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Abstract: 

Observed choices in Social Dilemma Games usually take the form of bounded integers.  We propose a 

doubly-truncated count data framework to process such data.  We compare this framework to past 

approaches based on ordered outcomes and truncated continuous densities using Bayesian estimation and 

model selection techniques.  We find that all three frameworks (i) support the presence of unobserved 

heterogeneity in individual decision-making, and (ii) agree on the ranking of regulatory treatment effects.  

The count data framework exhibits superior efficiency and produces more informative predictive 

distributions for outcomes of interest.  The continuous framework fails to allocate adequate probability 

mass to boundary outcomes, which are often of pivotal importance in these games. 
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I ) Introduction 

Economists often resort to experimental settings to study individuals’ decision heuristics in the 

presence of social externalities.  There are two popular variants of such “Social Dilemma” (SD) games: 

Public Good (PG) games and Common Pool Resource (CPR) games.  In the first case subjects need to 

decide how much of an initial endowment to allocate to a public good (e.g. Andreoni, 1993,1995, 

Ledyard, 1995, Fehr and Gächter, 2000), while in the second case players need to choose how much to 

extract from a shared resource (e.g. Ostmann, 1998, Cardenas et al., 2002, Casari and Plott, 2003, 

Cardenas et al., 2004,Velez et al., Forthcoming (a, b)). 

  The payoff structure for these games is generally designed to create a gap between the game-

theoretic equilibrium strategy and the socially optimal course of action.  In the bulk of existing 

applications the researcher’s interest centers on the identification of different behavioral motives amongst 

SD game participants, such as warm-glow, altruism, conditional cooperation, and compliance (e.g. 

Andreoni, 1995, Anderson et al., 1998, Brandts and Schram, 2001, Fischbacher et al., 2001, Kurzban et 

al., 2001, Velez et al., Forthcoming (b)).  A second primary focus in SD games is to study the effect of 

public institutions and policies on players’ allocation or extraction decisions (e.g. Cardenas et al., 2000, 

Vyrastekova and Soest, 2003, Velez et al., Forthcoming(a)).  Such institutions are mimicked via 

exogenous treatments added to the game structure, such as quotas, penalties, open communication, and 

voting mechanisms.  Social Dilemma games with focus on policy effects are often times implemented as 

field experiments.  In such experiments the subject pool is by definition closely linked to important real-

world aspects of the game, such as the nature of the commodity under consideration, and /or the nature of 

the choice tasks or trading rules embedded in the experimental framework (Harrison and List, 2004, List, 

2006).   

In the vast majority of SD-type games participants have to make discrete choices (“bids”) on the 

per-period level of contribution (in the PG case) or extraction (in the CRP case).  In the simplest of PG 

games this choice set reduces to a basic yes/no decision to contribute (e.g. Offerman et al., 1998) .  In 

many other PG games and most CPR games the set of permissible per-period contributions or extractions 
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ranges from zero or one to some upper bound, say maxE .  In most cases maxE  is in the 5-30 range (e.g. 

Andreoni, 1993, Palfrey and Prisbrey, 1996, Fehr and Gächter, 2000, Henrich et al., 2005). In many CPR 

games maxE is relatively small (say 5-10) to allow for all payoffs associated with a chosen extraction 

level, conditional on any possible level of combined extraction by others, to be captured in a single-page 

spreadsheet (e.g Cardenas et al., 2000; Cardenas et al., 2002; Casari and Plott, 2003; Bardsley and 

Moffatt, 2007, Velez et al., Forthcoming (a, b)).   

Statistically speaking this implies that the outcome variable in most SD games is a doubly-

bounded integer.  This imposes certain limitations on the econometric framework that can be chosen to 

process data flowing from SD experiments.  Past efforts to analyze SD data with multiple bid levels have 

primarily relied on models based on an underlying continuous latent variable.  For example, Palfrey and 

Prisbrey (1996) process data from a liner PG experiment using an Ordered Probit framework.  Other have 

applied censored Gaussian regression models (e.g. Carpenter, 2004, Bardsley and Moffatt, 2007, Velez et 

al., Forthcoming (a, b)).  We are aware of only a single contribution that employs count data modeling to 

estimate SD data (Ferraro and Vossler, 2007). 

None of these existing econometric approaches fully capture all statistical limitations of the 

dependent variable.  Ordered outcomes models essentially ignore the cardinal nature of increasing bid 

amounts.  As a result they require the estimation of an entire set of threshold parameters along with the 

coefficients needed to reconstruct the latent outcome function.  Continuous models, such as the two-limit 

Tobit (e.g. Carpenter, 2004, Bardsley and Moffatt, 2007) allocate probability mass to outcomes that are 

not included in the action space of the game.  Furthermore, the standard arguments in support of 

censoring do not apply in this case, since boundary observations in SD experiments do not arise due to 

non-observability of outcomes outside the bid range.  Ferraro and Vossler's (2007) count data approach 

captures the cardinal integer nature of the dependent variable, but ignores its boundary limitations.   

Another important consideration in the analysis of data from SD games is the likely presence of 

unobserved individual heterogeneity in underlying beliefs and preferences, which can, at least in part, 
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drive observed differences in decisions and outcomes.  The group structure of the experimental setup 

leaves considerable room for “other-regarding” forces such as altruism, inequity aversion, and reputation-

building to take root and affect observed outcomes.  There is considerable evidence in existing research 

that these effects exist and that players subscribe to them in heterogeneous fashion (e.g. Palfrey and 

Prisbrey, 1996, 1997, Anderson et al., 1998, Casari and Plott, 2003).  In SD games with an external policy 

components additional heterogeneity effects are likely introduced due to the difference in how subjects 

react to prescribed treatments.  While this type of “institutional heterogeneity” has been examined to a 

lesser degree in the existing literature we find strong evidence for this effect in our empirical application.  

To date only a limited number of existing contributions have explicitly addressed unobserved 

individual heterogeneity in their econometric estimation of SD data. Palfrey and Prisbrey (1996) employ a 

nonparametric individual-level analysis to examine players’ deviation from outcomes prescribed by 

rational behavior in a voluntary contributions game.  Palfrey and Prisbrey (1997) take a closer look at 

individual-level warm glow effects by incorporating individual fixed effects into a Probit model of 

voluntary contribution decisions. Messer et al. (2005) use a random-effects regression model to capture 

unobserved heterogeneity in their analysis of producers’ voluntary contributions to generic advertising. 

Bardsley and Moffatt (2007) present a finite mixture model that estimates behavior-class probabilities for 

each individual based on observed choices and individual characteristics in a PG experiment.     

In this study we propose a fully parametric econometric framework for the analysis of SD data 

that captures both the bounded integer nature of the dependent variable and unobserved subject 

heterogeneity.1  We label this specification the Hierarchical Doubly-Truncated Poisson (HDTP).  We 

compare this framework to the types that have been used in the past to process such data.  Specifically, 

we contrast results flowing from the HDTP to those produced by a Hierarchical Doubly-Truncated 

Normal (HDTN) model and a Hierarchical Ordered Probit (HOP) specification.  We also estimate non-

hierarchical versions of each framework to examine the comparative importance of controlling for 

unobserved heterogeneity.   
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We use a Bayesian estimation approach for all specifications.  This allows for maximum 

flexibility in model comparison within and across estimation frameworks via marginal likelihoods and 

Bayes Factors.  We apply our modeling frameworks to recently collected data from a CPR field 

experiment in three artisanal fishing communities in Colombia.  Several key findings flow from this 

analysis: (i) The marginal likelihood of any HDTP sub-model far exceeds the marginal likelihood of the 

most likely sub-model produced by the other two frameworks, (ii) Within each framework, sub-models 

with hierarchical treatment effects are far more likely than models without treatment indicators and 

models with fixed treatment effects, (iii) The most likely sub-model within a given framework varies over 

frameworks, (iv) The HDTP is far more efficient than the other two frameworks as judged by posterior 

standard deviations for sub-model parameters, and (v) The HDTP produces a more refined and realistic 

predictive posterior distribution of expected extraction levels than the other two approaches.   

Nonetheless, our results also indicate that all three frameworks concur in their ranking of 

marginal treatment effects and the heterogeneous noise surrounding these effects.  In summary, for our  

SD application we find that the importance of allowing for heterogeneity in treatment effects extends 

across all frameworks, while the importance of framework choice largely depends on specific research 

objectives.  From an econometric perspective this is, to our knowledge, the first application of a HOP in a 

Bayesian setting, and the first application of a HDTP model in the broader empirical economics literature. 

The remainder of this manuscript is structured as follows: The next section highlights the 

econometric properties of each estimation framework, Section III describes the field experiment, 

illustrates the empirical implementation of the three frameworks, and discusses estimation results.   

Concluding remarks are given in Section IV. 

 

III) Econometric Frameworks 

For consistency with our empirical application we will cast our discussion in the context of a CPR 

game where each player 1i n= K  in each of 1p P= K  repetitions of the game (“periods”) has to choose a 
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level of resource extraction or “harvest” ipy  from a given integer range, i.e. 

{ }min min max max, 1, , 1,ipy E E E E∈ + −K .2   In each period players may be exposed to one of several 

possible exogenous policy treatments, 1t T= K , such as harvest quotas with different levels of 

enforcement, the ability to punish deviations form socially efficient outcomes, or simply the opportunity 

to communicate prior to choosing harvest levels.   

Each modeling framework builds on a conditional mean function of the form  

( )ip ipy h ε′ ′= + +i ip ixβ h γ   (1) 

where ipy  is the harvest level chosen by individual i in period p, xi is a vector of period-invariant 

individual characteristics, iph is a vector of treatment indicators that may change over periods and 

subjects, β denotes a vector of fixed coefficients, iγ  comprises individual-specific random coefficients, 

and ipε is an i.i.d. error term with zero mean.  The random coefficients capture unobserved subject 

heterogeneity in the effect of experimental treatments on harvest.  In all frameworks we model them to 

follow a multivariate normal distribution with mean γ and variance matrix Σ , i.e. ( )~ ,mvniγ γ Σ  .  The 

additive idiosyncratic error captures additional randomness in observed behavior, for example due to 

errors in maneuvering through the payoff table.   

 

The Hierarchical Doubly-Truncated Normal (HDTN) Framework 

 The HDTN framework corresponds closely to Bardsley and Moffatt's  (2007) 2-Limit Tobit 

model and the Random Effects Tobit specifications used in Carpenter (2004), and in Velez et al., 

Forthcoming (a, b).  For this framework the conditional mean function in  (1) takes a simple linear form, 

and the idiosyncratic error ipε follows a normal density with variance 2σ .  Observed harvest levels ( ipy ) 

are mapped to an underlying latent construct of “desired harvest” ( *
ipy ) via the following relationships: 
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The likelihood function for the full sample is given by 
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⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∏ ∏∫
i

i i
γ

y β γ Σ γ γ Σ γ  (3) 

where ipω ′ ′= +i ip ix β h γ , ( ).I  is an indicator function, Φ  denotes the standard normal cumulative 

distribution function, and ( ). | ,f a b denotes the (uni - or multivariate) normal density with first and 

second moments given by a and b, respectively.   The dimension of the integral in (3) corresponds to the 

length of vector iγ .  

 The Bayesian estimation of censored regression models is discussed inter alia in Koop (2004, Ch. 

9) and Koop et al. (2007, Ch. 14).  We follow these expositions and specify multi-normal priors for the 

fixed effects and an inverse gamma priors for 2σ  i.e. ( )~ ,mvn β ββ μ V  and ( )2
0 0~ ,igεσ η κ , where 

mvn(.) indicates the multivariate normal density and ig(a,b) denotes the inverse gamma distribution with 

shape parameter a and scale b.  We use the same densities for the hyper-priors of the hierarchical mean 

vector and the diagonal elements of the hierarchical variance matrix, respectively, i.e.  

( ) ( )0 0~ , , ~ , , 1jj rmvn ig j kν ϕ =γ γγ μ V Σ K , where rk is the number of treatment indicators in iγ .3 

As for other limited dependent variable models the estimation of the HDTN is facilitated by 

treating latent harvest *
ipy  as augmented data (Tanner and Wong, 1987) that are drawn along with the 
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actual model parameters in the posterior simulator.  Using a Gibbs Sampler (GS) we draw consecutively 

and repeatedly from the following set of conditional posterior densities:   

( ) ( ) ( )
( ) ( )
( )

2 * 2 * 2

2

2

| , , , , , , | , , , , , , | , , , , , , , 1 ,

| , , 1 , 1 , | , , , , , 1 and

| , , , , , , 1 ,

jj r

p p p i n

p i n j k p i n

p i n

σ σ σ

σ

σ

=

= = =

=

*
i i i i

*
i i

*
i

β y X H γ Σ γ y X H β Σ γ y X H β Σ γ

Σ γ γ y X H β γ

y y X T β γ

L

L K L

L

 (4) 

 
where matrices X and H comprise, respectively, vectors ix  and iph , for all individuals and 

periods, and matrices iX and iH  perform the same function for a given individual across all periods.  As 

indicated in (4) both the set of fixed coefficients and the mean vector for the random coefficients are 

drawn unconditional on iγ  to improve the efficiency of the sampler.4  The detailed expressions for all 

conditional posterior densities are given in Appendix A.  

As discussed e.g. in Gelman et al. (2004) after a sufficient number of repetitions the conditional 

draws of 2, , , andσβ γ Σ  will converge to the joint posterior distribution ( )2, , , | , ,p σβ γ Σ y X H . 

Furthermore, each series of draws for a given subset of parameters by itself represents draws from the 

respective marginal posterior.  Econometric inference can then be conducted through an inspection of the 

shape and / or the moments of these marginal distributions.  

 

The Hierarchical Ordered Probit (HOP) Framework 

The HOP framework extends Palfrey and Prisbrey's (1996) Ordered Probit approach to analyze 

SD data by incorporating individual heterogeneity via a hierarchical layer.  As in the HDTN framework 

we interpret observed chosen harvest levels as manifestations of an underlying latent “desired harvest” 

function.   The latent conditional mean function and stochastic model elements are as for the HDTN with 

the added restriction of 2 1σ =  for identification purposes.   

Observed effort is mapped to the latent effort function via the following probability brackets: 
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where as before ipω ′ ′= +i ip ix β h γ , and the symbol Φ  denotes the standard normal cumulative distribution 

function.  The c-terms in (5) are bin-thresholds that are estimated along with the other model parameters.  

Following standard convention we impose the additional identification restriction of setting the first 

threshold equal to zero, as evident from the first two lines in (5).  We will index the remaining thresholds 

as , 1 ,bc b B= K where max 2B E= − . 

 The likelihood function for the full model can be generically written as 

( ) ( ) ( ) ( )
max

min1 1

| , , , | ,
En P

ip ip
e Ei p

p pr y e I y e f d
== =

⎛ ⎞⎛ ⎞
⎜ ⎟= = =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑∏ ∏∫
i

i i
γ

y β γ Σ c γ γ Σ γ  (6) 

where c comprises all threshold terms and ( )ippr y e=  is given in (5) for any permissible extraction level 

e.   

Bayesian Ordered Probit models or model components have recently been employed by Huang 

and Lin (2006), Li and Tobias (2006), and Li and Tobias (2008). To assure a rapid mixing and to reduce 

serial correlation of parameter draws in our Bayesian simulation routine we follow Nandram and Chen 

(1996) and Li and Tobias (2008) and re-parameterize the HOP model using the inverse of the highest bin 

threshold as follows: 

 

( )* 2~ 0, , where

1, , and

ip ip ip

ip ip
B

y n

c

ε ε δ

δ δ ε δε δ

′ ′= + +

= = = =

i p i

i i

x β h γ

β β γ γ ,

% % % %%

% % %
 (7) 

This implies the following re-parameterized values for the hierarchical moments and bin-thresholds: 
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( ) 2~ , , , , , 1 , and 1.b b Bmvn c c b B cδ δ δ= = = = =iγ γ Σ γ γ Σ Σ% %% % % % %L  (8) 

The Bayesian estimation routine is specified in terms of these transformed parameters.  However, the 

actual posterior parameter values collected during simulation are the original parameters of interest .  In 

analogy to the HDTN we specify the following priors and hyper-priors for the transformed parameters: 

( ) ( ) ( ) ( )2
0 0 0 0~ , , ~ , , ~ , , ~ , , 1jj rmvn ig mvn ig j kδ η κ ν ϕ =β β γ γβ μ V γ μ V Σ% %% K . (9) 

It is common to assign diffuse (or “improper”) priors for the threshold parameters in a Bayesian Ordered 

Probit framework (e.g. Li and Tobias, 2006, Li and Tobias, 2008, Koop, 2004, Ch. 9).  While this strategy 

is computationally convenient it preempts a proper comparison of models within the HOP framework 

with models in other frameworks via marginal likelihoods and Bayes Factors (e.g. Kass and Raftery, 

1995).  We thus prefer a proper prior for these elements and specify 

( ) [ ]( )~ , 0,1b c c bc n V I cμ ∈% % ,  (10) 
 
i.e. we a priori let threshold parameters follow a normal density with mean cμ and variance cV , truncated 

to the support defined by the lowest and highest re-parameterized threshold values. 

As for the HDTN the Bayesian posterior simulator for the HOP specification is best implemented 

by augmenting the set of parameters of interest with actual draws of the latent data vector *y% (Tanner and 

Wong, 1987, Albert and Chib, 1993).  We use a Gibbs Sampler (GS) to draw consecutively and 

repeatedly from the following set of conditional posterior densities:   
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where c%  comprises all re-parameterized threshold parameters.  As for the HDTN the set of fixed 

coefficients and the mean vector for the random coefficients are drawn unconditional on individual 

vectors iγ .  The draws of transformed thresholds in c%  require a Metropolis-Hastings routine within the 



  
  

10

GS, along the lines discussed in Li and Tobias (2008).  The detailed expressions for all conditional 

posterior densities are given in Appendix B. After a sufficient number of repetitions the conditional draws 

of , , , andβ γ Σ c (restored to their original form) will converge to the joint posterior distribution 

( ), , , | , ,p β γ Σ c y X H .  

 

The Hierarchical Doubly-Truncated Poisson Model (HDTP) 

 Based on considerations of parsimony and flexibility we choose a Poisson kernel to form the 

foundation of our count data specification to model the integer extraction levels.  A general discussion of 

Poisson models is given e.g. in Cameron and Trivedi (1998) and Winkelmann (2003).  The estimation of 

a hierarchical Poisson model in a Bayesian framework has been illustrated in Chib and Carlin (1999).  We 

extend their specification by adding a double-sided truncation to the Poisson kernel.  The resulting density 

for observed effort level yip follows as 

( ) ( )
( )

( ) ( )

maxmax

minmin

min max

exp
| , where
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!! !!

exp and ~ , .

ip ipy y
ip ip ip

ip ip ip kk EE
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yy kk
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λ λ λ
λ
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λ

==

−
≤ ≤ = =

⎛ ⎞ ⎛ ⎞−
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′ ′= +

∑∑

i p i ix β h γ γ γ Σ

 (12) 

 
In this case the conditional mean or “link” function ipλ denotes the expectation and variance of the 

untruncated density.  As opposed to the first two frameworks this function is nonlinear and does not 

contain an additive error term.  The mean and variance of the truncated density, conditional on regressors, 

β and iγ , can be expressed as (see e.g. Cameron and Trivedi, 1998) 
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Thus, the magnitude of the truncated expectation in relation to the untruncated mean depends on 

the comparative magnitude of the untruncated densities at min 1E −  and maxE .  The truncated variance will 

be unambiguously smaller than the untruncated version as long as max 1 ipE λ+ ≥ .  Therefore, for the dual 

reasons of truncation and parameter heterogeneity the mean-variance equality constraint of the standard 

Poisson density no longer holds.   Furthermore, as for the HDTP and the HOP, the random coefficients in 

ipλ introduce correlation between decisions made by a given individual over the P periods of the game.  

The likelihood for the HDTP is given as 
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 As for the HDTP and HOP we specify multivariate normal priors for β and γ  and an inverse 

gamma prior for the elements of Σ , i.e. 

( ) ( ) ( )0 0~ , , ~ , , ~ , , 1jj rmvn mvn ig v j kϕ =β β γ γβ μ V γ μ V Σ K  (15) 

 
The posterior simulator draws from the following conditional probabilities: 
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Posterior inference is based on the marginals of the joint posterior distribution ( ), , | , ,p β γ Σ y X H .  In 

comparison to the HDTP and HOP the posterior simulator for the HDTP does not require draws of 

threshold parameters or latent dependent variables.  However, its computational implementation is more 

complex as it requires Metropolis-Hastings (MH) steps for draws of β and iγ .  Chib and Carlin (1999) 

offer several possible versions for these MH subroutines.  We achieved the most efficient results by 

choosing a reflected tailored proposal density for draws of β , and a tailored proposal density with an 

Accept-Reject (A/R) primer for draws of iγ .  The detailed steps of this posterior simulator are given in 

Appendix C. 

 

Marginal Likelihood and Model Selection 

As described in more detail in the next section we estimate an identical set of S different sub-

models for each estimation framework.  These sub-models are distinguished by the contents and 

hierarchical properties of treatment vector iph in (1).  Let a model be defined as any combination of 

framework and sub-model, and let M denote the total number of estimated models.  Thus, given our three 

estimation frameworks we have 3M S= .  Each model is associated with a posterior model probability, 

given as 

( ) ( ) ( )
( )

|
|

p m p m
p m

p
=

y
y

y
  (17) 

where ( )|p my is the model- conditioned marginal likelihood, ( )p m  indicates the prior model 

probability, and ( )p y denotes the unconditional marginal likelihood, i.e. the probability that y was 

generated by any of the considered models.  For ease of exposition we omit any explicit conditioning on 

explanatory variables.   

Loosely speaking the posterior model probability indicates how likely the observed data (i.e. the 

vector of dependent observations, y) were generated by model m.  As discussed e.g. in Koop (2004, Ch.1) 

and evident from (17) under equal model priors the ratio of model probabilities for two competing 



  
  

13

specifications reduces to the ratio of marginal likelihoods. This ratio is commonly referred to as Bayes 

Factors (BF) (e.g. Kass and Raftery, 1995).  It captures the relative probability that either model is the 

correct specification given the underlying data.  As discussed e.g. in Geweke (2005) it is not necessary for 

two models to be nested for the BF to be applicable.  This makes the BF an extremely versatile tool for 

model comparison and selection, as we illustrate in our empirical section. 

To compute BFs one must first evaluate the marginal likelihood for each of the two models under 

consideration.   Dropping model-conditioning for simplicity, the marginal likelihood for any given model 

can be expressed as  

( ) ( ) ( )
( )

|
|

p p
p

p
= m m

m

y θ θ
y

θ y
  (18) 

 
where mθ is the vector of parameters corresponding to model m, ( )|p my θ is the sample likelihood, 

( )p mθ  denotes the set of parameter priors, and ( )|p mθ y is the posterior distribution of model 

parameters.  The marginal likelihood is often also referred to as “prior predictive distribution” (e.g. 

Lancaster, 2004, Ch. 2).  It describes what new data are expected to look like before they are collected, 

given the researcher’s choice of likelihood function and prior.  Since the left hand side of (18) does not 

contain mθ , the relationship must hold for any choice of mθ .  This property is deemed “marginal 

likelihood identity” in Chib (1995).  In practice, ( )p y  is usually evaluated at a point of high posterior 

density for mθ .  Since an analytical expression for ( )p y does not exist for any of our frameworks and 

sub-models we simulate this value following the methods described in Chib (1995) for the HDTN and the 

technique outlined in Chib and Jeliazkov (2001) for the HOP and the HDTP.5 

 

Posterior Predictions 

For each estimation framework and sub-model the posterior sampler generates r=1…R draws of 

parameters.  To derive posterior predictive distributions (PPDs) of extraction probabilities or extraction 

levels these draws need to be combined with specific settings for individual characteristics and 
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experimental treatments.  We will denote these as fx and fh , respectively.  Generically, the PPD for any 

function of individual characteristics and experimental treatments, ( ),g f fx h , conditional only on model 

m can be expressed as 

( )( ) ( ) ( ) ( ), | , | , | , | , , ,p g m g f d p m d
⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭
∫ ∫

i

f f f f i i i
θ γ

x h x h γ θ γ γ Σ γ θ y X H θ  (19) 

 
where the exact form of ( ).g depends on the desired predictive construct and the estimation framework, 

andθ  comprises all model parameters.  For example, ( ).g  can denote expected harvest, a specific 

extraction level, or the probability that extraction falls between two specific bounds.  The detailed 

expressions for these predictive constructs and the practical implementation steps to derive them are given 

in Appendix D. 

  

IV) Empirical Application 

Data 

To illustrate our estimation framework we use data from CPR field experiments conducted in 

2004 in three rural communities of Colombia.  Each community relies primarily on artisanal fishing.  In 

each area 60 subjects were recruited to play 20 rounds of a CPR game in groups of five players.  In each 

round subjects had to decide to harvest between 1 and 9 units of the resource.  While the resource was 

loosely described as a “fishery” the units of extraction were not explicitly defined.  Instead all participants 

received an identical payoff table in which each cell constitutes the intersection between harvest level 

chosen by the individual and the combined harvest level of all other group members.  The table is shown 

in Appendix E.  Payoffs were derived using the following underlying profit function 

( ) ( ) with
858.75, 130.625, 15.125, and 2.75,

i i i i i i ia by c y Y dy y Y
a b c d
π − −= + − + − +

= = = =
 (20) 

where iπ  is the per-period payoff, iy is the harvest level chosen by subject i, and iY−  is the combined 

harvest by all other members in the group.  The profit function thus incorporates both a stock externality 
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and a cost externality, as is typical for CPR problems for fishing applications.  The socially optimal 

harvest lies at two units, while the Nash equilibrium varies between three and nine units, as shown in 

Appendix E. 

 The game was administered under different institutional “treatments”.  For the first 10 rounds 

every one of the 12 groups in a given community played an identical “Open Access” version of the game 

without government intervention or communication.  We will label this version “Treatment 1” (T1). In the 

second set of 10 rounds one of the following three treatments was implemented for sets of four groups 

each per community:  (i) “Treatment 2” (T2), a harvest quota of 2 units, with a 10% audit probability and 

a low penalty (27 pesos for each unit exceeding 2)6, (ii) “Treatment 3” (T3), a harvest quota of 2 units, 

with a 10% audit probability and a medium penalty (165 pesos for each unit exceeding 2), and (iii) 

“Treatment 4” (T4), the opportunity to openly communicate with the other group members prior to each 

round of decision-making.7  Further details on the implementation of the experiment are given in Velez et 

al., Forthcoming (a)).  

As described in Velez et al. (Forthcoming (a)) there exist pronounced cultural, socio-economic, 

and institutional differences between the three communities.  For example, the first community, Ensenada 

de Tumaco on the Pacific coast, has a culturally homogeneous population for whom shrimp fishing is the 

primary economic activity.  There is a long-standing tradition of relatively strict government regulations 

for this type of fishery.  In contrast, residents of La Dorada in Colombia’s interior depend primarily on 

fish species from the Magdalena River watershed.  There is only a weak presence of regulatory 

mechanisms for this fishery.  Instead local communities have traditionally relied on informal associations 

to manage these resources.  The third community, Santa Marta on the Caribbean coast, has the most 

ethnically diverse population of the three regions.  Also, fishing is somewhat less important than in the 

other two areas, and few fishing rules, formal or informal, appear to be recognized or observed in this 

community.  Compared to 94% for Tumaco and 87% for La Dorada, only 69% of participants in the Santa 

Marta CPR game indicated that fishing was their main economic activity.  The remaining participants 

were primarily employed in the agricultural sector.  In the following we will label the three areas as 
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“Pacific” (PAC), “Caribbean” (CAR), and “Magdalena” (MAG), respectively.  Basic sample statistics for 

each community are given in Table 1. 

 

Specification of Sub-models 

 For each estimation framework we specify five sub-models, each with a different conditional 

mean function.  The salient features of these sub-models are captured in the first four columns of Table 2. 

For all sub-models the vector of individual characteristics ix  includes “gender” (1 = female) and “years 

of education”8.  Sub-model one (M1) adds only a generic random effect to this set of individual 

characteristics.  Sub-model two (M2) replaces this random effect with fixed treatment indicators for each 

of the four regulatory interventions.  Sub-model three (M3) changes the latter to random indicators.  Thus 

this model examines if heterogeneity in observed decisions manifests itself differently under different 

treatments, i.e. how much “noise” in decision-making is associated with each treatment.  Sub-models four 

and five capture time trends, perhaps due to learning effects, via a binary indicator (“period”) for periods 

6-10 vs. periods 1-5 for each 10-period cycle of the experiment.  Specifically, sub-model four (M4) 

expands M2 by adding an interaction term with period for each treatment to the set of fixed effects.  Sub-

model five (M5), in turn, includes period as an additional random effect in lieu of the fixed interactions.  

Intuitively, M4 allows time trends to operate systematically differently across treatments, while M5 

stipulates that decision trends are primarily related to unobserved heterogeneity unrelated to treatment.  

Naturally, this set of sub-models could easily be expanded to allow for additional specifications.  

However, the five versions describe above suffice to address our main research questions in a 

parsimonious fashion.  

 

Estimation Results 

We estimate all models using the following vague but proper priors: 

0 0 0 00, 100, 0, =100, 1/ 2vη κ ϕ= = = = = = =β β γ γμ V μ V . The tuner elements in the MH algorithms for 
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draws of the threshold parameters c%  for the HOP, and β and iγ  for the HDTP, are set to achieve a 

recommended acceptance rate of 0.40 – 0.45 (e.g. Gelman et al., 2004, Ch. 11).  All models are estimated 

using 3000 burn-in draws and 120000 retained draws in the Gibbs Sampler.  The decision on the 

appropriate amount of burn-ins was guided by Geweke's (1992) convergence diagnostic (CD). 

Table 2 captures the essential features of each sub-model as well as marginal likelihood (mLH) 

and Bayes Factors (BFs), in log form, for all three communities.  Within each estimation framework the 

reported BFs refer to the ratio of the mLH of the most likely sub-model to all other specifications.  As can 

be seen from the first block of the table, within the HDTN framework M3 achieves the highest (i.e. least 

negative) logged mLH for the Pacific and Caribbean samples.  For Magdalena, sub-model M5 is virtually 

as likely as sub-model M3 .  Using the interpretation thresholds for BFs suggested in Kass and Raftery, 

1995), there is “decisive” (logBF>11.5) evidence that M3 (M5 for Magdalena) is more likely to have 

generated the observed data than the random constant-only model (M1 ) and the model with fixed 

treatment effects (M2), and “strong” (logBF>6.9) evidence that the most likely sub-model better describes 

the underlying data than the sub-model with fixed treatment-period interactions (M4).  

This overall picture is similar but sharper for the HOP framework (second block of rows in Table 

2), where the sub-model with random treatment effects and no period-effect (M3) outperforms all other 

sub-models in a decisive fashion for all three regions.  Thus, if one were to employ the HOP framework 

to analyze these data one would conclude that it is highly improbable that there exist “period” effects, i.e. 

that observed harvest decisions change between the first and second half of a given version of the SD 

game.   

In contrast, within the HDTP framework sub-model M5 with a random period effect in addition to 

random treatment effects emerges as overwhelmingly superior to all other sub-models for all three 

regions, as is apparent from the last block of rows in the table.  In summary, all three frameworks agree in 

the sense that they allocate higher probabilities to sub-models that allow for unobserved heterogeneity in 

treatment effects.  This is one of the key findings flowing from our analysis.  A second key finding is that 
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the frameworks disagree as to the importance of temporal effects in observed decisions.  At a general 

level this implies that the choice of estimation framework can lead to different preferred specifications 

with respect to the conditional mean function, and different inferences regarding the effects of regressors 

on the outcome variable.   The natural next step would be to compare the framework-specific “winners” 

to each other.  In a classical framework this would pose somewhat of a dilemma as it would be difficult to 

rigorously compare sub-models across estimation frameworks.  In contrast, our Bayesian approach to 

model comparison via mLHs and BFs is suitable for the assessment of relative probabilities for any two 

models that share the same dependent variable, regardless of the underlying estimation framework. 

Table 3 provides such a comparison. It assigns a block of three rows to each of the three regions.  

Each row, in turn, corresponds to the best model for each of the three frameworks.  As mentioned above 

we use the simulation method suggested by Chib (1995) and Chib and Jeliazkov (2001) to approximate 

the marginal likelihood.  We evaluate the mLH in log form at the posterior mean for each model.  

Building on (18), we thus have 

( )( ) ( )( ) ( )( ) ( )( )( )log log | log log |p p p p= + −m m my y θ θ θ y  (21) 
 
where θ  denotes the posterior mean of all model parameters.  Thus, the log mLH for a given model will 

be high if the sample likelihood is high at the posterior mean (i.e. if the chosen likelihood function is 

supported by the data), and if the posterior density at θ  is not substantially larger than the prior ordinate 

at θ , controlling for the information content in y.   The latter condition implies that the prior was ex ante 

well-chosen.  Under vague priors the difference between posterior and prior ordinate in (21) will likely be 

considerable, especially if the parameter space is large.  In that case a high mLH score will largely rest on 

the appropriateness of the likelihood function.  

To highlight these disparate effects Table 3 depicts the prior density and the sample likelihood 

along with the mLH for each model.  As can be seen from the fourth column in the table there are only 

minor differences in prior densities, evaluated at the posterior mean, across models within each region.  

This is not surprising given the comparable parameter spaces and the identical (non-informative) priors 
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chosen for equivalent parameters.  As is clear from the next two columns, the observed large differences 

in mLH is largely driven by sample likelihood values.  The main insight from the table is that the HDTP, 

represented by sub- model M5 , produces by far the highest log-likelihood values and mLH scores for all 

three regions.  Expressed in BFs (last column of Table 3), this model receives overwhelming support over 

the top sub-models produced by the other two frameworks.  It should also be noted that the best sub-

model identified under the HOP framework, while clearly inferior to the HDTP sub-model, receives still 

vastly higher posterior probability than the best model flowing from the HDTN framework.   

This pattern essentially reflects the degree of efficiency (or lack thereof) with which the three 

frameworks process the collected data.  It leaves little doubt that the HDTP is more suitable to analyze 

these data than the other two approaches.  However, it remains to be seen if these pronounced differences 

in framework efficiency and model probabilities translate into different inferential outcomes with respect 

to key research questions.   

To examine this issue we first compare posterior results for all parameters for the most likely sub-

model within each framework.  For simplicity and ease of comparison we choose M3 for the HDTN for all 

three regions, even though M5 receives slightly higher posterior mass for the Magdalena experiment 

within that framework (see Table 2).  Table 4 shows the posterior mean and standard deviation for all 

parameters and regions. 9   The first triplet of columns corresponds to sub-model M3 for the HDTN, the 

second triplet to M3 for the HOP, and the last three columns to sub-model M5 within the HDTP 

framework.  The first block of rows shows results for the fixed effects, i.e. the elements of β , the second 

block corresponds to the means of random effects, i.e. the elements of γ , and the third block gives results 

for the variances contained in Σ .   

The estimated posterior means for the fixed effects “female” and “education” can be interpreted 

as the marginal effects of these regressors on latent extraction for the HDTN and the HOP, and on the 

logged (un-truncated) expected extraction for the HDTP.  The posterior means for expected treatment 

effects, depicted in the second block of rows in the table, can be loosely interpreted as expected latent 



  
  

20

harvest levels for a male participant with no schooling for the HDTN and the HOP, and as the log of 

expected harvest levels for the same individual for the HDTP.10  The posterior means for random effect 

variances, given in the third block of rows in the table, convey the notion of noise or heterogeneity 

surrounding each treatment effect.  The posterior standard deviations, provided in parentheses beneath 

each posterior mean for all parameters, indicate the level of precision with which these effects are 

estimated.   

There are four important results that flow from this table: (i) The HDTP produces the smallest 

posterior standard deviations for all (shared) parameters, followed by the HOP and the HDTN.  This 

reflects the above mentioned ranking in efficiency of data exploitation across the three frameworks; (ii) 

Within each region, all three frameworks generate the same relative ranking of expected treatment 

effects;11 (iii) The communication treatment T4 exhibits considerably smaller heterogeneity noise than the 

two regulatory interventions based on quotas (T2 and T3), and (iv) Game-period effects on harvest levels, 

as captured by the HDTP, play a minor role compared to treatment effects and vary across regions. 

With respect to finding (ii) we note that, not surprisingly, the posterior means of expected harvest 

levels are highest for the open access scenario (T1) for all regions.  For PAC the institutional treatments T2 

and T3 have a decidedly stronger effect on harvest reduction than communication, with the low-penalty 

version producing the lowest extraction levels.  This picture is reversed for CAR and MAG, where T4 

induces the lowest mean extraction levels followed by the medium and low penalty regulatory scenario, 

respectively.  Again, this result is intuitively sound and consistent with findings in the existing literature.  

Participants in PAC are used to and trust governmental regulation of their fishery.  Replacing this habitual 

framework with open communication weakens the coordination of extraction strategies towards lower 

harvest levels.  This mirrors the findings reported in Vyrastekova and Soest (2003) who note that resource 

users exposed to self-governance may “easily end up in the wrong equilibrium”, especially when there is 

no established institutional framework for local resource management.   

The opposite holds for MAG with its history of local governance of its fishery.  It should be 

noted, however, that we do not observe a strong “crowding out” effect of governmental regulations versus 
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other-regarding behavior (as e.g. reported in Ostmann, 1998, and Cardenas et al., 2000) for that area, 

given that harvest reductions compared to open access are approximately equal under T3 and T4.  For 

CAR, in turn, where neither local nor federal regulatory institutions are well established (or 

acknowledged), the strong effect of communication to reduce harvest may largely be attributable to the 

“trust-building” effect of open discussion, especially given the more transient nature of that society and 

the relatively large share of non-fishermen in the experiment.12   

Following up on finding (iii) regarding random effect variances, we first observe that individual 

heterogeneity vis-à-vis treatment effects appears to be least pronounced for the open access treatement T1.  

However, econometric considerations warrant some caution in interpreting these results.  Specifically, the 

design of the experiment produces twice as many observations (n = 600) for decisions under T1 than for 

the other three treatments (n = 200 each).  This implies that three times more data points are available to 

update the vague variance prior for T1 than for the other treatments.  Given our overall moderate number 

of observations it is thus possible that the observed “diminished heterogeneity” with respect to T1 is at 

least in part driven by these sample size effects.  The remaining variance terms, however, are on equal 

footing in this regard.  Our results clearly indicate that allowing for communication reduces 

heterogeneous noise in decision making compared to external regulations, i.e. fosters the coordination of 

individual strategies.  To our knowledge this explicit insight into the second order effects of 

communication is novel in the experimental literature. 

 With respect to result (iv) noted above, we find that the posterior mean for the expected second-

period-effect (last row of the second block for the HDTP) is located slightly below zero for PAC and 

slightly above zero for CAR and MAG.  In addition, the posterior means of random effect variances (last 

row of the third block for the HDTP) are relatively close to zero.  We therefore conclude that changes in 

harvest strategies that are purely a function of the duration of a given game are at best subtle, and clearly 

less important than changes in harvest levels induced by different regulatory treatments.  We also reiterate 

that this noteworthy result becomes apparent only via the HDTP framework, since the other two 
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frameworks identify a different sub-model without period effects (i.e. M3) as the specification most 

suitable for inferential purposes. 

 

Posterior Predictions 

Next, we compare the sub-models chosen within each estimation framework based on the 

posterior predictive distribution (PPD) for several constructs of interest.  Each construct corresponds to an 

explicit form of the predictive function ( ).g on the left hand side of  (19).  Our first predictive outcome of 

interest is the probability that chosen extraction equals the socially optimal level of two, i.e.  

( )| , 2pr y =f fx h . Naturally, this latter outcome is not defined for a continuous density like the HDTN.   

This is an important shortcoming compared to the other two frameworks, as this probability will be of 

major interest in most experimental settings.13  Our second outcome of interest is the probability that 

harvest falls within the lowest extraction tier.  For the HDTN we interpret this as ( )| , 3pr y <f fx h , and 

for the other two frameworks as { }( )| , 1,2,3pr y ∈f fx h .  The third predictive construct is the expected 

harvest level, i.e. ( )| ,E y f fx h .  The exact expressions for our posterior predictive constructs are given in 

Appendix D for each of the three frameworks.   

We generate these PPDs for each regulatory treatment by setting treatment indicators to the 

corresponding combination of zeros and ones.  We also set “education” to the sample mean for a given 

community.  To capture gender effects we create weighted averages of separate PPDs for each value of 

the female indicator, using the observed proportion of females as weights.  For the HDTP sub-model we 

set the indicator for “period” to one to place a stronger focus on the second half of a given experimental 

run and thus allow for learning effects.  Given the settings for our demographic regressors fx  we would 

expect our posterior outcomes of interest to lie in the vicinity of sample results.   

Table 5 shows the posterior means and standard deviations for predictive outcomes for all models 

and regions.  The first three columns of the table depict corresponding sample statistics, evaluated over 
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the last five periods of a given game.  The first block of rows gives results for the probability that harvest 

is equal to the social optimum.  Both HOP and HDTP sub-models agree with the sample outcome in the 

ranking of treatment effects for the Pacific region, with T2 achieving the highest posterior probability of 

inducing a socially optimal choice.  For CAR and MAG the two sub-models agree with each other by 

assigning the highest probability of achieving the social optimum to T4, while the sample results allocate a 

slightly higher probability to T3 than to T4.  Overall, these predicted point probabilities are generated with 

considerable posterior noise as is evident from the relatively large posterior standard deviations.  This is 

not surprising given the relatively small number of data points upon which these estimates are based.   

The second block of rows depicts sample statistics and predictive posterior results for the 

probability that harvest lies at or below a level of three.  For this outcome, the agreement between sub-

models and sample results for the ranking over treatments is complete for all three regions.  Specifically, 

T2 receives the highest posterior probability for the Pacific region, followed by T3 and T4, while the 

highest probability of a lowest-tier effort is achieved under T4 for CAR and MAG, followed by T3 and T2.   

These rankings over treatments are exactly reversed for the third predictive outcome, expected 

harvest.  Again, sample statistics and estimated sub-models largely agree in this respect for all regions.  

Treatment two induces the lowest expected harvest level for PAC, while T4 leads to lowest expected 

extraction for CAR and MAG, as predicted by the HOP.  There is only a minor deviation from this pattern 

for the HDTP, which predicts harvest to have a slightly lower posterior mean under T3 than T4.  In all 

cases the open access scenario T1 is associated with the lowest probability of inducing low harvest levels 

and with the highest posterior mean for expected harvest.  

The shared pattern of treatment rankings for all outcomes of interest across frameworks is the 

first key finding flowing from our posterior predictive analysis.  The second key result is the fact that the 

HDTN generates clearly lower posterior means for probabilities associated with the lowest effort tier for 

all treatments (second block of rows) compared to the HOP and HDTP, and higher posterior means for 

expected harvest (third block of rows).  This suggests that the HDTN may not allocate sufficient density 
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mass to lower extraction levels, regardless of treatment.  Our graphical analysis of predicted extraction 

given below confirms this conjecture. 

Posterior standard deviations are generally comparable in magnitude for the HOP and the HDTP 

and clearly lower for the HDTN for all outcomes of interest.  However, this latter result is somewhat 

misleading, as these lower predictive standard deviations are not a manifestation of superior model 

efficiency, but rather of the HDTN’s inability to allocate appropriate probability mass to boundary 

outcomes.  This becomes obvious upon examination of the full posterior plots for these predictive 

outcomes. 

Figure 1 depicts predictive pdfs and cdfs for expected harvest for all three frameworks, with focus 

on the Pacific and Magdalena regions (top and bottom sets of graphs, respectively).  To be specific, the 

expectation over harvest is to be understood as the expectation over the stochastic elements of the 

likelihood function, conditional on random effects iγ  and a given draw of model parameters θ .  The 

posterior predictive simulator then removes these conditionalities by estimating expected harvest for 

repeated draws of iγ  and θ , as described in Appendix D.  Thus, the pdfs in Figure 1 can be interpreted as 

the predictive density of expected harvest for a prototypical participant, controlling for unobserved 

heterogeneity and parameter uncertainty.  The cdf plots translate these densities in the usual fashion into 

probabilities of unconditional expected harvest exceeding a given threshold.14 

The most striking insight flowing from the figure is the HDTN’s inability to allocate sufficient 

probability mass to harvest levels at or near the boundaries, regardless of region or treatment.  As is 

obvious from both the pdfs and cdfs, the HDTN is overly pessimistic with respect to low harvest levels, 

and overly optimistic with respect to high extraction levels.  Both the HOP and the HDTP show a much 

broader distribution of expected harvest, with considerable mass at the boundaries for some of the 

treatments.  These boundary effects emerge as more pronounced for the HDTP than the HOP.  For 

example, it is evident only from the HDTP that the quota treatment T2 induces a bimodal density for 

expected harvest for the Magdalena region, with highest probability mass allocated to the lowest and 
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highest harvest levels.  This has significant policy relevance in the sense that it provides indication that a 

quota plus punishment treatment in that region might induce countervailing incentives for some fishermen 

and pronounced disagreement amongst local resource users.  This bimodality is at best hinted at by the 

HOP and completely absent for the HDTN.   

The HDTP also illustrates more clearly than the other two frameworks that the quota plus mild 

punishment treatment T2 and the communication treatment T4 shift the bulk of density mass for expected 

extraction towards the lowest tier for PAC and MAG, respectively.  Looking at the cdf for Magdalena, the 

HDTN falsely suggests that T4 does not stochastically dominate T2 until harvest levels of three or four, 

while the HOP and HDTP indicate that stochastic dominance commences at levels in the 1.5 to 2.5 range.   

Overall, we thus conclude that the HDTP provides a sharper and more complete picture than the 

other two frameworks with respect to the distributional implications of treatments on harvest. 

Distributional impacts are somewhat more diluted but still reliable for the HOP.  The HDTN, in contrast, 

fails to portrait an accurate picture of predictive densities for all treatments.  It tightly and misleadingly 

allocates probability mass close to the center of the permissible extraction range, missing important 

boundary effects induced by some of the treatments. 

 

V) Conclusion 

This study proposes a doubly-truncated count data framework to process data from Social 

Dilemma Games.  We compare this framework to past estimation approaches based on ordered outcomes 

and truncated continuous densities.  We generalize all three frameworks to ex ante accommodate 

unobserved heterogeneity in individual decision-making.  For each framework we specify an identical set 

of sub-models, distinguished by different conditional mean functions.  We examine the performance of 

these models using a Bayesian estimation framework and data from recent CPR field experiments 

implemented in different rural communities.  Our Bayesian approach circumvents estimation hurdles that 

traditionally plague classical estimation via maximum likelihood and allows for a rigorous comparison of 
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sub-models within and across estimation frameworks based on marginal likelihood scores and Bayes 

Factors.   

Several key results flow from this analysis.  All three frameworks lend strong support to the 

presence of treatment-specific unobserved heterogeneity in extraction decisions.  The three frameworks 

also agree in the ranking of the means and variances of these random treatment effects, and on the ranking 

of treatment-specific predictive outcomes of interest.  The count data framework receives 

overwhelmingly higher posterior probability than the other two frameworks as judged by marginal 

likelihood scores and Bayes Factors for any of the specified sub-models.  This translates into more 

efficient posterior results for all parameters of interest.  It is also noteworthy that the best, i.e. “most 

likely” sub-models identified within each framework are not identical.  Specifically, the count data 

framework alone assigns highest posterior weight to a sub-model with temporal effects for chosen 

extraction.   

Most importantly, perhaps, we find that the truncated continuous framework fails to allocate 

adequate probability mass to predicted harvest levels near the boundaries, which leads to an under-

estimation of probabilities for both low and high extraction levels.  This is an important shortcoming 

given that in most Social Dilemma Games the lowest extraction tier includes the social optimum, and the 

highest tier the Nash equilibrium. Consequently, predicted boundary probabilities traditionally receive 

considerable attention.  The ordered outcome framework is not plagued by this boundary problem, but it 

misses other important features embedded in the data, such as the multi-modality for expected harvest for 

one of the field experiments.  The count framework clearly generates the most informative predictive 

densities for the outcomes of interest examined in our analysis.   

In summary, we conclude that, at least for our application, the choice of framework is of 

secondary importance if the analyst is primarily interested in a correct ranking of regulatory treatment 

effects and heterogeneity noise surrounding each effect.  However, for any inference beyond this basic 

level a framework that is better suited to accommodate the bounded integer nature of the outcome 

variable will be needed.  Our proposed hierarchical doubly-truncated Poisson model performs well in that 
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it efficiently addresses the type of key research questions that traditionally motivate the original 

experiment.  We surmise that the bulk of our results are of general relevance for data from Social 

Dilemma Games.  The application of the HDTP framework and related count data specifications to other 

SDG data will be subject to future research. 
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Appendix A: Posterior Simulator for the HDTN Framework  

To draw from ( )2| , , , , ,p σ*β y X H γ Σ  unconditional on the random coefficients one can express the basic 

model at the individual panel level (i.e. all p=1…P observations associated with individual i) as   
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Applying standard expressions for the posterior moments of linear regression models with independent 

normal-ig priors (e.g. Lindley and Smith, 1972), we obtain: 
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A similar conceptual re-writing of the baseline model allows for the derivation of the posterior 
distribution of  γ : 
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By analogous reasoning, the conditional posterior distribution for individual-level random coefficients 
can be derived as 
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It should be noted that the hierarchical moments γ  and Σ  now play the role of the hyper-priors for γ  in 

(A3).  Conditional on β  and iγ  draws of 2σ  can be obtained from an updated inverse-gamma density 
via: 
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To draw , 1jj rj k=Σ K  we need to work with all deviations of individual-specific random coefficients 
from their grand mean.  The conditional posterior emerges as 
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The final step of a given round of the posterior simulator constitutes of draws of latent data *y for all 

observations that are located either at the lower or upper bound of the permissible range for harvest.  A 

latent data point associated with an observed value of minipy E=  is simply obtained through draws from 

the truncated normal distribution with mean ′ ′+i ip ix β h γ , standard deviation σ , and upper truncation 

bound minE .  Analogously, latent data for cases with maxipy E= are drawn from a normal density with the 

same moments, but with a lower truncation bound of maxE . 
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 Appendix B: Posterior Simulator for the HOP Framework 

The first six steps of the Gibbs Sampler for the HOP follow exactly those outlined for the HDTN, with all 

parameters and latent data replaced by their re-parameterized counterparts, and σ  replaced by δ . 

 
 
The conditional posterior for the bin thresholds does not take a common form.  A Metropolis-Hastings 

algorithm is needed to obtain draws from this distribution.  Given the truncated normal prior as shown in 

(9)  the conditional posterior kernel for a given threshold , 1 1bc b B= −% L , can be expressed as the product 

of the prior times the relevant part of the likelihood function, i.e. 
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A random-walk type proposal function worked well for our application.  We draw a candidate ,b cc% from a 

proposal density ( ), |b c bq c c% %  with mean bc%  (the current draw), a pre-specified standard deviation sc, and 

truncation to the interval [ ]1 1,b bc c− +% % .  We set sc = 0.8(1/n), which yielded desirable acceptance rates of 

approximately 40-40% for all threshold parameters (see e.g.Gelman et al., 2004, p. 306).  The candidate 

draw is accepted with probability 
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The final step of a given round of the posterior simulator constitutes of draws of latent data *y .  As 

described in Li and Tobias (2008) a latent data point associated with an observed value of ipy e=  is 

simply obtained through draws from the truncated normal distribution with mean ′ ′+i p ix β h γ% % , standard 

deviation δ , and lower and upper truncation bounds 2ec −% and 1ec −% , respectively. 
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Appendix C: Posterior Simulator for the HDTP Framework 

The relevant part of the (un-normalized) posterior distribution for a given set of random effects iγ is given 

by 
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where f(.) denotes the multivariate normal density.  The “tailored proposal” implementation of the MH 

algorithm requires finding the mode of the logged form of this target density (e.g. Chib et al., 1998).  This 

can be accomplished with a Newton-Raphson sub-routine, using the following gradient and Hessian: 
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The resulting mode ˆ iγ  is then used as the mean in a multivariate t-distribution that forms the basis for 

proposal draws of candidate vector iγ% .  Specifically we use Chib et al.'s (1998) Acceptance-Rejection 

version of finding suitable candidate draws in our application. 

  A similar approach is taken to obtain draws of fixed effects vector β .  The relevant part of the un-

normalized posterior distribution, conditional on iγ  is given as 
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The mode of the logged version of this density is again obtained via a Newton-Raphson sub-routine with 

gradient and Hessian given as 
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The resulting mode β̂ figures in a multivariate t-density from which a candidate draw β% is taken. 

Specifically, β̂ can be the mean of this proposal density in the basic version of the tailored MH 

implementation.  Alternatively – as implemented in our application – the mean of the multivariate t 

density can be formed by reflecting the current value of β around β̂ .  We refer the reader again to Chib et 

al. (1998) for further details. 

 The final two steps of the Gibbs Sampler are straightforward: Draws from ( )| , , , ,p iγ y X H Σ γ  

can be obtained from a multivariate normal density with variance and mean given as 
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and draws of variance terms contained in Σ  follow the same procedure as outlined for the HDTP in 

Appendix A. 
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Appendix D: Posterior Predictive Constructs and Implementation 

HDTN: 

The probability that harvest does not exceed a level of three, conditional on iγ  and θ , is given as: 

( )( )
3 1

| , , , 3;1 9 where
9 1

pr y y

ω ω
σ σ
ω ω

σ σ
ω

− −⎛ ⎞ ⎛ ⎞Φ −Φ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠≤ ≤ ≤ =

− −⎛ ⎞ ⎛ ⎞Φ −Φ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

′ ′= +

f f i

f f i

x h γ θ

x β h γ

 (D1) 

 
The expression for expected harvest is: 
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HOP: 

The probability that harvest equals two conditional on iγ  and θ , is given as: 

( )( ) ( ) ( )1| , , , 2pr y c ω ω= = Φ − −Φ −f f ix h γ θ    (D3) 
 
where 1c  is the first estimated threshold in original parameterization and ω is defined as above. 

Similarly, the probability of harvest falling into the lowest tier can be expressed as: 

( ) { }( ) ( )2| , , , 1,2,3pr y c ω∈ = Φ −f f ix h γ θ   (D4) 
 
Expected harvest is given as: 
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where the bin-probabilities ( )pr y e=  are given in the main text, equation (5). 

HDTP: 

For the HDTP, our three constructs of interest take the following form: 
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where ( )expλ ′ ′= +f f ix β h γ  
 

Implementation: 

In practice the required marginalization over both heterogeneous coefficients iγ  and parameters 

θ can be accomplished as follows for any conditional construct of interest and framework, i.e. for any 

form of ( ), | ,g f f ix h γ θ : 

Step 1: For each set of parameter draws rθ flowing from the main posterior simulator draw r2 terms of iγ  

from ( ),mvn r rγ Σ , where subscript r indicates the rth draw in the original Gibbs Sampler.15   

Step 2: For each draw of iγ  compute ( ), | ,g f f ix h γ θ .   

Step 3: Repeat these two steps for each of the r=1..R original draws of parameters.   

This yields R*r2 draws of probabilities for the effort tier of interest.  This sequence can then be examined 

with respect to shape and moments, analogous to the predictive posteriors of the original model 

parameters.  
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Appendix E:   Payoff Table for the Colombia CPR Experiment 

  My level of extraction   
Total 
extraction 
by others 1 2 3 4 5 6 7 8 9 

Average 
of the 
others 

4 900 996 1087 1172 1252 1326 1395 1458 1516 1.0 
5 882 976 1064 1146 1223 1295 1361 1421 1476 1.3 
6 864 955 1040 1120 1194 1263 1326 1384 1436 1.5 
7 846 934 1017 1094 1165 1231 1292 1347 1396 1.8 
8 829 914 994 1068 1137 1200 1258 1310 1357 2.0 
9 811 893 970 1042 1108 1168 1223 1273 1317 2.3 
10 793 873 947 1016 1079 1137 1189 1236 1277 2.5 
11 775 852 923 989 1050 1105 1154 1198 1237 2.8 
12 757 831 900 963 1021 1073 1120 1161 1197 3.0 
13 739 811 877 937 992 1042 1086 1124 1157 3.3 
14 721 790 853 911 963 1010 1051 1087 1117 3.5 
15 703 769 830 885 934 978 1017 1050 1077 3.8 
16 686 749 807 859 906 947 983 1013 1038 4.0 
17 668 728 783 833 877 915 948 976 998 4.3 
18 650 708 760 807 848 884 914 939 958 4.5 
19 632 687 736 780 819 852 879 901 918 4.8 
20 614 666 713 754 790 820 845 864 878 5.0 
21 596 646 690 728 761 789 811 827 838 5.3 
22 578 625 666 702 732 757 776 790 798 5.5 
23 560 604 643 676 703 725 742 753 758 5.8 
24 543 584 620 650 675 694 708 716 719 6.0 
25 525 563 596 624 646 662 673 679 679 6.3 
26 507 543 573 598 617 631 639 642 639 6.5 
27 489 522 549 571 588 599 604 604 599 6.8 
28 471 501 526 545 559 567 570 567 559 7.0 
29 453 481 503 519 530 536 536 530 519 7.3 
30 435 460 479 493 501 504 501 493 479 7.5 
31 417 439 456 467 472 472 467 456 439 7.8 
32 400 419 433 441 444 441 433 419 400 8.0 
33 382 398 409 415 415 409 398 382 360 8.3 
34 364 378 386 389 386 378 364 345 320 8.5 
35 346 357 362 362 357 346 329 307 280 8.8 
36 328 336 339 336 328 314 295 270 240 9.0 
Shaded cells indicate the set of Nash Equilibria under purely rational strategies. The social optimum is at level 2. 
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Notes

 
1 For a semi-parametric approach to estimate hierarchical integer models see e.g. Gurmu et al. (1999) and 

Jochmann and Léon-González (2004). 

2 In some CPR games the specified integer range denotes extraction effort, for example in terms of 

temporal units per season or year, as opposed to actual harvest levels.  This does not affect the general 

econometric concerns raised in this study.  For consistency with our empirical application we will use the 

“harvest” or “extraction” interpretation of decision levels throughout the remainder of this text. 

3 The covariances in Σ are set to zero for our application since each individual participates in only two of 

four treatments.  Thus, different covariance terms would apply to different sub-samples of the data, which 

would make their interpretation problematic.  In theory, a separate within-group variance matrix could be 

estimated for each group in a given experimental session.  However, in our case this would lead to an 

intractable proliferation of poorly identified parameters given the large number of up to 12 groups per 

treatment and the small number of five players per group.  Also, it would be straightforward to add a 

second hierarchical layer if there is additional nesting in the data.  For example, if the same experiment is 

conducted in several communities, one could specify group means of heterogeneous effects to be drawn 

from a community-level distribution.  In our application the number of communities (3) is too small to 

allow for the efficient estimation of second-layer parameters. Instead, we focus on an informal 

comparison of community-level results. 

4 As discussed in Chib and Carlin (1999) in the context of related hierarchical regression models, this 

further improves the mixing of individual draws and thus the convergence speed of the Gibbs Sampler.  A 

detailed discussion of marginalizing draws of fixed regression parameters or parameters of higher 

hierarchical levels over lower level random coefficients is given in Lindley and Smith (1972). 

5 For a comparative review of alternative approaches to approximate the marginal likelihood see Han and 

Carlin (2001). 

 



  
  

37

 
6 For comparison, a day’s wage in the three regions at the time of the experiments varied between 10,000 

and 15,000 pesos. 

7 From a game-theoretic perspective the expected penalties under regulatory treatments T2 and T3 are not 

high enough to induce compliance with the harvest quota.  However, such weak enforcement strategies 

are characteristic of regulatory control of natural resources in the developing world. 

8 We also included subjects’ age in preliminary specification but found no measurable effects for this 

regressor. 

9 Posterior summaries for the threshold coefficients in the HOP and the error variance for the HDTN are 

omitted for ease of exposition.  They are available form the authors upon request. 

10 Naturally, the numerical values of these effects will differ between the HDTN and the HOP given the 

necessary restriction of 2 1σ =  for the latter framework. 

11 One minor exception is Magdalena for the HDTP, where the ranking between T3 and T4 is reversed 

compared to the other two regions. 

12 As shown in List and Price (Forthcoming) the role of trust-building to reach socially desirable outcomes 

in SD settings is especially important when social connections in a community are relatively weak and / 

or when “outsiders” from different cultural or socio-economic segments of the population participate in 

decision-making for a PG or a CPR. 

13 One could replace this exact probability with a cumulative density bounded between 2 ε−  and 2 ε+ .  

However, this would entail the arbitrary choice of ε . We thus abstract from deriving this probability for 

the HDTN. 

14 We use an Epanechnikov kernel density estimator with Silverman's (1986) rule-of-thumb bandwidth 

selector to generate these plots.  We are grateful to Justin Tobias for providing Matlab code on his course 

web site to perform this kernel density estimation. 
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15 In theory, only one draw of iγ is required for each rθ to simulate the desired predictive distribution of 

bin probabilities. However, multiple draws are computationally inexpensive and improve the accuracy of 

forecasts. 
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Table 1:  Sample Statistics 

 Pacific  Caribbean  Magdalena 
 mean / percent std  mean std  mean std 
         

age 43.2 11.6  35.7 13.4  42.7 15.4 
years of formal 

education 4.1 2.3  6.2 3.6  4.3 2.9 
         

female 10.0% -  43.0%   20.0%  
         

lived in community ten 
years or longer 95.0% -  78.0% -  93.0% - 

         
fishing is the main 
household activity 94.0% -  69.0% -  87.0% - 

         
extraction , periods 1-5 5.05 2.4  5 2.5  5 2.5 
extraction, periods 6-10 4.9 2.6  5.2 2.6  4.9 2.7 
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Table 2:  Model Specifications and Model Comparison for all Frameworks and Areas 

HDTN 
 # of   log mLH (BF*) 

Model param. fixed effects random effects Pac Car  Mag 
M1 5 gender, edu constant -2710.71 -2623.05  -2706.86 

    (156.35) (91.45)  (112.12) 
M2 7 gender, edu, T1 - T4 - -2635.46 -2698.83  -2690.13 

    (81.10) (167.23)  (95.39) 
M3 11 gender, edu T1 - T4 -2554.37 -2531.60  -2595.06 

    (0.00) (0.00)  (0.32) 
M4 15 gender, edu, treat.*period T1 - T4 -2563.05 -2542.03  -2603.78 

    (8.69) (10.42)  (9.04) 
M5 13 gender, edu T1-T4, period -2558.54 -2532.79  -2594.74 

    (4.18) (1.19)  (0.00) 
HOP 

 # of   log mLH (BF*) 
Model param. fixed effects random effects Pac Car  Mag 

M1 11 gender, edu constant -2630.83 -2569.51  -2613.53 
    (143.04) (75.47)  (107.32) 

M2 13 gender, edu, T1 - T4 - -2551.01 -2644.97  -2588.13 
    (63.22) (150.92)  (81.92) 

M3 17 gender, edu T1 - T4 -2487.80 -2494.05  -2506.20 
    (0.00) (0.00)  (0.00) 

M4 21 gender, edu, treat.*period T1 - T4 -2505.26 -2512.88  -2524.12 
    (17.47) (18.83)  (17.91) 

M5 19 gender, edu T1-T4, period -2509.83 -2509.62  -2521.65 
    (22.04) (15.57)  (15.44) 
        

HDTP 
    Log mLH (BF*) 

Model  fixed effects random effects Pac Car  Mag 
M1 4 gender, edu constant -2696.75 -2416.73  -2757.45 

    (667.19) (400.49)  (671.31) 
M2 6 gender, edu, T1 - T4 - -2569.63 -2689.14  -2737.76 

    (540.07) (672.90)  (651.62) 
M3 10 gender, edu T1 - T4 -2120.73 -2117.91  -2196.51 

    (91.17) (101.67)  (110.37) 
M4 14 gender, edu, treat.*period T1 - T4 -2125.75 -2126.55  -2197.37 

    (96.19) (110.32)  (111.22) 
M5 12 gender, edu T1-T4, period -2029.56 -2016.24  -2086.14 

    (0.00) (0.00)  (0.00) 
        

mLH = marginal likelihood / *BF = Bayes Factor. Based on the difference of the log-marginal likelihood of the most likely sub-model to the log-
marginal likelihood of any other sub-model 
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 Table 3: Model Comparison Across Frameworks 

  # param. logP logLH log(mLH) BF* 
       

Pacific      
Framework Model      

HDTN M3 11 -32.31 -2523.73 -2554.365 524.808 
HOP M3 17 -29.24 -2405.20 -2487.795 458.238 

HDTP M5 12 -31.74 -2001.91 -2029.557 0.000 
       
Caribbean      

Framework Model      
HDTN M3 11 -35.17 -2500.52 -2531.601 515.363 
HOP M3 17 -29.85 -2411.94 -2494.048 477.810 

HDTP M5 12 -30.67 -1972.01 -2016.238 0.000 
       
Magdalena      

Framework Model      
HDTN M5 13 -39.08 -2559.29 -2594.738 508.594 
HOP M3 17 -27.61 -2427.52 -2506.203 420.059 

HDTP M5 12 -30.22 -2041.69 -2086.144 0.000 
       

P = prior, LH = sample likelihood, mLH = marginal likelihood, BF = Bayes Factor. *Based on the difference of the  
log-marginal likelihood of the most likely model to the log-marginal likelihood of any other model within each region. 
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Table 4: Estimation Results for Most Likely Sub-models, all Regions 

 HDTN / Model 3  HOP / Model 3  HDTP / Model 5 
 Pacific  Caribb.  Magd.  Pacific Caribb. Magd.  Pacific  Caribb. Magd. 
 mean  mean  mean  mean mean mean  mean  mean mean 
  (std)   (std)   (std)  (std)  (std)  (std)  (std)   (std)  (std) 
               

Fixed Effects               
female 0.891  0.182  0.947  0.469 0.087 0.359  0.260  0.066 0.243 

 (0.441)  (0.315)  (0.363)  (0.288) (0.192) (0.193)  (0.140)  (0.097) (0.109)
education -0.921  0.532  0.187  -0.409 0.232 0.108  -0.207  0.148 -0.027 

 (0.548)  (0.426)  (0.500)  (0.367) (0.262) (0.271)  (0.174)  (0.134) (0.147)
               

RE Means               
T1 6.375  5.446  5.517  2.568 2.031 1.860  1.992  1.691 1.750 

 (0.284)  (0.324)  (0.281)  (0.200) (0.207) (0.162)  (0.088)  (0.102) (0.082)
T2 3.235  4.814  4.160  1.114 1.737 1.309  0.971  1.510 1.322 

 (0.501)  (0.781)  (0.740)  (0.339) (0.418) (0.340)  (0.202)  (0.269) (0.252)
T3 4.058  4.204  3.227  1.496 1.442 0.937  1.286  1.272 1.049 

 (0.530)  (0.718)  (0.537)  (0.344) (0.400) (0.291)  (0.188)  (0.242) (0.180)
T4 5.170  3.315  2.934  2.038 1.098 0.817  1.715  1.130 1.098 

 (0.378)  (0.393)  (0.530)  (0.297) (0.296) (0.298)  (0.127)  (0.145) (0.152)
period -  -  -  - - -  -0.043  0.079 0.068 

 -  -  -  - - -  (0.050)  (0.054) (0.058)
               

RE Variances               
T1 1.053  1.572  0.807  0.518 0.582 0.354  0.094  0.131 0.095 

 (0.317)  (0.414)  (0.309)  (0.112) (0.126) (0.078)  (0.024)  (0.034) (0.024)
T2 3.371  10.182  9.464  1.642 2.761 1.924  0.612  1.236 1.140 

 (1.451)  (4.207)  (3.697)  (0.612) (1.086) (0.745)  (0.250)  (0.592) (0.472)
T3 3.995  8.039  4.080  1.723 2.341 1.257  0.529  0.901 0.503 

 (1.591)  (3.094)  (1.772)  (0.634) (0.880) (0.468)  (0.214)  (0.352) (0.231)
T4 1.103  0.998  3.179  1.067 1.007 1.141  0.166  0.192 0.282 

 (0.577)  (0.546)  (1.449)  (0.381) (0.369) (0.417)  (0.062)  (0.084) (0.116)
period -  -  -  - - -  0.081  0.102 0.126 

 -  -  -  - - -  (0.022)  (0.028) (0.033)
                                 

 RE = random effects     
mean = posterior mean  /  (std) = posterior standard deviation 
mean = posterior mean 
std = posterior standard deviation 
low (mean) / up (mean) = lower (upper) bound of 95% numerical confidence interval for the mean 
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Table 5: Observed and Predicted Extraction Probabilities and Levels 

 Sample  HDTN / M3  HOP / M3  HDTP / M5 
 Pacific  Caribb.  Magd.  Pacific Caribb. Magd.  Pacific  Caribb. Magd.  Pacific Caribb. Magd. 
       mean mean mean  mean  mean mean  mean mean mean 
              (std)  (std)  (std)   (std)   (std)  (std)   (std)  (std)  (std) 

Level 2                   
T1 0.063  0.063  0.073  N/A N/A N/A  0.102  0.090 0.125  0.061 0.066 0.071 

           (0.094)  (0.081) (0.083)  (0.067) (0.076) (0.077)
T2 0.360  0.120  0.240  N/A N/A N/A  0.235  0.117 0.166  0.212 0.116 0.143 

           (0.128)  (0.110) (0.117)  (0.106) (0.121) (0.123)
T3 0.320  0.240  0.270  N/A N/A N/A  0.211  0.135 0.205  0.180 0.140 0.184 

           (0.134)  (0.110) (0.106)  (0.115) (0.122) (0.114)
T4 0.190  0.180  0.250  N/A N/A N/A  0.173  0.178 0.215  0.113 0.166 0.186 

           (0.130)  (0.100) (0.102)  (0.096) (0.106) (0.109)
Level 1-3                   

T1 0.226  0.183  0.243  0.101 0.123 0.143  0.204  0.223 0.278  0.183 0.196 0.210 
       (0.064) (0.085) (0.055)  (0.176)  (0.192) (0.176)  (0.180) (0.204) (0.206)

T2 0.620  0.320  0.420  0.397 0.234 0.275  0.600  0.362 0.464  0.647 0.355 0.443 
       (0.193) (0.234) (0.209)  (0.318)  (0.345) (0.335)  (0.321) (0.366) (0.377)

T3 0.500  0.430  0.480  0.316 0.264 0.324  0.509  0.417 0.558  0.526 0.422 0.541 
       (0.197) (0.227) (0.163)  (0.328)  (0.345) (0.302)  (0.334) (0.364) (0.333)

T4 0.360  0.460  0.630  0.191 0.302 0.346  0.361  0.484 0.589  0.320 0.465 0.528 
       (0.098) (0.110) (0.149)  (0.279)  (0.289) (0.292)  (0.252) (0.283) (0.304)

Expected harvest                   
T1 5.770  5.733  5.553  5.681 5.520 5.404  5.862  5.664 5.568  5.820 5.795 5.680 

       (0.632) (0.756) (0.465)  (1.355)  (1.437) (1.275)  (1.359) (1.511) (1.490)
T2 3.350  5.270  4.670  3.841 5.087 4.752  3.502  5.121 4.585  3.233 5.215 4.593 

       (0.980) (1.605) (1.354)  (1.909)  (2.447) (2.310)  (1.800) (2.511) (2.462)
T3 4.170  4.900  4.280  4.301 4.787 4.291  4.061  4.672 3.882  3.904 4.671 3.818 

       (1.129) (1.469) (0.944)  (2.055)  (2.330) (1.941)  (1.948) (2.358) (1.934)
T4 4.520  4.090  3.680  4.923 4.225 4.138  4.915  4.048 3.678  4.941 4.109 3.821 

       (0.682) (0.611) (0.829)  (1.836)  (1.727) (1.840)  (1.586) (1.585) (1.695)
                                           

mean = posterior mean, (std) = posterior standard deviation 
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Figure 1: Predictive pdf and cdf for Expected Harvest 
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Legend:          T1                T2        T3               T4


