦ g and u ◦ g %1 u ◦ h, then f < g < h, hence f < h
implying u ◦ f %1 u ◦ h.

• %1 is continuous: Assume that u ◦ fα → u ◦ f and u ◦ gα → u ◦ g and u ◦ fα %1 u ◦ gα,
implying fα < gα, for all α ∈ D. Taking subnets we can assume that fβ → f ′ and
gβ → g′ (as F = XS is compact). By axiom B5 f ′ < g′, whence u◦f ′ %1 u◦g′. Finally,
we observe that u ◦ f ′ = u ◦ f and u ◦ g′ = u ◦ g since u ◦ fβ → u ◦ f and u ◦ gβ → u ◦ g.
This shows that u ◦ f %1 u ◦ g.

• %1 is independent (with γ ∈ [0, 1]): Let f, g, h ∈ F and suppose that u ◦ f %1 u ◦ g.
Then f < g implying γf ⊕ (1 − γ)h < γg ⊕ (1 − γ)h for every dyadic rational γ by
axiom B7. This implies, since clearly Lemma 13 extends to this case,

γ u ◦ f + (1− γ)u ◦ h = u ◦ (γ f ⊕ (1− γ)h)
%1 u ◦ (γ g ⊕ (1− γ)h)
= γ u ◦ g + (1− γ)u ◦ h.

By continuity, independence holds for every γ ∈ [0, 1].
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Notice that, by the independence and continuity of %1, it follows that for all ϕ,ψ ∈ B(Σ, u(X))
and all γ ∈ (0, 1]: ϕ %1 ψ iff γϕ %1 γψ (the proof is similar to that of Lemma 1.2 in Shapley
and Baucells [20]).

We next define a binary relation %2 on B(Σ) as follows: For all ϕ,ψ ∈ B(Σ), ϕ %2 ψ iff
γ ϕ %1 γ ψ for some γ ∈ (0, 1].

• %2 is well-defined and monotonic: Let ϕ,ψ ∈ B(Σ) and α, β ∈ (0, 1] be such that
αϕ, βϕ, αψ, βψ ∈ B(Σ, u(X)). W.l.o.g. β = γα with γ ∈ (0, 1]. It follows from the
observation above that αϕ %1 αψ iff γαϕ %1 γαψ iff βϕ %1 βψ. Monotonicity is trivial.

• %2 is obviously reflexive and transitive (i.e., a preorder). It is also nontrivial.

• %2 is independent and positively homogenous: For ϕ,ψ, ξ ∈ B(Σ) suppose that ϕ %2 ψ
and consider α ∈ (0, 1] such that αϕ, αψ, αξ ∈ B(Σ, u(X)). Then αϕ %1 αψ and by
independence of %1 for every γ ∈ [0, 1],

γαϕ+ (1− γ)α ξ %1 γαψ + (1− γ)α ξ ⇔ α(γ ϕ+ (1− γ) ξ) %1 α(γ ψ + (1− γ) ξ)
⇔ γ ϕ+ (1− γ) ξ %2 γ ψ + (1− γ) ξ.

The proof of positive homogeneity is now immediate.

• %2 is continuous: Suppose that ϕn, ϕ, ψn, ψ ∈ B(Σ), ϕn → ϕ, ψn → ψ and ϕn %2 ψn.11

Take M ∈ R such that M > supn{|ϕn(s)|, |ϕ(s)|, |ψn(s)|, |ψ(s)|} for all s ∈ S and
α ∈ (0, 1] such that αM ∈ [−1, 1]. Then αϕn %1 αψn, αϕn → αϕ and αψn → αψ so
that the continuity of %1 implies αϕ %1 αψ. In turn, this is equivalent to ϕ %2 ψ.

The statement in the theorem now follows from a standard result whose proof we omit:

Lemma 16 % is a nontrivial, positively homogeneous, independent, continuous and mono-
tonic preorder on B(Σ) if and only if there exists a nonempty, closed and convex set C of
probability measures on Σ such that

ϕ % ψ ⇐⇒
∫

S
ϕdP ≥

∫
S
ψ dP for all P ∈ C.

Moreover, such C is unique.

Finally, we show that P (E) = P ′(E) for all P, P ′ ∈ C. Consider x, y ∈ X such that u(x) = 1
and u(y) = 0 and z ∈ X such that u(z) = ρE(E). It follows from the representation of
Lemma 15 that xE y ∼ z, and from the representation of Lemma 16 that P (E) = u(z) =
ρE(E) for every P ∈ C.

11 As B(Σ) is metrizable, it is w.l.o.g. to consider sequences instead of nets.
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Torino, 2001.

[8] Paolo Ghirardato and Massimo Marinacci. Ambiguity made precise:
A comparative foundation. Journal of Economic Theory, forthcoming.
http://masada.hss.caltech.edu/∼paolo/zi2wp.pdf.

[9] Paolo Ghirardato and Massimo Marinacci. Risk, ambiguity, and the separa-
tion of utility and beliefs. Mathematics of Operations Research, forthcoming.
http://masada.hss.caltech.edu/∼paolo/canonica4wp.pdf.

[10] Itzhak Gilboa. Expected utility with purely subjective non-additive probabilities. Jour-
nal of Mathematical Economics, 16:65–88, 1987.

[11] Itzhak Gilboa and David Schmeidler. Maxmin expected utility with a non-unique prior.
Journal of Mathematical Economics, 18:141–153, 1989.

[12] Faruk Gul. Savage’s theorem with a finite number of states. Journal of Economic Theory,
57:99–110, 1992.

[13] R. Duncan Luce. Utility of Gains and Losses: Measurement-Theoretical and Experimen-
tal Approaches. Lawrence Erlbaum, London, 2000.

[14] Mark J. Machina. Almost-objective uncertainty. Mimeo, UC San Diego, July 2001.

[15] Massimo Marinacci. A simple proof of a basic result for multiple priors. Mimeo, Uni-
versity of Toronto, May 1997.

25



[16] Yutaka Nakamura. Subjective expected utility with non-additive probabilities on finite
state spaces. Journal of Economic Theory, 51:346–366, 1990.

[17] John Quiggin. A theory of anticipated utility. Journal of Economic Behavior and
Organization, 3:94–101, 1982.

[18] Leonard J. Savage. The Foundations of Statistics. Wiley, New York, 1954.

[19] David Schmeidler. Subjective probability and expected utility without additivity. Econo-
metrica, 57:571–587, 1989.

[20] Lloyd S. Shapley and Manel Baucells. Multiperson utility. Working Paper 779, Depart-
ment of Economics, UCLA, July 1998.

[21] John von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, Princeton, second edition, 1947.

26



Copies of the working papers can be downloaded from ICER’s web site www.icer.it

INTERNATIONAL CENTRE FOR ECONOMIC RESEARCH
APPLIED MATHEMATICS WORKING PAPER SERIES

1. Luigi Montrucchio and Fabio Privileggi, “On Fragility of Bubbles in Equilibrium
Asset Pricing Models of Lucas-Type,” Journal of Economic Theory, forthcoming
(ICER WP 2001/5).

2. Massimo Marinacci, “Probabilistic Sophistication and Multiple Priors,”
Econometrica, forthcoming (ICER WP 2001/8).

3. Massimo Marinacci and Luigi Montrucchio, “Subcalculus for Set Functions and
Cores of TU Games,” April 2001 (ICER WP 2001/9).

4. Juan Dubra, Fabio Maccheroni, and Efe Ok, “Expected Utility Theory without the
Completeness Axiom,” April 2001 (ICER WP 2001/11).

5. Adriana Castaldo and Massimo Marinacci, “Random Correspondences as Bundles
of Random Variables,” April 2001 (ICER WP 2001/12).

6. Paolo Ghirardato, Fabio Maccheroni, Massimo Marinacci, and Marciano
Siniscalchi, “A Subjective Spin on Roulette Wheels,” July 2001 (ICER WP
2001/17).

7. Domenico Menicucci, “Optimal Two-Object Auctions with Synergies,” July 2001
(ICER WP 2001/18).

8. Paolo Ghirardato and Massimo Marinacci, “Risk, Ambiguity, and the Separation
of Tastes and Beliefs,” Mathematics of Operations Research, forthcoming (ICER
WP 2001/21).


